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Abstract 21 

In this review we look back on 30+ years of bacteriohopanepolyol (BHP) research 22 

within the field of organic geochemistry. BHPs are ubiquitous, intact polar lipids in modern 23 

environments. They have been found in lacustrine, marine, riverine, and soil and peat 24 

environments, and they are noteworthy lipids in biological symbiont studies. BHPs are the 25 

precursors of hopanoids, which are the most abundant fossil lipids found in the geological 26 

record. BHPs are synthesized by members of various bacterial taxa, and their distributions are 27 

often used to help to identify bacterial communities, in studies of both modern and past 28 

environments. However, less than 10% of known bacterial species are genetically capable of 29 

synthesizing BHPs, and many BHPs are not specific to particular bacterial sources. 30 

Nonetheless, a range of BHPs with specific side chain configurations and/or A-ring 31 

modifications have proven very useful for tracing bacterial metabolism and for identifying 32 

ecological niches in various environments (e.g., aerobic methanotrophy, possibly nitrite-33 

dependent intra-aerobic methanotrophy, and anaerobic ammonium oxidation) or for tracing 34 

environmental processes (e.g., soil input into aquatic settings). Moreover, BHPs (with 35 

previously unknown terminal groups and side chain configurations) are continuously being 36 

discovered, thanks to recent methodological and instrumental advances. These highlight the 37 

advent of a new era of BHP lipidomics which awaits full exploitation in organic geochemistry. 38 

Here, we provide a summary of the state-of-the-art of BHP knowledge, analytical frontiers, and 39 

suggest directions for future research. 40 

 41 

1. Background 42 

Over the past 30+ years, considerable research within the field of organic geochemistry 43 

has been dedicated to the complex lipids known as bacteriohopanepolyols (BHPs; Fig. 1). 44 

BHPs are biosynthetic products produced exclusively by prokaryotes (e.g., Ourisson et al., 45 
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1979; Ourisson and Rohmer, 1992; Rohmer et al., 1984), although by no means do all 46 

prokaryotes produce BHPs (e.g. Farrimond et al., 1998; Pearson et al., 2007; Pearson and 47 

Rusch, 2009; Rohmer et al., 1984; Talbot et al., 2008b). BHPs are embedded in the outer and 48 

inner membranes of gram-negative bacteria (e.g., Wu et al., 2015a) as well as in the 49 

cytoplasmic membrane of gram-positive bacteria, in part acylated to lipopolysaccharides 50 

(Komaniecka et al., 2014; Silipo et al., 2014). They are thought to control cell membrane 51 

permeability and rigidity (e.g. Kannenberg and Poralla, 1999; Welander et al., 2009; Wu et al. 52 

2015a). Work by Sáenz et al. (2012a; 2015) has shown that BHPs likely play a role in 53 

membrane lipid ordering of bacteria (and possibly lipid raft formation; Sáenz, 2010), much like 54 

sterols in eukaryotes. BHPs have also been shown to be localized in microdomains 55 

accumulating in akinete cells and near cell junctions in the cyanobacterium Nostoc 56 

punctiforme, which potentially aids cell curvature (Doughty et al., 2014). Functionally, BHPs 57 

increase the antibiotic, pH, temperature, and detergent resistance of bacterial cells (Welander 58 

et al., 2009; Schmerk et al., 2011; Doughty et al., 2011; Sáenz, 2010), and may foster cell 59 

survival in the late stationary phase (Welander and Summons, 2012). 60 

BHPs are synthesized via the cyclization of squalene to form the characteristic 61 

pentacyclic triterpenoid ring system (Fig. 1A). Squalene cyclization to 17β(H),21β(H)-hop-62 

22(29)-ene (diploptene) is performed by squalene-hopene cyclase (SHC, encoded by the shc 63 

gene) in a complex one-step enzymatic reaction (Ochs et al., 1992; Perzl et al., 1997; 1998; 64 

Wendt et al., 1997; Tippelt et al., 1998; Siedenburg and Jendrossek, 2011) that can be 65 

performed independently of molecular oxygen (Ourisson and Rohmer, 1982). The addition of 66 

an adenine by the radical SAM protein HpnH, results in the intermediate to all extended 67 

polyfunctionalized BHPs: 30-(5’-adenosyl)hopane (adenosylhopane; Fig. 1C) (Bradley et al., 68 

2010). The phosphorylase HpnG then removes the nitrogenous base (adenine) to form 69 

ribosylhopane (Liu et al., 2014; Bodlenner et al., 2015). The ribose moiety can be transformed 70 
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into an acyclic form (the ether bond is broken to form a carbonyl moiety non-enzymatically; 71 

Bradley et al., 2010), which is reduced by an unknown protein to form bacteriohopane-72 

32,33,34,35-tetrol (BHT; Fig. 1C). Various proteins further alter either the side chain to form 73 

a variety of amino-BHPs (HpnO) and composite (i.e., containing a sugar head group) BHPs 74 

(HpnI, HpnK, HpnJ), or methylate the A-ring (HpnP, HpnR) (Welander et al., 2010; Welander 75 

and Summons, 2012; Schmerk et al., 2015; Sohlenkamp and Geiger, 2016). 76 

Modifications to the ring system of BHPs include methylations (Fig. 1A) at the carbon 77 

positions of C-2 (e.g., Talbot et al., 2008b and references therein), C-3 (e.g., Cvejic et al., 78 

2000a), both C-2 and C-3 (e.g., Sinninghe Damsté et al., 2017), C-31 (e.g., Simonin et al., 79 

1994), and C-12 (e.g., Costantino et al., 2000). Double bonds have been reported in the BHP 80 

ring system at C-6 (Δ6), C-11 (Δ11), or both (Δ6,11) (Fig. 1A; e.g. Talbot et al., 2007b and 81 

references therein) and in the BHP side chain (van Winden et al., 2012). With the exception of 82 

the C30 hopanoids diploptene and diplopterol, BHPs have modified extended side chains 83 

derived from ribose (e.g., Duvold and Rohmer, 1999) that typically contain 4, 5 or 6 functional 84 

groups (e.g., Rohmer et al., 1984; Rohmer et al., 1993) termed tetra-, penta-, and hexa-85 

functionalized BHPs, respectively. These may retain the cyclic ether ring system of the ribose 86 

with a complex moiety; usually this is either an (amino)sugar, or a nucleoside such as adenosine 87 

in adenosylhopane (Fig. 1C). The unmodified ring system with a linear side chain is usually 88 

the dominant BHP in cultures and environmental samples (overviews of BHP sources were 89 

included in Talbot and Farrimond, 2007 and in Talbot et al., 2008b). However, BHPs with 90 

novel side chains (e.g., Kool et al., 2014; Rush et al., 2016; Hopmans et al., 2021) or new 91 

isomers (e.g., Kusch et al., 2018; Schwartz-Narbonne et al., 2020) are continually being 92 

described and these lead to adjustments of our understanding of the structural diversity of BHPs 93 

encountered in the environment and pave the way to the possibility of BHP lipidomics studies 94 

of environmental samples. 95 
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BHPs are also the precursors of geohopanoids, which are the related defunctionalized 96 

products (e.g., hopanes, hopanols and hopanoic acids) that occur ubiquitously in ancient 97 

sediments, kerogens, coals and oils, as well as in recent sediments. Diagenesis of BHPs leads 98 

not only to partial or total loss of the side chain, but also to changes in the stereochemistry of 99 

the core hopane skeleton. Over time, the “biological” 17β,21β(H) configuration isomerizes to 100 

the thermally more stable “geological” 17ɑ,21β(H) and 17β,21ɑ(H) configurations (e.g., 101 

Mackenzie et al., 1981). This process may be accelerated in acidic environments, such as in 102 

peats (e.g., Inglis et al., 2018) and there are some notable biological exceptions. For example, 103 

BHT with the 17ɑ,21β(H) configuration was found in Holocene sediments from an Antarctic 104 

lake (Talbot et al., 2008a), and species of the genus Frankia have been shown to synthesize 105 

BHT with the 17ɑ,21β(H)-configuration (Rosa-Putra et al., 2001). Likewise, some acetic acid 106 

bacteria, including Komagataeibacter xylinus, synthesize BHT with a 22S configuration, which 107 

is more typically considered to result from diagenesis (Peisler and Rohmer, 1992). Regardless, 108 

geohopanoids are often used as geochemical markers (proxies) of sample maturity. For 109 

example, the 17β,21β(H) to 17ɑ,21β(H) ratio, along with the ratio of “geological” 22S to the 110 

“biological” 22R configuration is often used to determine thermal maturity (Ourisson and 111 

Albrecht, 1992; Peters et al., 2005). Reports of geohopanoids include those in rocks dating 112 

back to the Archaean (e.g., Eigenbrode, 2008), though the authenticity of biomarkers in 113 

Archaean samples has been questioned (French et al., 2015). Nonetheless, intact BHPs have 114 

been detected in mudstone samples as old as ca. 50 Ma (Kilwa area outcrops, Tanzania; van 115 

Dongen et al., 2006) and possibly the 55 Ma old Cobham Lignite (Talbot et al., 2016a). 116 

Anhydro-BHT has been detected in samples from the Upper Jurassic (Gorodische outcrop, 117 

Russia; Bednarczyk et al., 2005), although this represents an abiotic etherization/degradation 118 

product, rather than a biosynthetic compound (Schaeffer et al., 2008; Eickhoff et al., 2014). 119 

Given their high preservation potential and widespread occurrence, the global abundance of 120 
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geohopanoids has been estimated at 1 Pg C (1×109 tons) and they were termed “the most 121 

abundant natural products on Earth”, 30 years ago, by Ourisson and Albrecht (1992). Since 122 

then BHP research has been reinvigorated thanks partly to analytical improvements in mass 123 

spectrometry and the application of genomics tools. 124 

The diverse nature of BHP lipid structures (Fig. 1) and their high preservation potential 125 

have led to the use of particular BHPs as biomarkers of unique bacterial source organisms 126 

(Cvejic et al., 2000b; Kool et al., 2014; Rush et al., 2014; van Winden et al., 2012), of 127 

environmental conditions (Ricci et al., 2014; Welander and Summons, 2012), and for invoking 128 

the origin of bacterial organic matter (Zhu et al., 2011). Here, we review the state-of-the-art of 129 

BHP analytical methodologies and the application of BHP lipidomics to the modern (and by 130 

inference, geological) sedimentary records. We highlight possible future avenues of focus for 131 

these important lipids. Our focus is the environmental distributions and proxy potential of 132 

BHPs, rather than on their physiological role in bacterial membranes. For in-depth overviews 133 

of the biological roles of BHPs, readers are referred to the reviews by Belin et al. (2018) and 134 

Newman et al. (2016). 135 

In Section 2, we provide an overview of the methodological approaches so far taken for 136 

the analysis of BHPs; these not only lie at the heart of our discipline, but also showcase the 137 

tremendous improvements that have been made recently. We review the sensitivity of BHPs to 138 

different extraction methods, how their detection using gas and liquid chromatography-mass 139 

spectrometry has evolved/improved and has paved the way for compound-specific BHP 140 

analysis, and which analytical obstacles we still face (i.e., quantification) during routine 141 

analysis. In Section 3, we review the structural and environmental diversity of BHPs, 142 

highlighting BHPs that have proven to be either reliable or promising proxies for specific 143 

bacterial metabolisms, such as aerobic methanotrophy, nitrite-dependent intra-aerobic 144 
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methanotrophy, anaerobic ammonium oxidation, or which carry environmental information 145 

(e.g., of terrestrial origin). In Section 4, the frontiers of BHP lipidomics are examined, and we 146 

outline the possibly untapped proxy potential of BHPs. This outlook includes a call for further 147 

investigations of BHP remodeling as a stress response (e.g., going beyond classic culturing 148 

approaches), and draws attention to the critical need for further methodological developments 149 

(specifically those diversifying the compound-specific isotope toolbox), the extension of multi-150 

omics to BHP studies to include a broader implementation of untargeted lipidomics, as well as 151 

a larger-scale exploitation of the information afforded by genomics tools. 152 

 153 

2. Analytical considerations 154 

2.1 Extraction methods 155 

To date, a suite of different extraction methods has been used to extract BHPs. These 156 

include different versions of modified Bligh & Dyer protocols (e.g., Talbot et al. 2007a; Sáenz 157 

et al., 2011a), microwave and ultrasound (Berndmeyer et al., 2014), as well as Soxhlet (e.g., 158 

