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1 OPENING OF THE MEETING

The Acting Chair, Dr S.Rowlatt, opened the meeting of the Working Group on Marine Sediments in Relation to 
Pollution (WGMS) at 10.00 hrs on 5 March 2001 at the Instituto Hidrográfico, Lisboa. Technical Director 
Augusto Ezequiel gave a speech of welcome. Dr Rowlatt thanked Mr Ezequiel and outlined the programme for the 
week.

2 ADOPTION OF THE AGENDA

No formal agenda had been set, rather the Terms of Reference, set for the group by the parent committee, were taken as 
a working agenda (Annexes 1 and 2). It was decided to intersperse “terms of reference” items with talks by members of 
the WGMS on their research projects. The list of participants is attached as Annex 3.

3 ARRANGEMENT FOR THE PREPARATION OF THE REPORT

The Chair agreed to prepare the report in collaboration with all the participants. Individual members agreed to prepare 
particular parts of the report on topics of interest.

4 TERMS OF REFERENCE FOR FUTURE MEETINGS OF WGMS

During the whole week, the issue of a new Chair for WGMS was discussed, both inside and outside the meeting. The 
Chair is normally appointed for a period of three years, but the Group may alter this duration under special 
circumstances. The proposed Chair needs to be accepted by the parent committee (MHC) and his/her Delegate to ICES. 
Some way through the week, and after protracted discussions on a possible new Chair and on the method for electing 
such a person, an election was held. At this time, Foppe Smedes was unanimously nominated for consideration by the 
Marine Habitat Committee as a potential new WGMS Chair.

Possible areas of work for the WGMS that had been highlighted in recent meetings were: sediment processes; 
integration of sediment data and biological effects; interpretation of contaminant data so that it is meaningful to end 
users (e.g., assessment criteria, environmental indicators and standards). The work suggested could be both relevant to 
ICES Member Countries and scientifically interesting:

Processes, such as degradation of organic contaminants, sediment-water interaction and related fluxes, spéciation 
of metals, early diagenesis, bioturbation and their significance to the potential risk to biota.
Dynamics of the environment, such as permanent sedimentation, highly dynamic environments, bioturbation, and 
interaction of contaminants between water and sediments, and transport over larger areas.
Sediment quality criteria, and the establishment of approaches to reach such criteria.
Methodology related to spatial and temporal monitoring of sediment quality.

The group feels it needs additional expertise in the fields of ecotoxicology and recommends a joint meeting with 
WGBEC, probably in 2002.

WGMS stated that it welcomes comments on these terms of reference, and explicitly invites its members that could not 
be present to express their views, and comment, add or clarify the above statements.

5 SEDIMENT STANDARDS

WGMS discussed the definition of sediment standards. It decided to produce an Annex (Annex 4) to this report 
describing some of the difficulties associated with using various methods for the definition of standards. The group used 
the work of Peter Chapman as a basis for this Annex.

WGMS felt that a meeting with the Working Group on Biological Effects of Contaminants (WGBEC) should be held in 
order to move the standards issue forward. The group felt that a joint meeting with WGBEC in 2002 would be 
appropriate.
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6 GUIDELINES

WGMS discussed the requirement to review the Sediment Guidelines, particularly after the comments of ACME 2000 
and keeping the needs of the OSPAR Coordinated Environmental Monitoring Programme (CEMP) in mind. The WG 
therefore gave consideration to Guidelines for both temporal trend and spatial surveys. The interim WGMS guidelines 
are attached as Annex 5 and a basis for temporal guidelines as Annex 6.

7 PAPER ON NORMALISATION

Michael Kersten had prepared a paper on normalisation. Unfortunately the group did not have time to give this paper 
the consideration it deserved. It will be discussed intersessionally.

