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Abstract,

The ability of describing and predicting hydraulic and morphological phenomena in mountain
rivers is limited, partially due to the limits of deterministic approaches where stochastic
effects in sediment supply and water inflow are extremely significant, and partially due to
the very specific conditions that can be observed in mountain rivers, that complicate the
modelling.

The dynamics of morphology and hydraulics of mountain rivers must be known when
applying numerical modelling procedures to mountain rivers. Simplifying a complex, non-
uniform geometry significantly affects the behaviour of the model at high values of the
Froude number. The number and type of boundary conditions to be prescribed at a boundary
can change with flow regime. Hydraulic and morphological changes in supercritical flows
are coupled and transversal effects are significant.

The mathematical models discussed are a single-layer model and a double layer model
conform Ribberink (1987). With the help of the characteristics, the models are analysed and
compared. Analysing the characteristic surface yields indispensible insight in the two-
dimensional behaviour of the mathematical models. To prevent the mathematical model from
being elliptical, the thickness of the mixing layer has a maximum. This value is investigated,
approximated and evaluated.

It appears that the behaviour of the model can be significantly affected by the model
parameters (hydraulic as well as morphological). Regarding the selection between one-
dimensional and two-dimensional modelling, it can be concluded that transverse effects have
a significant influcence on the behaviour of the model for Froude near unity.

Conclusions in this report stress the need for research on the modelling of complex geometry
for flow with higher values of Froude and the prediction of the model parameters used (such
as mixing-layer thickness and sediment fluxes) at varying flow conditions.
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1. Introduction.

Hazards of erosion or flooding due to excessive sediment deposition in mountainous
regions have increased the interest in hydraulic and morphological phenomena in
mountain rivers. However, due to the erratic character of sediment inflow and flood
hydrographs, the planning, construction and managing of river projects and subsequent
infrastructure in mountainous regions is extremely complex. To perform river
engineering that involves the dynamics of alluvial mountain rivers, the impact of rather
specific conditions relative to low-land rivers should be known.

When applying mathematical models, knowledge on the effects of high velocities,
small depths (large and varying values of the Froude number) and graded sediment
with wide ranges in diameter and composition is required to select a numerical solution
procedure, to simplify complex geometries, to prescribe the proper boundary conditions
and to interpretate the behaviour of the model.

In this report a general, two-dimensional, depth-averaged (2-DH) mathematical model
for alluvial rivers is analysed. The effect of graded material is investigated conform the
layer model of Ribberink (1987). The number of size fractions analysed in the model
is restricted to two. The behaviour of a single-layer and a double-layer model is
compared. A simple description for the vertical fluxes in the river bed is proposed.

Sediment transport in the model is described with a power law that approximates the
Meyer-Peter and Miiller sediment-transport formula (Meyer-Peter and Miiller, 1948).
The performance of the Meyer-Peter and Miiller sediment-transport formula is
compared with the formula proposed by Parker et al. (1982) and modified by Diplas
(1987). Horizontal-hiding effects are accounted for by correction with a hiding
coefficient suggested by Egiazaroff (1965).

Relaxation effects by the suspended sediment are included conform Galapatti (1983).

The behaviour of the model is analysed with the help of the characteristic equations;
the bicharacteristic surfaces and the compatibility equations.

The bicharacteristic surfaces are equivalent to characteristics in one-dimensional
models, and represent the two-dimensional propagation of physical information through
the mathematical model. The magnitude of propagation indicates the possibility of
decoupling hydraulic and morphological processes (De Vries, 1965) and the direction
of propagation determines the number of boundary conditions to be prescribed at the
up- and downstream boundaries.

The compatibility equations are composed of gradients in variables along the
bicharacteristics, which enables relating the more or less coupled variables to the
bicharacteristics at varying conditions. Also, the two-dimensional behaviour can be



analysed and compared to one-dimensional models, and conditions can be found that
promotes and checks initial growth of disturbances in bed level and composition.

With the help of the characteristics, the behaviour of single- and multiple-layer models
are analysed. A criterion is derived to ensure the hyderbolicity of the mathematical
model and the sensitivity of dynamic phenomena to the model parameters is
investigated.

Fixed-bed models show that the transition from subcritical to supercritical flow marks
a significant change in flow behaviour. In analogy, the~hydraulic and morphological
behaviour of mobile bed models with transitions from sub- to supercritical flows (and
vice versa) differs significantly from that in low-land rivers where, relatlve to mountain
rivers, velocities are low and depths are large.

Algebraic manipulations have been carried out with the Mathematica package
(Wolfram, 1991).



Chapter 2

Mathematical 2DH-model.

2.1. Introduction.

In this chapter, equations are derived based on the general balances of mass and
momentum, averaged over the depth. Based on analogy with mobile bed models for
uniform sediment, the mathematical modelling of alluvial rivers with sediment mixtures
is described. The resulting systems of equations in non-conservative form are described

in Appendix A.

To account for alluvial rivers at steep slopes variables are defined in a system of
coordinates that is tilted relative to a horizontal reference plane (Section 2.2.2). As a
result, slope effects on gravity forces, bed shear-stresses and sediment transport are
introduced. Because the sediment mass balances includes gradients in sediment
transport, the latter effect yields the introduction of a diffusive term which will be
neglected in the analysis.

To describe the gradients in transport in a non-conservative form, a power-law
approximation is used (e.g. Jansen et al, 1978) based on the Meyer-Peter and Miiller
transport formula (Appendix B). Because this formula refers to a bed-material load
situation, the effects of bed load and suspended-load transport that are seperated in the
mathematical model are not distinguished in the numerical experiments in Chapter 4
and 5.

The composition of the river bed is described with the help of a horizontal-layer
concept. Naturally, with an increasing number of layers, the "discretized" river bed
approaches the proto type. However, distinction of a layer implies the introduction of
vertical sediment fluxes from the layer. At present, the description of this sediment
exchange between layers is a topic of research.

Two alternatives are discussed; a single-layer model (Section 2.3) and a double-layer
model (Section 2.4). For the double layer model, an additional expression for the
vertical flux is suggested to describe a net exchange of sediment from the subpavement
layer. These two types of models are considered sufficient to discuss the main features
such as significance and physical background of the layer-thickness and the vertical
fluxes.



2.2 General model.

2.2.1. Balances of flow-mass and momentum.

The flow-mass balance can be written as

dpa . dpua R dpva _ 0 2.1
ot ox ay

Witout any diffusion terms describing effects of turbulence, the balance of x-directed
momentum in a depth-averaged system with hydrostatic pressure is

2 dpg.a* oz
Opua . Opu'a . Jpvua _ 0g.a - P&, b _o 22
3 ax 3y 20x

The balance of y-directed momentum is

opvia _ dpga’ 9%y _ o 23

opva dpvua
a " a PEE T ooy

ot ox oy

where
p = density of water
u = velocity component in x-direction
v = velocity component in y-direction
pg; = gravity force component in Jj-direction due to orientation of the space-
averaged level of the river bed Z, relative to a reference plane
7, = bed shear-stress in j-direction

2.2.2. Slope effects.

Because slopes in mountain rivers can be steep, the following definitions are
introduced. The bed level z, is defined relative to Z, that represents the spatially-
averaged, constant equilibrium slope of the bed. In Figure 2.1, the defined z- and x-
axes are shown relative to Z,.



Figure 2.1

The components of gravity forces can be described as

g, sinf cos0,
8| = 8 cosf,sin6, 2.4
20 +cin? 2
g, \/ cos”0, +sin"6 cos0, cos0,cos0,
where
-GZ,,.
tan@x ox
tan6, oz,
| 9y |
Analogeously, the shear-stress components at the bed are defined as
T, cosoccosexcosey
X
Tyy| = i) sinoccosﬁxcosey
2 20 <cin? 2
cos“acos“0_+sin“ocos 0 -
T ‘/ Y x \/coszoccosZey +511120ccosz(3x~coszexcos26y
where 7, represents the bed shear stress and « is the direction of velocity 5
W
tano = ( b) 2.6
u(z,)

The shear-stress component in z-direction induces deviations from the hydrostatic
pressure at the bed level. If deviations from the spatial-averaged bed level Z, are small,



the shear stress can be reduced to
Thx cosa

- . 2.7

Thy| = T, Sina

sz 0
The space-averaged level of the river bed Z, is constant in time and equals the space-
averaged equilibrium slope of the bed level. This implies that changes in relatively

small slope-effects on gravity components pg;, bed shear-stress components 7, and
sediment transport are not taken into account.

2.2.3. Mass balances of uniform sediment.

In the analysis, two transport layers are defined to distinguish bed load and suspended
load transport (Figure 2.2).

/”\/’\,’
suspended load layer ————uac a
bed load layer @S ﬁ — Sb"/. rrrrrrrrrrrrrrrrrrrrrrrrr
[ — -l i
ST
D, b
Figure 2.2

The mass balance of sediment in suspension integrated over the depth is

Zy 2 Zg Z, Zg
dfcdz 3fucdz dedfcdz dfvedz dedfcdz 28
2 LG + Zp L + Zp -® =0

ot ox a2 ay Iy? y

where ¢, is the sediment mixing-coefficient. However, contributions to the horizontal
transport of suspended sediment by diffusion are neglected in this analysis.
The sediment flux at the bed level is composed of a convective and diffusive part

ac
- _ - 2.9
@, = (W(z)-w)c(z,)-€, p [ 4

10



The first-order approximation (without second-order diffusion terms) of the depth-
integrated mass balance of sediment in suspension can be described with

oc oc oc

T, +L—+Ly—éy—+c-ce=0 2.10

o * ox

where T, a relaxation period and L, and L, the components in x- and y-direction of a
relaxation length to take into account the relatively slow adaptation of the vertical
concentration-profile to local changes (e.g. Galapatti, 1983).

The mass balance of sediment moving as bed load is

0(1-p)z, 0cyd, OuyCyd, a"bcb5b+¢ -0 2.11
ot a  ax |

where c, is the sediment concentration in the bed-load transport-layer d,, and u, the
average grain-velocity in the bed-load transport-layer. The bed-load storage term is
usually very small (e.g. Armanini and Di Silvio, 1989) and is neglected by assuming
instantaneous adjustment.

Consequently, the mass balance of bed load and suspended load is
d(ca + z) . O(uca + S,) . d(vea + Sby)
ot ox dy

=0 2.12

with the effect of porosity p included in the definitions of sediment transport.

If the bedload transport is described as

CHpdy = Sy = =S, 3 Cpvyd, = Sy = —S, 2.13

utot utot

(De Vriend, 1987), and if the transport of bed load is approximated with S, = flu,,)
(e.g. Jansen et al. 1978), this can be rewritten as

0 +
(ca + z,) , Ouca | Tlgg . Tzﬂ , Ovea | ng . T3@— _ o 2.14
ot ox ox ox ay oy ay
with
2 ds, v, 2 dS, u®S ds, S
U B G P 3=£5v_( b__....b_)z.ls
ul, Qe u) Uy Al 3> U\ Wror Uior

11



The resulting system of equations is described in Appendix A.1.

2.3. Single-laver model for non-uniform material.

2.3.1. Sediment-mass balances.

Again, two layers for horizontal transport are defined (Figure 2.3) to distinguish bed-
load and suspended-load transport.

- ‘\\/\’
s
suspended load layer - uaps i a
bed load layer dz i — Sb A
T oo o x z
mixing layer D, . b
,,,,,,,,, P, O
777777777777777777777777777777777777777777777 . S
substratum oi po i

Figure 2.3

Depth integration of the mass balance for p,; (fraction i in suspension) yields

2 Zs Zs
o [pydz 3 [ upydz ded [ pda

z,+8, + z,+0, . Z,+8, .

ot ox ox?

2.16

Z

Zs S
d f w,dz  Oeyd f P4z

Zb+6gy zb+62b @Sl
dy

where ¢, is the sediment mixing-coefficient for fraction i, which will be considered
negligible in the analysis. The thickness of the bedload layer §, is considered constant
in time and space.

Without diffusive transport-terms, Eq.2.16 can be written as

pga Oupa vpya

_® -0 2.17
ot ox oy 5

The vertical sediment-flux of a fraction at the bed level is composed of a convective

12



and diffusive part, in analogy with fluxes of uniform material

apsi
D = (Wey ) - Wy) Pz By - €iz L, -

The first-order approximation (without second-order diffusion terms) of the depth-
integrated balance of suspended sediment is described with

e s P

4 5 % ox oy (P ~ Pga =0 2.19

(Armanini and Di Silvio, 1988).
The transport of a size fraction i is approximated with S; = fu, P> Di)-

The mass balance over the bedload layer is

os, . ;
bet+asbyl+®._q)':0 2.20

_g ay si bi

3 [ Pz 221

@ = _B,M 2.22

where 8, equals p,,; when z = z, - §,, moves upwards (deposition) and §; equals p,,, the
fraction in the substratum when z = z, - §,, moves downwards (erosion). However, even
if the average value of z = z, - §,, is constant during a time interval, still a vertical
transport of size fractions can exist due to zero-averaged fluctuations around z = z, -
0

"

After elimination of @, the mass balance can be written as

Zp
3 [ Pz 2.23
2,-8 (z,-3,,)
p * @yt B =0
ot ot

13



The mixing-layer thickness §,, is taken constant. The total mass balance for suspended
and bed load per fraction i is

ap.. dp. s, dp. O,
a Py + ua Psi + bxi va Psi + byi b = 0 2.23
ot ox ox oy dy
or
p,,. 0z, b, ap,; ap,
6, — — +a + ua + va +
o s ot ox dy
Kligf‘. N L Sy 2.25
X X
0P i D N, X dp
+ uk, —= K,—= + uk D—~ K. D—" =0
4i ax 4 SI}Z_:( J ax 511=21 Jj

The coefficients K;; are described in Appendix B.5.

In the case of N size fractions, the number of variables becomes 4 + 2*N. The system
consists of three equations describing conservation of fluid mass and momentum (Eqgs
2.1, 2.2 and 2.3), N equations describing relaxation effects per size fraction in
suspension (Eq.2.16), and N mass balances per sediment size fraction (Eq.2.22). To
complete the set of equations it can be stated

N
Yo, -1 2.26
i=1

which is used to eliminate p,, from the system of equations. The resulting system of
equations is described in Appendix A.2.

2.3.2. Mixing-laver thickness.

In the mixing layer, a direct and complete mixing of the fractions is assumed to take
place due to fluctuations in the bed level. This implies that the mixing phenomena are
assumed to be fast compared to changes in bed level and composition and because the
development of the mixing layer is assumed instantaneous, 0,, is taken constant. As a
result, the type of mixing mechanism and subsequently the thickness of the mixing
layer is related to the scale of morphological changes that are simulated (Rahuel, et al.
1988).

If the time scale considered is instantaneous, the mixing layer only contains sediment

particles at the surface of the bed. If in the time scale considered bed forms can
develop and travel through the area of interest, the mixing layer is related to the height

14



of the bedforms. If during the period considered alternating deposition and erosion
occurs, the extend of the mixing is related to those changes in bed level.

In conditions where the bed level and composition are in or near an equilibrium state
(and when changes in morphology are supposed to be "slow" and "small"), the mixing
process can be considered decoupled.

By definition, the mixing layer differs from an armour layer. In single-layer models
where armouring is simulated, the thickness of the predicted armour layer approaches
the selected mixing layer-thickness if no motion occurs under the armour layer. If the
armour layer is destroyed, interrupted or covered with finer material, the extend of
vertical mixing will be larger than the thickness of the armour layer. Then, the mixing
layer is larger and finer than the armour layer.

Consequently, the application of single-layer models with a constant ¢,, for simulating
dynamic armouring phenomena is restricted; during the armouring process the bed-
level fluctuations, and subsequently the extend of the vertical mixing decreases. In that
case a § -predictor should be used, or contributions by fluxes from deeper layers
should be allowed.

As reviewed for instance in Sieben (1993) and Laguzzi (1994), many expressions for
d,, have been used. The mixing layer has been related to bed forms (Borah et al. 1982;
Ribberink,1987), flow depth (Karim et al. (1981), grain size (Di Silvio and Peviani,
1991) or thickness of the armour layer by prediction of the mobile and immobile
particles.

2.3.3. Scale of changes in mixing-laver composition.

To analyse the scale of changes in composition, it can be found with the mass balance
of the mixing layer

ap,,d @, oz, 9z,

ot = N - Boi -5; = (pTl B ﬁoi)g 2.27
or
t+At t+At t+At
P mi 1%, 1 9%, 2.28
f —dr = f(PT oz 6 al'dt ~ (pTi - ﬂoi)g““ ”é;dt .

t m ¢

15



Consequently, changes in composition are determined by two effects

- the difference in composition of pick-up and substratum in the case of erosion
or with the difference in composition of deposition and mixing layer in the
case of sedimentation.

- changes in bed level relative to the thickness of the mixing layer

Because the response of the bed level is related to the composition of the river bed, the
changes in bed level and composition can be considered to be coupled. The fraction
i in horizontal transport py, is defined as

Shi

Pn = TS, 2.29

N
E Spi
io1

The composition of the sediment transport p,, is described in Appendix B.3.

For sediment composed of two fractions with D, = 0.001 mm and D, = 0.004 mm, the
changes in mixing layer composition relative to changes in bed level are shown.
Figure 2.4 represents sedimentation, Figure 2.5 represents erosion of an armoured bed.

| B/ 020
0.2- \\
op 6/t - T
ﬁﬂ/it |
dz,/dt | / 025
o1 p / ~ \\
- NN
- / N AN
B // ™ \\\\
i // /0-50,,,h\ \ \
1.00 T
i //%// T \\ \\
0000 o2 ' o4 0’6 08 1.0
B,
Figure 2.4

In case of sedimentation at higher shear-stresses, the changes in composition are small
at significantly fine or coarse beds.

16
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Figure 2.5.