Wakeham et al., 2007, 2012; Kusch et al., 2021b,c). However, it is important to note that earlier 159 

tests revealed that extraction efficiencies may differ for different BHPs and that certain BHPs, 160 

such as bacteriohopane-31,32,33,34-tetrol cyclitol ether (BHT-CE; a composite tetra-161 

functionalized structure with an aminosugar group at C-35; Fig. 1C), may evade routine solvent 162 

extraction due to complexation in the membrane (e.g., Herrmann et al., 1996). 163 

One of the most common Bligh & Dyer-based methods for BHP extraction is based on 164 

ultrasonication (and shaking) of samples in methanol (MeOH)/chloroform/water (2:1:0.8, 165 

v:v:v); typically three times. Separation of the resulting combined total lipid extract from the 166 

aqueous phase is subsequently achieved using separatory funnels (Saenz et al., 2011a), or 167 

through centrifugation (Talbot et al., 2007a). Further modifications of this method have been 168 

made at times, for instance, substitution of chloroform with dichloromethane (DCM) (e.g., 169 
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Sáenz et al., 2011a), or use of a MeOH/DCM/buffer (e.g., Berndmeyer et al., 2014; Rush et al., 170 

2016). Buffers used have included those based on ammonium acetate (Rush et al., 2016), 171 

phosphate (Berndmeyer et al., 2014), or trichloroacetic acid (TCA; Matys et al., 2017). In case 172 

of the latter, the TCA needed to be quickly removed since it can lead to BHP degradation (e.g., 173 

Matys et al., 2017).  174 

Soxhlet-based extractions have usually been performed using DCM/methanol (2:1, 175 

v:v). Nonetheless, this approach has been chosen simply as the most feasible way of extracting 176 

suspended particulate matter (SPM) filters from water column depth profiles, which otherwise 177 

disintegrate during ultrasonication (e.g., Wakeham et al., 2007, 2012; Kusch et al., 2021b,c). 178 

Although the effects of Soxhlet extraction have yet to be compared directly to those of other 179 

extraction methods, no obvious bias (recovery, diversity) was observed for either intact polar 180 

lipids (Schubotz et al., 2009), or BHPs (e.g., Kusch et al., 2021b,c). 181 

Few comparative studies have been published; but it is reasonable to assume that 182 

reporting laboratories have protocols in place for testing the efficiency of the different 183 

extraction methods used (e.g., Osborne, 2016). Berndmeyer et al. (2014) tested the extraction 184 

efficiencies of microwave (DCM/MeOH 3:1, v:v), ultrasound (DCM/MeOH 3:1, v:v) and Bligh 185 

& Dyer (MeOH/DCM/phosphate buffer 2:1:0.8, v:v:v; samples were shaken, rather than 186 

sonicated) methods, using two sediment samples from the Baltic Sea. These authors did not 187 

find substantial differences in total BHP yields for these methods: the quantities of eight BHP 188 

analytes extracted were the same within the standard deviations of replicate analyses. However, 189 

they reported superior extraction efficiencies for some of the low abundance BHPs using the 190 

Bligh & Dyer method, including for 35-aminobacteriohopane-32,33,34-triol (aminotriol; Fig. 191 

1C), 35-aminobacteriohopane-31,32,33,34-tetrol (aminotetrol; Fig. 1C), 35-192 

aminobacteriohopane-30,31,32,33,34-pentol (aminopentol; Fig. 1C), and BHT-CE. Osborne 193 

(2016) tested various modifications of the Bligh & Dyer protocol, i.e., solvent substitutions 194 
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(chloroform vs. DCM and water vs. phosphate buffer), while keeping the physical extraction 195 

parameters identical. Most extraction protocols yielded no significant differences: only the 196 

method employing a mix of MeOH/DCM/phosphate buffer (2:1:0.8, v:v:v) resulted in 197 

significantly lower total BHP yields. In the case of BHT-CE, Osborne (2016) found a superior 198 

extraction efficiency using a MeOH/chloroform/water (2:1:0.8, v:v:v) solvent mixture. No 199 

differences were observed when ultrasonication times were varied (Osborne, 2016). Recently, 200 

a comparison of the Bligh & Dyer method with harsher extraction conditions (i.e. methanolysis, 201 

acid hydrolysis, and direct acetylation) showed that these four extraction methods yielded 202 

similar amounts of bacteriohopanetetrols from Komagataeibacter xylinus cells (Schaeffer et 203 

al., 2021). However, methanolysis may have partially converted a portion of BHT to anhydro-204 

BHT. Surprisingly, methanolysis and direct acetylation recovered higher yields of composite 205 

BHPs than the Bligh & Dyer method, because >20% of the composite pool was left in the 206 

aqueous phase when the latter method was used. Clearly, there is variability between extraction 207 

methods, which should be considered and tested when deciding how to proceed with specific 208 

sample types and analysis needs. Further extraction efficiency tests might include the use of 209 

detergents and mechanical disruption, such as freeze-thaw cycles, which seem to improve the 210 

extraction of intact polar lipids from cells (Evans et al., 2022). Potential inter-laboratory biases 211 

should be assessed in the future (Section 4.2.1). 212 

 213 

2.2 BHP analysis using GC-MS 214 

The first reports of BHPs in natural environments were based on analyses using gas 215 

chromatography-mass spectrometry (GC-MS; Rohmer et al., 1980). Until recently, GC 216 

instrumentation was only used to detect a limited number of sufficiently volatile 217 

polyfunctionalized hopanoids and simple intact polyfunctionalized BHP side chains, e.g., BHT. 218 

The methylated and/or unsaturated homologs of these lipids (Fig. 1) can also be identified by 219 
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GC-MS (e.g., Sessions et al., 2013). Traditionally, GC-MS identification and quantification of 220 

BHPs in organic extracts was based on a treatment of extracts with periodic acid (H5IO6) 221 

followed by sodium borohydride (NaBH4) or super hydride (LiEt3BH) reduction, also known 222 

as the Rohmer reaction (Rohmer et al., 1984). This reaction converts polyols into C30–C32 223 

primary alcohols, which are subsequently acetylated using acetic acid and pyridine. Analyses 224 

of these derivatized hopanols provide information about the number of functional groups 225 

present in the original intact molecules (Rohmer et al., 1984). Using this chemical cleavage 226 

method, Farrimond et al. (2000) demonstrated for the first time that BHT was not necessarily 227 

the primary BHP in sediments and revealed the presence of a greater diversity of compounds, 228 

including tetra-, penta-, and hexafunctionalized analogs and their methylated homologs. 229 

The analysis of hopanoids using GC-MS certainly represented a step forward in 230 

understanding the distributions of BHPs in environmental samples. However, by removing all 231 

but one functional group from the side chain using the Rohmer reaction, much of the source, 232 

environment, or process-specific information of the BHPs was lost. The Rohmer method is also 233 

laborious, and BHPs with a cyclized side chain (e.g. nucleoside BHPs and composite BHPs; 234 

Fig. 1C) are not detected, with the consequence that BHP abundance is underestimated. To 235 

elucidate fully the complex arrays of BHPs in samples, it proved necessary to develop 236 

alternative methodologies. In 2013, Sessions et al. published a high temperature (HT)-GC-MS 237 

method that achieved elution and separation of more complex acetylated intact BHPs on two 238 

different GC stationary phases (BHT, bacteriohopane-31,32,33,34,35-pentol [BHpentol], and 239 

aminotriol on DB-5HT; C-2 methylated BHPs on DB-XLB). Though HT-GC shows promise 240 

for BHP analysis, as it has in other areas of organic geochemistry, the vast majority of work 241 

analyzing intact BHPs since has been performed using high performance liquid 242 

chromatography-MS (HPLC-MS). 243 

 244 
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2.3 BHP analysis using HPLC-MS 245 

Following initial analytical developments using GC-MS (Section 2.2), HPLC-MS 246 

analysis of acetylated BHPs has been the most commonly used method throughout recent 247 

decades. In the 1990s, a normal phase HPLC gradient was developed for analysis of 248 

underivatized BHPs in the ethanologenic bacterium Zymomonas mobilis (Moreau et al., 1995). 249 

Ionization was achieved via negative ion chlorine addition atmospheric pressure chemical 250 

ionization (APCI). The first HPLC-MS analysis of a sedimentary BHP distribution (using a 251 

surface sediment of a small eutrophic lake in the UK; Fox et al., 1998) was carried out using 252 

this method. However, only two BHPs were identified: BHT and BHT-CE. Further 253 

developments revealed that the chlorine adducts formed with this method proved difficult to 254 

fragment under atmospheric pressure chemical ionization (APCI) conditions and at best only 255 

yielded information on the number of BHP functional groups, but not the ring system. This 256 

meant that it was not possible to identify unknown BHPs using this method (Talbot et al., 257 

2001). Additionally, the use of normal phase chromatography proved unsuitable for BHPs 258 

containing 1 or more amine functionalities, particularly when these were located at C-35 (e.g., 259 

amino-BHPs; Fig. 1C). Therefore, alternative separation protocols were developed using 260 

derivatized BHPs. 261 

Schulenberg-Schell et al. (1989) developed a reversed phase HPLC method for analysis 262 

of BHPs after acetylation, which was modified by Talbot et al. (2001) to reveal the BHP 263 

profiles of a group of methanotrophic bacteria. Advances followed with the application of ion-264 

trap mass spectrometry, which allowed for a more precise control of the fragmentation of the 265 

precursor ions. Most environmental and culture studies of BHPs since 2003 have used a version 266 

of this reversed-phase chromatographic method, with either a ternary or binary solvent system 267 

and a linear gradient from MeOH/water (90:10) to MeOH/propan-2-ol/ water (59:40:1) on a 268 

C18 column, followed by detection via positive ion APCI (Blumenberg et al., 2007; Kusch et 269 
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al., 2019, 2021b,c; Saenz et al., 2011a,b; Talbot et al., 2003a,b). Subsequent investigations of 270 

a wider range of hopanoid-producing bacterial cultures (Talbot et al., 2003b,c; 2007a,b; 2008b) 271 

led to improved understanding of the APCI fragmentation pathways of BHPs. This allowed the 272 

identification of both known and related unknown BHPs in sedimentary systems (e.g., Rush et 273 

al., 2016). Based on the above reversed-phase chromatographic method, Kusch et al. (2018) 274 

developed an isocratic HPLC method that enabled the detection of a range of new BHP isomers, 275 

including five isomers of BHT, in marine sediment samples. Due to the baseline separation of 276 

the most common isomers, this method was also employed as a first step for isolation of BHPs 277 

for stable carbon isotope analysis (Hemingway et al., 2018). 278 

Nevertheless, the analysis of derivatized BHPs by HPLC-MS has disadvantages. The 279 

relative acetylation efficiencies of individual BHPs vary, and assumptions must be made for 280 

BHPs for which there is a lack of authentic standards. Additionally, BHPs with ‘masked’ 281 

acetylation sites, e.g., BHT-CE on its terminal sugar, often produce acetylomers, the 282 

concentrations of which need to be summed for quantification. With the development of 283 

improved ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) 284 

instruments and advanced LC column chemistries, it has been possible to introduce improved 285 

methods for analyzing non-derivatized BHPs. Based on a Waters™ lipid application note (Issac 286 

et al., 2011), non-derivatized BHPs were successfully identified in bacterial isolates and 287 

purified culture material, using a UPLC-tandem MS system. However, a follow-up study 288 

applying this method revealed discrepancies with known BHP producers. For example, Malott 289 

et al. (2014) did not report BHPs known to be synthesized by Burkholderia spp. (i.e., BHT and 290 

unsaturated BHT-CE; Cvejic et al., 2000b). Furthermore, Wu et al. (2015b) reported a 291 

reduction in ionization efficiencies of non-acetylated BHPs compared to their acetylated 292 

counterparts. More recently, analytical efforts dedicated to the analysis of underivatized BHPs 293 

have succeeded (Talbot et al., 2016c; Hopmans et al., 2021) and the advent of high-resolution 294 
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accurate mass (HRAM) mass spectrometry, such as orbitrap, has enabled the detection of a 295 

range of BHPs with previously unknown moieties. Talbot et al. (2016c) used an ultra-inert 296 

