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Abstract: Climate warming in the Arctic has led to warmer 
and earlier springs, and as a result, many food resources 
for migratory animals become available earlier in the 
season, as well as become distributed further northwards. 
To optimally profit from these resources, migratory 
animals are expected to arrive earlier in the Arctic, as 
well as shift their own spatial distributions northwards. 
Here, we review literature to assess whether Arctic migra-
tory birds and mammals already show shifts in migration 
timing or distribution in response to the warming climate. 
Distribution shifts were most prominent in marine 
mammals, as expected from observed northward shifts of 
their resources. At least for many bird species, the ability 
to shift distributions is likely constrained by available 
habitat further north. Shifts in timing have been shown in 
many species of terrestrial birds and ungulates, as well as 
for polar bears. Within species, we found strong variation 
in shifts in timing and distributions between populations. 
Ou r review thus shows that many migratory animals 
display shifts in migration timing and spatial distribution 
in reaction to a warming Arctic. Importantly, we identify 
large knowledge gaps especially concerning distribution 
shifts and timing of autumn migration, especially for 
marine mammals. Our understanding of how migratory 
animals respond to climate change appears to be mostly 
limited by the lack of long-term monitoring studies.
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1  Introduction

The Arctic region is characterised by strong seasonality. 
During winter, the Arctic forms an inhospitable environ-
ment for most animals, with low temperatures, extensive 
snow and ice cover and long phases of darkness. The 
summer season is relatively short with long light phases 
and temperatures above freezing, associated with strong 
changes in environmental conditions, including melt 
of snow and break-up of sea ice. In both terrestrial and 
marine ecosystems, the Arctic summer is also a period 
of peak productivity, creating a short period of high 
resource abundance for many species. These strong sea-
sonal changes in environmental conditions explain why 
many vertebrates occurring in the Arctic have a migratory 
lifestyle [1, Figure 1]. This allows them to profit from high 
resource abundance in the Arctic summer, while escaping 
harsh climatic conditions during winter. 

The Arctic climate is changing disproportionally fast 
[2], with temperature increases three times as fast as the 
rest of the globe [3], especially accelerating in recent 
decades [4]. Increases in temperature throughout the 
year coincide with loss of Arctic sea ice, shorter seasonal 
duration of snow cover [5], and overall increased ‘green-
ing’ of tundra regions [but with strong variation between 
sites, 6]. Such changes are predicted to further accelerate 
in the near future [7]. The warming climate has strong 
impacts on the availability of resources for Arctic migra-
tory animals. Earlier disappearance of ice and snow in the 
season can result in shifts in timing and distribution of the 
main food resources for migrants, including vegetation 
[8,9] and arthropods on land [10–12], and phytoplank-
ton abundance at sea [13,14]. If migratory animals do not 
change the timing of their migration and reproduction or 
their summer distribution in response, phenological mis-
matches with their food resources may occur, potentially 
resulting in reduced fitness [15,16] which might affect pop-
ulation dynamics.

To adjust to changes in the timing of resource availa-
bility in the Arctic, migratory animals could advance their 
timing of arrival on the breeding grounds. Given the limited 
leeway to increase the speed of migration once underway 
[17,18] for birds which have relatively high travel speeds, 
this likely also necessitates advancements in migratory 
fuel deposition and departure from the wintering grounds 
[19]. Besides changes in spring migration in response to 
earlier resource availability, longer Arctic summer seasons 
associated with later freeze-up and snowfall [5] could also 
drive delays in the timing of autumn migration [20]. 

In addition to shifts in the timing of migration, animals 
may respond to a warming Arctic by shifting their summer 

distribution northward to locations with later phenology. 
Animals making this northward shift may then experience 
the same timing of resource availability in spring without 
advancing migration timing (Figure 2), although it could 
also result in later arrival given longer migration distances. 
However, distributional shifts might be limited by topog-
raphy or by increased travel costs for some Arctic animals. 
First, many terrestrial animals in the Arctic already find 
themselves at the most northern edge of the continent, 
resulting in shrinking habitat range or “polar squeeze” 
(Figure 2). Second, suitable habitats may not be present 
further north. For example, marine mammals are largely 
reliant on sea ice for feeding (and reproducing in case of 
pinnipeds), and may find themselves without any availa-
ble habitat with the predicted disappearance of sea ice in 
summer [21]. Changes in timing of migration and repro-
duction [22,23], and to a limited extent shifts in breed-
ing distribution [24,25], have already been observed in 
Arctic migratory animals. Those species which have been 
unable to shift timing of reproduction sufficiently, often 
suffer from reductions in reproductive success and sur-
vival [15,16]. As Arctic migratory animals are an essential 
part of local Arctic ecosystems [26,27], as well as provide 
important resources for local Indigenous Peoples [28,29], 
any changes in the migration timing and distribution of 
migratory animals will have far-reaching consequences.

Here we review literature on Arctic migratory animals 
for evidence of shifts in timing of migration and shifts in 
distribution. We focus on groups of endothermic migra-
tory vertebrates that perform seasonal migrations to, or 
within, the Arctic, including terrestrial and marine birds, 
ungulates, cetaceans, pinnipeds and polar bears (Figure 
1). These animals differ strongly in their habitats (marine, 
coastal and terrestrial habitats) as well as in their diet 
(plankton, benthic invertebrates, fish, pinnipeds, plants, 
arthropods, rodents). We expect to find variation in both 
shifts in timing and distribution across taxonomic groups 
of Arctic migratory animals. Concerning migration timing, 
we predict that long-distance migrants (most birds and 
cetaceans, with one-way journeys on average exceeding 
2000 kilometres) will show smaller shifts in migration 
timing in comparison to short-distance migrants (includ-
ing some cetaceans, all ungulates, pinnipeds and polar 
bear), as long-distance migrants cannot predict condi-
tions in the Arctic from their distant wintering grounds 
[30,31]. Concerning shifts in distribution, we expect terres-
trial animals (including land-breeding marine birds), to 
be more constrained in making large shifts [32] compared 
to marine animals. For terrestrial animals, suitable alter-
native habitat further northward may not be available due 
to lagging changes in suitable vegetation communities, or 
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Figure 1: Examples of warm-blooded vertebrates migrating to the Arctic, showing (top left), reindeer (Rangifer tarandus) crossing a frozen 
river on the way to their calving grounds, (top right), red knots (Calidris canutus) on a spring staging site in northern Norway, (bottom left),  
walrus (Odobenus rosmarus) resting on sea ice with their young, and (bottom right), a minke whale (Balaenoptera acutorostrata) in a fjord 
in Svalbard. Photographs by Paul Asman & Jill Lenoble (top left), GRID Arendal (top right), Alaska Region US Fish & Wildlife (bottom left),  
and Guillaeme Baviere (bottom right).