8 NORMALISATION

In 2000, WGMS had a renewed thorough discussion on the need and the effectiveness of different normalisation 
approaches presented in its report and produced an annex to its 2000 report condensing the outcome of this discussion. 
As advised by ACME 2000, WGMS 2001 prepared a “Technical Annex: Normalisation of contaminant concentrations 
in sediments” (Annex 5) based on the 2000 WGMS report. Furthermore, the comments of ACME presented in the 2000 
ACME report (Section 6.5), as well as earlier ACME advice, were taken into consideration. In addition, the preliminary 
outcome of the work package on sieving and normalisation of sediment of the EU-QUASH (Quality Assurance in 
Sampling and Sample Handling) intercomparison exercise has been taken into account. The Technical Annex on 
Normalisation annexed to this report as Annex 5 is intended to supplement the Sediment Monitoring Guidelines. It 
replaces the previous Draft Technical Annex on Normalisation produced in 1998 that had been annexed to the 2000 
WGMS report as Annex 4. WGMS intends to include appendices on error calculation and on examples for 
demonstrating the application of the normalisation approaches presented in the current Draft Technical Annex on 
Normalisation (Annex 5). However, during the 2001 meeting there was not enough time to complete these appendices 
and WGMS decided to complete them intersessionally, provided that ACME adopts the current Draft Technical Annex.

Annex 5 gives recommendations for a proper application of different approaches to normalisation and includes their 
advantages and disadvantages. The preferred approach (recommendation 6 of Annex 5) consists of two steps: analysing 
contaminants in a fine sediment sample or a sieved fine fraction in order to reduce the analytical uncertainties 
significantly, followed by normalisation with a co-factor that reduces variances due to the natural variability of the 
geochemical composition of the samples.

As pointed out in the 2000 ACME report, the widely applied approach of normalising contaminant concentrations that 
were analysed in the whole sample, i.e., in the fraction <2 mm, with a co-factor, suffers from large uncertainties for 
samples with high proportions of sand and low concentrations of contaminants and normalisera. WGMS 2001 felt that 
this drawback is overcome with the recommendation to use fine samples or sieved fine fractions for analyses.

Although ACME 2000 recognised that normalisation of whole samples suffers from large uncertainties with regard to 
sandy samples, it expressed its concern that a normalisation approach based on sieved sediment might be misleading for 
some dynamic coastal areas of the Atlantic coast of Europe. However, after discussion, WGMS 2001 concluded that 
this approach is of great importance particularly for these areas, where normalisation of total samples that often are 
sandy would result in values with large uncertainties, thus weakening the statistical power of detecting differences in 
contaminant concentrations.

The preliminary results of the QUASH intercomparison exercises (cf. WGMS 2000, §5) clearly demonstrated that 
variances could be reduced to a large extent by analysing fine samples or sieved fine fractions and that variances could 
be further reduced by subsequent normalisation with co-factors.

As the two-tiered approach based on fines had not yet been applied to large areas, such as the OSPAR area, and its 
reliability had not yet been proved, ACME 2000 recommended for the meantime to avoid wide-scale spatial surveys 
using fine sediments. WGMS agrees with ACME that this normalisation approach will still not correct for all potential 
differences in sediment properties. However, after discussion WGMS 2001 came to the conclusion that the 
normalisation approach based on fines will improve the statistical power to identity temporal trends and spatial 
differences in contaminant concentrations compared favourably to the normalisation approach based on whole samples. 
It was pointed out that the normalised data are not meant to and are not appropriate to evaluate contaminant loads 
existing in a certain area. To avoid any misleading interpretation of data, WGMS followed the ACME recommendation 
to include a mapping of relevant co-factors in any assessment of spatial data. So far, no better approach for assessing 
spatial surveys on a large scale than the one based on fines is available. WGMS 2001 therefore strongly recommends 
the application of the two-tiered approach based on fines. According to the proposed Draft Technical Annex on
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Normalisation (Annex 5), data produced with other approaches will not be excluded from the assessment of spatial 
surveys, however, WGMS strongly recommends that data assessments include the procedural uncertainties.

ACME 2000 considered an increasing complexity of normalisation methods as an obstacle to their application. WGMS 
2001 came to the conclusion that a more complex normalisation approach is required, especially if analyses are carried 
out in whole samples, as a proper regression has to take into account the selected normaliser in the sand fraction as well 
as the concentration of contaminants. A simple ratio of contaminant/normaliser often can result in misleading data, 
especially if the data assessment includes sandy samples. When analysing fine samples or sieved fine fractions, 
normalisation of the measured concentrations with a co-factor is much simpler, as intercepts of the theoretical 
regression line are small and can therefore be neglected, i.e., a ratio of contaminant/normaliser can be used as a good 
approach. WGMS 2001 would like to stress that all results used for monitoring have to be accompanied by the 
procedural uncertainties, in order to facilitate a proper data evaluation. This would result in some additional effort being 
required.