Excel C18 column and modified the established solvent gradient described above to transition 297 

from MeOH/water/formic acid (90:10:0.1) to propan-2-ol/MeOH/water (59:40:1), within a 298 

total run time of 9 minutes. Detection was achieved in positive ion atmospheric pressure 299 

ionization mode on a triple quadrupole MS system. The authors demonstrated detection of 300 

some commonly occurring BHPs including BHT, aminotriol, and adenosylhopane (Talbot et 301 

al., 2016c). Hopmans et al. (2021) demonstrated BHP separation on a C18 BEH column using 302 

a solvent gradient from MeOH/water/formic acid/aqueous ammonia (85:15:0.12:0.04) to 303 

MeOH/propan-2-ol/formic acid/aqueous ammonia (50:50:0.12:0.04) over a much longer run 304 

time (i.e., 80 minutes). Using a quadrupole-orbitrap HRAM system and positive ion heated 305 

electrospray ionization (HESI), these authors demonstrated the detection of approximately 130 306 

underivatized BHPs within a single environmental sample (Fig. 2) - substantially expanding 307 

the range of known and previously undescribed BHPs. The sample, a soil from a terrestrial 308 

methane seep in Italy, contained a large suite of BHPs with ethenolamine moieties (Fig. 1C), 309 

as well as novel nucleoside BHPs structurally related to adenosylhopane (Hopmans et al., 310 

2021). Application of this method to a range of environmental samples will probably extend 311 

the BHP lipidomics window substantially. 312 

 313 

2.4 BHP isotope analysis 314 

Due to the diversity of carbon assimilation pathways used by the various bacteria that 315 

synthesize BHPs, the 13C isotopic composition of these lipids can vary greatly, depending on 316 

the source organism. Thus, compound-specific isotope ratio values of BHPs can be useful when 317 

determining source organisms in environmental settings. Currently, the only means of 318 

determining the δ13C values of BHPs is by GC-isotope ratio mass spectrometry (GC-irMS). In 319 
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the future BHPs may be isolated at sufficient purity (e.g., using preparative HPLC or GC) to 320 

be analyzed using (nano)EA-irMS or spooling-wire irMS (analogous to a method for GDGTs; 321 

Pearson et al., 2016). 322 

Recently, two different HT-GC-irMS methods have been developed for δ13C analysis 323 

of intact BHPs, building upon the HT-GC method of Sessions et al. (2013). Hemingway et al. 324 

(2018) first isolated BHP fractions via UPLC using the method described by Kusch et al. 325 

(2018), which allows baseline separation of a range of different BHPs and their isomers, such 326 

as BHT and BHT isomer, but not all structurally different BHPs. Subsequently, the individual 327 

fractions were analyzed using HT-GC-irMS and BHPs that co-eluted during LC analysis (e.g., 328 

BHT isomer and 2β-methyl-bacteriohopane-32,33,34,35-tetrol (2Me-BHT)), were separated 329 

via the HT-GC method (using a Zebron ZB-5HT stationary phase heated to 350°C). While the 330 

method of Hemingway et al. (2018) circumvents problems with GC co-elution of BHP isomers, 331 

Lengger et al. (2019) achieved BHP separation via HTGC alone using a slower temperature 332 

ramp rate (7°C/min rather than 10°C/min). Both, the work of Hemingway et al. (2018) and 333 

Lengger et al. (2019) revealed strong 13C-depletion of the so-called BHT-x isomer (Rush et al., 334 

2014; Schwartz-Narbonne et al, 2020), providing evidence for an anaerobic ammonium 335 

oxidizing (anammox) source of this BHP in marine sediments (Section 3.3). We anticipate that 336 

further insights into the source organisms of diverse (known and so far unknown) BHPs will 337 

be gained from applying the above methods and by continuing efforts to further develop BHP 338 

isotope techniques (Section 4.2.2). 339 

 340 

2.5 BHP quantification 341 

One of the primary pitfalls in BHP analysis is the absence of authentic standards. This 342 

paucity limits any ability to accurately quantify BHPs with different moieties. Until authentic 343 

standards are available, any BHP quantification remains semi-quantitative since response 344 
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factors between BHPs, including those with different moieties/head groups, and commercially 345 

available surrogate standards, such as 5α-pregnane-3β,20β-diol (analyzed as the acetylated 346 

pregnane diacetate) cannot be determined and may vary substantially. Using isolated BHT, 347 

aminotriol, adenosylhopane, bacteriohopane-31,32,33,34-tetrol glucosamine (BHT 348 

glucosamine; Fig. 1C), and BHT-CE, Cooke et al. (2008a) determined that the HPLC-MS 349 

signal response of BHT was 8x higher than pregnane diacetate and that of aminotriol, 350 

adenosylhopane, BHT glucosamine, and BHT-CE 12x higher than pregnane diacetate when 351 

examined on a LCQ™ ion trap mass spectrometer. However, few comparable data on 352 

ionization efficiencies exist for other instruments and/or laboratories. Wu et al. (2015b) isolated 353 

BHT and 2Me-BHT (Fig. 1C), as well as diplopterol and 2Me-diplopterol, from 354 

Rhodopseudomonas palustris TIE-1 biomass. These authors tested response factor differences 355 

for both GC and LC-based analyses and found substantial differences between hopanoid lipids 356 

and surrogate standard materials (androsterone and pregnane acetate) as well as between 357 

instruments. Using GC-MS and GC-flame ionization detection (FID), diplopterol and 2Me-358 

diplopterol had roughly an order of magnitude higher signal response than BHT and 2Me-BHT, 359 

whereas the opposite was observed on a UPLC-time of flight (TOF) MS system. In this case, 360 

the response detected for BHT and 2Me-BHT was ca. 1.2x and 1.3x higher, respectively, than 361 

the signal detected for pregnane actetate (Wu et al., 2015b). This differs from the observations 362 

of Cooke et al. (2008) by up to an order of magnitude and further emphasizes the need for 363 

authentic standards for calibrations. Wu et al. (2015b), also synthesized tetra-deuterated 364 

diplopterol for use as an internal standard and demonstrated that it was superior for 365 

quantification of diploterol in environmental samples, which often suffers from ion suppression 366 

effects due to co-elution of other compounds. To our knowledge, no extended hopanoid lipids 367 

(BHPs) have thus far been synthesized successfully, which may make the isolation-from-368 

culture approach to obtaining external authentic BHP standards more feasible. Nonetheless, 369 
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culturing bacteria and isolating/purifying BHPs is tedious work that goes beyond the 370 

capabilities of most laboratories interested in (and equipped for) BHP analysis. In most cases, 371 

such a culturing approach will also only yield a limited number of individual BHPs that can be 372 

used as reference materials, depending on the BHP diversity produced by the cultured bacterial 373 

species. Likewise, mass production of even a handful of authentic standards at large scale is 374 

likely beyond the resources of many organic geochemistry laboratories. Although some 375 

laboratories have used purified standards (e.g., van Winden et al., 2012; Matys et al., 2019b; 376 

Schwartz-Narbonne et al., 2020), these materials are not available universally. Until this 377 

conundrum is solved, BHP quantification will remain semi-quantitative, and BHP abundances 378 

(absolute and relative) will either be reported by comparsion with responses of surrogate 379 

standards without response factor corrections (e.g., Kusch et al., 2019; 2021b,c) or by 380 

integrated chromatographic peak areas only (e.g., Rush et al., 2019; van Kemenade et al., 381 

2022). While these approaches probably ensure that data obtained in the same laboratory and 382 

with the same instrument are comparable, they strongly limit the comparability of data sets 383 

generated in different laboratories, and likely introduce biases when reporting BHP proxy 384 

values such as Rsoil or normalizing ratios between BHPs with different moieties, e.g., 2Me-385 

BHT/[2Me-BHT+BHT] (Matys et al., 2019b; Kusch et al., 2022). 386 

 387 

3. Structural and environmental BHP diversity – a brief summary 388 

Advances in analytical methods have revealed large structural and stereochemical 389 

diversity in BHPs. This can be exploited by organic geochemists (i.e., by BHP lipidomics 390 

approaches) to elucidate the origin of organic matter, to study community assemblages and 391 

system functionalities, and to investigate the structures of present and past ecosystems. For 392 

example, where the source organism of a BHP is known, BHPs have been used as biomarkers 393 

to trace specific bacteria and their biogeochemical processes in the environment. However, our 394 
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views of BHP-producing bacteria have changed quite dramatically in recent years, aided by 395 

improved analytical methodology on the one hand and by the expansion of (meta)genomics on 396 

the other hand – just as lipidomics and (meta)genomics have aided molecular organic 397 

biogeochemical research overall (Steen et al., 2020). 398 

Unlike in the biological production of sterols, BHP biosynthesis does not require 399 

oxygen (Ourisson and Rohmer, 1982). However, despite the observation of BHP synthesis by 400 

facultative anaerobes including Rhodomicrobium vannielii (Neunlist et al., 1985), 401 

Rhodopseudomonas spp. (Neunlist and Rohmer, 1988), Rhodospirillum rubrum (Llopiz et al., 402 

1992), and the fermentative Zymomonas mobilis (e.g., Renoux and Rohmer, 1985), early 403 

studies indicated that BHPs were not produced by any obligate anaerobes (Rohmer et al., 1984; 404 

Farrimond et al., 1998). This led to the assumption that all BHP source organisms were aerobic. 405 

Nevertheless, BHPs were soon detected in sediments from modern and ancient anoxic systems 406 

(e.g., Elvert et al., 2000; Pancost et al., 2000; Thiel et al., 2003), and this opened speculation 407 

that anaerobic BHP source(s) exist. Sinninghe Damsté et al. (2004; 2005) found BHT 408 

production in enrichment cultures of strictly anaerobic ammonium oxidizing bacteria 409 

(anammox), and Blumenberg et al. (2007; 2009a) reported that some species of dissimilatory 410 

sulfate reducers (sulfate reducing bacteria [SRB]) of the genus Desulfovibrio make significant 411 

but varying amounts of both BHT and aminotriol, and minor traces of aminotetrol in some 412 

cases. Moreover, the presence of shc gene sequences in, e.g., Geobacter spp. and 413 

Magnetospirillum spp. indicated that further anaerobes are capable of BHP biosynthesis (Fisher 414 

et al., 2005; Härtner et al., 2005); although it should be noted that gene presence does not equate 415 

to lipid production. Nonetheless, BHP production by Geobacter sulfurreducens and G. 416 

metallireducens was later confirmed by Eickhoff et al. (2013a). Although only few (as 417 

mentioned above) anaerobic BHP producers are known in culture, recent studies from marine 418 
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oxygen-minimum-zone (OMZ) settings indicate that BHP synthesis in anoxic and even sulfidic 419 

waters seems to more prevalent than previously thought (Kusch et al., 2021b,c; 2022). 420 

It is also possible to extract information about environments in which BHPs are 421 

synthesized without knowing the exact organism(s) responsible for their synthesis. In the case 422 

of nucleoside BHPs (Fig. 1), observed primarily in soils (Section 3.4), these orphan biomarkers 423 

have been used to estimate terrestrial organic matter input into marine systems. Below, we 424 

outline specific cases of the application of BHPs to environmental settings and highlight future 425 

work that might be considered to try to improve BHP applications in environmental studies. 426 

 427 

3.1 Methanotrophy 428 

3.1.1 Aerobic methanotrophy (amino-BHPs, MC-BHPs, and C-3 methylated BHPs) 429 

Bacteria performing aerobic methane oxidation (AMO) have been shown to synthesize 430 

a range of unique amino-BHPs and methylcarbamate-BHPs (MC-BHPs; Rush et al., 2016) as 431 

well as their corresponding unsaturated and/or C-3 methylated homologs (e.g., van Winden et 432 

al., 2012; Osborne et al., 2017) (Fig. 1). In culture, gammaproteobacterial Type I methane 433 

oxidizing bacteria (MOB) produce aminopentol in high abundances, as well as minor amounts 434 

of aminotetrol and the more ubiquitous aminotriol (Fig. 4A). In contrast, alphaproteobacterial 435 

Type II MOB primarily synthesize aminotetrol and aminotriol (Rohmer and Ourisson, 1984; 436 

Jahnke et al., 1999; Cvejic et al., 2000a; Talbot et al., 2001; Zhu et al., 2011; van Winden et 437 

al., 2012; Rush et al., 2016), although there are notable exceptions (Fig. 4A). For example, 438 

Methylomicrobium sp. only synthesizes aminotetrol and aminotriol and Methylomarinum sp., 439 