Figure 2: (A-B) Maps showing examples of current (green) and hypothetical future summer distributions (orange) of purple sandpipers Calid-
ris maritima (A) and harp seals Pagophilus groenlandicus (B) around Svalbard. While harp seals can shift their distribution northward with 
retreating sea ice, purple sandpipers are constrained by available land mass of Svalbard to shift their distributions far north. Median sea ice 
cover (during summer months 1981 - 2010) is shown as light grey area in the north, outlined by a solid black line, and hypothetical change 
in future ice cover is depicted by the white area outlined by dashed black line. Grey dashed arrows show migration directions of the sand-
pipers and seals. Distributions and migration directions are based on [73,195,231]. (C-D) With a warming climate, timing of food availability 
(blue lines) is expected to advance (red dashed lines), both in current distributions (D) as well as hypothetical future distribution ranges (C). 
To maintain a synchrony with these peaks in food availability, animals are expected to advance their own timing of migration, but may also 
be able to maintain a synchrony by shifting their distribution northward (towards distribution C) where the food becomes available later in 
the season.
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as it is limited by topographical barriers in the landscape 
such as the northern edge of the continent (Figure 2). In 
comparison, animals in marine environments that can 
freely navigate the oceans and enter the Arctic basin, may 
show stronger shifts in their distribution [32], for example 
by following the edge of pack ice, or the distribution shifts 
of their main prey [33,34]. 

In this review, we first introduce the focal taxonomic 
groups of endothermic vertebrates and their migrations. 
Thereafter we introduce the resources on which animals 
depend and discuss how the phenology and abundance 
of these resources are expected to change in a warming 
climate. Finally, following a systematic literature search, 
we review scientific literature on evidence for shifts in 
timing of migration and shifts in distribution of focal taxo-
nomic groups, and quantify whether shifts in timing differ 
between taxonomic groups.

2  Migrations of Arctic, warm-
blooded vertebrates

2.1  Bird migration

The most abundant birds with Arctic distributions are 
seabirds, shorebirds, and waterfowl, with other less rep-
resented species groups including passerines, grouse 
and birds of prey [1]. Most of these species are migratory 
[35] and spend the winter in more southern regions. The 
extent of these migrations varies enormously, with some 
seabird species wintering in Arctic waters [36,37], most 
waterfowl, passerines, and birds of prey wintering in tem-
perate regions [38–40], and many shorebird and seabird 
species wintering in areas that range from temperate and 
tropical regions [41–43] down to Antarctic waters [44,45]. 
Differences in wintering areas, and therefore migration 
distance, likely relate strongly to availability of suitable 
wintering habitat with available resources. Fish-eating 
seabirds may be able to winter in Arctic waters as long as 
fish are available and accessible [46,47], while shorebirds, 
depending on benthic invertebrates, travel to temperate 
and tropical intertidal flats that do not freeze in winter 
[42]. Given long migration distances, many bird species 
require stopover sites to gain energy stores between leaps 
of migration [48]. During spring migration, at least some 
species of waterfowl appear to track peaks in food quality 
and availability [49–51] and the onset of ice break-up and 
snowmelt at staging sites [52,53]. This, however, does not 
appear to be the case for all species of waterfowl [51] nor for 

shorebirds [54]. Birds of prey also track snowmelt during 
northward migration, possibly as areas with melting snow 
contain high availability of rodent prey [38]. All Arctic 
migratory birds reproduce during the Arctic summer, 
and many species (including waterfowl, shorebirds and 
marine birds) appear to attempt to synchronize their 
reproduction with prey availability for their offspring.

2.2  Ungulate migration

The Arctic is inhabited by a limited set of ungulate species, 
including reindeer (Rangifer tarandus), moose (Alces 
alces), muskox (Ovibos moschatus), Dall’s sheep (Ovis 
dalli) and snow sheep (Ovis nivicola). Movements of the 
three latter species are limited to short-distances (up to 
100 km), which can be seasonal but often follow nomadic 
patterns [55] in search for suitable foraging grounds. On 
the other hand, moose [56,57] and reindeer are consid-
ered partial migrants, and especially some populations 
of reindeer make large migratory movements up to 1300 
km [58] from taiga wintering areas to calving grounds at 
coastal Arctic tundra zones. Other populations of rein-
deer migrate shorter distances [59] or are resident [60]. By 
migrating, ungulates can winter in areas with more suit-
able conditions for both adults and their offspring [56], 
travel northwards in spring along a wave of vegetation 
green-up [61], and match calving with local peaks in food 
quality [15,62]. Studies on the migrations of moose are 
largely limited to their southern ranges, and in this review 
we therefore focus on reindeer.

2.3  Cetacean migration

Cetaceans occurring in the Arctic are mostly represented 
by baleen whales (Mysticeti), including rorquals (Balae-
nopteridae) and grey whales (Eschrichtius robustus), and 
fewer toothed whales (Odontoceti), including belugas 
(Delphinapterus leucas), narwhals (Monodon monoceros), 
sperm whales (Physeter macrocephalus) and northern 
beaked whales (Hyperoodon ampullatus). With the excep-
tion of the pagophilic (i.e. sea-ice loving) beluga, narwhal 
and bowhead whale (Balaena mysticetus), which make 
seasonal migrations within the Arctic, cetaceans are sea-
sonal visitors to the Arctic. In contrast to birds and ungu-
lates that migrate to the Arctic for reproduction, migratory 
whales use the high latitude summer grounds exclusively 
for feeding, while reproduction occurs in low latitude 
winter grounds, where food availability is generally scarce 
or non-existent [63]. The mechanism driving this migra-
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tory pattern remains largely unknown. It has been sug-
gested that whales migrate to reduce predation pressure 
on calves [64,65], or that the higher temperatures of low 
latitude waters bring thermoregulation benefits for calves 
(and/or adults) [66,67]. However, recent new evidence 
suggests that deferred skin moult could be the main driver 
of long-distance cetacean migration [67]. In colder waters, 
cetaceans reduce blood flow to their skin to conserve 
body heat. It appears that cetaceans migrate to warmer 
waters at lower latitudes to reduce heat loss during moult, 
a period during which they enlarge blood flow through 
the skin. Similarly, the pagophilic species that remain in 
the Arctic year-round, make seasonal migrations towards 
warmer waters in estuaries and shallows to moult [68–70].