In case of erosion of an armoured bed, the mixing layer refines if the availability of
fine material in this layer is low relative to the fine fraction in the substratum. Mainly
the coarse fraction is picked up, whereas mainly fine material is supplied by the
substratum. Consequently, the armour layer is destroyed.

If the composition of the mixing layer becomes less coarse relative to that of the
substratum, the layer coarsens and the armour layer stabilizes. The stability of an
armour layer reduces at high shear-stresses.

2.3.4. Coarsening criteria.

Based on Section 2.3.3, a simple armouring criterion for the single-layer model is

Py < D, (sedimentation) ; py > p, (erosion) 2.30

Because the composition of the transported sediment is finer than that of the bed, only
the second criterion can be satisfied. At high shear-stresses, the composition of the
transported sediment approaches that of the mixing layer, which subsequently
approaches that of the substratum. Consequently, no armour layer can be stable at high
shear stress.

2.4. Double-layer model for non-uniform material.

2.4.1. Backsround.

The layer-concept is based on the following assumptions (Ribberink 1983):

- no sediment motion occurs beneath the mixing layer
- intantane mixing of size fractions in the mixing layer

17



However, due to large fluctuations in the bed level, the undisturbed material under the
mixing layer can be exposed to the flow without affecting the sediment-transport
conditions. Therefore, to refine the modelling of vertical fluxes, Ribberink (1983)
suggest the distinction of a transitional exchange layer (pavement and subpavement
layer) within the mixing layer.

Distinction of a transition layer (Figure 2.6) enables a better description of the vertical
bed-composition in the presence of active armour-layers, or if armour layers are
distributed in an interrupted, non-uniform manner ("patches") over the river bed.

/77\\\4/\\’ -
suspended load fayer Cw’ﬁ/\ua"'?:i a

bed load layer Qé. i J o Sb/ rrrrrr

pavement b I S A

bpi p 5
,,,,,,,,,,,,,,,,,,,,, J/j pi p
subpavement djbsi % if psp, J 6sp
ST s uﬁ ---------------------- S SN
substratum @Di po ;
Figure 2.6

The sediment transport is assumed to be mainly affected by the composition of the
mixing layer conform Ribberink (1987). The exchange of sediment from the
subpavement is reduced by vertical-hiding effects by the material in the pavement
layer.

If bed forms are present, the subpavement is exposed to the flow and can contribute
to the sediment transport, due to the bed-level fluctuations. If at higher flow regimes
bed forms are washed out, fluctuations in the bed level and consequently, the thickness
of the layers reduce to the order of the grain sizes. The mechanism of vertical sediment
exchange is no longer related to well-developed bed forms, and a constant relative-
exposure coefficient should be applied.

It is stated that the contribution of the pavement layer is proportional with the
probability of exposure g of this layer. The constant « is a reduction factor for the
mutual sediment exchange between the layers, and is introduced in the mass balances
to distinguish the situation with a net contribution from the subpavement layer

(k = g) from the situation without a net contribution from the subpavement layer

(k =1).
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2.4.2. Sediment-mass balances.

The mass balance per size fraction i of the bed-load layer is

abei
ox

os, . |
+ - + q)si B q)pbi - (I)psi =0 2.31

The mass balance per size fraction i of the pavement layer is

%
3 [ podz 3% 2.32
Zb*al’ + ¢b ., - K @ o= —Pp-g-l- + ¢b . - K d . = 0
ot P p ot P! P

The mass balance per size fraction i of the subpavement layer is

2,~8,
0 f py,dz
8 -5

Zp~0p "0y _

. a: t K q)pi + (I)bsi B (I)oi - 2.33
do .

- Dol +k®,+ P, -0,=0

ot P
The flux @, at z = z, - 9, is

= B A28y g % 2.34
P Pt o P o

where 8, equals p,, when z = z, - §, moves upwards (deposition) and 8, equals p,,, the
fraction in the subpavement when z = z, - 6, moves downwards (erosion).

Similarly the flux ¢, at z =z, - §, - §, is
I _goim - —ﬁoi% 2.35
ot ot

where (3, equals p,, when z = z, - §, - §,, moves upwards (deposition) and (3, equals
Do the fraction in the substratum under the pavement when z = z, - §, - §,, moves
downwards (erosion).

Consequently, the mass balance of the subpavement can be written as

98P, oz
spUspi - _ b d . =0 2.36
at‘ (‘30; K Bpl) at bsi
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If no sediment contribution to the horizontal transport exists, changes in the
subpavement are directly related to changes in bed level.

Ribberink (1987) and Di Silvio (1991) use for the thickness of the subpavement
8, = 0508, 2.37

2.4.3. Subpavement flux conform Ribberink (1987).

Ribberink (1987) considers subpavement fluxes during deep troughs of bed forms and
suggests the subpavement-fluxes to be independent from sediment fluxes in the
pavement. The net flux of a size fraction i can be described as

o, s,
(I)bsi =& (1-g) _E;B —z spi pTi) 2.38

with & = 1.8 - 2.0, representing the ratio of local transport over the crest of the bed
form and the average transport-rate, l-g is the probability of exposure of the
subpavement layer to the flow, L and H, are the average bed-form length and height.

The net, fraction-integrated flux is

N

3, S, o
O = & (10 2F T X (o~ Pp) = O 2.39
i=1 ¢ i=1

which implies that even in non-equilibrium conditions, the total sediment contribution
from the subpavement to the horizontal transport-layers is zero. Consequently, k = 1
in the sediment-mass balances (Section 2.4.2). As a result, subpavement fluxes as
described by Eq.2.38 only affect the morphological behaviour indirectly, via changes
in composition in subpavement and the transported sediment. The rate of sediment
transport is not affected.

If a sediment contribution to the sediment transport is considered, the exchange with
the pavement layer is formulated as

6s Sb
q)bsi = & (1"8) 'ﬁf —Z Py, 2.40

with p,; equals p,,; in case of upward fluxes (erosion), and -p,, in case of downward
fluxes (deposition).
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It can be defined

) YyH
= l1-9) -2 - 1 -g¢g = < 2.41
Yy =& (1-g) T 8 £,

[

Experimentally, Ribberink found 0.07 < vy < 0.093, which yields

d
0035 < (1 - g)FSp < 0.052 2.42

c

With é,, = H/4, it can be found that 0.14 < 1-g < 0.21. This is in agreement with 1-g
= (.16 used by Di Silvio (1991).

2.4.4. Simplified subpavement sediment-contribution.

When simulating armouring phenomena, a different interpretation of the layer-model
can be applied. Stating the net subpavement flux to be zero implies that the time scale
of the mixing phenomena in the pavement equals the time scale of vertical
subpavement fluxes. In other words, mixing of the pavement and fluxes from the
subpavement are assumed to be caused by the same instantaneuous mechanism;
fluctuations in the bed level.

However, in case of a non-uniformly armoured river bed, or in case of local
destruction of an armour layer, fine material from the subpavement can be eroded
without any refill of the subpavement. In this case, the local fluxes from the
subpavement can occur at a time scale similar to that of the changes in bed level that
are slow relative to the "instantaneous" mixing.

Distinction of a contributing subpavement layer enables a closer relation between the
thickness and composition of the pavement layer and that of the actual armour layer.
Di Silvio (1991) allows a net sediment flux between the subpavement and transport
layer, taking into account the size composition in both layers but neglecting hiding
effects. In the following, the fluxes from and to the subpavement and the pavement
layer are defined with the help of the power law.

Because the composition of the pavement layer is assumed to affect the sediment
transport, the power-law coefficients m,, /; and n, (Appendix B) are based on the
properties of the pavement layer only. With the sediment transport approximated with
a power-law, the ratio of both contributions can be written as

i _ 1Py (Dup)' _ 2.43
q)bpi gppi D ,

ms

Di Silvio and Brunelli (1991) find the hiding effects on the exchange coefficient

21



negligible, and suggest /, = 0, resulting in a constant for varying shear-stress. The
effect of hiding on ¢, is shown in Figure 2.7.

0.21
a;
\
0_1i T e a1
_ P az
0.0-
0 20 40
‘C;n/T *c

Figure 2.7

Due to the hiding correction, the pick-up of the fine material is favoured relative to the
coarse fraction. For large shear-stresses the «; found by use of the power-law
approximation converges to the expression suggested by Di Silvio and Brunelli (1991).

The mass balance over the bedload layer is

pbat * Sobu) , oyt * Sovy) +d. -d. -® . =0 2.44
ox si pbi

+ ,
psi

or
0gs,, (1 + a) agsbyi(l + o)
+
ox oy

+O, -, - @, =0 2.45

psi

which can be rewritten with the pavement and subpavement mass balances as

dgs, (1+a,; dgs, (1+o;
gsbxz( +al) + gsbyz( 'sz) + @

o Py 5 P, g % 246
ox dy Py Ca Yo

Apparently, the transport of a fraction 7 is multiplied by g(1+c,). If the subpavement
is finer than the pavement, the transport of the fine material is enhanced, whereas the
transport of the coarser material is reduced by contributions from the subpavement.

This is illustrated in Figure 2.8, where the effect of subpavement fluxes on the fine and

coarse fraction and the total rate for g = 0.80 relative to g = 1 is presented. At low
shear-stresses, the contributions from the fine subpavement increase the rate of
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sediment transport and subsequently directly affect the morphological changes in bed
level. At higher shear-stresses this effect diminishes.

3.0
!
20 \
] 9(1+a)
10L E gQ+a)s,,
] g +a) Y Spy
0.0 o :
0 20 T*r/‘lf .20 60
Figure 4.8

Due to the introduction of p,,, an additional equation should be formulated to close the
system of equations. This additional equation can be found by combination of the
sediment mass balances of the subpavement and the pavement layer (Eqs 2.33 and
2.37)

oz
+ By - x (1+e) Bpi)—é—f =0 2.47

The resulting set of Eqs 2.1, 2.2, 2.3, 2.17, 2.46 and 2.47 in non-conservative form is
described in Appendix A.3.

2.4.5. Scale of changes in pavement and subpavement composition.

Again, with the help of the mass balance of the pavement it can be found

appiﬁ p 0]
ot

bpi

N
Zl: (1+a)®,,

o] %
Pl o 2.48

where o the ratio of contributions from sub- and pavement layer (see subpavement
sediment contribution). Similarly for the subpavement

Pepids o, @
ot N
Z (1+e)®,,

i=1

az,,
e 2.49

bpi

* K Bpi - Boi
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The effect of the additional layer at the time-derivatives in the pavement composition
relative to changes in bed level is shown in Figure 2.9 at different shear-stresses. For
the composition of the subpavement, the constant average between pavement and
substratum is taken.

0.2 Ty /T & 02
g= 10—
7 s s
- 0.9 ~ 20
0o T e B
app1 6p/at o e /'///,/fi//?//
=7 A s P -
52,,/8 t02 e ///i///
e S ,/f';;/‘/,///// =
g =1.0/;//§/T%/ 7 =P p2
9 o o
///> A Bpi Py 05
-0.4 ;4/7/’///
0.0 0.1 0.2 0.3 0.4 T 05

Figure 2.9

The probability of exposure of the pavement to the flow is represented by g. As can
be concluded from Figure 2.9, armouring can occur if differences in subpavement and
pavement composition are small and shear-stresses are low. If the pavement layer is
coarse relative to the subpavement, the armour layer is not stable. The effect of g on
changes in pavement is significant at low shear-stresses and decreases if the
compositions of pavement and subpavement approach each other.

The corresponding changes in the subpavement are presented in Figure 2.10.

| TeyfTep= 02 g= os

T e _—

0.0 i . 0.9 D ———

-0.21
9P, 0,/
&,zb/ata4 ﬁo1= pp2
- V. 2.0 — _
Bs R 05
0.6 .
0. 0.3 04 0.5

Figure 2.10

It can be concluded from Figure 2.10 that at low shear-stresses, the subpavement can
transfer from refining to coarsening, with increasing exposure of the subpavement.
At high shear-stresses, the subpavement refines and the effect of g on the changes in
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composition is relatively small.

2.4.6. Coarsening criteria.

Based on Section 2.4.5, a simple coarsening criterion for both layers can be derived.
A similar armouring criterion for the pavement layer in the double-layer model is
(Section 2.4.5)

®

szl < x p, (sedimentation)

g (1 +ai)cbbpi

i= 2.50
@, . .
. P > x pg, (erosion)
Y (+a)®,,

i=1

For high shear-stresses, no armouring can occur in case of sedimentation, whereas the
armouring criterion in case of erosion can be written as

K
P, > E Poy1 = Py 2.51

Equation 2.51 states that the underlying subpavement layer should be coarser than the
pavement layer which contradicts the definition of armoured river beds.

For the subpavement layer, the armouring (coarsening) criterion is

1P op1 +Kp, - < 0 (sedimentation)
2 pl p spl
Z (1 +ai)q)bpi
=1 2.52
o,
- 17 bpl + K Py~ Py > O (erosion)
Z (1+a)®P,,
i=1
For high shear-stresses, the coarsening criteria for the subpavement layer are
Py < § Py _ P (sedimentation)
K+g
2.53
Py ~ (1 +x-g) -
Py > ol EPsp1 _ Por ~ Popr (erosion)
8
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Chapter 3

Derivation of characteristic surfaces.

3.1. Introduction.

In this Chapter, the system of partial-differential equations is analysed, using the
method of characteristics. This theory has been applied extensively to analyse one-
dimensional models with and without mobile bed (e.g. De Vries, 1959) and 2DH-
models with a fixed bed (Daubert and Graffe, 1967; Katopodes and Strelkoff, 1978;
Abbott, 1979) and a mobile bed (Lin and Shen, 1984; Lai, 1986; De Vriend, 1987a,b
and Sloff 1992). These analyses are continued with the help of some numerical
experiments.

In the first part of Chapter Three, a description of methods and derivation of the
characteristic condition is given. An extensive use of the Huyghens’ method has been
made to construct and analyse the characteristic surfaces. This method is described in
Section 3.2. In Section 3.2.2, 3.2.3 and 3.2.4 respectively, the characteristic conditions
are determined for mobile bed models with uniform material and with a mixture with
a one and two horizontal layers in the bed.

The analysis of characteristic surfaces starts in Chapter 4.
The characteristics of 1-DH models are described in Chapter 6.

3.2. Derivation of characteristic conditions.

3.2.1 Mathematical backsround.

Characteristic surfaces in two-dimensional models are the equivalent of characteristics
in one-dimensional models. The mathematical background is described here very
briefly. Interested readers are refered to Courant and Hilbert (1962), Fletcher (1988)
or Hirsch (1990) among others, where the method of characteristics applied to a system
of partial-differential equations is decribed extensively.

The characteristic condition states that along characteristic surfaces described with a
normal vector n = n(x,y,t), the partial derivatives of the variables in x-, y- and -
direction are undetermined. Consequently, along a characteristic surface, the
determinant of the system of equations is zero (see section 3.2.2). This will be worked
out in Section 3.2.2.
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The normal vector 7 of the characteristic surface is defined as

nt
ﬁ —_ nx 3-1
Ry
or in polar coordinates
n -r
3.2

A bicharacteristic ray is defined as a line of tangency between the characteristic surface
and a characteristic plane. This tangential characteristic plane is defined as

At
i|Ax| = -r At + Ax cos®@ + Ay sin® = 0
Ay

33

A bicharacteristic ray along a characteristic surface that is presented as a characteristic
cone is shown in Figure 3.1.

rAt= Axcos 0+ Aysin 6

characteristic cone 1 I
— "
— e
— ] panca— S RV}
bicharacteristic ray—._| /%
§ P cos 6
- sin @+ X
Figure 3.1

In a time interval t-f,, a disturbance travels from (x,, y,) to
(x, ), with

r(t-ty) - cosb(x-xy) - sinB(y-yy) = 0 3.4
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Analogeously to the Huyghens’ construction, a point at the curve (relative to the point
of origin) can be approximated by the intersection of two tangential lines.

(r-AnAt - (x - xp) cos(0-A0) - (y - y,) sin(6-A60) =0 3
5

rAt - (x - xpcosb - (y - ypsind = 0
(see Figure 3.1).

For A8 — 0 this can be rewritten as

Ax = Adrcosd - Ysing ; Ay = Afrsin® + 9" o0 3.6
doé do

Consequently, small disturbances travel along bicharacteristics that are described with

(1] 1
1 ox dr

— rcos@ - —sin0 3.7
Cl =0t = do .
Cy iy— rsin@ + —gicose

| Ot | do

with » as well as the derivative of » to 0 to be determined from the characteristic
condition (Section 3.2.2). Equation 3.7 enables the construction of characteristic
surfaces intersected after a reference time interval.

3.2.2. Characteristic condition for uniform material.

The system of equations is described by Eqgs 2.1, 2.2, 2.3, 2.7 and 2.11 (see also
Appendix A.1). The total derivative of a variable £ is defined as

¢
”;T ot
DE _|p| |8, & ,, %, , & 3.8
Dt ox a Y oax 7 oy
n, o8
£l
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Multiplication of the system of partial-differential equations A.2 with 7" 7 enables
rewriting this system as

-Du/Dt- — 0
Dv/Dt 8, TpdPa
Q - |DaDt| = 7T - 77 |8,~T,/pa 3.9
Dz, /Dt 0
| Dc/Dt | c,~C
with the matrix @
R 0 -gn, —8M, 0
0 R -8, ~8&M, 0
Q = an, an, R 0 0 3.10
Tlnx+T3ny T3nx+T2ny 0 n, aR
0 0 0 0 P
where
R=n, +un +vn, ; P=Tn +Ln +Lpn, 3.11

As stated in Section 3.2.1, along the characteristic surfaces, the gradients in variables
can have multiple solutions, or in other words, the deteminant of the matrix Q is zero.
Stating I (0] | = () yields the characteristic condition

|Q| =R P [gzan,(nf + n;) + nR? + ng(nf T1+ny2 T2+2nxnyT3)} =0 312

Because each characteristic corresponds to a variable in the system of equations, in
total five roots can be found. The roots of the characteristic condition O = 0 describe
three families of surfaces. R = 0 and P = 0 lead to characteristic normal planes. The
third family describes a characteristic normal cone that can be identified as a Monge
cone.