Methylomarinovum sp., and Methylovulum sp. produce uncharacteristically low aminopentol 440 

abundances (Rush et al., 2016). Despite these exceptions, overall the amino-BHP distributions 441 

of bacterial cultures (Fig. 4A) provide strong support for their use as AMO proxies. Yet, a 442 

puzzling observation is that many samples from marine environments (water column 443 
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suspended particulate matter (SPM), sediments, carbonates; Fig. 4C, summarized in Table 1 of 444 

Rush et al., 2016) do not contain aminopentol - although Type I MOB are typically isolated 445 

from marine/aquatic settings (Sieburth et al., 1987; Lindstrom, 1988; Hirayama et al., 2014; 446 

Takeuchi et al., 2014; Tavormina et al., 2015), whereas aminotetrol is much more abundant 447 

and aminotriol is ubiquitous. High relative abundances of aminopentol have been reported in 448 

pelagic water column SPM along strong redox gradients such as in the Black Sea (Wakeham 449 

et al., 2007; Blumenberg et al., 2007; Kusch et al., 2022) or the Baltic Sea (Berndmeyer et al., 450 

2013). However, overall, aminopentol is much more frequently found in terrestrial settings 451 

including soils, peat bogs, wetlands, and river and lake sediments (Table 1 of Rush et al., 2016) 452 

and, consequently, in SPM and sediments deposited off major rivers such as the Amazon 453 

(Wagner et al., 2014), Congo (Spencer-Jones et al., 2015), Yenisei  (de Jonge et al., 2016), and 454 

Yangtze (Zhu et al., 2010). This observation has led to the suggestion that aminopentol in 455 

marine sediments - especially in near-shore settings - may more often be a proxy for terrestrial 456 

wetland AMO rather than for marine AMO (Talbot et al., 2014; Spencer-Jones et al., 2015; 457 

Rush et al., 2016). For example, variations in the concentrations of aminopentol found in a 2.5 458 

Ma sediment record off the Congo Fan was interpreted to be caused by shifts in methanotrophy 459 

and wetland cover of the Congo River catchment area (Schefuß et al., 2016; Spencer-Jones et 460 

al., 2017). Nonetheless, the absence of aminopentol in some Type I MOB cultures implies that 461 

its absence in methane-influenced marine samples (Rush et al., 2016) does not a priori imply 462 

the absence of Type I MOB in environmental samples. Yet, traces of aminopentol and 463 

aminotetrol are also produced by SRB of the Desulfovibrio genus, typically in very low 464 

abundances (1-3 orders of magnitude lower) relative to aminotriol (Blumenberg et al., 2006; 465 

2009a; 2012). Aminopentol has also recently been detected in the biomass of cultured nitrite-466 

oxidizing Nitrospira defluvii and Nitrobacter vulgaris (Elling et al., 2022), various 467 

thermophilic Alicyclobacillus, Brevibacillus, Geobacillus, Meiothermus, and Thermus strains 468 
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isolated from a terrestrial hot spring (Kolouchová et al., 2021), and in Antarctic microbial mats 469 

for which 16S rRNA gene sequencing did not reveal the presence of MOB (Evans et al., 2022). 470 

Thus, detection of aminopentol in marine samples may neither be taken as unequivocal 471 

evidence for the presence of Type I MOB. 472 

MC-BHPs, which are structurally similar to amino-BHPs but contain a 473 

methylcarbamate moiety at C-35 instead of an amine moiety (Fig. 1C), have been identified in 474 

Type I cultures by Rush et al. (2016). These authors found the respective analogs of the tetra-, 475 

penta-, and hexa-functionalized amino-BHPs, i.e., 35-methlcarbamate-amino-bacteriohopane-476 

32,33,34-triol (MC-triol), 35-methlcarbamate-amino-bacteriohopane-31,32,33,34-tetrol (MC-477 

tetrol), and 35-methlcarbamate-amino-bacteriohopane-30,31,32,33,34-pentol (MC-pentol), 478 

produced by Methylobacter sp., Methylomicrobium sp., Methylomarinum sp., and 479 

Methylomarinovum sp. Retrospective data mining of previous analyses of cultured MOB 480 

biomass revealed that Type I Methylococcus capsulatus does not synthesize MC-BHPs. MC-481 

BHPs were also detected in a range of marine methane-influenced samples that did not contain 482 

aminopentol. MC-triol was present in high abundance (>50%) in nearly all investigated 483 

samples, whereas MC-tetrol and MC-pentol abundances ranged from 0-37% and 0-19%, 484 

respectively (Rush et al., 2016). This distribution potentially makes MC-BHPs more useful 485 

markers of AMO in marine settings than amino-BHPs. However, few studies have since 486 

reported MC-BHPs in environmental samples and at least MC-triol has been identified in 487 

culture in nitrite-oxidizing Nitrococcus mobilis and Nitrobacter vulgaris, albeit in low relative 488 

abundances, under certain growth conditions (Elling et al., 2022). Accordingly, the proxy 489 

potential of MC-BHPs still needs to be confirmed further. 490 

Methylation at the C-3 position of the A-ring, especially in amino-BHPs, has long been 491 

associated with AMO, specifically Type I MOB (e.g., Neunlist and Rohmer, 1985a; Zundel 492 

and Rohmer, 1985; Cvejic et al., 2000a; Talbot et al., 2001, 2003a). However, genetic evidence 493 
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revealed that the hpnR gene coding for C-3 methylation is found in various non-methanotrophic 494 

bacteria, including acetic acid bacteria and Actinobacteria (Streptomyces), and that not all 495 

methanotrophs possess hpnR (Welander and Summons, 2012). Likewise, 3β-methyl-496 

bacteriohopane-32,33,34,35-tetrol (3Me-BHT; Fig. 1C) was recently shown in the anaerobic 497 

phototrophic purple nonsulfur bacterium Rhodopila globiformis (Mayer et al., 2021). More 498 

conclusive evidence that C-3 methylated BHPs in specific environments have a methanotrophic 499 

source should reside in the stable carbon isotope compositions of 3Me-BHPs. The assimilation 500 

of strongly 13C-depleted methane by methanotrophs should be mirrored by a substantial 13C-501 

depletion of 3Me-BHPs (Jahnke et al., 1999). So far, δ13C values for intact C-3 methylated 502 

BHPs (or amino-BHPs) have not been obtained, but analyses of related hopanoid lipids in 503 

ecosystems influenced by methane have revealed compounds with substantially 13C-depleted 504 

values. For example, Talbot et al. (2014) derived C30 hopanols from aminopentol via the 505 

Rohmer reaction and found their δ13C values to be around -40‰, supporting the contention that 506 

aminopentol in a 1.2 Ma sediment record off the Congo River was synthesized by MOB. The 507 

utilization of methane as a carbon substrate during lipid synthesis is also mirrored in the 508 

strongly depleted δ13C values of hop-17(21)-ene and C29-ββ hopanes in lignite from the 509 

Paleocene-Eocene Thermal Maximum (−31 to −76‰; Pancost et al., 2007; Inglis et al., 2020). 510 

Diploptene δ13C values in laminated Holocene sediments from Saanich Inlet ranged from 511 

−26‰ to −40‰ and Elvert et al. (2001) interpreted the ca. 14‰ shift from heavier to lighter 512 

δ13C values at ca. 6000 14C yrs BP as reflecting a shift in the microbial community from 513 

nitrifying bacteria and cyanobacteria towards MOB, resulting from intensified bottom water 514 

anoxia. Nonetheless, it should be noted that the fractionation against 13C depends both on the 515 

metabolic pathway used by MOB to assimilate carbon (the ribulose monophosphate pathway 516 

in Type I vs. the serine pathway in Type II, for instance) and on ambient methane 517 

concentrations (Jahnke et al., 1999). For example, Type II MOB-derived hopanoids (pooled 518 
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hop-17(21)-ene and 2Me-hop-17(21)-ene, bishomohopanol) in Sphagnum sp. symbionts do not 519 

seem to incorporate strongly 13C-depleted signatures (δ13C values range from −31 to −38‰; 520 

van Winden et al., 2010), although fractionation against 13C seems to increase at higher 521 

temperatures, reflected in δ13C values of −34‰ at 5°C vs. −41‰ at 25°C (van Winden et al., 522 

2020). The less pronounced 13C-depletion of hopanoids produced by Type II MOB can be 523 

explained by the assimilation of CO2 in addition to CH4 in the serine pathway. Furthermore, 524 

only moderate hopanoid 13C-depletion (δ13C from −17 to −32‰) was observed by Inglis et al. 525 

(2019) for C31 αβ-hopane in a total of 102 recent global peatland samples, consistent with 526 

earlier results from modern peats (e.g., Pancost et al., 2003) and C31-ββ hopanes in lignite from 527 

the Paleocene-Eocene Thermal Maximum where co-occurring C29-ββ hopanes were strongly 528 

13C-depleted (Pancost et al., 2007; Inglis et al., 2020). Similar values were found for hop-529 

22(29)-ene, C30 hopene(s), C27-α hopane, C29-βα hopane, C29-ββ hopane and C30-ββ hopane in 530 

smaller sample subsets (Inglis et al., 2019), suggesting the addition of hopanes from non-531 

methanotrophic source organisms. Future work should aim to better constrain the carbon 532 

isotopic fractionation of aerobic methanotrophs. 533 

 534 

3.1.2 Nitrite-dependent intra-aerobic methanotrophy 535 

The unusual methanotroph Ca. Methylomirabilis oxyfera that performs nitrite-536 

dependent intra-aerobic methanotrophy (n-damo) under anoxic conditions (Ettwig et al., 2010) 537 

has been shown to be the source of a range of previously unknown hopanoids. Rather than the 538 

MOB-characteristic amino-BHPs mentioned above, Ca. M. oxyfera synthesizes BHT, 539 

BHpentol, and bacteriohopane-30,31,32,33,34,35-hexol (BHhexol; Fig. 1C) as well as their C-540 

3 methylated homologs (Kool et al., 2014). While BHT, 3Me-BHT, and BHpentol are rather 541 

common BHPs, hexa-functionalized BHhexol and its C-3 methylated homolog are the 542 

dominant BHPs in this organism. Only one other bacterium, thermophilic Alicyclobacillus 543 
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acidoterrestris (Řezanka et al., 2011), and a marine Petrosia sponge, or more likely its bacterial 544 

symbiont (Shatz et al., 2000), have so far been shown to produce BHhexol and Ca. M. oxyfera 545 

is the only known source of 3Me-BHhexol (Kool et al., 2014). This BHP distribution 546 

potentially carries taxonomic information and, thus, may have proxy potential. Furthermore, 547 

Ca. M. oxyfera characteristically biosynthesizes novel demethylated hopanoids, including 548 

22,29,30-trisnorhopan-21-ol, 3Me-22,29,30-trisnorhopan-21-one, and 3Me-22,29,30-549 

trisnorhopan-21-ol (Smit et al., 2019). A putative demethylase was identified in the genome, 550 

supporting an intentional metabolic origin of these hopanoids rather than abiotic demethylation 551 

(Smit et al., 2019). Thus far, BHhexol, 3Me-BHhexol (analyzed as hopanols) and the 552 

demethylated hopanoids have been used to trace Ca. M. oxyfera in peatland environments (Fig. 553 

5) (Kool et al., 2014; Smit et al., 2019). 554 

The novel BHPs produced by Ca. M. oxyfera may prove useful for tracing n-damo in 555 

environmental samples, and the specific environmental niche occupied by n-damo should also 556 

aid deciphering the source of BHhexol. A. acidoterrestris has high optimum growth 557 

temperature (42-53°C), thrives at low pH (2.5-5.8), and primarily lives aerobically (Deinhard 558 

et al., 1987). This places A. acidoterrestris in an ecological niche that is significantly different 559 

from that of Ca. M. oxyfera. Depending on the environmental setting, contributions from A. 560 

acidoterrestris can probably be excluded. For example, BHhexol and 3β-methyl-561 

bacteriohopane-30,31,32,33,34,35-hexol (3Me-BHhexol; Fig. 1C) in anoxic settings, such as 562 

stratified oceanic water columns, may therefore be indicative of n-damo, at least until any 563 

potential additional source organism(s) of these BHPs are identified. Indeed, BHhexol was 564 

found in the hypoxic and anoxic water column in Vancouver Island fjords, as well as the 565 

sulfidic Black Sea water column (Kusch et al., 2021b; 2022). The latter is somewhat puzzling 566 

if n-damo bacteria are indeed the primary source of BHhexol in the ocean since NC10 bacteria 567 

may not tolerate sulfide; direct culture evidence is thus far missing, but NC10 gene sequences 568 
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were not detected in the sulfidic Golfo Dulce water column (Padilla et al., 2016). However, the 569 

distribution of NC10 bacteria (or Ca. M. oxyfera specifically) in the ocean is poorly 570 

constrained. Regardless, detection of BHhexol and/or 3Me-BHhexol, in concert with the novel 571 

demethylated trisnorhopanols and trisnorhopanones mentioned above, may provide strong 572 

evidence for the presence of n-damo/Ca. M. oxyfera in environmental samples. Their proxy 573 

potential should be elucidated in future studies combining BHP/hopanoid analysis with 574 

metagenomic surveys. 575 

 576 

3.2 N2-fixation and nitrification (C-2 methylated BHPs) 577 

Some (but not all) cyanobacteria synthesize C-2 methylated BHPs (2Me-BHPs), many 578 

of which were initially shown to be diazotrophs, especially terrestrial strains (Talbot et al., 579 