Furthermore, the 2000 ACME report expressed concern about whether contaminant concentrations measured in a sieved 
fine fraction may give useful information in relation to biological effects. WGMS recognises this comment and pointed 
out that normalisation was primarily developed for correction of differences in the composition of sediments. It was 
stressed that OSPAR Guidelines for Contaminant-specific Biological Effects Monitoring have been developed. 
Nevertheless, WGMS 2001 considers data derived from sieved fine fractions to be valuable to support the assessment of 
biological effects as illustrated by the following example: A water-sediment system of 1 litre water and 1 kg very fine 
sediment has a specified toxicity. Toxicity will not be affected when a stone is added to the mixture. Neither will 
toxicity be influenced when instead of one big stone several smaller stones nor when a billion inert sand particles are 
added. Addition of sand will result in a tremendous change of the “analytical concentrations” but not of the toxicity of 
the system. Normalisation by analysing sieved fractions just aims at correcting for the added inert material in order to 
exclude its influence on concentrations.

In order to demonstrate the suitability of the preferred two-tiered normalisation approach and to clear up existing 
doubts, WGMS 2001 suggests initiation of an intersessional study group that will apply all normalisation approaches 
included in the Technical Annex on Normalisation (Annex 5) to actual data sets. The majority of the work could be 
carried out by correspondence. The group should consist of members of the WGMS and representatives of monitoring 
programmes. It would be desirable if the study group could have the support of a statistician.

9 PRESENTATION BY DR CATO

Dr Cato presented a recently published Swedish report (Cato, I., 2000: Toxic substances and environmental quality of 
the Bohus Coast 1990-1998 — trends, load and relationships. Geological Survey o f  Sweden, SGU Rapporter och 
meddelanden 103, 135 p. Uppsala, ISBN 91-7158-641-5) dealing with the current load and trend of contaminants in 
sediments and biota during the 1990s along the Swedish West Coast bordering the Skagerrak. The book, which was 
written on behalf of the Bohus Coast Water Conservation Association, showed a number of interesting results. 
Sediment and biological samples used in the study were collected five years apart at static sites. The biota investigated 
were blue mussel (Mytilus edulis), bladderwrack (Fucus vesiculosus), eelpout (Zoarces viviparus) and cod (Gadus 
morhua)', at one station crab (Cancer pagurus) and green crab (Carcinus maenas) were also evaluated. The different 
media were analysed for 11 metals, DBT, TBT, extractable organically halogenated compounds, 16 PAHs, 7 PCBs, 
DDTs, HCB, 7 chlorinated aromatics, 10 halogenated aliphatics, 6 monocyclic aromatics, 5 bicyclic aromatics, 6 
phthalates, 12 chlorinated and 5 unchlorinated phenols, non-ortho PCBs, toxaphene and dioxins/dibenzofurans. The 
evaluations were conducted to record changes over time, existing concentration relationships between various 
investigated media and environmental quality according to the Swedish criteria for coast and sea.

The results show that a number of elements and compounds are dispersed along the Swedish Bohus Coast, but that the 
concentrations of the different elements and compounds vary between different media and sites. The environmental 
quality (EQ) along the coast varied from sites with good conditions to sites with very bad conditions. The figures 
showed an excess of harmful substances in the Gothenburg region for all media categories studied. The relationship 
between the concentrations of the compounds in two different media was tested. Of the 174 selected tests, relationships 
with P>95 % were found in one quarter of the cases.

The trend analyses showed that the major trends were concordant between different media and generally show 
decreasing average concentrations with greater than 90 % probability in about 50 % of the cases between the two 
investigation phases. In summary, the conditions regarding environmentally harmful substances in both sediment and 
biota, with a few exceptions, improved along the Bohus Coast during the 1990s.
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Dr Cato presented a new searchable Internet meta-database concerning seafloor sediment samples held at European 
institutions. The database (EU-SEASED) was built up by people from the Geological Surveys of 14 European countries 
and the work was supported by the European Union MAST III programme. The aim of the project was to provide the 
means by which scientists, engineers and parties interested in the sea floor can quickly find out what seabed samples 
have been recovered and where they are stored, thereby promoting secondary usage of this data resource. This 
optimising of data use will, among others, save a lot of money for society. The web address is http://www.eu- 
seased.net.