The two normal planes are described by

r = ucos® + vsin@ ; r = —Zcos® + —Zsinf 3.13
A A
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which yields with Eq.3.3
Ax Ay

——cosO + —<sin® = ucos® + vsinb
At At
- 3.14
_.é_'x. = cx = U A ..é_)_). = C =YV
At At Y
representing the streamlines and
L L L
Afcose + —A-—)—’sine = —Zcos® + 2sin - ¢ =-2 A ¢ =2 3.15
At At T, T, T, YT,

representing relaxation-effects of the sediment in suspension.

The characteristic normal cone is described by
r® - 2r?ucos®+vsind] +

+ 1l(ga+g T vu*jcos’® + (uv+g,T,)sin20 + (v2+ng2+gZa)si1126] * 316

_ %(ucose + vsil’le)(T1 + T, + (T,-T,)cos26 + 2T3sin26> =0

For example, the intersection of the coupled characteristic surfaces at Az = 1 s in
supercritical flow conditions is

n
[m] -

Figure 3.2
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3.2.3. Characteristic condition for a single-laver model.

The system of partial-differential equations consists of Eqgs 2.1, 2.2, 2.3, 2.19, 2.25 and
2.26 and is described in non-conservative form in Appendix A.2.

In the case of N size fractions, the number of variables and equations becomes 4 +
2*N. Three equations describe the conservation of fluid mass and momentum, N
equations describe the relaxation effects per size-fraction in suspension, N mass
balances per sediment size-fraction, and, additionally, the statement that the summation
of N fractions equals unity. The latter condition enables elimination of one variable.

Consequently, the characteristic equation will be of the 3 + 2*N-th order. In analogy
with Eq.3.15, the characteristics P, = 0 describing the relaxation in suspended load can
be easily recognized from this characteristic equation (Sloff, 1992). Similarly, the
vorticity characteristic R = 0 (Eq.3.14) can be eliminated from the characteristic

condition.

Because changes in composition can be related to changes in bed level (Section 2.3.3),
no additional characteristic surfaces are introduced and a 2+N-th order equation
remains, describing the coupled characteristic surfaces that are related to velocity,
depth and level and composition of the bed. If N = 2, the roots can still be solved
analytically, which is considered convenient for this analysis.

Analogeously to Section 3.2.2, the system of equations A.3 can be rewritten as

| Da/Dt | 0
Du/Dt g, T, /pa
Dv/Dt 8,~7,/pa
0 - Dz,/Dt| _ =1 .5 0 3.17
Dp,/Dt PPy
Dp /Dt Py Py
Dp,,,/Dt, 0
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and the characteristic condition is

R an, an, 0 0 0 O
-&.1, R 0 gn, 0 0 0
-8, 0 R gn, 0 0 0

Q| =| © 0 0 0 P 0 0|=0o 318
0 0 0 0 0 P, O
0 Kn+ aulty, Kyn+Kyn,  pn, aR 0 S,
0 K12nx+K22ny K22nx+K32ny (I-BPn, 0 aR S2'

with
R =n,+un, + vn, P,=Tnn +Ln + Ly,-”y
Sy = 01 + (Kyy + K5 (Dy=Dy)un, + vn) 3.19

S, = =0,n, *+ (-Ky, + K,(D;=D)))un, + vn)

The characteristic equation can be rewritten as

R=0V P, =0V P, =0

\%
3.20

n(R* + ga(n + n)))(B,-1S, + B,S,) +
+ gZR[nf(KHSZ—Kle1> + 2n.n (K, 8,-KyS,) + ”y2<K31S2_K32S1)] =0

The three roots of the characteristic equation that can be decoupled yield the following
characteristic planes

x y
3.21
L. L
Pl =0 - c, = X /\ c = 2
TAi ¢ TAi

representing the streamline and suspended-sediment retardation effects (in analogy with
Egs 3.14 and 3.15).
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The coupled part of the characteristic equation, that represent the Monge cone, can be
written as

Ar* + B(ucos® + vsin®)r3 + (Ccos?® + Dsin’0 + Esin28)r? +
+ (Fcos®® + Gcos?0sin® + HcosOsin?0 + Isin®0)r + 3.22

+ Jcos*® + Kcos’0sin® + Lcos?0sin®0 + McosOsin®@ + Nsin*0

The coefficients are described in Appendix C.1.

For example, the intersection of the characteristic surfaces at Az =1 s in supercritical
flow conditions is

Figure 3.3

When Figures 3.2 and 3.3 are compared, the additional characteristic surface can be
found that is introduced by distinction of size fractions.

3.2.4. Characteristic condition for a double-laver model.

The system of equations consists of Eqs 2.1, 2.2, 2.3, 2.19, 2.46 and 2.47 together with
the statement by Eq.2.23 which can be applied for p,, and p,,,. This system of partial-
differential equations is described in non-conservative form in Appendix A.4.

From Eq.2.47 it can be concluded that changes in the subpavement are only related to

changes in bed level and composition in the subpavement. Therefore, no additional
characteristic direction will be introduced.
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Again, the system of partial-differential equations can be written as

[ Da/Dt ] [0
Du/Dt gx—.rb)./ pa
Dv/Dt g, by/p a
Dz, /Dt 0
Q - =gT -7 3.23
Dp,/D Pe17Ps
DpSQIDt PPy
DppllDt 0
_DpspllDt_ 1 O
with the matrix Q
[ R an, an, 0 00 0 0
-g M, R 0 -8, 0 O 0 0
g1, 0 R g1, 0 0 0 0
0 0 0 0 PO 0 O
0 0 0 0 opP, 0 O
0 g(1+a1)<Kunx+K21ny) g(1+al)(K21nx+K31ny) B, arR 0 S, T,
0 g1 +a2)(K12nx+K22ny) g(1+a2)(K22nx+K32ny) 1-8,)n, 0 aR S, T,
o0 0 0 (B, -x(1+a)B,yn, O O -ad,n dn,
3.
where 24
R=n +un, + v, P, =Tn +Ln + Ly,.ny
S, =0o,n + g(l'(41 + K51(D1—D2))(unx + vny)
S, = —6pnt + g(—K42 + 52(DI-D2))(unx + vny>
3.25
T, = 6 K, 2ok PO
, = 8, + 8oy Ky —— + K —=(D-D,)|un, + vn,)
spl ms
1-p, D
T, = -6n, + 8“2(’1(42—__ =+ KszT)m(DfDﬁ)(unx + vn)
spl ms
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with

0 = o ‘Pot P (D)t 3.26
2 : pspl 1- pl

The definition of K;; can be found in appendix B.

The characteristic determinant can be written as

R=0V P, =0V P,=0V n=0
v
n(R? + ga(n;+n)[(1-B,)(08,+x,8,T)) ~ By(8,5,+a,8,T,)] +
+ g8RnJ(1+a)K (8.8, +a,8,T}) ~ (1+a K, (8,5,+a,8,T,) + 3.27
+ 28, gRnn[(1+0,)K,(8 8, +a,8,T)) ~ (1+a K, (8.8, +a,8, T,)] +
+ ggRn[(1+a)K (8.8, +a,8,T) ~ (1+a)Ky (88,08, T,)| +
(R? + ga(n+n)\T,5, - T,S)xB, (1+a;) - B,;) = O

The part of the characteristic equation that represents the coupled roots of Eq.3.37 can
again be written as

Ar* + B(ucos® + vsin@)r® + (Ccos?0 + Dsin?0 + Esin28)r? +
+ (Fcos®0 + Gcos?0sin® + HcosOsin?0 + Isin®0)r + 3.28

+ Jcos*® + Kcos*0sin® + Lcos®0sin®0 + McosBsin®@ + Nsin*0

with the coefficients of the equation described in Appendix C.2.
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Chapter 4

Analysis of characteristic surfaces.

4.1. Introduction.

In this Chapter, the coupled characteristic roots of Eq.3.22 (single-layer model) and
Eq.3.28 (double-layer model) are analysed by constructing the characteristic surfaces
with the help of Huyghens’ construction Eq.3.7.

In the analysis of the coupled characteristic surfaces, three families will be
distinguished (Figure 3.2); a family of large characteristic surface that can be described
as a "balloon"-shaped surface (Section 4.2), and two families of small bicharacteristic
surfaces (Figure 3.3); a "fast" and "slow"-travelling "star"-shaped surface (Section 4.3).

Throughout the analysis, the analogy between one-dimensional and two-dimensional
models is used; the characteristics in 1-DH models are equivalent with the
bicharacteristic rays in or against the direction of the stream.

In Section 4.1, the characteristics of flow variables are approximated with the help of
the quasi-steady approach (instantaneous adjustment of the flow variables compared to
changes in the morphological variables). The validity of this quasi-steady approach for
subcritical and supercritical flow is investigated for two-dimensional models.

The "star"-shaped characteristic surfaces are analysed in Section 4.2. Different
approximations are investigated, and the validity of decoupling changes in bed level
from changes in composition is tested.

In Section 4.3.6 and 4.4.3, the mathematical character of the single-layer and double-
layer model are analysed. Approximative criteria for maximum thickness of the mixing
layers have been derived to ensure the hyperbolicity of the models. Some remarks on
the relevance of this maximum layer thickness are added in Section 4.3.7.

4.2. Family of large ("balloon'-shaped) characteristic surfaces.

4.2.1. Analysis of characteristic roots.

To predict the behaviour of the characteristics, the roots of the characteristic equation
are analysed.

In Figure 4.1, all characteristics relative to velocity are presented for varying Froude

numbers and sediment transport. The broken lines represent the characteristics in the
case of a larger sediment-transport rate.
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Figure 4.1
For situations with s,/ua << 1, Fr < 0.8 and Fr > 1.2, the large characteristics are not
significantly affected by the mobility of the bed (see also De Vries, 1993). This allows
simplified solutions for the characteristics, which will be derived in the following.

4.2.2. Approximation of characteristics.

Perpendicular to the flow the effect of the transported volume of sediment on the
family of large characteristic surfaces increases. In the case of v = 0 m/s, and with #,
= 0 and n, = 1, the characteristic roots of Eq.3.20 are

L L
n=0V p=-2Vp-=-2

TAI TA2

Vv 4.1

AT
_ﬁmntz =0 V n, = iJ—gz(a + K:ﬂ + K32> = i\J - gz[a ! bz)
u

The latter roots can be interpretated as the maximum width of the "balloon"-shaped
wave front perpendicular to the direction of flow. It appears that the characteristic
surface can be partially approximated with a circle (Figure 4.2).

-4

Figure 4.2
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This implies that the largest bicharacteristic ray in flow direction can be approximated
with

S, + S
r=-n=u-+ \/~gz(a + Ky + Ky) =u o+ \} - gza(l * blua bz) 2

For s,/q << 1 (with g = ua), this expression approaches

r=u+\/::g7zc_z 4.3

(De Vries, 1993). The relative errors of Eqgs 4.2 and 4.3 are represented in Figure 4.3
by €, and ¢, respectively. €, represents the situation with a sediment transport twice
as much relative to €.

0.06 - sb/ q
0.04 -
0.02 1 €

I -
e ———————

0.2 04 0.6 08 1.0 1.2
Fr
Figure 4.3

Similarly it can be found

4.4

S, + 8
r=-n=1u _\/_gz(a +K31 +K32) =u _\J—gza[l * blua b2)

In Figure 4.4, all characteristics for the single-layer model are plotted. The
approximations Eqs 4.2 and 4.4 are represented with the broken lines.

101

100 \

oy

u 10!

T
/

0.2 0.4 0.6 0.8 Fr 10 1.2 14

Figure 4.4

It is noted that this second approximation cannot be applied for Fr near unity. As a
result, from this analysis it appears that a "quasi-steady" approach (no effect of the
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mobility of the bed on the celerities of the water level) can be applied for one-
dimensional models with Fr < 0.8 and s,/g << 1. At larger rates of sediment transport,
the approximations by Egs 4.2 and 4.4 perform better than the "fixed-bed"
characteristic Eq.4.3.

4.2.3. Decoupling of hvdraulic and morphological processes.

At supercritical flows for Fr > 1.2 this approach seems justified also (Figure 4.4), but
for two-dimensional models, this is not the case. If the characteristic surfaces for
uniform sediment are calculated for two situations with different transport rates, the
following Figures 4.5-a to 4.5-f can be constructed for varying values of Fr.

As can be concluded, decoupling of hydraulic and morphological processes in two-
dimensional supercritical flows cannot be applied. The scale of Figures 4.5 is not
constant. For Fr < 0.6, however, changes in hydraulic conditions (depth and velocity)
can be assumed instantaneous relative to the "slow" changes in bed level and
composition.

Fr=0.30 n =
n //ﬂ_‘\\\ /E\\Ff 0.60

Figure 4.5-a Figure 4.5-b

nl  Fr=0.90 n =120
/ _\\\\ \

RN
.__/r

Figure 4.5-c Figure 4.5-d
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4.3. Family of small ("star"-shaped) characteristic surfaces for the single-layer
model.

4.3.1. Physical conditions.

The families of small bicharacteristic surfaces are strongly related to the composition
of the layers and of the vertical fluxes between the layers. Different conditions can be
distinguished.

Bpi = poi Bpi = Pmi
Pt < Po erosion of an armoured deposition of coarse
riverbed material at a fine river
bed
Pt 2 Pot erosion of a coarse river | deposition of fine
bed covered with fine material at a coarse river
material bed
Table 4.1

As aresult, sedimentation and erosion conditions yield different characteristic surfaces;
in the following figures, the bicharacteristics are presented that are related to bed level
and composition in the case of sedimentation of fine material at a coarser river bed
(Figure 4.6-a), and in the case of erosion of an armoured river bed (Figure 4.6-b).

The star-shaped curves that are shown represent travelling fronts of small-scale
disturbances. The wave fronts can be constructed from roots of the characteristic
equation as described in section 3. For the two situations described, the wave fronts
are of opposite shape.
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4.3.3. Analysis of characteristic roots.

If Eq. 3.22 is applied for the situation of one-dimensional flow, the equation of the
charactistics is

Ar* + Bur® + Cr2 + Dr + E =0 4.5
with
A=-8, ; B=25, +X ; C=-2u°X - 8[g(a+K+K))+u?|
D =gu®, K, + Ky +aX +Y)+u’X ; E=-gu’¥
X = (1-BD,-D)Ks; + (D,-D)B K5, + (1-BKy, + B Ky,

Y = (Dl - DZ)(KIZKSI - KnKsz) + K12K41 + K11K42

Two ways of approaching roots of Eq.4.5 have been applied here. The first is the
simplification of the coefficients of Eq.4.5, the second way is to simplify the system
of equation that yield the characteristic equation by the decoupling of physical

processes. The latter method directly yields insight whether processes can be
decoupled.

Simplification of coefficients.

If X =6,, Eq.4.5 can be written as
@-1) [8, 7 (g(a + Ky + Kyp) + (r-up?) + gu¥] = 0 4.6

which yields for one of the roots » = u. The condition X = §,, is satisfied at the lines
drawn in the following figures for different size-distributions.
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In the figures 4.7-a and 4.7-b, sedimentation and armouring conditions are represented
respectively.

J P B8 ,,; == o
; 0/l =1°/°'1 3 0 /D=1 ////; 0z
a. /D, / 6,/ ///

0 2 ) 60 0 160 0 20 40 60 80 100
/7, T /T,
Figure 4.7-a Figure 4.7-b

The mixing layer should be very thin to satisfy this condition, and usually the
characteristics related to morphological parameters are smaller than u.

If Y= (K, + K;;) X, Eq.4.5 can be written as

(8,5 - u X)(rg, a+ (-wg(Ky + Ky) + rr-w’) = 0 4.7
which yields
r= -‘% 4.8
The assumption ¥ = (K, + K,;) X is satisfied if
B, = 7{;’15;1‘17(; V (D, - D)(Ks + Kgp) + Ky - Ky =0 4.9

In Figure 4.8-a, the left-hand root of Eq.4.9 is shown. At high shear-stresses (3,
approaches p,. At 7.,/7., > 50, this condition is satisfied in sedimentation processes

only.

1.0q
E p' =0.9 6
0.8
4 D /D =10
131 0.6 . p,=0¢ 4 2/ !
g _ p = 0.9,;06;03;0.1
04 L/Dy=1o ‘
- p1= 0.3 2
0.2] |
14— p1=0.1
0.0 | ‘ . , ,
0 160 260 360 % 100 200 300
) ] [} 1
T, /T, 7., /T,
Figure 4.8-a Figure 4.8-b
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The expression at the lefi-hand side of the second root in Eq.4.9 is presented
in Figure 4.8-b. This can be rewritten as

s;(1-py) _my yme p b D, - (D,-D)L(1-p,)
SHP1 m, " D, + (D,-Dylp,

4.10

which is satisfied for 7./r.. — . Consequently, » — uX/§, in sedimentation
processes at high shear-stresses.

Ribberink (1980) uses a quasi-steady approch and neglects effects of gradients in the

median grain diameter. The additional characteristic is approximated with

u K,(1-B,) + K,,B, 4.11
)

m

which is equivalent to Eq.4.8 apart from the effect of gradients in median grain
diameter.

Decoupling of changes in bed level and composition.

If the quasi-steady approach is applied, (Fr < 0.6 and Fr > 1.2 for one-dimensional
models), the characteristics that remain coupled refer to the composition and level of
the bed. If changes in bed level and composition can be decoupled, two options exists:
either the level or the composition adjusts intantaneously.