2.4  Pinniped migration

Several pinniped species are year-round residents in the 
Arctic regions, like harp seal (Pagophilus groenlandicus), 
ringed seal (Pusa hispida), hooded seal (Cystophora cris-
tata), bearded seal (Erignathus barbatus), spotted seal 
(Phoca largha), ribbon seal (Histriophoca fasciata) and 
walrus (Odobenus rosmarus). In addition, the distribu-
tions of other species like harbour seals (Phoca vitulina) 
and grey seals (Halichoerus grypus), Steller sea lion (Eume-
topias jubatus) and northern fur seal (Callorhinus ursinus) 
extend into the polar regions. While pinnipeds feed at sea, 
they require land or ice to reproduce, moult and period-
ically rest, which severely constrains their at-sea distri-
bution. To avoid land predators, most Arctic pinnipeds 
spend the breeding and moulting season on land-fast ice 
or free-floating pack ice in late winter and spring [71], after 
which they disperse. While some individuals move long 
distances away from the ice (e.g. harp seals and walrus), 
most pinniped species remain associated with outer edges 
of the pack ice, where they feed on fish and invertebrates 
[72], while using the pack ice as resting platforms. Resident 
Arctic pinnipeds feed on prey that is present and accessi-
ble in the Arctic regions year-round, which provides no 
strong incentive to leave the Arctic region altogether, as 
opposed to most birds and cetaceans. However, pinnipeds 
do show seasonal long-distance movements [73], but this 
seasonal migratory pattern mostly involves movement 
between foraging areas, breeding and moulting locations, 
largely driven by the extent of the pack ice [74]. 

2.5  Polar bear migration

Polar bears (Ursus maritimus) depend on sea ice platforms 
to hunt fatty, energy-dense pinniped prey [75], primarily 
ringed seals and bearded seals [76]. The bears consume 
around two-thirds of their annual food intake from Feb-
ruary up to mid-April, when seals give birth on the sea 
ice [75,77]. When sea ice melts and becomes fractured in 
spring, the polar bears’ mobility and seal hunting tech-
nique become inefficient [78], and bears either move with 
the receding pack ice, or migrate towards terrestrial hab-
itats [75]. The summer is typically a period of fasting for 
polar bears during which they rely on endogenous energy 
reserves [79]. Most polar bears move back onto the pack 
ice after autumn, when pack ice extent increases, while 
pregnant female bears will enter terrestrial maternity dens 
along the coast where they give birth to their young [80].

3  Changing resources under 
climate warming
Temperatures in the Arctic are increasing year-round, 
with temperatures above freezing occurring earlier in 
spring [81], associated with earlier timing of snow melt, 
active layer melt and ice break-up [5]. These climatic 
changes can result in earlier availability of resources for 
migrants (although the relative importance of climatic 
factors may differ at regional scales, e.g. [82]). In addition, 
higher summer temperatures may lengthen the period of 
resource availability, and climatic changes may also cause 
a northward shift in the spatial distribution of resources, 
as well as of suitable habitats for migrants. We discuss 
these aspects in detail in the following sections.

3.1  Earlier resource availability

Lower trophic levels, including the food resources for 
many migratory animals (Figure 3), are known to rapidly 
adjust their phenology to a warming climate [83]. In ter-
restrial habitats, earlier snowmelt and increasing temper-
atures have led to an advancement in the growing season 
of many plants [84], and thereby an advancement in the 
moment of peak quality and availability of forage plants 
for herbivorous birds and ungulates [8,9,85]. Arthropods, 
which form the main prey for Arctic-breeding shorebirds 
and passerines [86], respond to earlier dates of snow and 
active layer melt and increasing temperatures by earlier 
emergence [10,22,87] and changes in their abundance 
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[10]. The annual cycles of Arctic rodents, the main prey of 
Arctic raptors and skuas [88], seem to be little impacted 
by a warming climate [89] (but see reports on irregularity 
of these cycles [90]). At the same time, the accessibility of 
rodents as prey for birds is potentially dependent on snow 
cover, with high concentrations of accessible rodents 
around the time of snow melt [38]. Despite increasing 
temperatures, increasing precipitation in winter (another 
aspect of climate change in the Arctic, 91]) may also result 
in abundant snow and late melt thereof, which has the 
potential to largely disrupt reproduction of all terrestrial 
animals [92].

In marine environments, ice algae and phytoplankton 
form the most important primary producers and are the 
basis of the Arctic marine food web [93]. Ice algae grow 
under thinning ice edges, and their phenology is regu-
lated by light [94]. While a warming climate would result 
in a more permeable ice layer and earlier ice algal blooms 
may be expected, short day-length at high latitudes limit 
phenological advancements of ice algae [94,95]. The other 
main primary producer, phytoplankton, blooms later 
in the season at ice edges, regulated by light and nutri-
ent upwelling [95]. Earlier ice disappearance has caused 
an advancement in timing of phytoplankton blooms [96] 

Figure 3: Simplified food webs in marine Arctic habitats (left) and terrestrial habitats (right), with the focal groups of marine migrants (blue), 
terrestrial herbivore migrants (green) and terrestrial carnivores (orange) displayed in circles. Resources, as well as predators which do 
not display typical migratory behaviour, are displayed in black, smaller circles. Several marine fish species make semelparous migrations 
to streams and rivers to spawn (as indicated by the grey dashed arrow), and are thus available as resource to both marine and terrestrial 
animals. In marine habitats, migratory seabirds, cetaceans and pinnipeds are expected to adjust timing of migration and / or distribution 
with availability of zooplankton, benthic organisms such as bivalves, and fish, which in turn rely on phytoplankton (including ice algae). 
Polar bears rely on the presence of pack ice to prey on pinnipeds during winter months, but with a warming climate spend more time in 
terrestrial habitats where they have started to prey on bird’s eggs. In terrestrial habitats, herbivores feed on forage plants and time arrival 
with peaks in nutritional quality of plants. Shorebirds time migration in synchrony with availability of arthropods, and birds of prey rely on 
availability of rodents for successful reproduction. In turn, terrestrial predators such as Arctic foxes prey on bird’s nests, especially in years 
when cyclic rodent populations are depressed. Besides shifts in phenology of resources, climate warming may also impact habitat suitabi-
lity via changes in thermal niches, retreating pack ice and vegetation community change (shown in orange boxes). Other aspects such as 
light-dark cycles and topographical features (such as cliffs which seabirds require for nesting, shown in grey boxes) will not change, potenti-
ally constraining distribution shifts of animals.