2008b and references therein). These 2Me-BHPs are preserved in the geological record, i.e., in 580 

some ancient sediments and oils, as 2Me-hopanes (e.g., Farrimond et al., 2003). Thus, 2Me-581 

hopanes (and the 2Me-hopane index: C30 2Me-hopanes/[C30 2Me-hopanes+C30 582 

desmethlyhopanes]) have been used as biomarkers to infer the presence of molecular 583 

atmospheric oxygen in ancient rocks such as from the Proterozoic or Archean (Brocks et 584 

al.,1999; Summons et al., 1999) as well as periods of intensified marine diazotrophy during 585 

global ocean anoxic events (OAEs; e.g., Kuypers et al., 2004; Sepúlveda et al., 2009). This 586 

interpretation was challenged when the anoxygenic phototrophic purple non-sulfur bacterium 587 

R. palustris was shown to synthesize 2Me-BHT under oxygen-depleted growth conditions 588 

(Rashby et al., 2007). Subsequent work by Welander et al. (2010) revealed the gene necessary 589 

for C-2 methylation of the A ring (hpnP) and that it is present not only in some groups of 590 

cyanobacteria, but also in the alphaproteobacteria (including non-photosynthetic organisms). 591 

Furthermore, at least one species of Acidobacteria and three species of Actinobacteria possess 592 

the hpnP gene (Naafs et al., 2021). A recent genbank meta-analysis by Naafs et al. (2021) 593 
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revealed that roughly equal proportions of cyanobacteria and alphaproteobacteria that possess 594 

the shc gene also possess the hpnP gene, and the relative abundance of cultured strains that 595 

indeed produce 2Me-BHPs is also similar in both phyla/classes (Fig. 6A). However, among all 596 

cyanobacteria that possess the nifH gene (encoding nitrogenase), approximately 27% also 597 

possess the hpnP gene (5% of all available genomes). In the case of marine cyanobacteria, 598 

however, only 2% of those possessing nifH also possess the hpnP gene, i.e., a single 599 

genome/species (Elling et al., 2020; Fig. 6B). Cyanobacteria possessing both genes are slightly 600 

more common in various terrestrial environments, yet the capacity for N2 fixation is rather low 601 

overall (Elling et al., 2020 provide details). Thus, the presence of 2Me-BHPs and 2Me-hopanes 602 

alone can no longer be considered indicative of phototrophy (either oxygenic or anoxygenic), 603 

nor N2 fixation/diazotrophy (Doughty et al., 2009; Sáenz et al., 2012b), especially in modern 604 

settings and even including distinct ecological niches such as saline microbial/cyanobacterial 605 

mats (Blumenberg et al., 2013). Moreover, Ricci et al. (2015) proposed that the capacity to 606 

produce 2Me hopanoids has in fact originated in the alphaproteobacteria and that cyanobacteria 607 

obtained the hpnP gene via lateral gene transfer later in Earth history. Accordingly, a growing 608 

body of evidence now suggests limited use of 2Me-BHPs as biomarkers for cyanobacteria, 609 

although metagenomics can still reveal cyanobacteria as the sole source of 2Me-BHPs in 610 

specific ecological niches/settings, e.g., Antarctic freshwater microbial mats (Matys et al., 611 

2019b). 612 

Rather recently, 2Me-BHPs have been associated with alphaproteobacterial nitrite 613 

oxidizing bacteria (NOB) specifically (Kharbush et al., 2018; Elling et al., 2020, 2021). Elling 614 

et al. (2020) showed that 2Me-BHP synthesis in Nitrobacter vulgaris is induced by cobalamin 615 

(vitamin B12), which could be supplied by ammonia oxidizing archaea in the upper ocean. 616 

Rather than a proliferation of N2-fixation during times of ocean stratification and anoxia (e.g., 617 

during OAEs), Elling et al. (2020; 2021) interpret high 2Me-hopane abundances in the 618 
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sedimentary record as resulting from intensified nitrification in response to high nutrient inputs. 619 

This interpretation may be supported by the fact that many marine cyanobacteria neither 620 

produce 2Me-BHPs (e.g., Sáenz et al., 2012b; Bauersachs et al., 2017; Naafs et al., 2021) nor 621 

contain shc (or other related) genes, whereas NOB (not limited to alphaproteobacteria) have 622 

been shown to account for the majority of marine shc sequences in oxygen-depleted settings 623 

(e.g., Kharbush et al., 2016) and various Nitrobacter species carry both the shc and hpnP genes, 624 

including marine Nitrobacter Nb-311A (Elling et al., 2020). Yet, Elling et al. (2022) only found 625 

trace amounts of 2Me-hopanoids in most other culturing conditions of N. vulgaris and 2Me-626 

hopanoids were also notably absent in other marine NOB cultures (i.e., Nitrospira marina, 627 

Nitrospina gracilis, Nitrococcus mobilis; Elling et al., 2022), limiting any link between 2Me-628 

hopanes and intensified nitrification in the ocean. In addition to nitrite-oxidizing Nitrobacter 629 

Nb-311A, Naafs et al. (2021) identified hpnP gene sequences only in one other marine 630 

alphaproteobacterial species (methylotrophic Methylobacterium salsuginis) known to 631 

synthesize 2Me-BHPs and posited that 2Me-hopanes may in fact indicate intensified 632 

denitrification during OAEs. Importantly, Elling et al., (2022) found that novel nitrogen-633 

containing BHPs similar to those reported in a terrestrial methane seep by Hopmans et al., 634 

(2021) seem to be synthesized by NOB, which could be used in the future to confirm a nitrifier 635 

origin of the 2Me-BHPs in the sedimentary record. Additional constraints will also come from 636 

advanced BHP lipidomics studies that produce an inventory of the distributions of 2Me-BHPs 637 

in the environment and identify relevant ecological niches. Reports of 2Me-BHPs in modern 638 

marine systems have most commonly included only 2Me-BHT (e.g., Blumenberg et al., 2010; 639 

Zhu et al., 2011), but more recent studies have revealed greater 2Me-BHP diversity in marine 640 

samples, likely due to the use of HRAM MS technology (e.g., Kusch et al., 2019; 2021b; 2022). 641 

These studies show that common 2Me-BHPs in marine SPM and sediments also include 2β-642 

methyl-bacteriohopane-31,32,33,34-tetrol pentose (2Me-BHT pentose) and 2β-methyl-35-643 
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amino-bacteriohopane-32,33,34-triol (2Me-aminotriol; Fig. 1C), as well as C-2 methylated 644 

nucleoside BHPs produced in situ in marine oxygen minimum zones (OMZs); these are all 645 

theoretical precursors of 2Me-hopanes. In fact, Kusch et al. (2021b; 2022) identified the highest 646 

abundances of 2Me-BHT in the deepest, anoxic and/or sulfidic SPM samples in stratified 647 

Vancouver Island fjords, as well as in the Black Sea, where Wakeham et al. (2007) had also 648 

identified 2Me-BHT only in SPM from the anoxic zone. These observations highlight the 649 

benefits of increased analytical sensitivity for capturing 2Me-BHP production in the 650 

environment and place yet another constraint on the use of 2Me-BHPs and 2Me-hopanes in the 651 

geological record. 652 

 653 

3.3 Anammox (BHT isomers) 654 

An isomer of BHT (previously termed BHT-II) had been shown to accumulate under 655 

suboxic and/or anoxic marine conditions (Sáenz et al., 2011b; Kharbush et al., 2013). 656 

Subsequently, Rush et al. (2014) demonstrated that this isomer was produced in high 657 

abundances by the marine anammox genus Ca. Scalindua profunda and deposited in high 658 

concentrations in sediments underlying OMZ settings known to harbor anammox bacteria 659 

(Golfo Dulce, Costa Rica). Yet, small amounts of BHT-II had also been reported in oxic marine 660 

sediments (Sáenz et al., 2011b; Matys et al., 2017; Kusch et al., 2018, 2019), implying that the 661 

presence of BHT-II in environmental samples alone is not sufficient to invoke an anammox 662 

origin and leading to the suggestion that a threshold BHT-II ratio (BHT/[BHT+BHT-II]) may 663 

need to be defined before anammox contributions in the environment can be invoked (Kusch 664 

et al., 2018). Nonetheless, supporting evidence came from stable carbon isotope analysis of 665 

BHT-II in Mediterranean sapropels (Hemingway et al., 2018; Elling et al., 2021) and of BHT-666 

II in Arabian Sea sediments (Lengger et al., 2019). In these studies, BHT-II δ13C values were 667 

strongly 13C-depleted (by 14 to up to 26‰ relative to BHT and by 18 to up to 29‰ relative to 668 
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TOC; Fig 7), in agreement with the kinetic isotope effect associated with the reductive acetyl-669 

CoA pathway used by anammox organisms (observed for different ladderane lipids and hop-670 

17(21)-ene; Schouten et al., 2004). 671 

Bacterial cultures and marine sediments have indeed been shown to contain more than 672 

one BHT isomer (up to 5; Peiseler and Rohmer, 1992; Rosa-Putra et al., 2001; Talbot et al., 673 

2003c; van Winden et al., 2012; Kusch et al., 2018). The recent work of Schwartz-Narbonne 674 

et al. (2020) revealed that there are in fact two late-eluting isomers of BHT which co-elute 675 

when the HPLC method of Talbot et al. (2001) – and subsequent modifications thereof (Section 676 

2.3) – is used to analyze acetylated BHPs. The marine Ca. Scalindua genus was shown uniquely 677 

to produce one of them (termed BHT-x). The second late-eluting isomer, with known 678 

stereochemistry elucidated by nuclear magnetic resonance (NMR) spectroscopy 679 

(17β,21β(H),22R,32R,33R,34R; BHT-34R, Peiseler and Rohmer, 1992), is synthesized by 680 

other bacteria known to produce late-eluting BHT isomers (i.e., Frankia spp, Acetobacter 681 

pasteurianus, Komagataeibacter xylinus, Methylocella spp., and Ca. Brocadia spp.). Schwartz-682 

Narbonne et al. (2020) separated the two isomers using GC or the HPLC method of Hopmans 683 

et al. (2021) for underivatized BHPs. Although the commonly used reverse phase HPLC 684 

method used to analyze acetylated BHPs does not allow separation of BHT-x and BHT-34R, 685 

the total ‘BHT isomer’, (i.e., the combined BHT-x + BHT-II (BHT-34R) inventory), in samples 686 

deposited under oxygen-limited conditions in the ocean, seems to indeed comprise primarily 687 

BHT-x and thus primarily derives from anammox bacteria with only small contributions from 688 

BHT-34R (Rush et al., 2019; Zindorf et al., 2020; Kusch et al., 2021b; 2022). The relative 689 

abundance of BHT isomer is substantially elevated in these samples and BHT isomer 690 

abundances in SPM sharply trace the ecological niche of anammox bacteria in the water column 691 

(e.g., Kusch et al., 2022). This may, however, may not be the case in lakes (e.g., Matys et al., 692 

2019a). Care now needs to be taken not to confuse the two BHT isomers, i.e., reports of BHT-693 
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II in oxygen-limited settings in earlier (Sáenz et al., 2011b; Matys et al., 2017; Kusch et al., 694 

2018) and more recent publications (Elling et al., 2021) indeed refer to BHT-x, rather than the 695 

non-specific term used by these authors (i.e., BHT-II). BHT-x concentrations and ratios are 696 

already being applied in multiproxy approaches to demonstrate intensified loss processes in the 697 

marine nitrogen cycle during periods of anoxic perturbations, such as the deposition of 698 