If the adjustment of the bed level is assumed intantane, the remaining characteristic
root is

r = Y 4.12

8,(Ky + Kpp)

Substitution into Eq.4.5 in combination with Eqs 4.2 and 4.4 yields for the fourth root
;= uZ(Kn + Ky)
all - Fr* + (K, + Ky)la)

If on the other hand the adjustment of the bed composition is assumed intantaneous,
the remaining characteristic root corresponding to the bed level is

po W 4.14
(1-Fr®aX

4.13

again substitution of Eq.4.14 into Eq.4.5 in combination with Eqs 4.2 and 4.3 yields
for the fourth root

i
r- u1-Fro)X 4.15

6m(1 - Fr* + (K,, + 32)/a)

In Figure 4.9, the error ¢ in approximation by Eqs 4.8, 4.11, 4.13 and 4.15 relative to
the exact characteristic is presented at varying Fr. The conditions represent the erosion

44



of an armoured river bed.
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Figure 4.9
From Figure 4.9 can be concluded that r = uX/§,, performes best compared to the other
expressions. The difference in behaviour of Eqs 4.8 and 4.11 results from gradients in
median grain size, which apparently is significant at low shear-stresses. Because the
relative errors in Eqs 4.13 and 4.15 are significant, it can be concluded that

composition of the bed cannot be decoupled from changes in bed level.

0.5{

4.3.3. Approximation of characteristics.

In Figure 4.10, the characteristic roots in stream-direction at different shear-stresses are
presented. As can be seen from the figure, two intersecting characteristics are
composed by two different roots. The dotted line represents X/6,,, which approaches
one of the characteristics that correspond to the star-shaped characteristic surface.

\
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Figure 4.10

It appears from Section 4.3.8 that Eq.4.8 represents the tail of the largest, star-shaped
characteristic surface, whereas the bicharacteristic ray in the direction of the stream,
which is the equivalent of the characteristic in one-dimensional models, is represented
by the front of the "star".
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Consequently, the error made by using Eq.4.8 equals the length of the star which
subsequently represents the two-dimensionality of a propagating disturbance. The error
changes with flow conditions and sediment properties; in Figure 4.10 the error grows
with Fr. In the case of sedimentation, the bicharacteristic ray is underestimated,
whereas in the case of erosion of an armoured bed the bicharacteristic ray is

overestimated.

The expression » = uX/§,, approaches for 7,,/7.,, = ®

_uX _ Sm 4.16

6m pmlém

The characteristic root is approximately linearly related with the reciproke of 6,

When subsituting the approximations Eqs 4.2, 4.4 and 4.8 into the characteristic
equation Eq.4.5, the fourth bicharacteristic ray can be found

Y
= g “ 4.17

X (u2 +gla+ Ky - 32))
For 7.,/7.. — %, Eq.4.17 approaches
s
r=nu—2 1 418
Pui® [ u? 1+ (Sp1 +53) )

g4 ua
which corresponds with the characteristic for uniform material (De Vries, 1993).
In Figure 4.11, the characteristics of the single-layer model are shown. The broken

lines represent the approximations by Eqs 4.2, 4.4, 4.8 and 4.17. Near Fr is unity, the
approximations fail.

0.001

0.2 0.8 1.0 14 fFp 18

Figure 4.11
If the bicharacteristic rays that correspond to the star-shaped wave fronts are plotted
linearly (Figure 4.12), the performance of the approximations by Eq.4.8 and Eq.4.17
become more clear. It can be seen that for Fr < 0.8, Eq.4.17 slightly overestimates the
characteristic, whereas for Fr > 1.2, the error appears to be larger and the characteristic
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is underestimated.
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Figure 4.12
4.3.4. Sensitivity of characteristics to the mixing-laver thickness.

The sensitivity of both star-shaped bicharacteristics to changes in ¢, is presented in
Figure 4.13. Here, the characteristic roots in stream-direction are shown of both star-
shaped characteristic surfaces. No principal differences can be found under
sedimentation and erosion of armoured beds.
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Figure 4.13

It can be concluded that for higher shear-stresses, only the additional characteristic that
is introduced is sensitive to changes in §,, (Ribberink, 1980). As a result, the selection
of §,, does not directly affect the dynamic behaviour of the bed level, which can be
considered beneficial.

If §,, is chosen sufficiently large, the characteristics intersect. After intersection in the
case of sedimentation, the characteristics are combined into one wave front and only
the intermediate point (» = «X/5,) changes with varying 6,. This will be illustrated in
Section 3.4.4. Under the conditions of erosion of an armoured bed, the characteristics
become imaginary at the point of intersection.

4.3.5. Effect of sediment mixture relative to uniform material.

To compare the behaviour of the single-layer model with the general mobile bed
model, the relative differences in characteristics of both models are presented in Figure
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4.14 for varying values of Fr.

The characteristics with subscript un refer to a uniform material, the subscript nu refers
to a mixture with D, = 2 D,. The two situations described have an equal mean
diameter and the rate of total sediment transport is similar at high shear stresses where
hiding effects can be neglected.
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Figure 4.14

The changes in bed level are related to the characteristics indicated with a for
subcritical flow and b for supercritical flow, and appear to be sensitive to the
distinction of size-fractions. At low Fr, hiding effects have a significant influence on
the morphology. At high Fr, the effect of fractions on the characteristics reduces,
which can also be concluded from Eq.4.18. Consequently, distinguishing different
fractions is most significant for flows when shear-stresses are low.

In Figure 4.15, the effect of changes in fraction is presented: characteristics with
subscript 1 and 2 refer to a bed composition with p,, = 0.30 and p,, = 0.20
respectively. For subcritical flow, the characteristics that correspond to propagation of
changes in water level are indicated with 4 an ¢, and a and d refer to changes in bed
level and composition. It can be concluded that for the range 0.6 < Fr < 1.3, the
single-layer model is very sensitive to the composition of the bed.
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Figure 4.15

It should, however, taken into account that this analysis is based on the use of the
Meyer-Peter and Miiller sediment-transport formula, which application is restricted to
relatively small shear stresses.

4.3.6. Mathematical character of the single-layer model.

As described by Ribberink (1987), the characteristics of a single-layer model can
become complex. If the partial-differential equations yield complex characteristics, the
system is elliptic. Then future conditions influences the present and the model is
physically unrealistic. The application of the single-layer model is therefore limited.

One condition, but not sufficient, for the system to become elliptic in the case of
erosion with the mixing layer coarser than the substrate

> 1 4.19

m-sub

where D,, is the median grain size. To increase the range of hyperbolic character of the
model, a transition layer can be introduced to replace D,_,, with a smaller,
intermediate diameter (Ribberink, 1987).

The characteristics become complex if the two star-shaped characteristic surfaces
intersect. This point of intersection is affected by the flow conditions, sediment
properties and the thickness of the mixing layer; by selecting a smaller value of §,,, the
intersection can be avoided or extended to higher shear-stresses.

Consequently, a maximum value of §,, can be found to assure the hyperbolicity of the

system. If the physical situation is included in the interval of proper §,, the single-
layer model can be applied.
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Although Eq.4.8 does not represent the front of the star-shaped bicharacteristic but the
tail at the back, the critical value of §,, is estimated for Fr < 0.8 with the help of Eqgs
4.8 and 4.17

& = .X_2 _Iff_. + 1 + ﬂ)_l_i‘Eb_Z 4.20
a Y\ga ua
For 7.,/7+. & © Eq.4.20 approaches
Sm . 1 (;, S _ pe 4.21
a nu D, 4a
For Fr > 1.2, the critical value of §,, can be approximated with Eq.4.4
On X
a 4.22
all - __.._____—gza 1 + _I_(}_l + __I_{_:S_%
u a a
which approaches for 7.,/7., = ©
O Fr
a Ppy @ U s 4.23
2
Fr - |1+
P, 4a

In Figure 4.16, the critical value of 6, and Eqs 4.20 and 4.22 (broken lines) are
plotted.
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Figure 4.16

As can be concluded from the figure, the approximations slightly overestimate the
exact critical value of §,, because Eq.4.8 overestimates the bicharacteristic ray.

In the Figure 4.17, the critical values of §,, are presented for a coarse material

(D, = 4.0 mm, D, = 10.0 mm) with varying values of D,, in the mixing layer relative
to the substrate.
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Because §,, is often taken constant, problems can occur if flow conditions vary widely.
At high shear-stresses, the hyperbolicity criterion becomes less sensitive to differences
in composition of the mixing layer and substratum. Reducing the difference by
distinction of a transition layer clearly improves the hyperbolicity of the mathematical
model.

The propagation of disturbances in composition reduces with increasing D,. As a
result, the bicharacteristic rays will intersect more easily and the maximum values of

6,, will also be smaller.
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Figure 4.18

In Figure 4.18, the critical values of §,, are presented against the mean shear-stress
relative to the critical shear-stress. Herein, the sediment diameters are for a: D; = 1.0
mm, D, = 2.5 mm, for b: D, = 2.0 mm, D, = 5.0 mm, and for ¢: D, = 4.0 mm, D, =
10.0 mm. The fraction of fine sediment in the mixing layer are p, = 0.01 for set 1 and
P = 0.30 for set 2. The fraction of fine material in the substratum are for all sets p,
=0.99. '
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4.3.7. Relevance of maximum mixing-laver thickness.

The vertical mixing in the mixing layer should be instantaneous compared to
morphological changes (Section 2.3.2). In general, the mixing process is assumed to
be in an equilibrium state (e.g. developed bed forms). However, if this mixing is still
in progress (developing armour layer), a time interval can be chosen to limit the extend
of the vertical mixing and subsequently to satisfy the criterion of a maximum thickness
of the mixing layer.

In other words, the applicability of the single-layer model can be extended when the
time scale of the predictions are adjusted to the time interval that is needed to achieve
the maximum thickness of the mixing layer.

In the application of numerical solution procedures, this implies that in the case of
armouring, the maximum time interval AT is determined by the maximum value of the
mixing layer thickness and the rate of mixing w

AT < Omomer 4.24
w

If the maximum thickness of the mixing layer is of the order of a few grains at the
surface of the bed, the time scale to be used is nearly instantaneous, which results in
small time steps. At larger values of the critical thickness, the mixing process has
developed to a larger extend an the maximum time step can be larger as well.

The introduction of the rate of vertical mixing w, requires the definition of this rate.
The vertical mixing is related to the frequency and magnitude of fluctuations in the
bed, and subsequently to the shear stress and the size and composition of the top layers
at the river bed.

In the following, this rate is assumed proportional to the average grain-velocity in the
bed load layer. This grain velocity of fraction i is defined as

u. = i 4.25

After substitution of the maximum value of §,,, Figure 4.19 can be constructed where
u,/u is represented for different compositions of the river bed and for varying Fr.
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It should be noticed that at high shear-stresses, the fraction of bed load in the total load
decreases relative to the amount of suspended load, which can result in an
overestimation of the grain velocity at high shear-stresses.

With Egs 4.24 and 4.25, an estimation for the maximum time interval can be found

2
AT < Om . Poiln 4.26
w Spi
With the help of this estimation Figure 4.20 can be constructed.
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Figure 4.20

It appears that at high shear-stresses, this maximum time interval is not a realistic one
for morphological modelling; the travelling distance of disturbances in bed level and
composition equals the thickness of the mixing layer. However, in Section 2.3.4 it has
been shown that at high shear-stresses, armour layers are not stable which makes this
condition of maximum AT a hypothetical one.
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Near the initiation of motion, where armour layers can be stable, the maximum time
interval can be large. To indicate the magnitude of this time interval, AT is presented
in dimensional form in Figure 4.21 for varying relative shear-stresses 7.,/7.. .
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Figure 4.21

However, it should be questioned whether the vertical mixing can still be considered
instantaneous relative to changes in bed level and composition at the time scales
estimated.

In the single-layer model as analysed above, the thickness of the mixing layer is taken
constant. However, because changes in mixing-layer thickness can be related to local
variables in stead of gradients in these variables, (shear stress, average grain-velocity
in the bed load, development of bed forms etc.), including changes in mixing-layer
thickness only implies the introduction of source terms in the sediment mass balances.
Consequently, the characteristics of the model are not affected.

4.3.8. Behaviour of characteristic surfaces.

Two-dimensional effects illustrate this behaviour in the following analysis, where
depths are constant (1 m) and the ratio 7.,/7.. ranges from 2 to 200. The black dots in
the graphs represent » = uX/4,,.

Sedimentation (D, ... = D,, ...):

In the first set of figures, the mean diameter of the mixing layer equals that of the
substratum. The size and fraction of the finer material is 0.4 mm and 0.8 repectively,
the size of the coarse fraction is 1 mm. The thickness of the mixing layer is taken
0.08 m.
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At 20 < 7.,/7., < 120, the fastest wave front approaches » = uX/§,,. As a result, in this
interval its dimensions become negligible relative to the other wave front. It appears
that the fastest wave front declines for shear stresses left of the transition line (where
the characteristic root equals uX/6,) and grows at higher shear stresses. At higher
velocities the bicharacteristic rays in stream direction intersect and the two wave fronts
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coincide. In that case, distinguishing size fractions becomes superfluous.
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Erosion of an armoured bed (D,,,...=155 D, ...).

In the second set, a coarse mixing layer at a fine substratum is considered. The size
fraction of the fine material in the mixing layer and substratum are 0.25 mm and 0.75
respectively. The mixing-layer thickness is taken 0.01 m.
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Figure 4.23-c

In the range 4 < 7.,/7+, < 5, the bicharacteristic ray approaches uX/5,, and the wave
front changes its shape. Because the mixing layer is chosen sufficiently small, the
bicharacteristic surfaces do not intersect in this example and, in contrast with the
joining fronts in sedimentation conditions, the two wave fronts remain seperate.
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Due to the orientation of the characteristic surfaces, approximating the bicharacteristic
ray in stream direction with Eq.4.8 yields an underestimation in sedimentation
conditions and an overestimation in the case of an eroding, armoured bed.
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4.4. Family of small ("'star"-shaped) characteristic surfaces for the double-layer
model.

4.4.1. Analvsis of characteristic roots.

Similar to the single-layer model, and expression can be found that approximates the
largest front of the wave-shaped bicharacteristics.

po o uX 4.27
Bpﬁs(lﬂxl)
with
p
X =g KM[(SS(l - x B (+a)) + 6poc1p—”l—[(xﬂpl—ﬁol>(1+ocl) v ool +
spl
l—pp1
+ 8 Ky(1+ay) 6sKﬁpl * 6p“2(ﬁ01 B Kﬁpl) ¥
1_-pspl
v g kK, PP s b 1 kB (ea) ¢ 8,0,D, (kBB L)1 +a )] | *
& 2sip [ 8Dl = xBpy(1ra)) + 8,0,D,, kB, =By)(1+a)+ay] |

v e kP2 Py e & a,D -
8 Ksy D ( “1)[ DnskByy + 8,0,D,.(B Kﬂpl)]

ms
For 7.,/7., = o, this approximation is

(6sp p18 P+ 0 Pop(1 *g)2> S 4.28
8P, p,;0,0(1+ay)

Again with Eqs 4.2, 44 and 4.27, the remaining characteristic root can be
approximated

r= u (gfZ + al) + uY) 429

X [u? + gfa + g(+apK, + g(l+a)Ky)|
with Z and Y described in Appendix C.2.

For 7.,/7., & ©, Eq.4.29 approaches
n s, 1

a ppl

r =

L= F? . Sp1 4.30
p,ua

which corresponds with the characteristics for uniform material.
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4.4.2. Sensitivity of characteristics to layer thickness and sediment flux.

Similar to the single-layer model (Figure 4.13), the fronts of the star-shaped
characteristics in stream-direction in case of sedimentation and erosion of armoured
beds can be shown at varying shear stresses for different layer thicknesses. The effect
of g on the bicharacteristic rays in the direction of flow is represented in the Figure
4.24.
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Figure 4.24

From Figure 4.24 it can be concluded that in contrast with the single-layer model
where only one characteristic is clearly affected by the layer-parameters in the model,
contributions by the subpavement layer directly affect the transport rate and
subsequently the morphological behaviour (see also section 2.3.3.).

To illustrate this conclusion, the relative differences in characteristics for g = 1.00
(subscript 1) and g = 0.90 (subscript 2) are presented in Figure 4.25.
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Figure 4.25

This figure clearly shows that the effect of the subpavement on morphology is present
in subcritical flow (line a) and supercritical flow (line 4). Also at low shear-stresses
near at the initiation of motion, the effect of fine material contributed by the
subpavement can be significant.
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In supercritical flows, the magnitude of the negative characteristic that can be related
to the propagation of changes in bed level, is increased with increasing exposure of the
fine subpavement.

Consequently, the selection of the relative exposure coefficient g and the layer
thickness significantly affect the behaviour of composition as well as level of the river
bed in the model.

4.4.3. Mathematical character of the double-layer model.

In Figure 4.26, the maximum value of the pavement layer §, is presented. The
sediment diameters are D, = 1 mm and D, = 2 mm, and p,, = 0.30 for the pavement,
Py = 0.60 for the subpavement and B,, = 0.90 for the substratum. The effect of
exposure of the subpavement is investigated by taking different values of g.

The broken line in Figure 4.26 represents the maximum layer-thickness of the single-
layer model with equivalent conditions.

0.16 -
0.12
6. /a
p
0.08
0.04
0.00

00 02 04 086 0.8£1.0 12 14 186

Figure 4.26

Consequently, for small contributions of the fine subpavement layer and at low values
of Fr, the range of hyperbolicity of the mathemetical model improves by distinction
of a transition or subpavement layer between coarse mixing layer and fine substratum.
This can also be understood from Figure 4.17.

However, if the contribution of the fine transition layer to the horizontal sediment
transport increases, the gain in maximum value of pavement-layer thickness diminishes.
As a result, at large values of g and Fr, the double-layer model becomes elliptic more
casily than the single-layer model.
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With Eqs 4.27 and 4.28, the critical value of §, can be approximated for Fr < 0.8

~

a d(1+ay) u (gZ(Z + aY) + u2Y>

84

For 7.,/7., = %, Eq.4.31 approaches

2
_5_2 1 gZX [uz + 1

ua

2 _o)\2
3, . (g’p,, + (1-8) pg,) Lo s S
with € = 0/6,.
For Fr > 1.2, the critical value of §, can be approximated with Eq.4.4
0 1 X
L

a8 (l+a,)
§ V8,4 K K.
a (1 A \jl v g(lra)—2L + gl+ay)—2 )
U a a

For 7.,/7., > %, Eq.3.33 approaches

~
~

a pyua e g (1+ay) p,

with € = 6/0,.