Retreating
ice cover

Vegetation
change

Changes in
thermal niches

Light-dark cycle

Topograhical
features
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and a decreasing time-lag between ice algae and phyto-
plankton blooms [95], which together form the main food 
resource for many species of bivalves and zooplankton 
[97]. Zooplankton may suffer from reductions in survival 
(measured as lower available zooplankton biomass) when 
they are not able to adjust their phenology in response to 
advanced phytoplankton blooms [97–99], as well as pos-
sibly due to the segregation of ice algae and phytoplank-
ton blooms. Nevertheless, other studies found stable 
zooplankton biomass following earlier phytoplankton 
blooms [100]. Zooplankton is the main food resource for 
fish species, and both zooplankton and fish are eaten by 
most baleen whales, pinnipeds and seabirds [101,102]. 
Both timing and abundance of zooplankton may affect 
the abundance and availability of fish species as prey for 
higher trophic levels. For seabirds and whales, impor-
tant prey fish species may occur earlier in the season, or 
decrease in abundance due to phenological mismatches 
with algal and plankton blooms. 

3.2  Longer period of resource availability

While a warming climate will advance the timing when 
resources become available, it can also impact the abun-
dance of resources [10], as well as result in a longer period 
of availability of resources. Although their nutritional 
value declines over the season, forage plants are availa-
ble for herbivorous birds until covered by first snowfall in 
autumn, which is occurring later in the season in recent 
years [5]. This is also beneficial for many ungulates, 
which, despite their ability to find forage plants under 
shallow layers of snow, cannot deal with deeper layers 
of snow [103] or ice crust formation [104]. Terrestrial 
arthropods may remain active as long as temperatures are 
above freezing, but their availability to predators could be 
limited due to a restricted number of generations emerg-
ing in one season [105] but see [106], and Arctic shorebirds 
are thus unlikely to profit from a longer breeding season 
through re-nesting [107]. With increasing temperatures, 
warming Arctic waters may facilitate longer resource 
availability, by driving the emergence of a second phy-
toplankton bloom [100,108] and a second generation of 
copepods [109] during autumn.

3.3  Northward shifts in suitable habitats and 
resources

A change in climate is expected to change the habitat suit-
ability for migratory animals as well as for their resources, 
and both may show northward shifts of their distribu-
tion in response (Figure 2). First of all, many organisms 
thrive within a specific ‘thermal niche’ or ‘thermal pref-
erence’, and experience fitness reductions outside this 
niche [110,111]. With a warming climate, the location of 
this thermal niche and therefore the suitability of habitats 
is predicted to shift northwards [34,112]. This may lead to 
distribution shifts for endothermic vertebrates, as well 
as for their food resources, often ectothermic animals or 
vegetation. Although at high latitudes most endothermic 
animals live at temperatures well below their thermal 
maximum and thus have leeway under increasing temper-
atures [113,114], habitat suitability of ectothermic organ-
isms is more sensitive to changing temperatures [110], and 
these potentially make larger distribution shifts [115]. At 
the same time, vegetation communities and thereby dis-
tribution of specific plant species appear to change at rel-
atively slow rates [6,116]. Such shifts in the distribution of 
resources will also change habitat suitability for migrants. 
For example, in marine environments, many fish species 
are showing northward distribution shifts, changing 
local community composition of potential prey species 
for marine predators [117]. At the same time, some fish 
species from lower latitudes may be unable to find refuge 
away from predators during the continuous light of polar 
summer, which may constrain their abundance under 
certain climate change scenarios [118].

Some factors of habitat suitability are closely linked 
to climatic conditions, including the thermal niche and 
resource distribution as explained above, as well as spe-
cific environmental aspects of habitats, such as cover of 
sea ice as resting platforms for pinnipeds and hunting 
platforms for polar bears. While climate warming will 
directly change these aspects of habitat suitability, other 
aspects are geographically fixed, for example topographi-
cal features (e.g. cliffs making up suitable nesting habitat 
for seabirds) and the duration of the light-dark cycle 
(which is fixed by latitude and date). Advances in the 
timing of resource availability and rapid-changing aspects 
of habitat suitability as a result of climate warming may 
drive northward distribution shifts of animals, but 
slow-changing or fixed aspects of habitat suitability may 
at the same time form constraints for distribution shifts 
[118,119]. Moreover, such differences in the rate of north-
ward shifts could cause reductions in suitable habitat 
altogether.
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4  Shifts in migration timing and 
distributions

4.1  Methods to quantify differences in 
responses between taxonomic groups

To review whether vertebrates display shifts in migration 
timing and distributions in response to a warming climate, 
we searched for relevant papers using the Web of Science 
database. We used the search term Arctic AND (range shift 
OR migration timing) AND (bird OR avian OR ungulate OR 
herbivore OR cetacean OR whale OR beluga OR narwal OR 
pinniped OR seal OR walrus OR polar bear). This query 
resulted in 486 papers, from which we only included 
papers that (1) dealt with Arctic migratory species, (2) 
reporting on changes in either timing of spring or autumn 
migration, timing of reproduction or changes in distribu-
tion, (3) either as trends over time (as measured over a 
period of at least 5 years) or (4) in relation to climatic and 
environmental conditions in the Arctic (as measured over 
a period of at least 3 years). To determine which species 
are considered ‘Arctic species’, we used species lists as 
provided by the Arctic Biodiversity Assessment [35], with 
the exception that we only included bird species for which 
the majority or complete population breeds in the Arctic. 
We excluded papers that did not report species-specific 
results. Eventually this selection resulted in 32 papers. 
In addition to these papers, we added 35 relevant papers 
(matching the criteria mentioned above) that we found 
within reference lists of the 32 selected papers, as well 
as relevant papers found within the reference lists of two 
review studies on marine mammals [74,120].

For every paper, we recorded (1) the study species and 
taxonomic group (bird, ungulate, cetacean, pinniped, 
polar bear), (2) the region where the study was conducted, 
and (3) whether evidence was reported for shifts in timing 
of spring migration, reproduction and autumn migration 
and shifts in summering distribution. For shifts in timing, 
we considered evidence to be significant shifts in timing 
over years (considering study periods of at least 5 years) 
or with changing climatic variables. For shifts in distribu-
tion, we considered evidence to include both increases in 
the number of sightings (but only when evident that this 
was unrelated to population increase) as well as latitu-
dinal change in observations [121]. We noted the rate of 
change in timing of spring and autumn migration (in days 
per year) when this was reported in studies.

In order to quantify how taxonomic groups differed in 
responses to changing climatic conditions, we compared 
the relative number of species per taxonomic group for 

which shifts in migration and distribution were recorded. 
We quantified whether shifts in migration timing dif-
fered between taxonomic groups by comparing slopes of 
reported shifts in spring and autumn migration. In addi-
tion, comparing the number of species and study regions 
for which we found relevant studies allowed us to quan-
tify how knowledge gaps differed between groups and 
regions.