Mediterranean sapropels during the Cenozoic (Rush et al., 2019; Elling et al., 2021) and the 699 

expansion of the Gulf of Alaska OMZ during the last Glacial (Zindorf et al., 2020). These 700 

studies demonstrate that BHT-x may be a powerful proxy to study the past N cycle and ocean 701 

deoxygenation, particularly when other proxies (e.g., trace metals) do not accurately record 702 

paleo redox conditions (Zindorf et al., 2020). 703 

 704 

3.4 Soil input (nucleoside BHPs) 705 

The first nucleoside BHP to be identified, adenosylhopane, was isolated from a purple 706 

non-sulfur bacterium and structurally elucidated using NMR spectroscopy (Neunlist and 707 

Rohmer, 1985b). The synthesis of adenosylhopane has since been shown to be a crucial 708 

intermediate step in the side chain elongation of all extended C35 BHPs (Bradley et al., 2010). 709 

As such it would be expected that all hopanoid-producing bacteria produce adenosylhopane; 710 

however, it has only been detected in a limited number of earlier culture studies via NMR 711 

spectroscopy (Neunlist and Rohmer, 1985b; Seeman et al., 1999; Bravo et al., 2001) or ion-712 

trap HPLC-MS (Talbot et al., 2007a, 2008b). Instead, adenosylhopane and its C-2 methylated 713 

homolog were observed to be abundant in soils and mostly absent in open marine environments 714 

(Seeman et al., 1999; Bravo et al., 2001; Cooke et al., 2008a; Xu et al., 2009; Rethemeyer et 715 

al., 2010). This led to adenosylhopane and the related nucleoside BHPs with (at the time) 716 

unknown side chain, being termed “soil-marker BHPs” (Zhu et al., 2011) and these nucleoside 717 
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BHPs were also proposed as tracers for fluvially transported terrestrial (soil) organic matter in 718 

aquatic sediments (Talbot and Farrimond, 2007; Cooke et al., 2008b). 719 

Cooke et al. (2009) carried out a small pilot study investigating the BHP compositions 720 

of surface sediments off the Great Russian Arctic Rivers. These authors found increasing 721 

relative and total concentrations of adenosylhopane towards the east and related the 722 

compositional changes to enhanced permafrost preservation and longer summer thaw periods 723 

(Cooke et al., 2009). In a study from the Western Canadian Arctic, Taylor and Harvey (2011) 724 

also found significant amounts of nucleoside BHPs in river and shelf transect sediments, 725 

particularly from areas draining peatlands, which are known to have complex and abundant 726 

BHP distributions (van Winden et al., 2012; Höfle et al., 2015). Subsequently, BHP analysis 727 

of a comprehensive set of surface sediments from the Yangtze River-Estuary-East China Sea 728 

(ECS) by Zhu et al. (2011) led to the suggestion of a new BHP-based soil OC input proxy. Soil 729 

samples from the catchment revealed the greatest level of BHP structural diversity (an average 730 

of 21 compounds), whereas this number decreased rapidly along the export transect to only 731 

four in the ECS. Moreover, absolute and relative nucleoside BHP abundances declined whereas 732 

the absolute and relative abundances of BHT overall increased offshore. This observation led 733 

to the definition of the Rsoil index as 734 

 735 

Rsoil = [soil-marker BHPs]/[BHT+soil-marker BHPs] 736 

 737 

where, all nucleoside BHPs and their methylated components were summed and related 738 

to BHT, which is frequently the major, and in many cases only, BHP observed in open marine 739 

settings (e.g., Zhu et al., 2011). However, BHT cannot be considered a true marine end member 740 

as it is also found in soils and lacustrine settings (e.g., Talbot et al., 2003a; Talbot and 741 

Farrimond, 2007; Cooke, 2010; Kim et al., 2011). Follow-up work was aimed at testing the 742 
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Rsoil proxy (Fig. 8A) through comparison with other organic proxies used to trace allochthonous 743 

soil input, such as the branched isoprenoid tetraether index (BIT) and/or bulk TOC stable 744 

carbon isotopes. Results from Bothnian Bay sediments revealed strong correlations between 745 

Rsoil and BIT and bulk δ13C, but only a rather sporadic occurrence of methylated nucleoside 746 

BHPs (Doğrul Selver et al., 2012). The methylated nucleoside BHPs were thus excluded in a 747 

modified R’soil index, recommended by these authors for (sub)Arctic settings. Further 748 

applications of the R’soil index included the Siberian shelf region off the Great Russian Arctic 749 

Rivers (Bischoff et al., 2016; de Jonge et al., 2016). These studies demonstrated good 750 

agreement of the spatial trends described by the nucleoside BHP-based soil-input proxy (Fig. 751 

8A) and BIT and bulk carbon δ13C. 752 

Several caveats need to be considered when using the Rsoil index: 753 

1) Heterogeneity in soils. For example, peats tend to contain relatively less 754 

adenosylhopane than mineral soils (e.g., Taylor and Harvey, 2010; van Winden et al., 2012; 755 

Höfle et al., 2015), and many soils contain abundant BHT (e.g., Cooke et al., 2008b; Xu et al., 756 

2009; Wagner et al., 2014; Höfle et al., 2015; Spencer-Jones et al., 2015). The abundance of 757 

nucleoside BHPs has been shown to vary with soil pH, temperature, and precipitation (e.g., 758 

Kim et al., 2011; Höfle et al., 2015; Talbot et al., 2016b; Rush et al., 2021). However, trends 759 

are inconsistent across environments; soil pH, the most commonly documented parameter, has 760 

been shown to negatively (Kim et al., 2011) or to positively (Höfle et al., 2015) correlate with 761 

nucleoside BHP abundances, or to show no relationship at all with the latter (Spencer-Jones et 762 

al., 2015). The observed heterogeneity complicates direct comparison of absolute Rsoil values 763 

between sites, and may also explain very low Rsoil values (<0.1) in settings where other organic 764 

and bulk proxies indicate high terrestrial OC contributions, such as surface sediments off the 765 

Mississippi River (Kusch et al., 2019).  766 
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2) Selective degradation. Early observations in Congo fan sediments (e.g., Cooke et al., 767 

2008a; Handley et al., 2010) revealed strong diagenetic degradation of adenosylhopane (to 768 

anhydro-BHT), which disappears at ca. 90 mbsf (~900 ka BP), whereas co-occurring BHPs, 769 

such as aminopentol and composite BHPs, are still present at >100 mbsf (Handley et al., 2010). 770 

The likely preferential degradation of nucleoside BHPs when compared to the better preserved 771 

BHT will consequently bias Rsoil-based reconstructions of soil OC input through time, where 772 

paleo-reconstructions will show artificial trends of decreasing soil input downcore. The 773 

environmental settings in which the paleo-record is deposited should also be considered: 774 

nucleoside BHPs have been reported to degrade rapidly under acidic peat conditions (Talbot et 775 

al., 2016b). Thus, the preservation potential of BHPs, including composite BHPs, needs to be 776 

investigated in more detail. 777 

3) In situ production in the ocean. Nucleoside BHPs were also recently shown to be 778 

produced along the redoxclines in marine OMZs (Kusch et al., 2021c). The most pronounced 779 

in situ production was observed for adenosylhopane and N1-methyl-inosylhopane (Fig. 1C) as 780 

well as their C-2 methylated homologs. However, in this case the corresponding Rsoil index 781 

values were very low (Fig. 8B), which will likely limit potential biases. Nonetheless, little is 782 

known about in situ BHP production in marine settings. The presence of nucleoside BHPs, as 783 

well as BHT synthesis in sediments, may also cause additional changes in Rsoil index values. 784 

All of these factors show that whilst nucleoside BHPs and the Rsoil index can provide 785 

useful information, their presence must be considered in the context of the environmental 786 

setting and the composition of the source materials. Given the importance of adenosylhopane 787 

as the first BHP intermediate (Bradley et al., 2010) and its in situ production in OMZs (Kusch 788 

et al., 2021c), it is currently a mystery why adenosylhopane is so abundant in soils when 789 

compared to sediments. Also, why would substantially higher amounts of BHPs in soils remain 790 

in an arrested biosynthetic state (i.e., adenosylhopane is the terminal product much more 791 
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frequently in soils in comparison to other environments)? A further conundrum is that if 792 

adenosylhopane is the sole intermediate for side chain elongation, why does it so frequently 793 

occur and cluster with the other nucleoside BHPs in soils? Hopmans et al., (2021) reported, 794 

and tentatively identified, more than 18 individual nucleoside BHPs using the HRAM method 795 

to analyze BHP abundances in an Italian soil (Fig. 2). This structural and isomeric diversity of 796 

nucleoside BHPs had not been apparent previously and potentially may indicate other BHP 797 

intermediates such as those based on N1-methylinosine instead of adenine. Since lots of BHP 798 

producers occupy the rhizosphere (Belin et al., 2018), the function of nucleoside BHPs may be 799 

related to this niche. Yet the significance and biosynthetic pathway(s) of other related 800 

nucleoside BHPs with alternative terminal groups at the C-35 position (Fig. 1) are currently 801 

unknown. If these other nucleoside BHPs are synthesized via different enzymes (and possibly 802 

via further intermediates), they may play very different roles in cell and physiological 803 

functioning than does adenosylhopane. 804 

 805 

4. Frontiers in BHP research 806 

4.1 Exploiting the proxy potential of BHP adaptation and remodeling in response to 807 

environmental stressors 808 

Lipid remodeling is a common organismic response to external environmental stressors 809 

and is relatively well constrained for membrane monolayer and bilayer-forming lipids; as well 810 

as membrane regulating lipids, such as sterols (e.g., reviews by Harayama and Riezmann, 2018; 811 

Sohlenkamp and Geiger, 2016). Changes in membrane hopanoid composition have also been 812 

observed in various studies (e.g., Joyeux et al., 2004; Neubauer et al., 2015; Doughty et al., 813 

2009, 2011; Kulkarni et al., 2013; Sáenz et al., 2015) and provide opportunities to be exploited 814 

for new BHP proxies that, for example, allow temperature, pH, and other environmental 815 

parameters to be traced; much like those based on other bacterial biomarkers, such as branched 816 
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GDGTs (for which an overview is provided by Schouten et al., 2013a). The physiological role 817 

of hopanoids/BHPs and general hopanoid gene expression has been investigated using gene 818 

knock-out experiments, where BHP production in wild type bacteria is compared to production 819 

in mutants (e.g., Welander et al., 2009; Doughty et al., 2011; Kulkarni et al., 2013; Welander 820 

and Summons, 2012; Neubauer et al., 2015; Sáenz et al., 2015). Such experiments primarily 821 

targeted the shc or hpnP genes to examine membrane fitness after loss of hopanoids or 2Me-822 

hopanoids. Few studies have investigated more subtle BHP adaptation and remodeling in 823 

response to changing environmental/culturing conditions, and most have focused on total 824 

hopanoid abundances, or simple methylated BHPs/hopanoids, rather than identifying changes 825 

in the BHP lipidome. For example, increased C-2 methylation was observed in response to pH 826 

increase in chemoheterotrophically grown R. palustris TIE-1, whereas total BHP production 827 

was not affected (Welander et al., 2009). Doughty et al. (2009) observed an increase in total 828 

hopanoid production and a relative increase in 2Me-hopanoids during P-limited and light-829 

limited growth of N. punctiforme, a response to cell differentiation into akinete cells. More 830 

recently, Chwastek et al. (2020) did not observe any significant changes in diplopterol or 2Me-831 

diplotpterol abundances in Methylobacterium extorquens exposed to varying temperatures, 832 

salt, detergent, and methanol concentrations, although lipid remodeling was indeed observed 833 

for intact polar lipids (especially with temperature). In contrast, Brenac et al. (2019) found BHP 834 

remodeling in the fermenter Zymomonas mobilis when exposed to various levels of ethanol, 835 

i.e., sugar moieties (glucosamine, cyclitol ether) seemed to enhance ethanol resistance. 836 