The EU-SEASED database will only list metadata, access to samples and access to any related accessory data sets will 
be for negotiation between the requestor and the repository where the sample is stored. Today the database holds 
metadata of more than 250,000 sample/coring sites within European waters or deep-sea sites held by European 
organisations. More than 60,000 visitors per month have been registered during the past months. It is free for all 
organisations to contribute with more metadata to the database. The database will be kept alive by the MARIS 
organisation in The Netherlands.

10 RECENT WORK IN THE NETHERLANDS

Hanneke Gieske presented results of two projects: a geochemical baseline study of a part of The Netherlands 
continental flat (NCP) and a study on the preservation of (contaminated) mud in seabed sediments of the NCP under 
different dynamic conditions.

The geochemical mapping study dealt with an area north of The Netherlands, between 4°E and 6°30’E and 53°N and 
54°N. The aim of the study was to obtain an insight into the spatial distribution of major and minor elements in seabed 
sediments and to relate the geochemical characteristics of the sediments to the geological and dynamic setting of the 
area and to anthropogenic inputs. 160 seabed samples and 60 samples from 4 cores with a maximum length of 5 m were 
analysed with XRF. At depths between 20 m and 40 m highly dynamic sandy sediments occur, with mud contents 
below 4 % and organic carbon contents below 0.02 %. Deeper than 40 m, in the so-called Oyster Grounds, a slow 
sedimentation of muddy sediments occurs (estimated rate: 0.2-0.4 cm/yr). Mud contents are between 10 % and 5 %, 
organic carbon between 0.1%  and 0.6 %.

As expected, concentrations of all elements except S i02 are relatively high in the muddy area. From the core samples, 
regression lines between the heavy metals and A120 3 were calculated, to obtain background values. These calculations 
showed that Pb was enriched up to 2 times the background mainly in the Oyster Grounds. Zn was less enriched in this 
area, but in the sandy sediments in the eastern part of the area Zn was up to three times the natural background. This 
points to an input of Zn from the Ems/Dollard into the area. Also for Cu enrichment up to 2 times the background 
concentrations occur in the eastern part of the area. Arsenic was slightly enriched in an area where gravely sands 
covering a Saalian till are exposed at the seabed. This enrichment is thought to be due to natural processes. Ni showed 
background values in the entire area.

The second study investigated an hypothesis formulated by Laane et al. (1998). They reported decreasing 
concentrations of heavy metals and most organic contaminants in Dutch coastal sediments between 1981 and 1996. 
They assume that the main reasons for this decline are: (1) the decrease in input from various sources, (2) sedimentation 
and mixing of less-polluted suspended matter into the active sediment layer, and (3) the washing out of older, more 
contaminated particles.

In order to investigate which processes can explain the assumed dilution or replacement of “older” mud in the seabed 
sediments, and to which depth these operate, a combined geochemical and sedimentological approach was applied.

In the dynamic coastal zone and the sand wave field between The Netherlands and the UK, (storm) waves, tides and the 
migration of bedforms (e.g., sand waves and megaripples) are continuously reworking the seabed sediments in the 
coastal zone. No permanent sedimentation or erosion takes place here. North of The Netherlands a deeper area (> 40 m) 
occurs, the Oyster Grounds, where (very) fine sand and silts are deposited. Reworking by burrowing organisms takes 
place in all areas.

At 14 locations in the coastal zone, the sand wave field and the Oyster Grounds, cores with a length of approximately 
5 m were taken. On the basis of their sedimentological characteristics, different “events”, i.e., sediment sequences 
formed by one event (e.g., a storm), could be distinguished in the uppermost parts of the cores. 180 samples were taken 
from the cores, well distributed over the different sedimentological events, and analysed for major and minor elements 
and Pb isotopes by XRF and ICP-MS. From the data set, Pb, Zn and the 206Pb/207Pb-ratio were selected for investigation 
of the presence of anthropogenically enriched mud. It appeared that in the dynamic coastal zone and sand wave field the 
active layer (the upper sedimentological events) showed rather constant Pb/Al20 3 and Zn/Al20 3 values and 206Pb/207Pb-
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ratios. Underneath the active layer Pb/Al20 3, Zn/Al20 3 and 206Pb/207Pb-ratios showed background values in most cores. 
The depth of the active layer was on average 15 cm to 30 cm. In the cores of the muddy Oyster Grounds, the vertical 
profiles showed a slow decline of concentrations to background at 40 cm to 50 cm depth.