Fr -

1 +

Spi
p,ua

+ g(1+“1)K31 + g(1+a2)K32]

4.31

4.32

4.33

4.34

Again, it should be noticed that Eqs 4.31 and 3.33 overpredict the critical value of §,.
In Figure 4.27, the exact critical values of §, and the approximations Eqs 4.31 and 4.33

are plotted for different values of g.
0.3,

Figure 4.27

62




Chapter S

Compatibility equations.

5.1. Introduction.

The characteristic equations of a system of partial-differential equations provide
information on the dynamic behaviour of the mathematical model. The bicharacteristic
surfaces present the propagation of information through the system, and the
compatibility equations, or the gradients along the bicharacteristic rays provide insight
in the magnitude of changes.

This can be of use when decoupling of hydraulic and morphological processes is
applied; if gradients in different parameters along a bicharacteristic ray are of similar
order of magnitude, parameters cannot be decoupled along this bicharacteristic. If
parameters can be decoupled, the sign and magnitude of gradients can be analysed.

Secondly, the orientation of gradients in a two-dimensional system predicts differences
in one- and two-dimensional models. In this section, the compatibility equations of a
two-dimensional model are analysed, whereas the compatibility equations for a one-
dimensional, double-layer model are described in Chapter 6.

From a numerical point of view, compatibility equations can be used for the
construction of non-reflective boundaries (e.g. Hirsch, 1990).

The derivation procedure is described in the Section 5.2, and subsequently applied to
the single-layer model (Section 5.3) and double-layer model (Section 5.7). The
compatibility equations for the single-layer model are analysed in Section 5.4. Based
on this analysis, the initial behaviour of disturbances in bed level and bed composition
are analysed in Section 5.5 and 5.6.
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5.2. Mathematical background.

If the system of partial-differential equations is hyperbolic, the three-dimensional basic
equations can be combined to a form containing derivatives confined to a two-
dimensional space (Hirsch, 1990); the three-dimensional space contructed by the -, x-
and y-axes is confined into a two-dimensional space constructed by 7, a curve
parameter along a bicharacteristic ray and s, a parameter perpendicular to the
bicharacteristic ray.

t

%/L?ﬁ N
YA >

i

Figure 5.1

To obtain the compatibility equations, a procedure as described by Lin and Shen
(1984) can be followed. The system of equations is combined linearly into one
equation. Then the gradients in variables are stated to be along the bicharacteristics
which yields the coefficients that should be used to summon the original equations.

Now, an equation has been found consisting of a linear combination of gradients in all
variables along the characteristic surfaces. To seperate the unknown "time-components"
in 7-direction from the known "space-components" components in s-direction (see
Figure 5.1), a decomposition is applied.
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5.3. Compatibility equations for the single-layer model.

The linear sum of the system of equations is

T T
n, n,

un,-gn,| Va + an1+un2+K11n6+K12n7 Vu +

vn,-§.1; KORESSIORES VL
T T
Ry Bing+(1-B)n,
+ | UNgtR, Mot RN, | Vv + —&.1 Vz, +
an,+vny+ Ky ng+Kypn, R-FES
- T T
T n,+ang T ,ns+an, 5.1

+ |L, n,+uang Vpsl + |L,ns+uan,| Vp ot

.Lyln JTvang Ly2n5 +van,

5, (ng—n,)
+ (K, K5y (D, -D))ng+u(-K, +Ks) (D, -Dy))n; | Vp, | =
V(K +Ksy (Dy ~D))ng+v(-K,, +Ks, (D -Dy))n,

Tb T
g = gf—‘-)%

pa

= n, + ny + [pel—Psl] n, + [Pez_psZ] N5

or
T LT, LT, T, LT, T, T
Hy Va + i, Vu o+ B,W o+ RV, g Vpg R,Vp, + H, VP, =
5.2
oy

8{;;

T
i
&

= n, + Ny + [D~Pg| My + [P~Py] P
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Because the compatibility equation is valid along a characteristic surface, it can be
stated for £ = a, u, v, z, s1, s2 and m

or

S hgny n(un;-gny) + "yi(vnl'gzns) =0

nn, + nfan +uny+K ne+K,n) + n,(vn,+ aultgtKpn,) = 0

ngny + nuny+Ky ine+Kyon) + no(an,+vng+Kyng+Kypn,) = 0
nBng+(1-Bpn,) - ngn, - ngn, =0

nlang+T,.n,) + n (uanc+L n,) + nyi(van6+Ly1n4) =0
nan,+T,n) + n(uan,+Lng) + nyi(van7+Ly2n5) =0

;0 u(g—ny) + nxiu[nG(K4l+(D1 ~D,)K;) + ”7<_K42+(D1“D2)K52>] *

+ ”yi"[ns(K41+(D1_D2)K51> + ”7('K42+(D1”D2)K52)] =0

5.3

5.4

Equivalently, the multiplication coefficients can be determined with the matrix in

Eq.3.18

For all roots of the characteristic determinant ( = 1,2,..,7), a set values of », to n, can
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The next step is to decompose the changes of finto gradients in 7- and s-directions,
respectively along and perpendicular to a bicharacteristic ray (Figure 5.1). Therefore,
all terms at the left-hand side of Eq.5.2 are written as

Ay =T, T +8,§ ~ MVf=TNf % +8V" 5§ 5.5

The components of the vectors 71-5 along a bicharacteristic ray are

1
G| " g 5.6
7, - \%i

1+ c2 + c2
xi yi

The components of vectors perpendicular to a bicharacteristic ray are

0

PE = [ -sin® | Tl

5.7

cosO

Because gradients in f along s at the original time level ¢ = ¢, can be prescribed,
changes along the bicharacteristic rays can be calculated with

o o
Taiég * Saiég + Tui_ay— + Suig—lf + Tvi-al + Svi@ + Tz_—z—é + iﬁ +
ot os ot os ot os %ot 2 Os
g, o) d ‘
+ TI.—-pi1 + Sl.—!él + TSQ.-——p-f-z— + s2__a£s2 T .apml S ‘apml = 5.8
i ot S Os "ot ' Os ™ 9t ™ Os
Ty, Ty
= gx_;; Ry * gy——p—c-l- Ny * Py = Ps)lai * (P Poo)lts;

Consequently, the 2-DH compatibility relations for the single-layer model can be
written as

T
da du v % Py Py Pwm

ot dt 0t dtr Jdt Jdt Ot

T

da u v % Py Py Pl

Os Os Os Os Os ds Os

=(gx—iJK+(g —f_b_y
pa Y pa

+ S 5.9

L+ [Py -Pg) M+ (p, - Pop)N
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where T and S matrices, and K, L and M vectors described in Appendix D.1.

5.4. Analysis of compatibility coefficients.

With some numerical experiments, the magnitude of gradients in hydraulic and
morphological parameters along the characteristic surfaces are analysed to provide
insight in the two-dimensional behaviour at various conditions.

To enable mutual comparison, the parameters in the compatibility equation Eq.5.2
transformed into

a=a@+a) ; u=u(l +u’) ; z, = agz,
0 0 b 0%b 5.10

; / /
Dg = siO(1 ~4hp&'i) s P :pmlo(l +pml)

The transformed compatibility equation is

i, a,Va' + i uVu' + i, vyW' + fi;aVz, +

T / T / T /
+ nslpsl onsl + "szpsz ons’z + Ry pml Omel = 5.11

T

T
b
X gy—-bl
pa

= gx--____

pa
After decomposition of all terms in 7- and s-direction, for all bicharacteristic surfaces,
the coefficients of gradients in 7-direction (T}) are analysed at 0.25 < Fr < 1.50, in
every direction . In the following analysis, a = 1.00 m, §,, = 0.016 m, D, = 0.0004
m, D, = 0.001 m and p,, = f3,, = 0.2. Consequently, a thin, coarse mixing layer at a

fine substratum in erosion conditions.

n, + Ny + [Poy=Pyy| My [pez"psz] ns

The coefficients T, are presented for varying values of 6 and increasing values of Fr.
0 = 0, represents gradients in downstream direction s, 6 = 7/2 is perpendicular to the
flow (n- direction) and 6 = = is directed upstream (see Figure 5.2).

n
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As can be understood, 0 < 6/ < 1 for the family of large characteristic surfaces
("balloon-shaped"), and 0 < 6/7 < 1/2 for the families of small characteristic surfaces
("star-shaped").

The corresponding characteristic surfaces are

4 Fr=o2s ‘ ,74: /Nr =0.50
' 2 4 |7 g -2‘\ of T 2 T 4 ﬁ7{3?

Figure 5.3-a Figure 5.3-b
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Figure 5.3-c Figure 5.3-d
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The coefficients of gradients in parameters along the family of large ("balloon-shaped")

characteristic surfaces are
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As can be understood, along this family of characteristic surfaces, the gradients in up-
and downstream direction are more significant than gradients perpendicular to the flow.
At low Froude numbers, the magnitudes of gradients in « and a in up- and downstream
direction are are of similar order, whereas at increasing Fr, the downstream-orientated
gradients. In supercritical flow, up-stream directed-gradients in » and a can be
neglected relative to the gradients in bed level z,.

Gradients in composition are relatively small along this bicharacteristic surface.

The coefficients of gradients along the family of small bicharacteristics (slow-
travelling, "star-shaped" curve) are
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Along this characteristic surface at low Froude numbers, gradients in bed level and
composition are significant.

At increasing Fr, gradients perpendicular to the flow increase relative to the gradients
in up- and downstream direction. Consequently, under these conditions, the dynamic
morphological behaviour in two-dimensional models will become different from that
in from one-dimensional models, or, the effect of boundary conditions at the banks on
the solution becomes more pronounced.

In stream direction, the magnitude of all gradients are of similar order, which indicates
the coupled behaviour of flow and morphology.

At the tail of the star-shaped wave front (0 = #/2), all coefficients are zero, which
implies that gradients in parameters along this particular bicharacteristic ray cannot be
determined with this compatibility equation. Parameters donot necessarily remain
constant along this bicharacteristic ray.
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At increasing, subcritical Froude numbers, the gradients in bed level and composition
are dominating along this characteristic surface. At supercritical flows, however,
gradients in a, z, and u are relevant again. Consequently, in general, changes in bed
level and composition are coupled.

5.5, Initial behaviour of bed-level disturbances.

The numerical experiments as described above enable a rather simple analys f the
gradients. In subcritical flows, downstream-directed gradients in bed level dominate
along the slow-travelling, "star-shaped" wave front (Fig.3.7-a,b and ¢). In supercritical
flows, gradients in bed level dominate at the upstream-directed part of the "balloon-
shaped" wave front (Fig.3.6-d,e,f). Consequently, along those bicharacteristic rays,
changes in bed level can be decoupled from gradients in other parameters. The
corresponding compatibility equation can be written as

0z, Tox | T 1 ns
2 = B R - 4 -p 2> 5.12
P (gx 0a)T, (Per ~ Py) T, P2 Ps) T,

It can be concluded that two effects affect the initial growth or decline of bed-level
disturbances along the corresponding bicharacteristic rays;

- slope effects and friction
- relaxation effects in the suspended material

5.5.1. Slope and friction effects.

For 7., >> 7., the coefficient n, can be written as
n, = P1P2R2 (San - S1K12) =
5.13

n n
= - PP,(n, + u)’ (an,(nlsbl + mySy) * Sblst[ 1, 2 D
l_p ml p ml
In supercritical flows n, > 0 and consequently #, < 0. In subcritical flows, Eq.4.17 can
be substituted for -n, and n, also appears to be negative. The coefficient T, can be
written as

R

T, = PP, [(R2+gza)((1—ﬂl)sl = ByS,) *+ g Rn(S)K,, - S1K12>] 5.14
1+n,
which appears to be negative for subcritical and positive for supercritical flows. The

ratio n,/T, is positive for subcritical and negative for supercritical flow.
If any inertia effects can be neglected, the flow is decelerating if g, < 7,/pa, and the

flow is accelerating if g > 7,/pa. Consequently, in subcritical flows, the height of bed
forms (dunes) increase at accelerating flow and decrease at decelerating flow. In
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supercritical flows, the opposite can be observed, bed forms (anti-dunes) develop in
decelerating flow and diminish at accelerating flows.

If slope-effects are neglected, friction induces a development of bed-form heights
in supercritical and a decline of bed-form heights at subcritical flow.

5.5.2. Relaxation effects.

These effects are due to the time- and length-scale of the adjustment of vertical
concentration-profiles of suspended sediment, to local changes in conditions. As a
result, these effects dominate if suspended load is large relative to bed load.

The coefficients n, and ns can be written as
n, = aRzSsz(gza + R2) ; Mg = = aR2S1P1(gza + R2> 5.15

which appear to be negative at both sub- and supercritical flows. As a result, the ratios
n,/T, and ny/T, are positive for subcritical and negative for supercritical flows.

If p,, > p,, the capacity is larger than the actual load and sediment is picked up from
the bed, whereas if p,; < p,;, the capacity is smaller than the actual load and sediment
is deposited on the bed. Consequently, in subcritical flows, a sudden increase in
sediment-transport capacity enlarges the height of bed forms, whereas a sudden
decrease in sediment-transport capacity reduces the bed-form height.

In supercritical flows, again the opposite can be observed; a sudden decrease in
sediment-transport capacity enlarges the height of bed forms, whereas a sudden
increase of sediment-transport capacity reduces the bed-form height. This effect has
been found by Sloff (1993) also, when carrying out numerical experiments on
supercritical flows. :

5.6. Initial behaviour of bed composition.

For low Froude numbers, (Fr < 0.6), the gradients in bed level and composition along
the fast-travelling, "star-shaped" wave front are an order of magnitude larger than the
gradients in flow variables (Figure 5.6-a,b).

The corresponding compatibility equation can be written as

oz ap,,
z a_: + T, arl = [PaPa] M * [PaPe) Ps 516
or
o, T oz, n, ny
FYR ‘ii T 50 Pe1Py] 'i * PPy 'TTZ 5.17
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The coefficient 7, can be written as
T, = - R P, P, (R*+g,a) u [K, - Ky + (K5y+Ksp)(D,-Dy)] 8, /147> 518

which is positive for the restriction Fr < 0.6. As a result, the ratio 7,/T,, is negative
and Eq.5.17 can be written as

P, T,| ( 9z, n, ns
= | & | - - — - =2 1
ar Tm ar [pel psl] TZ [pez pSZ] TZ 5 9

At accelerating flows, the fraction of fine material in the mixing layer increases
(destruction of armour layer) due to a positive gradient in z,. At decelerating flows, the
mixing layer coarsens (armouring) due to negative gradients in z,.

Because n,/T, and ny/T, are positive for subcritical flows, the relaxation of suspended
sediment dampens the responses described.

5.7. Compatibility equations for the double-laver model.

The compatibility equations is for different families of characteristic surfaces

LT T, T, T, T, = T,
i, Va + i, Vu + B,Vv + 1 Vz, + B Vp, + N,Vp, +

T
th VPpl sprPSPl - 5.20
T, Ty
= gx~;;x ny * gy—_‘; ny + [pelmpsl] n, + [peZ—pSZ] [
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with

T T
n n,
i, = |un—8M,| ; #, = |an run, +g(1+e DK, n,+g(1+a)K n,
v, =8, vn,+g(1+a DK, n.+g(1+a,)K,)n,
T
Ry
i, =| un, +g(1+a K, n,+g(1+a,)K,,n,
an, +vn, +g(1+a Ky n,+g(1+a,)Kyn,
- T T
B inst(1=B,n,+(B,;—xB, (1 +a ))ng T,n,+ang
i, = -8, N L n,+uang
-8 Lyln JTvang
T T
T ns+an, 0 p(ns—n7~oc 1)

iy Lohs*uan, i, = |8 UKy +Ks (D, =Dy))ng+gu( Ky +Ko)(D =D )
[Lyzns +van, gV(K,, +Ks, (D, -Dy)\ng+gV(-K, +Ks, (D, -D D)

0 (ng—n,+ng)

p D 1-p D,
., 8o U K41J1+K51J£(D1 -D,) ing+go,ul -K,, 2 +K,—2(D,-D,) |n,
nspl = pspl Dms 1- spl Dms
p D 1- D
8oV K41l+K51ﬂ(D1“D2) ng+tga,v —Ky, 4 +K,—2(D,-D,) |n,
pspl Dms 1- spl Dms

5.21

For all roots of the characteristic determinant (i = 1,2,..,7), a set values of », to ng can
be found. These are described in Appendix D.2.
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Chapter 6

One-dimensional models.

6.1. Introduction.

In this chapter, the characteristic equations for the one-dimensional model are derived.

In the first part, boundary conditions are described and the width-integrated system of
partial-differential equations is described. Although banks are considered to be fixed,
lateral sediment exchange of suspended load as well as bed load is included. Also
lateral flow in or out the river is included. Directions of shear stresses and transversal
exchange of flow and sediment are as represented in Figure 6.1.

s va, Spii Dy
NV
7 R R RS AP
Vfaf Sb ri (P”-
Figure 6.1

If the mass and momentum balances of flow and the sediment mass balances are
integrated over the width, effects of two-dimensional phenomena are eliminated from
the solution of the mathematical model that is obtained. In non-uniform mountain
rivers, however, these phenomena can well be present. In the Sections 4.2 and 5.3, the
significance of transversal changes in supercritical flows has already been described.