Moreover, Cordova‐Gonzalez et al. (2021) observed a general trend towards enhanced BHP 837 

production in the MOB Methylotuvimicrobium alcaliphilum when grown at decreasing 838 

salinities and increasing nitrate concentrations and, more specifically, roughly 2-3 times higher 839 

aminotriol abundances in response to low salinity or high NO3- and 2-3 times higher 3Me-840 
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aminotriol (two isomers) in response to high salinity or high NO3-. To date, no analogous 841 

studies have investigated BHP adaptation in any of the anaerobic BHP-producing organisms, 842 

likely because anaerobic culturing techniques are more intricate and usually have slower 843 

growth rates compared to aerobic incubations. To our knowledge, only the effect of different 844 

electron donors (H2 vs. Fe2+) during anoxic photoautotrophic growth of R. palustris strain TIE-845 

1 has been reported by Eickhoff et al. (2013b). These authors showed that growth on Fe2+ led 846 

to substantially increased production of C-2 methylated homologs of most hopanoids. 847 

Moreover, the overall BHP composition also changed, regardless of changes in methylation, 848 

indicating further lipid remodeling. TIE-1 grown on H2 was characterized by much higher BHT 849 

and aminotriol abundances, whereas TIE-1 grown on Fe2+ had higher adenosylhopane and 850 

diplopterol abundances. 851 

The focus on C-2 and C-3 methylated hopanoids in incubation studies has been 852 

motivated by the importance of methylated hopanes in the geological record. Much less is 853 

known about the adaptation of more complex BHPs (composite BHPs, amino-BHPs, 854 

nucleoside BHPs), including either modifications to their ring structure or to the (amino)sugar 855 

side chain. This lack of knowledge may in part be explained by the relatively low diversity of 856 

BHPs in many of those cultured model organisms (e.g., Welander et al., 2009; Liu et al., 2014; 857 

Kulkarni et al., 2015; Chwastek et al., 2020) which are easy to maintain and manipulate in the 858 

laboratory. In part, this lack of knowledge may also be due to previous analytical constraints 859 

(e.g., analysis via GC-MS in the past, use of less sensitive instrumentation formerly) or simply 860 

prioritization of the dominant BHPs. Given perpetual improvements in the specificity, 861 

sensitivity, and availability of analytical methods and structural diversity of BHPs that can now 862 

be detected (e.g., Hopmans et al., 2021), it may be worthwhile to re-examine the BHP 863 

distributions of extracts or biomass appropriately stored from previous studies (ideally at –20 864 

°C or below) or repeat some of the incubation experiments to provide more comprehensive 865 
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studies of BHP lipidome remodeling in response to environmental factors. Nonetheless, given 866 

that the vast majority of bacteria are not available in culture or even cultivable at all (‘microbial 867 

dark matter’) (Rappé and Giovannoni, 2003; Epstein, 2013) and that in vitro culturing 868 

conditions do not reflect in situ environmental conditions (use of nutrient-rich media, absence 869 

of competing species, but also syntrophic networks, lack of interaction with abiotic matrices 870 

etc.), important constraints will also come from testing BHP adaptation in situ or in vivo in 871 

conjunction with metagenomics, e.g., along environmental gradients or micro- and mesocosm 872 

experiments. Such studies will better reflect the complexities and interactions inherent to 873 

natural systems and also allow assessment of species selection effects. 874 

For example, microcosm incubations of River Tyne estuarine sediments dominated by 875 

Crenothrix sp., Methylobacter sp. and Methylocaldum sp. (all Type I MOB) revealed 876 

temperature-dependent changes in relative amino-BHP abundances (Fig. 9; Osborne et al., 877 

2017). All microcosms had highest abundances of aminotriol (>60%), but aminopentol 878 

abundances increased with temperature from 2-5% at 4 °C and 21 °C to up to 22% at 40 °C 879 

(possibly the optimum growth temperature of the organism responsible for aminopentol 880 

synthesis). Further increases in temperature were associated with a decrease to 10% at 50 °C 881 

and lack of aminopentol at 60 °C (Osborne et al., 2017). In each experiment, increasing 882 

abundances of aminopentol occurred at the expense of aminotriol, whereas relative aminotetrol 883 

abundances remained rather constant (9-12%) in all microcosms. These observations were 884 

explained by temperature-driven selection for mesophilic Crenothrix sp. and Methylobacter sp. 885 

at lower temperatures and thermophilic Methylocaldum sp. at higher temperatures (Sherry et 886 

al., 2016; Osborne et al., 2017). If temperature has a direct effect on aminopentol production 887 

in specific Type I MOB, or selection for certain Type I MOB, this mechanism could provide 888 

an explanation for the previously mentioned absence of aminopentol in deep marine settings 889 

(such as seep carbonates), which typically have low in situ water temperatures. Osborne (2016) 890 
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also incubated the Tyne sediment under varying CH4 concentrations, pH values, and salinities 891 

(Fig. 9). These results indicate that CH4 concentrations did not change the amino-BHP 892 

composition substantially, but changes in pH and salinity had effects similar to temperature. 893 

Salinity affected aminopentol abundances, which were highest at 15 g/L NaCl (24%) and 894 

lowest at 120 g/L NaCl (4%), whereas aminotetrol remained at 9-12% abundance irrespective 895 

of salinity (Osborne, 2016). In contrast, changes of pH led to a relatively linear response 896 

towards higher abundances of both aminopentol and aminotetrol with decreasing pH, i.e., 897 

aminopentol and aminotetrol accounted for as much as 18% and 23% at pH 4, respectively, 898 

and as low as 0% and 8% at pH 9, respectively (Osborne, 2016). 899 

An example study using a combination of lipidomics and metagenomics to uncover 900 

BHP adaptation along environmental gradients comes from Antarctic ice-covered Lake Vanda. 901 

Matys et al. (2019b) obtained microbial mat samples across a small-scale (ca. 15 cm) irradiance 902 

gradient and showed that decreased photosynthetically active radiation upregulated 2Me-BHP 903 

production in cyanobacteria (specifically in the green-pigmented zone). In this case, all HpnP 904 

protein sequences obtained from different mat layers in the lake belonged to cyanobacteria 905 

(with two different HpnP copies in the green-pigmented zone), suggesting that 2Me-BHP 906 

upregulation is indeed a direct response to solar irradiance rather than selection for different 907 

species. In a pilot study of nucleoside BHP distributions across an Alaskan soil transect, Rush 908 

et al. (2021) found significant correlation between the abundance of nucleoside BHP (including 909 

those newly identified by Hopmans et al., (2021)) and environmental variables such as pH, 910 

temperature, and precipitation. It seems that the soil bacterial community uses these 911 

modifications in nucleoside BHP to adapt to environmental conditions. Further lipidomic and 912 

metagenomic work is required to determine the genes responsible for nucleoside BHP synthesis 913 

and subsequent structural modification, as well as how these BHPs function to regulate cell 914 

membrane stability under different climatic conditions. 915 
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 916 

4.2 Future analytical needs and frontiers 917 

4.2.1 Improving comparability between laboratories 918 

As outlined above (Section 2.4), quantification remains an obstacle in making BHP data 919 

fully comparable between laboratories, even when data are reported in relative abundances 920 

only. One step towards at least realizing (and to a certain extent, alleviating) the apparent 921 

differences between laboratories is the organization of an inter-laboratory round robin study 922 

that will compare analytical precision and reproducibility; similar to those achieved for GDGTs 923 

and highly branched isoprenoids (e.g., Schouten et al. 2009; 2013b; Belt et al. 2014). Analytical 924 

biases should be assessed in and compared between laboratories and instruments using 925 

gravimetric mixtures of purified BHPs, as well as aliquots of the same environmental extracts 926 

containing many known BHPs (which could be achieved by admixing various terrestrial and 927 

marine samples). In the same way, biases arising from BHP extraction methods (Section 2.1) 928 

can be tested by providing each laboratory with the same sediment or biomass material. The 929 

environmental extract would afterwards be applied by the BHP community as a shared ‘in-930 

house’ standard mix, provided with consensus abundances (relative and absolute) from the 931 

round robin. This would allow laboratories to normalize BHP abundances onto a common basis 932 

and monitor instrument performance long-term, across data sets and time. 933 

 934 

4.2.2 Isotope analysis 935 

Following the relatively recent development of HTGC-irMS methods for the δ13C 936 

analysis of intact BHPs (Hemingway et al., 2018; Lengger et al., 2019), these await exploitation 937 

of their full potential. For instance, isotopic analysis of BHPs can then be used to trace methane 938 

as a carbon source of BHP-producing bacteria, to confirm an anammox origin of BHT isomer 939 

(including when BHT-x and BHT-II co-elute during HPLC analysis) in the water column and 940 
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sediments, or to evaluate kinetic fractionation factors during BHP synthesis under autotrophic 941 

and heterotrophic growth conditions (as a means to infer the ‘metabolic state’ of BHPs). 942 

The next analytical frontiers should include modifying these HTGC-irMS methods 943 

(Hemingway et al., 2018; Lengger et al., 2019) to allow δ2H analysis of intact BHPs; extending 944 

what is thus far only available for hopanols (e.g., Li et al., 2009). The feasibility of analyzing 945 

the 2H isotopic composition of high polarity compounds via HTGC-irMS has been 946 

demonstrated by Lengger et al. (2021) for GDGTs. Scrutinizing the substantial differences in 947 

the hydrogen isotopic composition of precipitation (annual mean δ2H varies roughly between 948 

−20 to −200‰, depending on latitude) and seawater (δ2H=0‰) (Fig. 10A), δ2H analysis of 949 

BHPs might, for instance, aid in distinguishing BHPs produced on land from those produced 950 

in situ (in marine water columns or sediments). The latitudinal 2H2O gradients should be 951 

conserved in BHPs synthesized by the same source organisms and/or via the same metabolism, 952 

given that kinetic 2H fractionation strongly depends on the carbon flux through the different 953 

hydrogenases reducing NADP+ to NADPH and growth water (Wijker et al., 2019). 954 

Accordingly, BHP δ2H analysis will aid in solving a long-standing question about the origin of 955 

the majority of BHPs in the ocean/sediments (e.g., Pearson et al., 2009; Sáenz et al., 2011a). 956 

Concurrent compound-specific 14C analysis would strongly support this type of ‘fingerprinting’ 957 

given the strong latitudinal Δ14C gradient observed for sedimentary plant waxes (Fig. 10B), 958 

which is mainly controlled by climatic factors (Eglinton et al., 2021; Kusch et al., 2021a). 959 

Hydrogen and carbon isotope analysis will also aid in identifying the utilization of dissolved 960 

methane (vs. dissolved inorganic carbon) by bacteria in the ocean and, once kinetic 961 

fractionation factors are constrained, may hold clues regarding which type of methane (e.g., 962 

biogenic vs. thermogenic) is used (Fig. 10C) (e.g., Whiticar, 1999). In the case of amino-BHPs, 963 

their dual 13C and 2H isotope compositions could also help to identify (and possibly to quantify) 964 

relative proportions of aminotetrol synthesized by Type I and Type II MOB, respectively, in 965 
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that the assimilation of CO2 in addition to CH4 by Type II (serine pathway) could be revealed 966 

(Jahnke et al., 1999). Likewise, potential contributions of aminotetrol and aminopentol from 967 

SRB could be revealed in marine sediments, since these bacteria utilize a range of organic 968 

substrates, such as amino acids, sugars, and long-chain alkanoic acids (Muyzer and Stams, 969 

2008), which would not carry methane isotope imprints if derived from the surface ocean or 970 

the continent. 971 

Additional information on the terrestrial/soil nitrogen cycle may reside in the 15N 972 

isotope composition of the head group of nucleoside BHPs, pending method developments that 973 

allow cleaving the nitrogen-containing nucleosides (e.g., adenine, inosine) for analysis. Such 974 

data could reveal the nitrogen species used by/the metabolism of the hitherto unknown source 975 

organisms (potentially aided by δ2H analysis; Wijker et al., 2019), which in turn should help 976 

constrain the bacterial producers (both in soils and in situ in marine OMZs). Given that many 977 

BHPs in soils accumulate in the rhizosphere and are produced by N2-fixing plant symbionts 978 

(e.g., Ricci et al., 2014; Kulkarni et al., 2015; Belin et al., 2019; Tookmanian et al., 2021), 979 

nucleoside BHPs may be synthesized by N2-fixing bacteria, rather than by heterotrophic 980 

bacteria. Fixation of atmospheric N2 and nitrate/ammonia utilization should be directly 981 

distinguishable in nucleoside δ15N values, especially in settings where soil N is artificially 15N-982 

enriched due to the use of fertilizers or bacterial denitrification (e.g., Hobbie and Ouimette, 983 