The constant Pb/Al20 3, Zn/Al20 3 values and 206Pb/207Pb-ratios in the active layer in the coastal zone and sand wave 
field indicate that the time scale on which the sediment is reworked by (storm) waves, tides and migrating bedforms is 
much faster (days to months) than the time scale on which the contaminant load of the mud declines (years). The active 
sediment layer therefore probably records the recent contaminant load of the suspended matter in the overlying water 
column.

In the deeper and quieter environment of the Oyster Grounds, the vertical profile is disturbed (“smoothed”) by 
bioturbation, and the recent decline in heavy metal concentrations cannot be recognised in these sediments.

References

Gieske, J. M. I ,  B. J. H. van Os and C. Laban, (in prep). Geochemical baseline mapping of North Sea sediments of the 
Terschelling Bank area.

Gieske, J.M.J., B.J.H. van Os, A.J.F. van der Spek, H.L.A. Sonneveldt and R.W.P.M. Laane (in prep). Preservation of 
(contaminated) mud deposits in different environments of the Dutch continental shelf determined by a combined 
sedimentological and geochemical approach.

Laane, R.W.P.M., H.L.A. Sonneveldt, A.J. Van der Weyden, J.P.G. Loch and G. Groeneveld, 1999. Trends in the 
spatial and temporal distribution of metals (Cd, Cu, Zn and Pb) and organic compounds (PCBs and PAHs) in Dutch 
coastal zone sediments from 1981 to 1996: a model case study for Cd and PCBs. Neth. J. of Sea Res. 41, p 1-17.

11 CONTAMINATED SEDIMENTS IN NORWAY

Dr Naes informed WGMS on actions to be taken in Norway against contaminated sediments. In the coming years 
efforts on remedial actions in Norwegian fjords and harbours will be under planning. This will require a substantial 
amount of money actualising the need for a sound scientific basis of the initiatives. To perform the remedial actions in a 
cost-effective way, site-specific mass balances and food chain accumulation data are needed. Dr Naes informed WGMS 
of a research project he is heading related to the distribution and effects of dioxins in one of the fjords in Southern 
Norway. This is a recently started, four-year, multi-institutional research project using a multi-compartmental mass 
balance model of the fate of dioxins in the fjord environment. The project includes characterisation of selected food 
webs and the accumulation and effects of dioxins in them as well as development of risk assessment models. 
Information on the results will be given to WGMS on later occasions.

12 PRESENTATION BY DR BELZUNCE

Dr Belzunce presented an overview of the state of the contamination in the estuaries along the Basque Coast. The 
results presented are part of a surveillance programme carried out along the Basque Coast since 1994. In this 
programme, 50 sampling sites have been defined for surface sediments, column water, biota and benthos investigations. 
In the estuaries, the sediment sampling covers the entire surface of the estuary from the inner to the outer part.

Results on heavy metal concentrations in sediments of six estuaries, Barbadún, Nervión, Butroi, Oka, Lea, and Artibai, 
with a total of 68 sediment samples, were presented. The heavy metal concentrations show a great variability in their 
distribution in the estuaries and high concentrations of cadmium, lead and mercury that are above the upper action level 
defined by the Spanish legislation were found. On the basis of the Pollution Load Index, the Nervión estuary is the most 
contaminated in the Basque Coast.

The sediments in the estuaries were classified in three categories according to the Spanish Recommendations for 
sediment management. Most of the sediments from the Nervión estuary are classified into category 2, which implies no 
disposal of material into the sea without previous control of that material.

13 CLOSURE OF THE MEETING

WGMS agreed on terms of reference for a meeting in 2001, as contained in Annex 9.

The meeting finished at 1500 h on the 9 March 2001. The Chair thanked all members for their hard work as a group and 
their contribution to the production of the report.
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ANNEX 1: AGENDA

1) Review and revise Technical Annex 2 of the Sediment Guidelines on Normalization taking into account the 
comments by ACME.

2) Review existing information for estimating and validating contaminant fluxes and budgets for sediment-water 
systems, especially with respect to recent information on the equilibrium partitioning of pollutants between 
sediment and water.