4.2  Shifts in migration timing

4.2.1  Terrestrial and marine birds

Most of the time series available on migration timing of 
terrestrial birds show no clear advancements in the timing 
of migration departure from wintering areas [16,22,122–
124]. However, in the last decades, some species of water-
fowl and one shorebird have shown profound shifts in 
timing of departure [123,125–128], but these shifts appear 
mostly linked to changes in suitable stopover sites along 
their migratory route. At the same time, many terres-
trial bird species have advanced timing of arrival in the 
Arctic, with studies showing species to adjust migration 
timing to annual variation in climatic conditions in the 
Arctic [16,22,129–131] and some studies also showing clear 
trends of advanced arrival over time [22,132–134]. While 
one study shows stronger shifts in advancement of arrival 
in short-distance migrants compared to long-distance 
migrants [133], other studies find no clear differences 
between short- and long-distance migrants [129]. Along 
with advancements in migration timing, some terrestrial 
bird species show advancements in the timing of repro-
duction [22,135–139], but this is not found for all species 
[11,140,141], and advancements in reproduction timing 
can lag behind advancements in arrival [16]. Trends in 
autumn migration are mixed, with some species showing 
delayed arrival in wintering grounds, associated with 
higher temperatures at northern summering and staging 
sites [126,142]. Several other species show earlier arrivals 
of adult birds [142,143], possibly explained by disrupted 
breeding seasons.

In contrast to many terrestrial bird species, less is 
known about changes in timing of migration in Arctic sea-
birds. For species for which data are available, advance-
ments in migration timing are relatively small, with the 
exception of Arctic-breeding guillemots (Uria spp.) which 
have advanced arrival in breeding colonies all over the 
Arctic [144]. A large meta-analysis, that included many 
Arctic breeding seabirds, showed that seabirds in general 
have not adjusted their timing of reproduction in response 
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to higher sea-surface temperature [145]. In the Arctic, 
advancements in reproduction phenology over time 
have been found for surface-feeding species (gulls and 
tubenoses) in the Pacific ocean but not in the Atlantic 
ocean, while pursuit-diving species (alcids) showed no 
trends in either ocean [146]. While this may be the general 
pattern, some pursuit-diving and benthic-feeding species 
do show advancements in reproduction timing in response 
to local earlier ice break-up [147–149] and increases in air 
temperature [150]. We did not find studies reporting trends 
in timing of autumn migration in sea birds.

4.2.2  Ungulates

A variety of trends on reindeer migration timing emerge 
from the literature. A delay in spring migration over time 
was found for reindeer populations on Newfoundland up 
to the year 2000 [59], earlier spring departures but not 
earlier arrivals were shown for populations in Northern 
Quebec between 2000 and 2011 [151] and no trends in 
departure dates but earlier arrival were found for popula-
tions in north-western Canada and Alaska between 2000 
and 2017 [23]. It is suggested that reindeer adjust departure 
dates and travel speed to local as well as large-scale cli-
matic conditions [23], allowing them to pass through areas 
just prior to snowmelt [62], which facilitates easier passage 
over partly frozen soil and ice [152]. In addition, by pacing 
migration speed with local timing of snowmelt, reindeer 
may be able to optimally time their arrival on the calving 
grounds to match local dates of snow melt and vegetation 
green-up [23,62]. As a result, calving date has advanced in 
several populations of reindeer in response to a warming 
climate [153]. However, large variation exists in the extent 
to which reindeer appear to be able to keep up their timing 
of reproduction with the local climate. Domestic reindeer 
in Northern Finland have been able to advance timing of 
calving with earlier springs [154], which has benefitted 
reproductive success [155]. On the other hand, reindeer 
populations in Svalbard and Western Greenland do not 
seem to advance calving dates with earlier springs [15,156], 
and a mismatch with phenology of local forage plants has 
resulted in a reduction in reproductive success in Western 
Greenland [15,85,157,158]. While longer summer seasons 
could extend the summer period during which forage 
plants are available, reindeer have been found to advance 
autumn migration timing [59,151]. It is possible that such 
changes are a response to resource depletion, but it is yet 
unclear whether this is mainly driven by climate change or 
population dynamics.

4.2.3  Cetaceans

An increasing asynchrony between the arrival of migra-
tory cetacean species and local abundance of prey (due 
to spatial and temporal shifts) has been predicted [71], but 
long-term data on the timing of migration of Arctic ceta-
cean species is rare, and the few available studies paint 
a mixed picture [120]. Spring migration phenology shows 
either no change (beluga whales) or has been delayed 
(bowhead and grey whale), which could suggest that 
these species might not keep up with advancing phenol-
ogy of their prey in the Arctic. In autumn, delays in depar-
ture from northern waters have been found for beluga 
whales, which appears to be a response to later ice for-
mation [159]. However, further south along the migration 
route, migrating baleen whales are observed on autumn 
migration earlier in recent years [160].

4.2.4  Pinnipeds

The seasonal distribution of pinnipeds in the Arctic is 
heavily influenced by the spatial extent of the sea pack 
ice, which shows large seasonal and inter-annual varia-
tion. Most pinnipeds associate with the ice well before the 
breeding season, which means that ice regions need to be 
accessible at the onset of the breeding season and remain 
stable throughout the breeding period in order to be suit-
able [74]. Some species (e.g. ringed seals) breed on (more 
stable) fast-ice, as they have a relatively long nursing 
period (~ 6 weeks) [161,162]. In contrast, pinnipeds that 
rely on floating pack ice such as hooded seals generally 
have a shorter nursing period. Hooded seals breed several 
weeks later than harp seals, during the start of the sea-
sonal ice break-up. To combat the effect of drift, their 
lactation period is extremely short (~ 4 days). Due to the 
strong association with sea pack ice, Arctic pinnipeds will 
be highly influenced by climatic changes in temperature. 
However, currently, little information is available about 
changes in phenology of pinnipeds in response to increas-
ing temperatures and changes in ice cover [163]. We found 
only one study reporting on shifts in timing in pinnipeds, 
showing a long-term advancement in the arrival of walrus 
in their summering range, as observed by local Inuit 
hunters in the Canadian Arctic [29]. 