In the second part of this chapter (Sections 6.5 and 6.6), a brief analysis is given on
the effects of parameters that are distributed non-uniformly over the width. Correction
coefficients are derived and substituted in the system of equations. The effect of non-
uniform width-distributions on the model is demonstrated with a simple model for
uniform sediment.

6.2. Boundary conditions.
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At the banks, the following boundaries conditions for the mass can be formulated,

at the left bank y = y,

%, %,
a— + pua— - p(v-v)a =0
pa—" + pua— p(v-v)

and at the right bank y =y,

r

ot

where v, and v, are exchange of mass at the banks .

- pa - pua% + p(v-v)a =0
ox

The shear stresses at the left and right bank can be described as

Ty cosB, T, cos,
=T > =T
Ty sin6, T sin6,

1 g, - .,_._____1_..___%
(R
ox ox

The boundary condition for x-directed momentum at the left bank is

with

cosf, =

Yy, 9y,

2
pua + pu‘a puva,_, +

- a“— - tacosf, + puva - — =0
2 g | O T PWVA T PAT

and at the right bank

r 2 r
-pua— - pu‘a— + puva,_ +
PUGSy — P 9% T P,

, PE

+ tacosb - puva + pa— =0
2 ox ’ T PR TPA,
The boundary condition for y-directed momentum at the right bank is

l l 2
—_— _— -
pva " puva pvia,, +

+ _ng_z_az - tasinf, + pv,za +pa =0

and at the bank at the right-hand side
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—~ —I . =T 4 2 +
pva 5 puva - pvia,_,

6.8
- P8, T asind, - pvia - pa =0
where p, and p, the pressure acting on the left and right bank respectively.
Regarding the mass balance of suspended load, it can be stated at the banks
Zs 3y Z 3y Zs
Zb[%l)s,-dz?tl ' ,_b[g;bupsidz_f?;l i zbfabvpdeIY=y, +®@; =0 o

Zs s

) jPSidz% ) fupsidz%{;'- ¥ fvPsidzIFy, -®,=0

7,+8, 2,48, 7,+8,

where ®, and ®, exchange of suspended sediment at the left and right bank
respectively.

And, finally, the mass balance of bed load at the banks is

oy dy
cbiﬁb_a—; * g(1+°‘i)sbxi‘é; - g(1+°‘i)sbyi|y=y, + 8, =0

6.10
Oy oY,

- Cbiéb'é?r - g(1+ai)sbxi_§; * g(1+ai)sbyily=y, = S = 0
with S,; and S,,; the bed-load exchange at the left and right bank.

6.3. Width-integrated system of equations.

In the following, the transversal velocity component v is taken zero, gravity-component
effects in y-direction are neglected and width-variations are taken small. The resulting
system of partial-differential equations for the double layer model is written in non-
conservative form. The mass balance is

Y
a8 B9 . 4498 . B9 . 4B . 4| =0 6.11

ot ot ox ox ox y,

and the momentum balance is
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da+z
Ba-é?E + uaB-@—u- - g4aB - g Ba (@+z, +

ot ox ox

6.12

Tb 3] 4 It
+ —B + uva| - uva|| - ta| =0
p yr yr yr

The approximate solution of the depth- and width-integrated balance of suspended
sediment can be written as

oc, dc,
TAiS; * ingi e -cy) =0 6.13
X

where the relaxation coefficients should be determined with the boundary conditions
at the bed and at the banks.

The mass balance for the bedload can be written as

du p,; N op
1+a ). — + gaf —2 + oaf D2
g(lra ox gy ox g f'D,}:; 7 ox

. Op_. D X op..
+gaif;p._’fﬂ__?_‘s’l +galf;D__.."£EDj—§.‘-;ﬂ+

Py O Do 6.14
. . P - ap,. ap...
+aaps1 +uaapsz + li i, 6—-—pﬂ + 6 pspt +
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op, .0 ap.0 oz
PPy TS LB - (1+a) k BN—2 =0 6.15
Yoot ot (ﬁm ( ) ﬁp '> ot

Including changes in width implies the introduction of sediment-mass balances for the
banks and formulae describing lateral exchange of bed load and supended load,
analogeously to the mass balances of pavement and subpavement layers at the river
bed. However, although transversal exchange of sediment is included, banks are
considered to be fixed in the following.
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6.4. Characteristic equations.

6.4.1. Characteristic condition.

The total derivative of a parameter is defined as
D.. d. . 0.
= + 6.16

Dt ‘ot ox

in analogy with Eq.3.8.
Analogeously to the system of two-dimensional equations, the total system can be
written after multiplication with the characteristic normal vector n” n.

Yt
-va| - ua—
Y, dx
[ Da/Dt ] . Yt Vi M
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S, = 6,1 + 8(f, + fipP;-Dy) ;5 S, = -0 n, + g ~fop *+ fop(D;=D,))
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T, = 6 + go (flp + fip P(D D)] 6.19
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The resulting characteristic equation equals Eq.4.5 which has been analysed in Section
4.3.3.

i

6.4.2. Compatibility equations.

The one-dimensional compatibility relations for the double-layer model can be written
as (Section 5.7)
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6.4.3. Fixed-bed application.

In the case of a fixed bed, the compatibility relation can be reduced to
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The characteristic equation is

(nt+u)2 +ga=0 - n =-uzx,-ga 6.25

Consequently, the compatibility relation is

._].)_Cl.-f__t_i:é‘_.l_)_li:
Dt g Dt

= f-ga— - — :

6.26
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6.5. Non-uniform distribution of variables.

6.5.1. Introduction.

After integration of a variable over the depth or width, usually the average value of the
variable is used in the equations. To account for additional terms that result from non-
uniform distributions over the integration interval, correction terms are defined.

The application of a one-dimensional model with distribution-correction coefficients
is justified if the correction coefficients are constant and can be decoupled from the
conditions of flow. At larger deviations from the cross-sectionally averaged value (for
instance in case of intermediate- and large-scale roughness) and for Froude numbers
near unity (0.6 < Fr < 1.2), these coefficients are not only relatively large but also
highly related to the conditions of flow.

Under these conditions, a flow is dominated by two- or even three-dimensional local
phenomena and a one-dimensional mathematical model cannot be applied.

In the following analysis, the distribution coefficients are considered to be constant.
Correction coefficients for the hydraulic as well as for the morphological variables are

introduced.

The width B and the cross-sectionally averaged depth a are defined as

Nizs
ffdzdy Ji
E=zf;T—~;B=fdy 6.27
d 7
yf, y
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6.5.2. Hydraulic distribution-coefficients.

To acount for non-uniform distributions of velocity over the depth and width and the
depth over the width, the following coefficients are introduced

'S 'S

Yz Yz
[ [udzdy f [u?dzdy

ocuﬁ=z'—ﬁ—-—-——=—9;—; Buﬁz=-y-’i—-—-— 6.28
N2 Ba %
[ faa [ fay
Yr Zp Yr 2

Usually o, and 8, are set unity. The non-uniform distribution of depth can be included

by definition of
Y % %5
[ f ot

—
p Lot 6.29
a 2 Y.

Jo

Yr

6.5.3. Morphogical distribution-coefficients.

Apart from non-uniform distributions of velocity and depth, non-uniform distributions
of bed load, suspended load and the river-bed composition can be taken into account.

Regarding a non-uniform distribution of p; over the width, the following coefficients
are introduced

Zs YiZs 12,

f Pdz f f pydzdy f f pudzdy
Pt — i apy s b u = 630

f dz f f dzdy f f dzdy

Zp ¥,2p Y,2p

It is noted that o refers to an equilibrium distribution of p,; over the cross-section,
whereas the relaxation coefficients refer to the adaption of the actual suspended load
to the equilibrium total load.
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To account for a non-uniform distribution of the bed load over the width, it is stated
Y

[e+as,dy |
@, 8(1+E)s, = ~— 6.31
&
Yr

If a power-law approximation is used, o, can be written as

n;

u
g(1+&)p,m;—
a, = D 6.32

i -
—-

—_— —_—— U i

g(1+E)p,, m——

D

m
This can be simplified by decoupling the width-distribution effects of the ratio of
contributions from pavement and subpavement, velocity and sediment properties. It
should be noticed that the exposure and contribution of the subpavement layer are

related to the sediment properties.

The variation in sediment properties can be described with
Vi

[ 2 ay ) l
. D A —_ A AD. o
0, = 14220 | B Iy (1222 1+ 22y D, 6.33
j ¢ Py i=1 Dy Di
—i[dy
Dm'yr

The effect of a non-uniform velocity distribution over the width on the sediment
transport is
44

fu""dy
0. =2 z(“_éz]' 6.34
ni Y -l;
E""fdy
¥
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6.5.4. Magnitude of distribution coefficients.

When introducing A¢ as the deviation from the cross-sectional averaged value £, the
distribution coefficients for velocity can be written as

YiZs
f f udzdy
= ....______.—_.yrzb ~ 1 + ..é_y_é_q_
ua, B u, a,
6.35
Yizs .
f f u?dzdy X
p =2 .q., Aulaf, Au) fAu
u,iamB um am um um
Hence, if the deviations are small, the following relation can be used
o~ P rl 6.36

2

If, at large shear-stresses, the power » in the transport formula approaches 3, o, can
be considered similar to the energy or Coriolis coefficient.

With the help of Eq.6.36, the following table can be constructed, based on a reference
by Chow (1959).

type B, a, Q,

min av max min av max. min av max
A 1.03 1.05 1.07 1.02 1.03 1.04 1.10 1.15 1.20
B 1.05 1.10 1.17 1.03 1.05 1.09 1.15 | 1.30 1.50

C 1.17 | 1.25 1.33 1.09 | 1.13 1.17 | 1.50 1.75 | 2.00
Table 6.1

Where type 4 stands for regular channels, flumes and spillways, type B refers to
natural streams and torrents and type C represents river valleys that are overflooded.
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6.6. Behaviour of 1-DH models with non-uniformly distributed variables.

6.6.1. System of equations.

If apart from non-uniform distributions, all gradients in y-direction are neglected, the
mass balance can be rewritten as
Y
PR B—a—c—l + ocuua—(?-—lE + auuBiag- + ocuaB—a—l-l- +va| =0 6.37
ot ot ox ox ox y,

and the momentum balance is

(au—E—'f uaég + oc;ﬂ Bu@ + 0 Bagﬁ + BuaB—(?—Li +
o ot o o ot

u u

6.38
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ox p y, %, \

The mass balance of suspended sediment can be rewritten as

: : P, ap..
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o

¥, u Yr

The approximate, first-order solution of the cross-sectional integrated balance of
suspended sediment is

op.. ap..
_‘?ﬂ + L. p‘“
ot * ox

The mass balance for the bedload can be written as
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The system of partial-differential equations can be written as
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Analogeously as in Section 6.4, the characteristics and compatibility equations can be
determined for this system of equations.
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6.6.2. Characteristics of fixed-bed model.

The matrix Q is reduced to

o
et u? 6.45

nu(e,-B,ja)-ga a(oen, + oaf,u)

The characteristics for flows with non-uniform distributions over the width are

ne_r_ By, y1- BFPA-BJeD 6.46

u u o Fr

The well-known circular bicharacteristic surface of a fixed-bed model remains a circle.
As o, < B8, < o2, it appears that the radius of this circle reduces, whereas the center of
the circle is larger then unity. Consequently, the most significant effect can be found
at the upstream-orientated characteristic that is reduced. The transition from subcritical
to supercritical flow will take place at Fr = IVB,.

6.6.3. Characteristics of mobile-bed model.

The matrix Q is

nto U o,a 0
Q = |nu(a,-B,Jo)-ga alen+pu) -ga 6.47
0 «f, n,
and the characteristic equation for a mobile bed model with uniform material is
o
()Cunt3 + ZBuunf + au[gza+[3uu2+gz__.'lfu)nt + gzauua’fu =0 6.48
au

When applying Eq.6.46 (quasi-steady approach), the third root is
n_r o %de 6.49

u u 1-pFr?

Using the average values for the different type of rivers (Table 6.1), the characteristics
are
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Figure 6.2

Because the effect of the velocity distribution on the transport capacity is usually
accounted for by calibration coefficients, a, is taken unity in Figure 6.2.

To compare with a uniform distribution (subscript 0), the relative difference in
characteristics for o, = 1 (Figure 6.3) and o, # 1 (Figure 6.4) are represented.
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Figure 6.3

The largest characteristic (subscript 1) represents downstream travelling changes in
water level appears to be insensitive to the distribution of parameters over the width.
Whereas for Fr > 0.2, the distribution of parameters affects the dynamic behaviour of
the model. For 0.6 < Fr < 1.2, the transition interval between subcritical and
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supercritival flow, the relative difference is large due to a shift in characteristics (see
Figure 6.2).

The characteristic that can be related to the propagation of changes in bed level is
marked by subscript 3 for subcritical flows and 2 for supercritical flows. This
characteristic is very sensitive to changes in «, (Figure 6.4)
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Figure 6.4

Because changes in the compoéition of the bed are coupled to changes in bed level,
similar conclusions can be drawn for mobile bed models with graded sediment.
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Chapter 7

Conclusions.
7.1. Introduction.

In this report, some aspects of the mathematical modelling of alluvial mountain rivers
with graded sediment have been investigated. At present, the depth-averaged
mathematical models that are generally used for alluvial low-land rivers are applied to
simulate the hydraulics and morphology in alluvial mountain rivers.

However, the conditions in mountain rivers can be rather specific; large Froude
numbers, small depths, extremely non-uniform geometries, large rates of transported
material and graded sediments. Analysing such models with the theory of
characteristics provides an indispensible insight on the dynamic behaviour of the
model.

Based on this analysis, conclusions can be drawn on the effects of the dimensions of
the model (2-DH or 1-DH), the number, type and thickness of sediment-exchange
layers in the bed, the composition of the sediment, the time-scales of hydraulic and
morphological changes and the initial behaviour of point disturbances.

According to Ribberink (1987), the number of fractions required to achieve a
sufficiently accurate prediction of morphology should be four. The analysis in this
report is based on a sediment mixture composed of two fractions which restricts the
quantitative conclusions drawn in this report.

In Section 7.2, the effect of the flow regime on the behaviour of the model will be
discussed. The effect of shear stress is mentioned in Section 7.3 and in Section 7.4, the
single-layer and double-layer model are compared.

7.2. Effects of flow regime.

7.2.1. Initial behaviour of small morphological disturbances.

With the help of a simple analysis it has been shown that initial behaviour of small
morphological disturbances in subcritical and supercritical flow are quite different
(Section 5.4).

If inertia effects can be neglected in a hydrograph of a subcritical flow, disturbances
in bed level grow whereas at the decelerating parts of the hydrograph, disturbances in
bed level decrease.

With respect to the composition of the bed it can be concluded that the fraction of fine
material in the bed increases at accelerating parts and the mixing layer coarsens at
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decelerating parts. In general, this confirms that armour layers develop at the
decelarating part of a flood.

The effect of relaxation in suspended load reinforces the response of the bed-level
disturbances, whereas the response of the bed composition is surpressed.

During hydrographs in supercritical flows, small disturbances in bed level show an
opposite behaviour.

Because the response on non-uniform flow in subcritical and supercritical flow regimes
are different, sections of different flow regimes should not be eliminated by reach-
averaging procedures if morphogical responses to a flood are predicted.

7.2.2. Coupled changes in morphology and hydraulics.

Because in Froude numbers in mountain rivers can vary significantly, hydraulic and
morphological phenomena are coupled. This complicates the modelling of an alluvial
mountain river relative to low-land rivers. The experience in using morphological
models with Fr near unity and Fr larger than unity is scarce.

To a certain extend, the circle-shaped characteristic surfaces that are well-known from
fixed-bed models can be recognised in the "balloon"-shaped characteristic surface of
mobile bed models (Figure 4.2). The effect of the mobile bed can be understood from
mutual comparison of both surfaces.

In line with conclusions drawn by De Vries (1959), it can be stated that for Fr < 0.6,
separation of hydraulic and morphological changes can be applied at small rates of
sediment transport. A transition interval at 0.6 < Fr < 1.2 can be distinguished where
characteristic roots change roles and changes in hydraulic and morphological variables
are coupled.

Although in one-dimensional models with small rates of sediment transport the
hydraulics and morphology for Fr > 1.2 can be decoupled, in two-dimensional models,
transversal changes in hydraulics and morphology are coupled (Figures 4.5).

Changes in the morphological variables (bed level and bed composition) are coupled
in general, irrespective of the regime of flow (Figure 4.9).

7.2.3. Transversal effects.

From analyzing the characteristic equations it can be concluded that not only the
propagation of disturbances changes with varying Fr, also the direction of propagation
is affected. With increasing Fr, the propagation of changes in bed level and
composition in transversal direction increases.
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Consequently, for higher values of Fr, the two-dimensional character of morphological
changes becomes pronounced and the effect of boundary conditions on the solution
increases.

7.2.4. Application of one-dimensional models.

As described in Section 7.2.3, the morphological behaviour of two-dimensional models
in supercritical flow can be significantly affected by boundary conditions at the banks.

Consequently the performance of 1-DH models applied to supercritical flows in rivers
with an extremely non-uniform geometry should be interpretated with care. Because
the effect of the boundaries on the solution of the morphological model increases in
supercritical flows, the reach-averaging of local geometrical parameters should be
carried out carefully.

Due to a non-uniform distribution of roughness elements, parameters can vary over the
cross-section of a river. The effect of non-uniform distributions over the depth and
over the width increases with increasing Fr. As shown in Figures 6.2 and 6.3, the
dynamic behaviour of fixed-bed and mobile-bed models is very sensitive to the
distribution of parameters over the cross-section for Fr > 0.6. In subcritical flows, the
rate of changes in morphology is increased, whereas in supercritical flows this rate is
reduced by non-uniform transversal distributions.

However, in this range of Fr, the correcting distribution-coefficients can be expected
to vary with Fr. Data on these coefficients at varying conditions of flow are rather
scarce.