3) Consider a report on processes, such as spéciation of metals and their diagenctic interaction, in relation to 
contaminants in sediments.

4) Consider information on the dynamics of the environment, such as permanent sedimentation, highly dynamic 
environments, bioturbation, interactions of contaminants between water and sediment and over larger areas, 
and their significance to biological effects.

5) Review the methods to define sediment quality criteria, taking account of experience in The Netherlands, 
USA, Canada, and Australia (in order to initiate cooperation between WGMS and WGBEC, the Chairs will 
communicate intersessionally, and the review will be made available to WGBEC before their meeting).

6) Recommend a methodology that provides the basis for spatial and temporal monitoring of sediment quality, 
particularly taking statistical aspects into consideration (this should include intersessional discussions with 
statisticians).
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ANNEX 2: TERMS OF REFERENCE

The Working Group on Marine Sediments in Relation to Pollution [WGMS] (Chair: Dr S. Rowlatt, UK) will meet 
in Lisbon, Portugal from 5 to 9 March 2001 to:

a) finalise Technical Annex 2 to the sediment guidelines (Normalisation);

b) consider a report on processes, such as spéciation of metals and their diagenetic interaction, in relation to
contaminants in sediments;

c) consider information on the dynamics of the environment, such as permanent sedimentation, highly dynamic
environments, bioturbation, interactions of contaminants between water and sediment and over larger areas, and their
significance to biological effects;

d) review the methods to define sediment quality criteria, taking account of experience in The Netherlands, USA, 
Canada, and Australia (in order to initiate cooperation between WGMS and WGBEC, the Chairs will communicate 
intersessionally, and the review will be made available to WGBEC before their meeting);

e) recommend a methodology that provides the basis for spatial and temporal monitoring of sediment quality, 
particularly taking statistical aspects into consideration (this should include intersessional discussions with statisticians).
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ANNEX 3: LIST OF PARTICIPANTS

Name Address Telephone no. Fax no. E-mail
Maria Jesus Belzunce AZTI,

Oceanography and Marine 
Environment Department, 
Muelle de la Herrera, 
Recinto Portuario s/n 
20110 Pasajes 
Spain

+34 943 00 4800 +34 943 004801 jbelzunce @AZH.es

Ingemar Cato SGU 
Box 670 
751 28 Uppsala 
Sweden

+46 18 179000 
Direct line:
+46 18 179188

+46 18 179420 icato@sgu.se

Hanneke Gieske NITG-TNO 
P.O.Box 80015 
3508TA Utrecht 
The Netherlands

+31 30 256 4557 +31 30 256 4555 j . gieske@nitg. tno. nl

Kristoffer Naes Norwegian Institute for 
Water Research 
Southern Branch 
Televeien 3 
N-4879 Grimstad 
Norway

+47 37 295067 +47 37 044513 kristoffer.naes@niva.no

Per Jonsson Swedish Environmental 
Protection Agency,
SE-10648,
Stockholm,
Sweden

+46 8 698 1430 +46 8 698 1584 Per.jonsson@environ.se

Carla Palma Instituto Hidrográfico 
Rua das Trinas 49 
1249-093 Lisboa 
Portugal

+351 21 3955119 +351 21 3960515 quimica@hidrografico.pt

Steve Rowlatt 
(Chair)

CEFAS
Remembrance Avenue 
Bumham-on-Crouch 
Essex CMO 8HA 
United Kingdom

+44 1 621787200 +44 1 621784989 s.m.rowlatt@cefas.co.uk

Birgit Schubert Bundesamt fur 
Gewässerkunde 
Kaiserin-Augusta 
15-17
D-56068 Koblenz 
Germany

+49 261 1306 5312 +49 261 1306 
5363

Schubert@bafg.de

Foppe Smedes National Institute for 
Coastal and Marine 
Management 
RWS/RIKZ 
P.O. Box 207 
9750 AE Haren 
The Netherlands

+31 505 331373 +31 505 340772 fsmedes@rikz.rws.minvenw.n
1

8 2001 WGMS Report

mailto:icato@sgu.se
mailto:kristoffer.naes@niva.no
mailto:Per.jonsson@environ.se
mailto:quimica@hidrografico.pt
mailto:s.m.rowlatt@cefas.co.uk
mailto:Schubert@bafg.de


ANNEX 4: REVIEW OF SOME METHODS USED FOR SETTING SEDIMENT QUALITY GUIDELINES

DRAFT

Several different approaches have been used for setting sediment quality guidelines (SQGs). These are listed in this 
section together with the advantages and disadvantages of each method. Ingersoll et al. (1997) give helpful criteria for 
evaluating SQGs. As a minimum, reliable and useful SQGs should provide tools that are predictive of the presence of 
toxicity or other effects, and which demonstrate a dose-response relationship to chemical concentrations calibrated to 
the SQGs.