2009; Denk et al., 2017). If the source organisms are indeed heterotrophic bacteria and the 984 

metabolic routing is constrained/fractionation factors are established, potential climatic effects 985 

on nucleoside BHP δ15N values could be investigated, exploiting the natural soil δ15N gradient 986 

(increase with mean annual precipitation and decrease with mean annual temperature) observed 987 

with latitude (e.g., Amundson et al., 2003). 988 

 989 

4.2.3 Pairing BHP lipidomics and other -omics 990 
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Owing to the recent analytical advances in HPLC-MS methodologies and isotope 991 

analysis outlined above, the field of organic geochemistry is entering a new era of BHP 992 

lipidomics. This opportunity also comes with its own challenges. A longstanding complication 993 

to identifying potential (BHP) biomarkers for bacteria and/or environmental processes in 994 

complex systems is that this task depended on manual mass spectral interpretations and focus 995 

was usually only on the dominant lipids. This inherently leaves a large proportion of the 996 

lipidome hidden, which means that microorganisms that do not make up a significant part of 997 

the microbiome and likely do not contribute large stocks to the total lipid pool, are easily 998 

overlooked. Traditionally, this problem was circumvented through analysis of culture and 999 

enrichment material of microbes known to be important players in biogeochemical cycles. For 1000 

example, the lipid biomarkers of anammox bacteria were identified using HPLC-MS analysis 1001 

of enrichment cultures (Sinninghe Damsté et al., 2002) and only applied to environmental 1002 

settings afterwards using targeted (e.g., MS/MS) methodology (Kuypers et al., 2003). An 1003 

alternative approach is untargeted lipidomics, using high resolution mass spectrometry (Pluskal 1004 

et al., 2010; 2020), and making use of advances in data processing (e.g., Steen et al., 2020). 1005 

Such an untargeted lipidomics approach applied to Black Sea SPM revealed microbial 1006 

networks and niche partitioning across the oxic and anoxic marine water column (Bale et al., 1007 

2021; Ding et al., 2021). This method has the advantage of allowing determination of the 1008 

diversity of unknown lipids and their importance in specific environmental niches. Future 1009 

applications of this method to environmental lipidomes will allow the identification of novel 1010 

lipids, including BHPs, and their potential function and proficiency as biomarkers for important 1011 

microbial processes within Earth’s biogeochemical cycles. Further breakthroughs will come 1012 

from pairing untargeted BHP lipidomics with other -omics. Pioneering genomics work in the 1013 

last decade has tremendously improved our understanding of the diversity of BHP producers 1014 

in the environment (metagenomics) as well as the physiological/functional role of BHPs in 1015 
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bacterial membranes (gene knock-out experiments) (e.g., Welander et al., 2009; Bradley et al., 1016 

2010; Doughty et al., 2011; Kulkarni et al., 2013; Welander and Summons, 2012; Neubauer et 1017 

al., 2015; Sáenz et al., 2015). Screening for hopanoid synthesis genes has now become a 1018 

standard tool in many BHP studies for identification of putative BHP producers in 1019 

environmental samples (e.g., Pearson et al., 2009; Kharbush et al., 2013; Matys et al., 2019a,b). 1020 

Such combined -omics have revealed a much higher diversity of bacteria capable of 1021 

synthesizing BHPs than would have ever been known from culturing work alone, yet BHP 1022 

production by many of the bacterial species/genera identified in environmental samples can 1023 

ultimately not be confirmed given the prevalent lack of cultured representatives. However, thus 1024 

far, genomics-assisted studies have mostly targeted only 1-2 genes (e.g., shc and either hpnP 1025 

or hpnR), whereas genes required to synthesize other side chains/head groups (e.g., hpnO, hpnI, 1026 

hpnK, hpnJ) have received virtually no attention. Screening for these genes (as well as the 1027 

synthesis genes for newly identified BHPs; Hopmans et al., 2021) may, for example, help 1028 

unlock the untapped potential of composite BHPs, for which sources at present seem to be 1029 

diverse (e.g., Renoux and Rohmer, 1985; Flesch and Rohmer, 1989; Talbot and Farrimond, 1030 

2007; Höfle et al., 2015). Yet, the distribution and diversity of composite BHPs has been shown 1031 

to be highly variable, especially in settings such as microbial mats or geothermal systems, 1032 

where they seem to reflect environmental conditions (e.g., Gibson, 2009; Gibson et al., 2014). 1033 

Important insights will be gained about the controls on environmental BHP diversity when the 1034 

full suite of known hopanoid synthesis genes is included in metagenomic surveys and directly 1035 

linked to the diverse environmental BHP inventory. 1036 

 1037 

5. Conclusions 1038 

Much work has been done since bio- and geohopanoids were first declared 30 years ago 1039 

to be the “most abundant natural products on Earth”. The identification of specific bacteria 1040 
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responsible for the synthesis of unique BHPs including methane-oxidizing bacterial 1041 

communities and anaerobic ammonium-oxidizing bacteria, as well as the suite of BHPs derived 1042 

from soils, ground truths their applications as biomarkers. New BHPs with chemotaxonomic 1043 

potential have also recently been identified, both in cultures and in the environment. The onset 1044 

of molecular microbiology approaches to dig deeper into the biological mechanisms that 1045 

underpin hopanoid structural transformation has contextualized BHP application to important 1046 

organic geochemistry questions. With the advent of advanced multi-omics techniques and more 1047 

sensitive mass spectrometric analyses, we are on the brink of an explosion in BHP research and 1048 

leaps forward in understanding the synthesis and function of BHPs in the bacterial cell, their 1049 

sources, distribution, and diversity in the environment, and improved organic 1050 

geochemical/proxy applications. 1051 
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Figures 1826 
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Fig 1: A) Generalized structure of bacteriohopanepolyols including the hopane skeleton and 1828 

the extended side chain (example shown: BHT). Other BHP side chain configurations for 1829 

commonly occurring BHPs and/or those referred to in the text are also shown (B and C). The 1830 

side chain classification is based on the structure of the moieties. Nucleoside BHPs (a-c) are 1831 

characterized by adenosine or inosine head groups (these BHPs have previously also been 1832 

termed ‘soil-marker’ BHPs and adenosyl-BHPs), hydroxy-BHPs (d-f) group simple polyols; 1833 

composite BHPs (g-i) include those containing an (amino)sugar head group; amino-BHPs (j-l) 1834 

have a simple amine group at C-35; MC-BHPs (m-o) contain a methylated carbamic acid ester 1835 

at C-35; acylated and/or ethenyl-BHPs (p-r) include BHPs that are bound to an alkanoic acid 1836 

moiety via an N-acyl or an ethenolamine group or have a simple ethenolamine group. 1837 

 1838 

 1839 

Fig 2: Example extracted ion chromatograms (EICs) of environmental and culture samples 1840 

(Fuoco di Censo seep Sicily, Italy,, Methylomarinum vadi (strain IT-4), Methylococcus 1841 

capsulatus (strain Bath), ‘Ca. M. oxyfera’, Komagataeibacter xylinus strain R-2277, and ‘Ca. 1842 
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Scalindua profunda’) taken from Hopmans et al. (2021) and aligned to the retention time of 1843 

BHT. We report the protonated ion ([M+H]+). Note that peak heights are plotted as best fit and 1844 

are not comparable between EICs. Further details of high resolution masses used to generate 1845 

these chromatograms as well as reference to novel N-acylated BHPs, which elute between 30–1846 

45 minutes, can be found in Hopmans et al. (2021). 1847 

 1848 

 1849 

Fig 3: Schematic showing BHP distribution and diversity in the environment, including novel 1850 

BHPs and their putative sources/origin such as N-acyl-amine-BHPs or (N-acyl-)ethenolamine-1851 

BHPs (for more detail, see Talbot et al., 2007a; Kusch et al., 2019; 2021b; Hopmans et al., 1852 

2021). See Fig. 1 for details on BHP structures and ‘classification’. 1853 
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 1855 

Fig 4: Amino-BHP (aminopentol, aminotetrol, and aminotriol) distributions in (A) MOB 1856 

cultures (data from Rohmer and Ourisson, 1984; Jahnke et al., 1999; Talbot et al., 2001; Zhu 1857 

et al., 2011; van Winden et al., 2012; Rush et al., 2016), (B) microcosm incubations of River 1858 

Tyne sediment (data from Osborne, 2016; Osborne et al., 2017), and (C) marine environmental 1859 
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samples from methane-influenced settings (data from Rush et al., 2016). Green and pink shaded 1860 

areas indicate the presumed Type I and Type II MOB endmember ranges based on data in (A); 1861 

outliers from these ranges are highlighted by pink contour lines. Dashed contour line in B) 1862 

indicates the close-ups shown in Fig. 9. 1863 

 1864 

 1865 

Fig 5: Nutrient, cell count, and hopanoid depth profiles of a peat core from the 1866 

Brunssummerheide, SE Netherlands. NC10 cell numbers as assessed by qPCR (results shown 1867 

for primer pairs p1F, p1R and p2F, p2R). 3Me-BHH: 3Me-bishomohopanol; 3Me-HH: 3Me-1868 

homohopanol; 3Me-H: 3Me-hopanol; 3Me-TNH/[3Me-TNH+TNH]: 3Me-22,29,30-1869 

trisnorhopan-21-ol/(3Me-22,29,30-trisnorhopan-21-ol+22,29,30-trisnorhopan-21-ol. Data 1870 

from Zhu et al. (2012), Kool et al. (2014), and Smit et al. (2019). 1871 
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 1873 

Fig 6: A) Nested relative abundance of strains that possess the hpnP and shc genes, have been 1874 

tested for BHP/hopanoid production, and produce 2Me-hopanoids among all cyanobacterial 1875 

and alphaproteobacterial cultures possessing the shc gene. Data from Naafs et al. (2021). B) A) 1876 

Nested relative abundance of cyanobacteria that possess the nifH gene, the hpnP gene, and both 1877 

the nifH and hpnP genes. Data from Elling et al. (2020). 1878 
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 1880 

Fig 7: Stable carbon isotope distribution of total organic carbon, BHT, and BHT isomer in 1881 

Mediterranean sapropels and Arabian Sea surface sediments. Data from Elling et al. (2021) and 1882 

Lengger et al. (2019). Arabian Sea sediments include data obtained on unamended samples and 1883 

data from oxic or suboxic isotope probing incubations (amendment of 13C-labeled dissolved 1884 

and/or particulate organic matter). 1885 
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 1887 

Fig 8: A) Spatial R’soil pattern in surface sediments off major Siberian rivers. Data from 1888 

Bischoff et al. (2016) and De Jonge et al. (2016); B) nucleoside BHP depth profiles in the 1889 

eastern central gyre of the Black Sea showing in-situ production at depth (data from Kusch et 1890 

al., 2021c). Note that Rsoil and R’soil values are essentially identical within ±0.001 for this water 1891 

column profile. 1892 

 1893 



 

76 

 1894 

Fig 9: Close-up of amino-BHP (aminopentol, aminotetrol, and aminotriol) distributions in 1895 

microcosm incubations of River Tyne sediment. Shown are the effects of changes in A) 1896 

temperature, B) pH, C) salinity, and D) ambient methane concentrations. Data from Osborne 1897 

(2016) and Osborne et al. (2017). See Fig. 4 for reference. 1898 

 1899 

 1900 

Fig 10: Natural isotope gradients to be exploited for BHP isotope analysis. A) Latitudinal 1901 

precipitation and seawater δ2H gradients. Precipitation δ2H modeled using GNIP data 1902 

(Speelman et al., 2010), seawater δ2H modeled using GEOSECS data (Xu et al., 2012). 1903 

Assuming similar kinetic fractionation effects, BHPs produced on land can be expected to have 1904 

substantially lower δ2H values; B) Latitudinal Δ14C gradient of n-alkyl plant waxes in marine 1905 

core-top sediments (figure re-drawn from Kusch et al., 2021a). BHP Δ14C values can be 1906 

expected to show the same trend if BHPs have a terrestrial origin; C) Stable carbon and 1907 
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hydrogen isotopic composition of methane sources (endmember ranges from Whiticar, 1999; 1908 

Etiope et al., 2013; Niemann and Whiticar, 2017; Luxem et al., 2020). Arrow depicts the 1909 

generalized trajectory of methane 2H and 13C enrichment resulting from preferential uptake of 1910 

lighter isotopes during bacterial oxidation. BHP δ2H and δ13C values can be expected to follow 1911 

the opposite trend. 1912 
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