Consequently, when modelling flow at Fr > 0.6 in non-uniform rivers, transversal
effects can be expected to be significant. The performance of one-dimensional models
is very sensitive to the approach that is used to model the effects of non-uniform

geometry.

7.3. Sediment transport.

At shear stresses close to the critical shear-stress, the correction by hiding effects has
a large influence on the transport of fractions. At low shear-stresses, the coefficients
in the power law that approximates the sediment transport, and the rate of sediment
transport are very sensitive to changes in flow conditions and sediment properties. Due
to the relative importance of turbulence and exposure at low shear-stresses, motions of
particles are very hard to predict which implies that accurate prediction of for instance
armouring phenomena is difficult.
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In Appendix B, different shear-stress based transport formulae are compared (Meyer-
Peter and Miiller, 1948; Parker et al. (1982) modified by Diplas, 1987; Graf and
Suzka, 1987). At low shear-stresses, the sensitivity of the sediment transport to shear
stress and grain size can very significantly for different formulae. However, because
general trends in the formulae correspond, the results of the analysis are considered of
general relevance.

The composition of the sediment transport is fine relative to the river bed. At higher
shear-stresses the influence of hiding reduces and the relative mobility of fine particles
increases compared to that of coarser fractions. Then, the composition of the
transported sediment becomes finer. At high shear-stresses, the composition of the
sediment transport approaches that of the river bed.

7.4. Effects of sediment mixture.

7.4.1. Changes in composition.

The changes in composition of a river bed are related to

- the difference in composition of material picked-up (deposited) and material
in the substratum (mixing layer) in case of erosion (sedimentation)
- changes in bed level relative to the mixing-layer thickness

The first factor is related to the type of transport formula used, the shear stresses
relative to the critical shear-stress, the type of process (sedimentation or erosion) and
the composition of the bed. This factor enables the derivation of a simple coarsening
criterion to predict whether armouring can occur (Sections 2.3.4 and 2.4.6).

As a result of the relation with changes in bed level, the composition of the bed is
coupled with hydraulic parameters, which significant for Fr near unity and super
critical flows. This has been illustrated in Figure 4.15, where the characteristics appear
to be very sensitive to changes in composition for Fr > 0.6.

7.4.2. Morphological behaviour.

The effect of distinguishing size-fractions on the morphology of an alluvial river is
significant if shear stresses are low relative to the critical shear-stress (Figure 4.14). At
this condition, the transport of a fraction is determined by the particle mobility which
is controlled by size-specific hiding effects. Then, the effects of gradients in size
fraction and even in median grain-diameter are significant.

At higher shear-stresses, the hiding effect diminishes and the morphological behaviour
approaches that of a bed composed of uniform sediment with equivalent properties.
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7.5. Mixing-layer thickness.

7.5.1. Relation to mixing mechanism.

The thickness of the mixing layer represents the extend of the bed that can be
reworked to affect the sediment transport, within a relevant time interval. Predicton of
the mixing-layer thickness for a wide range of flow conditions (and subsequent bed
form regime) remains an interesting subject of research. However, it should be
considered that the layer-thickness applied is not only related to physical conditions,
but to the time-scale of bed level changes during the period of interest as well.

Because mixing layers and armour layer are different, the application of the single-
layer model to simulate armouring phenomena could be erroneous.

7.5.2. Critical mixing layer-thickness.

In analyzing the single-layer model and the double-layer model, the thickness of the
sediment layers in the river bed are taken constant. The mixing process that controls
the composition of sediment transport is assumed instantaneous compared to
morphological changes in bed level and composition.

In the case of erosion of an armoured bed, the model can loose its mathematical,
hyperbolic character. Because armour layers can only be stable at relatively low shear-
stresses, this problem of a non-realistic elliptical character is not relevant at high shear-
stresses.

To insure the hyperbolicity of the system of partial-differential equations, the mixing-
layer thickness should be smaller than a critical value which limits the vertical
reworking of the top layers of the river bed. If this critical value is exceeded, the
mathematical model is not valid.

This critical value of the mixing-layer thickness can be interpretated as the maximum
ratio of the two characteristics that are related to morphological changes. Based on
approximations of the longitudinal bicharacteristic rays, a criterion for subcritical and
supercritical flow has been derived for the single- and double layer model which,
however, fails for 0.8 < Fr < 1.2 .

It appears that the validity of the single-layer model can be improved by the
introduction of a transition layer with intermediate composition (Figure 4.17), but at
larger values of Fr and with increasing sediment contributions of the fine transition
layer to the flow, this validity reduces (Figure 4.26).

99



7.5.3. Adjustment of time-scale.

If the mixing mechanism has not reached an equilibrium stage, the extend of vertical
mixing can be limited by reduction of the time interval. Hence, the type of mixing
mechanism and subsequently, the maximum value of the mixing layer can be related
to a maximum time step for numerical calculations on the mathematical model.

It is noticed that this concerns changes in armoured river beds at very low shear-
stresses with a relatively small time-scale. It should be questioned whether the small
morphological changes in bed level and composition at these time-scales still can be
decoupled from the mixing process.

7.6. Number of lavers.

7.6.1. Single-laver model.

From the analysis of the longitudinal bicharacteristic rays it can be concluded that the
effect of the additional characteristic surface in the single-layer model on the behaviour
of the model is very small (Section 4.3.4). Consequently, the morphological behaviour
of the model corresponds to that of a general mathematical model for uniform sediment
with equivalent properties.

7.6.2. Double-laver model.

In contrast with the single-layer model, the morphological behaviour in the double-
layer model is affected by distinction of layers and vertical fluxes (Section 4.4.2).

Ribberink (1987) and Di Silvio (1991) already concluded that double-layer models had
a better performance in simulating their experiments. It is stated here that to enable the
description of non-uniform armouring processes, contributions from the subpavement
layer should be described that not only affect the composition, but also changes the
rate of the transported sediment (Section 2.4.4). This has been illustrated in Figures
4.24 and 4.25.

The frequency of subpavement contributions is a rather important model parameter for
the morphological behaviour, but at present, similar to the thickness of pavement and
subpavement layer, predictions for this parameter at a wide range of flow conditions
can not be made.
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List of main symbols.

depth

width

actual concentration of suspended sediment
concentration of sediment in the bed-load layer
equilibrium concentration of suspended sediment
Chézy roughness parameter

particle diameter of sediment in the fraction i

mean diameter of pavement, defined as D,, = prpi
withi=1to N

velocity component in x-direction

velocity component in y-direction

derivative of transport formula of fraction i to variable j
Froude number, defined as Fr = uNV'-g,a

component in j-direction of adaption length of equilibrium
concentration profile in z-direction

adaption period of equilibrium concentration profile
in z-direction

gravitation constant

component of gravitation constant in j-direction

total number of fractions in the sediment mixture
component of characteristic normal in j-direction
porosity of sediment

actual concentration of fraction 7 in suspension
equilibrium concentration of fraction 7 in suspension
fraction / in the transported sediment

discharge per meter width in x-direction defined as g = ua
direction along characteristic surface perpendicular to
bicharacteristic ray

component in j-direction of bed-load transport
component in j-direction of fraction i in the bed-load
vertical fluid velocity at level z= z,

fall velocity of sediment particle

bed level

spatial- and time-averaged bed-level

velocity distribution coefficient

transversal-distribution coefficient of bed load
distribution coefficient of 2"

transveral-distribution coefficient of fraction in pavement
transveral-distribution coefficient of suspended fraction
distribution coefficient of

relative sediment density defined as A = p/p, - 1



6 orientation of bicharacteristic ray

T direction of bicharacteristic ray
Ty component of bed shear-stress in j-direction [kg/ms?]
7.,  particle shear-stress defined as 7., =« / AC’D, [-]
7.,  critical particle shear-stress describing initiation of motion [-]
¢ particle shear-stress correction-coefficient for

horizontal-hiding effects at fraction i [-]
o density of water [kg/m®]
p,  density of sediment [kg/m’]
Single-layer model.
p,; fraction 7 in the mixing layer [-]
B; fraction i at bed level z = z, - 0, [-1
0y thickness of the transport-layer with bed load [m]
O, thickness of the mixing layer [m]
€, sediment mixing-coefficient [m?/s]
€ sediment mixing-coefficient for fraction i [m?/s]
.  vertical sediment flux of fraction i between

suspended load and bed load [m/s]
@,  vertical sediment flux of fraction i between the

mixing layer and the bed load [m/s]
®,  vertical sediment flux of fraction i between the

the substratum and the mixing layer [m/s]

Double-laver model

g probability of exposure of the pavement layer [-]
p,;  fraction i in the substratum [-]
Dyi fraction i in the pavement layer [-]
Py fraction i in the subpavement layer [-]
o ratio of vertical sediment fluxes of fraction i between layers and

bedload transport, defined as o; = ®,; / ¥, [-]
B,  fraction i at bed level z =z, - §, [-]
B,  fraction i at bed level z =z, - 6, - d,, [-]
0, thickness of the pavement layer [m]
6,  thickness of the subpavement layer [m]
®,, vertical sediment flux of fraction i between the

pavement layer and the bed load [m/s]
®,. vertical sediment flux of fraction i between the

subpavement layer and the bed load [m/s]
¢,  vertical sediment flux of fraction i between

the pavement and the subpavement [m/s]
®, vertical sediment flux of fraction i between

the substratum and the subpavement , [m/s]
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Appendix A. System of equations.

A.1l. 2-DH model with uniform material.

If v is defined as

ot
0
V. = |— A.l
ox
0..
| 9]
the system of equations for uniform material can be written as
1]” ol ol ol ol
u| Va +|a| Vu + |0 W + 0| Vz, +|0| Vc = 0
v 0 al 0] 0
o]" T o [of o]”
T
~8,| Va + |u| Vu + 0| W + |-&| Vz, + |0| Ve = g, -2
pa
0 | 4 0] 0 | 0
(01" ol” 117 (01" ol”
T
0Va+0Vu+qu+0Vzb+0Vc=gy—ﬂ A2
pa
1 0] Ad 8] 0;
o]” 0]" 01" 1]” al”
0| Va + |T1| Vu + | T3 W + |0| Vz, + |ua| Ve = 0
0] T, T, 0 va
. i ) T
ol o’ ol ol T
0| Va + |0/ Vu + (0| W +|0| Vg, + |L,| Ve =¢, - ¢
0 0 0 0 L

conform Lin and Shen (1984). The coefficients 7, are described in Eq.2.13
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A.2. 2-DH single-layer model.

In the case of non-uniform sediment, additional mass conservation equations for the
different size fractions are formulated.

0] 0 0 1 v @ v 0 y 0
0lVa+ K1 Vu+ K2 VWw+0 Vzb+; ua Vpsi'*‘; uKSi mei+; uK4Dj mej =0
o] k| |k 0o Tl 7K, ™ VKD,
0] 0 0] 0 Ty 0 A3
0[Va + |0[Vu + |0[W + |0z, + |L;\Vp; +|0Vp,; = Py — Py ’
0] 0 0] 0 L, 0
ol [0 ol [p] T[a 5, | 0
ol N
0|Va+|Kyi|Vu+ Ky W+ 0 Vz,+\ua|Vpg+ uk,; mez+z ukK,D; VPui = 0
0] Ky Kyv| 0 va vK; VK41D i
A.3. 2-DH double-layer model.
The mass balance over the bed-load layer Eq.2.41 yields for constant g
Os,. Os, . D,, (g . Op..
g(1+ai) bel + Sbyz + (1_ )iﬂ pspl _ pspl appt +
ox oy P\ D ox Dy ox
1p (D YN 3
+ (1—g)f_bi‘f._..._l‘ ps_.P_‘ _mp E ; ppf - mp E ps’” +
i Dms Dms j=1 ox mle j ox
I
+ (1 _g)f@(Dmp) l( apspi _ pspi appi) + A4
Pi\Dus )\ & Py ¥
-1 N
+ (1-9) byi l psm‘( mp] Z appj - Dmp psm +
pi Dms Dms Jj=1 ay DmsJ 1
op. . 5
+(I),+6pp’+ psP' B___:
St Por - 0 ot % o
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In case of sedimentation, the size-specific exchange ratio is

'(I)bs" -1, A5
(I)bpi 8
and the bed load balance is
0s,,.; . OSyy; P P, s Pyi . sz: 0 A6

ox 3y S " S ot "
Additionally, the mass balances of pavement and subpavement can be combined into

op,; op. .
P N

9z,
P s - b _ A.7
P o > o (Poi —x (ve) By) ot 0

The mass balance of size fraction i can be formulated as

0 T 0 17 0 T Boi r a T
0| Va + [8(1+0)Ky;| v + |8(A+e)Ky| W + | 0 | Vz, + |ua| Vp,; +
0 g(l+a i)KZi_ g(l+a)K,, 0 va
T i
5, N o 17
-
2K, VKD, A8
B I [ 0
. D
gociuK4i—p—’1 N |geuK,—"2D,
+ p spi Vpsp,' + Z Dms Vpsp. =0
j D |
ga vk 4.& ga ,.val.——'—”!iDj
4 1 ) D
Spt | L ms 3
and
a3 5] By - % (1+a)B,]"
0 | Vb, +|0| VPg + 0 Vz, = 0 A9
0 0 0

The coefficients K;; are described in appendix B.
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Appendix B. Power-law approximation.

B.1. Approximation of the Meyer-Peter and Miiller formula.

Using a power-law to approximate the sediment transport is an often applied approach
to

achieve a convenient expression for the derivative of the sediment transport to the
variables in the model (e.g. Jansen et. al., 1978). The transport of suspended sediment
and the bed load are combined into a total load approach. The Meyer-Peter Miiller
(1948) transport-formula, corrected for non-uniform sediment is

S, D D.
X = — = k('ci,- = Eiric)m ; ti,- =g —m ;€ =f[ ') B.1

! P [_""g AD " D, D

m
where £, represents the coefficient that corrects the critical shear stress of a size
fraction i for exposure effects. This formula is approximated by

B
Xi/ = Y'Ciia _2'_ B.2
Dm
Stating that
/ /
X = Xi/ ; ..93.(.'_ = _a_Xl_ ; aX‘ = aXl B.3
l a‘t/- a‘C/- aDI/Dm aDlle

* *1

o, 3 and v can be found, as applied by Ribberink (1987)

-1 _3 1
21 ET{“ 21 : D, <., B.4
o ‘D, ¢
9, (D, 20,
op/D,\ D, | '
B = _E L m) Tem B.5
2 D, 'ci
D,
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/
o [ Dy )PP T Di|
Y =K T D o p |
m T
B.6
312
L u2 32~ Di a-p-3/2 | E Tic Di /
C*AD D, ‘Y D,
The transport formula can be rewritten as
Uy
Si tot
— = m— B.7
pmi Dm‘
with
mo=20 5 =0 ; m= /8y ppane B.8

The coefficients of the power-law formula are related to 7.,, D; and D,,. As shown in
the figures, » and / become constant for higher values of 7., relative to 7..
Consequently, the power-law approximation is suited for large particle shear-stresses.

o 125 2 125 /
® r’/r = 180 18 /
- 16 T;m/fnc- 1.50
14 "
12 o ) /
"o I 1
° 8 \/
6 / 8 o > 2.00
4 oo0 ) -
; 2 _— 4.00
° 0 e ———
0 1 ) 3
D;/Dm 0 1 D:/Dnm 2 3
Fig.B.1 Fig.B.2
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In Fig.B.3, the variation of s,/p,, is shown with changes in shear stress and river bed
composition.

: o
..
. 4| 6 —
1x10 // )
s,/B, /44/
1 X165£ /

-8
1x10 - /

0.0 0.2 04 p ] 0.6 0.8 1.0
m

Fig.B.3

Due to the correction for hiding effects that is introduced by Egiazaroff’s hiding
coefficient, large-sized fractions are transported more easily at smaller values of 7.,/7...
At higher shear-stresses, the hiding effect diminishes, and the transported volume of
smaller-sized material increases rapidly.

Consequently, the power-law approximation can be applied best for shear stresses that
are large relative to the critical shear-stress. Gradients in the power-law coefficients m,,
n; and /; are taken constant in x-, y- and #-directions.

If 7.,/7., > o, the sediment-transport formula approaches

D 32
S; % k Py VgADi3 Ti/;i (Bm) =P —Ii—@ u? B.9

i mzC3A

B.2. Horizontal-hiding.

For the correction coefficient £, different empirical relations have been defined.
Egiazaroff (1957, 1965) derived

T, (corrected) logl9 Y

T, D. B.10
¢ 10g(19-———'—)
D

m

g, =
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Ashida and Michiue (1973) applied Eq.10 to experiments and present for D/D,, < 0.4

D
E, = 0.85—" B.11
D,
Differentation to D/D,, yields
aEi — _22’[‘_ (10819)2
oD/D,, D, D.\\? B.12
(mg[lg__z])
Dm
and for D/D,, < 0.4
-2
% _ (Pn B.13
oD/D,, D,

B.3. Sediment-transport composition.

The composition of the transported sediment py, at different shear-stresses and mixing-

layer compositions is
1.0+

0.8-
p i
0.6-

0.4+

0.2

00 02 " 04 ' 06 08 10

p m
Fig.B.4

At extremely low particle shear-stress, only the finer fraction can be mobilised. Due
to hiding effects, this fraction of finer material in the transported sediment reduces with
increasing shear-stress.
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However, at high shear-stresses, p; approaches

Sbl pml B.14
p = = = p .
M Syt Sy P APy ™

Consequently, at low shear-stresses, the composition of the transported material is finer
than the bed material, but at high shear-stresses, the transported material approaches
the bed material.

B.4 Comparison with other sediment-transport formulae.

To check the main features of the approximated power law, a similar procedure has
been carried out with a transport formula which has been developed by Parker et al.
(1982), to predict bed-load transport in gravel-bed rivers, and a sediment transport
formula suggested more recently by Graf and Suzka (1987) for coarse, uniform
sediment at steep slopes.

Parker et al. (1982).