4.2.5  Polar bears

Although pinnipeds, the main prey of polar bears, have 
not been reported to display major shifts in phenology, 
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climate warming is strongly reducing the seasonal avail-
ability of pack ice [164,165], used by pinnipeds and polar 
bears as haul-out sites and foraging habitat, respectively. 
Polar bears time their migration towards terrestrial hab-
itats with the break-up of pack ice in spring [166]. As a 
result, bears have advanced their arrival in terrestrial hab-
itats with earlier ice break-up [78,165], as well as delayed 
the time when they travel back to the pack ice in winter, 
which also impacts their condition when entering mater-
nity dens [167]. By shifting their migration timing, bears 
have increased the fasting period in terrestrial habitats 
during which they have no access to their pinniped prey 
[78]. In addition, due to reduced availability of pack ice, 
bears often have to travel longer distances on terrestrial 
habitats and swim larger distances in order to migrate 
back to the pack ice [75]. Longer fasting periods and higher 
travelling costs have been shown to cause reductions in 
population vital rates [75,79,168].

4.3  Changes in winter and summer 
distributions

4.3.1  Terrestrial and marine birds

Northward shifts in wintering distribution of Arctic migra-
tory birds, also named ‘short-stopping’, have in the past 
decades been shown for multiple species of Arctic-breed-
ing waterfowl and shorebirds [126,169–171]. For birds 
wintering in Europe, this mostly translates to shifts in a 
north-easterly direction up to 13 km/year (as reported for 
Bewick’s swans, 126). Changing energetic requirements 
and prey availability under different scenarios of future 
climate are also expected to affect the winter distributions 
of the five most numerous species of seabirds in the North 
Atlantic, many of which breed in the Arctic [172], but shifts 
in winter distributions have not yet been shown for these 
species.

The investigation of shifts in breeding distributions 
of Arctic species is in its infancy, but theoretical exer-
cises predicting shifts in winter and summer ranges are 
contributing a basis for forecasting potential changes. 
Shifts in breeding distribution have been predicted for 
Arctic-breeding shorebirds [173] as well as for Arctic sea-
birds [174] given the northward shifts of their prey [175]. In 
this way, climate change may result in shifts in migration 
destinations and even flyways, for example the predicted 
establishment of wintering populations of little auks (Alle 
alle) in the Pacific, which would facilitate trans-Arctic 
migrations [174]. Likewise, Arctic seabirds may also cease 
migration completely and become year-round residents of 

the Arctic. Nevertheless, so far there is little evidence that 
shifts in breeding distribution are already taking place. In 
part, this is because range shifts are typically picked up in 
long-term monitoring studies with high spatial coverage 
[176], which are rare in the Arctic. In Finland, an average 
northward shift of 0.8 km/year has been observed in a 
suite of Arctic bird species [24]. A long-term local study 
in Arctic Russia has revealed a strong decline in densi-
ties of typical high-Arctic breeding shorebird species, 
while species typical for southern tundra habitats have 
increased [177].

4.3.2  Ungulates

Reindeer have often been considered to display strong site 
fidelity, especially during the calving season in summer 
[178,179]. This idea of site fidelity is under discussion, as 
reindeer can shift their wintering ranges following over-
grazing of pastures [180], and recently, two reindeer herds 
have started to adjust their calving grounds to annual 
variation in forage quality, moving further westwards 
into Alaska in earlier springs [25,181].  Similarly, moose in 
Alaska have shifted their summering ranges northwards 
following shrub encroachment in tundra habitats [182].

4.3.3  Cetaceans

For cetacean species, it is predicted that the ranges of 88% 
of all cetaceans may be affected due to global warming 
[183]. In accordance, northward shifts in distribution 
have been revealed for several migratory baleen whales, 
including typical southern Arctic species [184,185]. Also 
short-distance migrants, bowhead whales and beluga 
whales, are shifting their distributions within the Arctic, 
likely in response to changes in sea ice cover [186,187]. 
Killer whales (Orcinus orca) typically avoid heavy ice con-
centrations, and are increasingly occurring in the Arctic 
following reductions in sea ice cover which has opened 
up movement corridors [188,189]. The increase of this top 
predator might in turn influence the distribution of ceta-
ceans and pinnipeds restricted to the Arctic. Sea ice reduc-
tion might also provide opportunities for cetacean species 
to move between the North Pacific and North Atlantic, as 
is supported by recent reports of grey whales in the Medi-
terranean Sea [190]. 
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4.3.4  Pinnipeds

Most species of pinnipeds restricted to the Arctic are 
heavily reliant on sea ice for reproduction, moult and 
resting. During the winter months the sea ice connects 
to all landmasses surrounding the Arctic Ocean (i.e. 
Russia, Alaska, Canada, Greenland). However, as a result 
of climate change, the Arctic sea ice extent, as well as 
its thickness and age, have decreased [191], with the 
largest changes during the summer months. Currently, 
the summer sea ice only connects to the shallow waters 
of Greenland and Northern Canada [192], and, somewhere 
between 2030 and 2050, it is expected that the Arctic will 
be completely ice-free during summer [21,193]. Since most 
arctic pinnipeds are reliant on sea ice and generally feed 
in shallower (and coastal) waters, the distribution of sea 
ice relative to the coastal waters will likely have a main 
impact on the distribution of Arctic pinnipeds. Probably 
in a result to changing sea ice conditions, range shifts 
in pupping grounds have been shown for harp seals 
[194,195], as well as in summering distributions of harp 
seal, bearded seal and ringed seal around Svalbard, which 
show a northward latitudinal trend [121]. In addition, 
some species (e.g. walrus) are forced to haul-out on land 
more often in the absence of sea ice, and this may impose 
additional safety and energy expenditure costs [196], also 
considering density-dependent effects as fewer haul-out 
sites are available [197]. The disappearance of sea ice may 
also provide opportunities for the more temperate seal 
species that rely on land to rest, moult and reproduce, and 
these species, like harbour seals, which show an increase 
in numbers in the Arctic [121,198].

4.3.5  Polar bears

Following reductions in pack ice and earlier ice break-up, 
polar bears have been observed to have shifted their winter 
ranges northward [199–201]. Also, polar bears have shifted 
their maternity dens more often to terrestrial coastal areas 
rather than on pack ice, in response to absence of stable 
old ice [202]. In summer, available habitat on pack ice has 
contracted for several populations of polar bears [199,201], 
and the number of polar bears spending the summer in 
terrestrial habitats is increasing [203]. In some regions 
polar bears are able to cope with sea ice loss by making 
use of coastal seasonal ice [200]. However, the increasing 
distance between wintering habitats on pack ice and ter-

restrial summering habitats makes polar bears vulnerable 
to climate change [75,202].

4.4  Comparisons between species groups

4.4.1  Available data

Most of the studies that we found were on shifts in the 
timing of migration, while much fewer studies were avail-
able on changes in distribution (Figure 4A). Shifts in 
timing were more often studied for spring migrations and 
less often for autumn migrations. While terrestrial and 
marine birds, with data available for 46 out of 126 species, 
as well as ungulates and polar bear appeared to be well 
studied, much less studies were available for cetaceans 
and pinnipeds. Most studies originated from the American 
and Canadian Arctic, as well as from the Atlantic Arctic 
(Greenland and Svalbard) (Figure 4B). Much fewer studies 
were available for the European and West-Russian Arctic, 
and we found no studies reporting shifts in migration 
timing and distribution from the East-Russian Arctic.

4.4.2  Shifts in timing

Advancements in spring migration timing were reported 
for many terrestrial and marine birds, as well as for 
polar bear and some populations of reindeer, but less 
often for cetaceans and pinnipeds (Figure 4A). Although 
few studies were available, polar bears showed stronger 
advancements in spring migration timing compared to 
birds (Figure 4C). Unexpectedly, some cetacean species 
and populations of reindeer showed a delay in spring 
migration timing. Shifts in autumn migration timing also 
showed mixed results, with both delayed and advanced 
timing in birds and cetaceans, advancements in ungu-
lates and a delay for one sub-population of polar bears 
(reported in one study, Figure 4C).

4.4.3  Shifts in distribution

Despite the low number of studies, it appears that a north-
ward shift in distribution was found for relatively more 
species of both marine (cetaceans, pinnipeds and polar 
bear) and terrestrial mammals (ungulates) compared to 
bird species (Figure 4A). 
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5  Discussion

5.1  Shifts in timing

While many studies highlight the potential for trophic 
mismatches for Arctic migrants due to their inadequate 

advancement of timing of arrival on their summering 
grounds in a warming climate [15,16,204], our review 
shows that there are many examples of advancement of 
migration timing of especially terrestrial Arctic-breeding 
birds, as well as for polar bears and some populations of 
ungulates. Advancements are observed both over long 
time spans (several decades) and in association with 

Figure 4: (A) The fraction of species per taxonomic group for which shifts in spring migration timing, autumn migration timing and distri-
bution have been studied (light-coloured bars) and have been observed (dark-coloured bars). The total number of species for each group is 
noted in brackets in the legend. (B) The number of studies conducted within the four different geographic regions of the Arctic, shown per 
species group. (C) Histograms of reported trends in migration timing (as the slope in days of change over years), shown in bins of 0.25 as 
black bars. Grey bars show the number of studies reporting no change in migration timing over years without quantifying the slope. Histo-
grams are shown for spring (left) and autumn migrations (right) and for terrestrial birds, sea birds, ungulates, cetaceans and polar bear. For 
pinnipeds no trends were reported.

−2 0 2 4 −2 0 2 4

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

0.00

0.25

0.50

0.75

1.00

Spring
migration

Autumn
migration

Distribution

Fr
ac

tio
n 

of
 s

pe
ci

es

0

5

10

15

Ameri
ca

n
Arct

ic

Atla
nti

c

Arct
ic

Euro
pe

an
 &

Wes
t−R

us
sia

n
Arct

ic
Eas

t−R
us

sia
n

Arct
ic

N
um

be
r o

f s
tu

di
es Terrestrial birds (86)

Marine birds (40)

Ungulates (2)

Cetaceans (16)

Pinnipeds (9)

Polar bear (1)

Slope (days / year)

Spring migration Autumn migration

Terrestrial
birds

Marine birds

Ungulates

Cetaceans

Polar bear

C

A B
Species groups
(number of species)



122    Lameris et al.

changing environmental conditions, such as increasing 
temperatures and earlier snowmelt and ice break-up. 
This suggests that animals adjust their migration timing 
to locally changing conditions, either as they aim to 
match reproduction timing with local food abundance, 
or simply because warmer conditions allow [52,53], or 
even force, earlier migrations [78]. In comparison to most 
bird species, polar bears show especially rapid trends in 
migration timing, matching arrival and departure from 
pack ice with timing of ice freeze-up and break-up [78]. 
However, not all species show such flexible changes in 
timing, as shown by observations of multiple species at a 
single study site, showing advancements in reproduction 
timing in some species but not for others [139]. Differen-
tial responses in migration timing may also occur within 
species, which is notable in the differential migration 
timing for different reindeer populations. Whereas we had 
expected to find stronger shifts in migration timing for 
short-distance migrants (ungulates, pinnipeds, polar bear 
and some cetaceans) compared to long-distance migrants 
(birds and most cetaceans), we find large variation in both 
short- and long-distance migrants. Whether or not species 
and populations advance migration timing therefore 
likely depends on other factors as well, for example (1) 
variation in the environmental change that species experi-
ence, (2) strategies which animals use for reproduction, as 
well as (3) potential physiological constraints for making 
changes in the timing of migration. All these factors may 
differ between species. First, Arctic regions differ in the 
rate of climate warming and local response in for example 
advancement of resource abundance [205], date of snow-
melt [135] or sea ice dynamics [159], which can drive dif-
ferentiation in responses in migration timing. Second, 
flexibility in migration timing may depend on reproduc-
tion strategies, depending on whether animals reproduce 
in the Arctic or southern wintering grounds [159,160], or 
whether animals rely more on internal energy reserves or 
on local resources for successful reproduction [206–208]. 
Third, Arctic migrants may also be constrained to make 
advancements in timing by, for example, the time needed 
for fuel deposition [19,209], little potential to increase 
travel speed [17], a lack of relevant cues to time their 
migration [30], or physical barriers during migration, 
such as earlier ice break-up in rivers [152,210] or available 
light [119].

Our review suggests that few species of cetaceans 
and pinnipeds display shifts in migration timing. Admit-
tedly, very few data appear to be available to test for 
shifts in timing [74,163], and it is therefore a possibility 
that the low number of observed shifts is caused by the 
difficulty in observing migration timing in these animals. 

Moreover, a publication bias might exists where studies 
finding no shifts are less often published. In theory, shifts 
in timing for marine mammals could be constrained by 
their relatively low travel speed [18], but given the short 
migration distances of Arctic pinnipeds, this should not 
form a major constraint for many species. While climate 
warming changes the trophic interactions between marine 
mammals and their prey resources, changes in abundance 
and distribution of resources may have a larger effect 
on populations than changes in timing. Therefore, as a 
primary response to a warming climate, marine mammals 
may be more likely to display shifts in distribution. The 
same may hold for marine Arctic-breeding birds, for which 
we find less evidence for shifts in migration timing as 
compared to terrestrial birds.