The formula proposed by Parker et al. (1982) has been modified by Diplas (1987) and
reads for low shear-stresses (7.,/7+«. < 2.6)

D, \b
X = ti/.Z |14 .;.c_’f.’_ ._.l_)_'- ‘ a(—55_0> B.15
l C Ts0 \ Pso

with

16
W, =00025 ; a=1371 ; b=03214 ; c=0943 ; 1, = 00874

The power-law coefficients are

D.\?
;=15 +a (—’—]
Dy,

[
1t

B.17

:@
I}
Q
——
i~
2 |
N m—
o
o
+
[ ]
e
(=]
———————
S|
R
(o}
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For high shear-stresses (7.,/7.. > 2.6) the transport formula is

Dy \f
el ~d{ Tai (*I.J_"_)g]e(%) B.18
X =P Wab \ LD
with
W =00025 ; a=4 ; b=17 ; ¢ =2625 ; d = 1205
, B.19
e=-1843 ; f=03214 ; g =0943 ; 1, = 0.0873
However, the calibration of Eq.B.18 at higher shear-stresses is rather poor.
The power-law coefficients are
D, \f
t,;( D, ge(;‘) D,y
@, =15 -Inbcde —51— 50 o
T
rso\ 50 50 B.20
D, \f
T, D ge('D——) D, Y T D; \®
B,=-Inbcde — =118+ -
Trs0l Pso Dy, Tsol Pso

Graf and Suzka (1987).

For bed load at steep slopes (0.005 < | 8z,/0x | < 0.025) with Fr > 0.8 and relatively
coarse sediment (D, = 12 mm and 24 mm). To account for non-uniform material, the
Egiazaroff hiding-coefficient is introduced. It is suggested for

T*,,/T*C< 15
15 2.5
X. = 104 - Ti-f . _l_)‘_ -1 - E,T*CB.'_". B.21
! D, ‘t,; D,
and ¢; and (3, are
T
1- ¢ T*C
@ = - —22 1 ; B, =25 “ .1  B22
1 _ E.T*CBT. 1 = E‘T*c”_m_
’T*i Di ) lT*i Di

Although calibrated very poorly, for 7.,/7,. > 1.5 is proposed
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2.5
X, = 104 - 157 -(_D_i) B.23

and o; = 2.5 and 3; =2.5.
It should be noticed that Eqs B.21 and B.22 have been derived, calibrated and verified
for the transport of uniform material.

In Figure B.5, the resulting transport of a fraction calculated by the Meyer-Peter and
Miiller formula (MPM), the Parker formula modified by Diplas (PD) and the formula
suggested by Graf and Suzka (1987) (GS) are compared for varying shear stresses.

.4 ////////;;;;7ﬁ
1x10 :
L MPM //
1x16°
sb1/pm1 .6 GS
1x10
1x16"
0 2 T*”JT’C 4 6
Fig.B.5

As can be expected, differences occur at low shear-stresses, where stochastic
fluctuations in the bed load transport prevent accurate predictions. However, at high
shear-stresses (7.,/7., > 2.5), the calibration and verification of the original formulae
is poor.
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In Figure B.6 and B.7, n, and /, the powers of velocity and median grain diameter in
both formulae are compared.

20-

10

1, , MPM

0.5

Fig.B.7

B.5. Gradients in sediment-transport.

The components of sediment transport are assumed as (De Vriend, 1987)

= L, B.24

S, ., T —s,. , S5 .=
b: bi >
xi i byi u
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Consequently, gradients in bed load are

Opi _ Sufy_u?|ou _ Siwv v u O
ox Uy, ufm ox U, utfn ox ax
,asﬂz_i@ﬂ%+ﬁl_i&+_hi§@z
Ay Upor uto, ay Wit uth oy Uyt ay
Herein is
05y 08y 0Py Oy Oy Oy OD,
= + =
ox op,; 0% ou,, Ox oD, ox
7 op,,; 7 ou,,, v g Pn oD,
= f. +
P " P ax
with gradients in m, [, and n, neglected, and with
BZp
oD mi—io N ap, . N 9p .
mo_ E Pm. + pPri| -y p Fmi
ox ox i= 6 ox i=1 ox
Substitution into Eq.16 yields
08, Au N op
2 =K,— + K,— K,—™ + uK_ Y D——
ox ¥ ox 2 ox Y ax 5'§ Y ox
os, . ap, . N 9p
o _ g O, K, v vK4.——p—'1'5 VK, D, Pt

vy My ey Ty T TME Ty

with

tot Usot Usot utot utot Ut
2 2 f
bi v 14 i iD
K, = 2|1-—| + f, , K, =2 ; K; ="~
u 2 2 ' ou iy
tot Ut Ut tot tot

B.25

B.26

B.27

B.28

B.26
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Appendix C. Coefficients of coupled bicharacteristics.

C.1. Single-laver model.

The coupled part of the characteristic equation, that represent the Monge cone, can be
written as

Q = Ar* + B(ucos® + vsinO)r® + (Ccos?0 + Dsin?0 + Esin20)r? +
+ (Fcos®® + Gceos®0sin® + HcosOsin?0 + Isin®0)r + C1

+ Jcos*® + Kcos®0sin® + Lcos?0sin?® + McosOsin®0 + Nsin'®

with
A=-d,
B=2d, +X
C = -2u’X - d[g(a+K, +K ) +u’] C.2
D = -2v’X - d,[g (a+Ky +Ky,)+v?]
E = 2uX - dm[gz(K21+K22)+uv]
and

F = gu8, (K, +K;;)) + aX + Y] + u3x

G

3u?vX + 28.46,(K, +Kyy) + Z] + g V3, (K +Kp) + aX + Y]

H

g M8, (K3 +Ky) + aX + W] + 3uviX + 28,8, (K +Ky) + Z]
I=gM8,(Ky+Kyy) + aX + W) + vX § J = -gu®¥ ; K = -2gu(uZ +vY)

L= -gu?W + 4wZ +v*Y) ; M= -2gvuW + vZ) ; N = -gv’W
‘ C3
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with
X = (1-B)(D;-D)Ky; + (D,-D)B,Ks, + (1-BK,; + BiKy
Y = (D, - D,(K,Ks; - K, Ks,) + KKy + KKy, cA
Z = (D) - DyK,Ky; - K, Ky) + KKy + Ky Ky

W = (D, - D))Ky,Ks; - Ky Kgy) + K, K, + Ky K,

C.2. Double-layer model.

The part of the characteristic equation that represent the Monge cone can again be
written as

Q = Ar* + B(ucos® + vsin®)r® + (Ccos?0 + Dsin’0 + Esin20)r® +
+ (Fcos®@ + Gcos®0sin® + HcosOsin’0 + Isin’0)r + C5

+ Jcos*® + Kcos30sin® + Lcos?0sin?0 + McosOsin®® + Nsin*0

with
4 =83+ ; B=--288(+a) - X
C = u?Q2X+Y) + 6p5s(1+a1)[gz(a + g(l+a)K,, + g(1+a)K,,) + uZJ iy
D =

vi2X+Y) + 5,,_5s(1+°‘1)[3z(a + g(l+a K, + g(l+a,)Ky,) + vz]

E = uv(2X+Y) + 5P5s(1+°‘1)[gzg((1+°‘1)K21 t (Lra)Ky) + uv]
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and

F = —gzu[6p65g(1+oc1)((1+a1)K11+(1+a2)K12> +aX + Z} - u3(X+2Y)

G = - 3u*v(X+2Y) - 2gzu[6p6sg(1+¢x1)((1+a1)K21+(1+a2)K22) + W] +
- gzv[bpésg(l+oz1)((1+a1)Ku+(1+oc2)K12) + aX + Z]
H= - gzu_[épﬁsg(l+a1)((1+a1)K31+(1+oz2)K32) +aX + Iq - 3uv}(X+2Y) +

- 2gzv[6p6£(1+a1)<(1+al)K21+(1+a2)K22) + W] C.7
I=-g\s,58(l+a)(1+a)Ky+(1+a)Ky) + aX + V] - v3(X+2Y)

J = ug(Z + aY) + qu)

K = 2guuW + vZ) + 2uv2u® + ga)¥

L = g(u®V + 4wZ + v’Z) + (ga@® + v’) + 6u™v?Y

M = 2gvW + uV) + 2w2v? + ga)Y ; N =vig(V + aY) + v’Y)
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with

kB, -Bal(loey) + ]] .

spl

K‘u{és(l -k P 1(1+a1)) + 6 alp

1-p,
1 pspl

-+

. g Knuw,)[m + 8,05(B ~ XBy)

(1~Dy)
D

ms

+ g Ky——— [ 5sts(1 - Kﬁpl(l+al)) + bpalep{(Kﬁpl-[501>(1+a1)+a1] ]

kP2 Py s 8 a,D -
*8 8w ( “1)[ LmskBpy + 0,07 mpl P o1 &B,1) ]

ms

D,-D D D
Y = g* K41K52< ) (Kﬁ (+a) - B, ) ( ms®1Pp1 mpa'zpspl) .
s pspl
D,-D «D, (1-p,) - @,D,(1-p,)
+ g2 K42K51_(___.3____2.)- (KBpl(1+a1) - Bol)( 1 P p1 - 2 pl) .
b 1 pspl

ms

(O{, lppl(1 —pspl) B 0"2pspl(1 ~pp1)) +
psp1(1 —pspl)

+ g? K41K42(Kﬁp1(1+“1) - Ba)

2D,
+ g? K51K52(D2—D) —l—)——-(KB (A+ay) - Bol)(az—al)

CS8
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and

Dl -D, 2
Z = g2(1 +a2)K51K12 D (Dmsas+Dmp6pal} +
» ms

D,-D
+ gz(l+al)KuK52 —}27.1 (D

6S+Dmpépa1a2) +
ms

C.9

‘ 2
+ 82(1+°‘2)K12K41 (éypspl - 61’“11)”1) +

P spl

" &%)k, K, DO ) * Siny(1p,)
1

. spl

D.-D
— 2 1 2
W=g (1+e)KK,, —— ( maswmpapaf) +

ms
D,-D
+ g(l+a K, K, 72)-4 (D,8,+D_ & o

mp-p 1“2) t
ms

C.10

2
+8 2(1+a2)K22K41 (5SPSP1 "5 il 1) +
p spl

* 80K, K, O Po) * Oy01 )
1

_spI

D,-D, 2
D (Dm6s+Dmp6p°‘1) *
ms

V=gt *“2)K51K32

+ 221 Dz"D.l
8« roe KK, — (Dm6s+Dmp6pala2> *+
ms
C.11
8 &
+ g1 +062)K32K41( L1 * O alp”l) +

4 spl

6 (1- & -
+ 82(1+051)K31K42( o p"pl) 1+ palaZ(l ppl))

~ spl
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Appendix D. Coefficients of 2DH-compatibility equations.

D.1. Single-layer model.

The coefficients used to summon the mass and momentum balances can be chosen

ny; = g RP\P, {'S1(K12"xx + 2Kpnny + Ksznyt) + 8 (Kunxzi * 2K nny K31”2\
ny = 8PP, [gzanyi(KZZ(nxt— )+ (Kyp-Kpn,, yt) - R*(Kpn,; + K22nyi)] *

+ §,P.P, [gzanyi(KZI( ”xz) + (Kyy~Kyn,, yt) + R¥(Kyyn,; + K21nyi)}
ny = §,P,P, [gza ( 22(”yz "xz) + (Kjp-Kypn,, yt) R Kyn; + K32nyi)] +

+ S,P P, [gzan ( 21("x: ”yt) + (K3 -Ki)n, yz) + RZ(KZlnxi+K31nyi)}
n, = aR’S,P, (gza(nx,-my,-) + RZ) ; ng = - aR*S\P, (gza(nf,-myz,-) + R2)
ng = - RS,P.P, (ganin)) + R?) ; ny = RS,P\P)fgalni+ny) + R

D.1
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The coefficients of matrix T are

ny, + (uny - gnyc, + (vny; - gny)c,

Tai =
1 + 2,2
Ci cyi
_ hy + (any * ouny + Kyng + lg)Cy + Wy + Kyng, + Kyynyc,
Tui - :
1+ 2,2
Cui Cyi
_ hy v (uny, + Kyng + h)Cy + (any + vny, + Kyng + Kynp)e,
Tvi -
1 +c2 + ¢l
xi yi
T Bing + (1-Bpny — gMeCy — 8MCy
i
1 +¢2+c?
xi ty
T Tyny + ang + (uang + Lynyc, + (vang + Lyn,c,
sti *
1+ 2,2
Cxi Cyi
T - Tyohs; + any, + (uany + Long)c,; + (vany + Lyns)c,
2 C > .
\/1 + Cxi + cyi
T - 8, (ng;—ny) + (uc,+ve ) ne (K, +(D, -D)K) + n,(-K,+(D;~D))Ks,))

mi 5 )
[ er e,

D.2

for i = 1,2,3 and 4. For i = 5,6 and 7, the roots of the characteristic equation are R =
0, P, = 0 and P, = 0 respectively.
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Fori=>5

ns = 0
nys = SiP 1Py {gzany(KZZ(nj “"yz) + (Ksz"Klz)nx"yﬂ *
+ S,PyP i‘[gza"y(Kzl("s ""3) * (Kn'Kal)nx"yﬂ D3

nys = SiPiPa {gza"x(Kzz("; “ng) * (Klz'Ksz)"x”yn i

+ S,P.P, [gzanx(Kn(nf —nyz) + (Kgl—Ku)nxnyﬂ
ns =0 5 ns =0 5 ngs =0 5 nys =0

and the coefﬁqients are

T. = gznzscxs 8 M3sCys ys + UMysCss ~ 7230 + UNysCrs * VMasCys
as
1+c5+c 1+c5+c
+ UN,Cs + VI —gnc -gn D.4
T. = Mys + Uhastes 99 s . T T 8asCs O35 A135Cys
V5 5
1+cx5+c 1+cx5 +c
Ts15= >
Fori=6o0r7
nn""O;"zi:O""si:O
- aR?S,P, | 2,02 + R - - aR®SP, | 2+2+RZD'5
n, =@ 22 gza(nx ny) ) 5 Psi = a 1 gza(nx ny) \)
ng =90 5 ny,; =0

Hence the coefficients for i = 6 are

T =0 ; T,s=0 T,=0 ; Tg=0

u

TAl + L€z +Lylcy6 D.6

1s16 = n46
1 + 02 + c2
x6 y6

3 Tys
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and fori=7

T,=0 ; T,=0 ; T,=0; T,=0
T, + L,c, +L,c, D.7

Ty =0 5 Ty = ng 2t T,=0

1+ c2 + 02
x7 ¥y7

For i = 1,2,3 and 4, the coefficients of matrix S are

S,; = —(un,; - gn,)sin® + (vn; - g ns)cos6

S = —(any + uny + Kng + Kipn,)sin® + (vny, + Kyng, + Kyn;)cosd

S, = ~(uny + Kyng + Kyyny)sin® + (any; + vny, + Kyng + Kyyng)cos

S, = 8 m,sin® - nycos6) D3
Sy = —(wang + L n,)sin® + (vang + Ly1n4i)cosﬁ

S, = —(uan, + L,ng)sin® + (van, + LﬂnSi)cose

Spi = (-usin® + veosO)(ng(K,, + (D;-D))Ks)) + ny(-K,, + (D;-D,)Ks))

mi

For i = 5 the coefficients are

S, = gz(nzssine = Nysc0sB) 5 Sy = n,s(~usin® + vcosO)
S,s = Nys(-usin® + veosB) ; S = gn,sind - ny,cosH) D.9

Sas =0 5 Sp5 =0 5 S5 =

For i = 6 the coefficients are

S6=0; 8,=0,; 8§,=0,; 8§,=0
6 6 6 26 D.10
S = n46(~ L sin® + Lylcosﬂ) ; 806 =0 5 §,6=0
and for i = 7 the coefficients are
$,=0,;8,=0,; 8§,=0,; §,=0
7 7 7 27 D11

i
o

S47 =0 5 Sy, = n57(—- L sin® + Lyzcos(%) ;S

ml
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D.2. Double-layer model.
The coefficients used to summon the system of equations are
ny; = 6gnpPP 2315’(1*“2)[2&“”::"3((1(32’Klz)"x - Kyny) + RZ(Knnyz 'Kn"f)] +
+ 8,8.0,nP P,T gl +°‘2)[28za”x"y( Ky, -Kpnn, + Kzz(”f ""yZ» * Rz(Ksznyz _Klz":)l +
+ gnPPg(l+a)dS, + 5p°‘1T2)sza”x"y((Kn'Ksl)"x”y * Kzl(”y2 ""3)) + RZ(Ku”f "Kslnyz)]
ny = npPPyRe(1+a)(d.8, + épalTl)[gzany<K22n3 + (KK, - Kzz"j) - RZ(Kzz”y + Kn"x)] M
+ nPPRe(1+e)(8,5, + 5p°‘1T2)[gza"y('K21"3 + (K Ky, + 21"3) + Rz(KZIn'y * Ku"x)}
ny = nPPRe(1+a,)(35, + 5p°‘1T1>{gza”x(“K22”x2 + (Kp~Kypnn, + Kzz"f) - RZ(Kszny * Kzz”x)] +
+ nPPRe(1+a )88, + 5p°‘1T2)[gza"x(K21"f + (K Kyy)nn, - K21"y2) * R2(K31"y * Kn";)}
n, = n,aP2R3(gza(nx2+ny2\) * R2)<6SS2 + 8,0, ) 5 ng = - ntaPlR:’(gza(nfmyZ) + Rz)(ﬁs,’éa'l + 8,a,T))
ng = - n,PleRz(gza(nxzmyz) + RZ)(ésS2 +8,aT) 5 ny = n}’leRZ(gza(anrnf) + RZ)(ésS1 + 8,a,T)
ng = PP,RYgaln’ + nl) + RYS,T, - S,T;)
D.14
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