5.2  Shifts in distribution

Shifts in distribution over the past decades appear to 
occur more often in marine mammals, which is in confir-
mation of our hypothesis. For cetaceans, pinnipeds and 
polar bears, relatively many species display northward 
distribution shifts, and it is likely that such shifts are a 
response to changes in sea ice cover [74] and associated 
shifts in suitable areas for feeding and reproduction. 
Most Arctic cetaceans and pinnipeds depend on high 
food abundance close to the edge of the pack ice, and as 
a result are expected to shift their ranges with retreating 
ice cover [186]. Moreover, pinnipeds also rely on sea ice as 
haul-out platforms for reproduction and moult, and their 
life-histories are strongly tied to sea ice [195]. The close 
association with pack ice is also evident for polar bears, 
for which a large extent of available data shows a combi-
nation of northward shifts in winter, matching changes in 
pack ice, and shifts to terrestrial habitats during summer. 
With longer stays in terrestrial habitats, an increasing 
number of bears is preying on eggs of waterfowl and sea-
birds [203,211], even though this prey is unlikely to com-
pensate for the increasing periods of fasting under declin-
ing sea ice [212].

Our review suggests distribution shifts to be less 
evident for marine and terrestrial bird species. Although 
this could be explained by the rarity of long-term moni-
toring programmes with extensive cover, there are also 
ecological explanations. Marine birds, given observed dis-
tribution shifts of their prey [117], would be expected to 
show shifts in distribution, similar to marine mammals. 
Instead, observed shifts in diet show that some species of 
marine birds may cope with shifts in prey species distri-
bution by preying on different resources [213–215]. While 
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such diet shifts may be a possibility for generalist species, 
like certain cetacean and pinniped species [216], species 
with a more specialized diet (e.g. planktivorous marine 
birds) may not be able to switch prey, and face potentially 
severe fitness impacts following shifts in prey species dis-
tribution, should they not be able to respond adequately 
by shifting their own distribution [217–219]. In addition, 
distribution shifts in marine birds are also potentially con-
strained by available habitat for their breeding colonies at 
higher latitudes.

For terrestrial bird species, our review suggests rela-
tively few distribution shifts, which is possibly explained 
by adequate responses in migration timing, as well as 
no clear evidence for shifts in distribution ranges of prey 
resources. In addition, several terrestrial bird species 
have been shown to be rather flexible in choice of habitat 
within their current range [220] and their choice for prey 
species [221], which could also reduce the need for distri-
bution shifts. For ungulates, several studies show shifts 
in calving grounds, presumably to locations with higher 
food abundance and more suitable habitats. Possibly, 
terrestrial ungulates possess such adaptive responses to 
changing conditions, as they continuously need to shift 
ranges in response to overgrazing events [210].

Remarkably, in the cases where shifts in distribu-
tions are observed, these often show sub-Arctic species 
extending their range into the Arctic, such as common 
seals, southern cetacean species, and shorebird species 
of southern tundra regions [74,177,198]. At the same time, 
shifts in distribution for species within the Arctic are less 
often observed. 

5.3  Implications of inadequate shifts in 
timing and distribution

Many populations of Arctic migratory endothermic verte-
brates appear able to shift their timing of migration and 
their distributions, yet not all species are making such 
shifts, nor do we know whether such shifts are in fact ade-
quate responses to changes in distribution and abundance 
of food. As a result from inadequate responses in either 
the timing of migration and reproduction, or inadequate 
shifts in distribution, phenological mismatches between 
the period of offspring growth and timing of peak food 
abundance may arise. Such mismatches have been shown 
for several species of Arctic terrestrial birds [16,204], 
marine birds [149] and terrestrial ungulates [15], resulting 
in reductions in reproductive success. In temperate-breed-
ing migratory songbirds, slow adjustments in migration 
timing have even been linked to population declines [222] 

but see [223]. At the same time, not all species which show 
little change in timing of breeding and reproduction, expe-
rience mismatches with reductions in reproductive success 
(e.g. [11]). While generally, timing of food availability may 
advance in a warming Arctic, and more rapidly when com-
pared with temperate regions [4,224], the rate of warming 
and the responses of prey species can strongly differ 
between regions [205]. Such regional differences could 
be an important explanation for the absence of shifts in 
timing and distribution of migratory species, rather than 
it reflecting suboptimal behaviour. Fitness consequences 
for Arctic migratory species may also arise from increased 
competition with sub-Arctic species, extending their 
ranges into the Arctic. However, northward shifts in distri-
bution by some species originating from outside the Arctic 
circle may be constrained by the unique light environment 
at high latitudes [118,119], complicating forecasts of future 
ranges of birds and mammals in the Arctic. As such, it is 
difficult to predict whether or not migratory populations 
will suffer from reproductive consequences in a warming 
climate, based on whether populations are showing shifts 
in their migratory behaviour and distributions. 

5.4  Future outlook

This review suggests the potential for many Arctic migra-
tory animals to make shifts in the timing of migration and 
in their distribution in the Arctic, potentially allowing 
them to adequately respond to changed resource distribu-
tion in a warming Arctic. Yet, our review also highlights 
potential constraints for animals to make such shifts, 
which could eventually result in inadequate or no shifts, 
with possible negative effects on fitness. The potential 
for animal populations to make shifts in distribution and 
timing likely relies on the potential for making shifts in 
migration schedules and strategies, either by individual 
flexibility [127], or by changes in subsequent generations 
[225]. In the latter case, the ability of populations to shift 
in response to a warming climate is linked to its reproduc-
tive success under current conditions.

Our review also suggests a severe lack of data, limit-
ing our ability to identify shifts in timing and distribution. 
Data are especially lacking for migration timing in ceta-
ceans and pinnipeds, but also in other taxonomic groups 
potential shifts in timing and distribution have not been 
studied. It is striking that shifts in spring migration timing 
have received much more attention than shifts in autumn 
migration timing [226], and also there are relatively few 
studies on shifts in distribution. Our review also suggests 
strong regional differences in available data, with most 
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data available for Arctic vertebrates in Alaska, Northern 
Canada, Greenland, Svalbard and Scandinavia, and fewer 
data for the European and Russian Arctic. The need for 
long-term data collection over the entire Arctic region is 
well recognised [227], as advised in recent reports on pop-
ulation monitoring for marine as well as terrestrial moni-
toring [228,229]. Given the rate of climatic changes in the 
Arctic, it is likely that shifts in timing of migration and 
distribution of migratory animals will become more prom-
inent. Better monitoring of migratory animals will allow 
an increased understanding of the responses of these 
animals to global warming, which may help to identify the 
possible limitations that restrict adaptations of animals 
to the globally changing conditions, and the potential 
impacts on their populations. Such data will be essential 
for the conservation of migratory species in a warming 
climate, as well as for the persistence of Indigenous and 
local human communities in the Arctic, which are often 
culturally and nutritionally dependent on the presence of 
migratory vertebrates [230].
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