1 Background sediment chemistry

The background sediment chemistry approach is based on a comparison of concentrations of metals in contaminated 
sediments with those in reference, uncontaminated sediments.

Advantages:

can be implemented using available data;
because of its simplicity, it has minimal data requirements;
does not require toxicity testing or detailed chemical reasoning.

Disadvantages:

difficult to define reference sediments; 
highly site-specific;
does not take bioavailability into account; 
difficult to defend.

2 Water Quality Criteria (WQC)

The water quality criteria approach measures the concentration of metals in the interstitial waters of sediments and 
compares the values with accepted water quality standards.

Advantages:

makes use of well-established toxicological database.

Disadvantages:

Assumes that exposure of sediment organisms is via interstitial water and that this is the main uptake route (i.e., 
does not take account of uptake of contaminant particles or uptake via food);
difficult to measure interstitial water quality;
does not relate to mixtures;
does not relate to the sediment of interest;
no use if there are no relevant WQCs;
assumes that sediment infauna have the same sensitivity as other life.

3 Sediment/water equilibrium partitioning

This approach combines EPA (or other) water quality criteria together with equilibrium partitioning calculations to 
obtain sediment contaminant concentrations that give rise to water concentrations equivalent to the criterion.

Advantages:

makes use of well-established toxicological database; 
makes use of organic carbon;
makes use of chemical equilibria which are often well-known;
efficient for determining which chemicals are likely contributors to toxicity.
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Disadvantages:

assumes that interstitial water is the main uptake route (i.e., does not take account of uptake of contaminant 
particles or uptake via food);
some partition coefficients are uncertain;
only strictly valid for some organic compounds;
data do not relate to mixtures;
assumes that sediment infauna have the same sensitivity as other life; 
does not account for the presence of mixtures;
produces a single SQG number, thus failing to recognise the fact that data from real sediments are too uncertain to 
support more than a range of values.

4 Sediment bioassay

Sediment bioassays may be used in two ways. Firstly, test animals may be exposed to a range of sediments from clean 
to heavily contaminated areas. The response of the organism considered to be unacceptable is related to the sediment 
composition, which is then taken as the standard. Secondly, animals may be exposed to a range of spiked sediments. 
Again, the response of the organism considered to be unacceptable may be related to the sediment composition which is 
then taken as the standard. In this second case a dose-response curve is developed.

Advantages:

similar to WQCs: technically acceptable and legally defensible;
good for identifying problem sediments;
deals with synergism in real-world sediments;
does not require prior knowledge of mechanisms of uptake.

Disadvantages:

uncertainty over the cause of any effect; 
difficult to implement with a range of organisms; 
difficult to dose sediments;

• may not reflect chronic effects, and chronic effects difficult to predict from acute endpoints; 
massive amount of work to examine mixtures and dosages which can occur; 
no basis at present for extrapolating to no-effect concentrations in sedimentary communities.

5 Effect range- and effects level- approach (i.e., ERL/ERM and PEL/TEL)

Statistical analyses of matching chemical and biological data which have been used to determine the concentration 
below which effects are rarely observed, and the concentration above which the incidence of effects is elevated.

Advantages:

can be used with any chemical constituent;
can use existing databases;
does not require prior knowledge of mechanisms.

Disadvantages:

large amount of field data required;
values are potentially sensitive to data used in calculation;
cannot separate contaminant effects.
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6 Apparent effects threshold (AET)

This approach uses field data on chemical concentrations in sediments and at least one indicator of 
bioavailability/bioeffects (e.g., sediment bioassays, benthic infaunal community structure, bottom-fish histopathological 
abnormalities, bioaccumulation). It determines the concentration of a particular contaminant above which statistically 
significant biological effects (relative to a reference site) are always expected.

Advantages:

can be used to develop criteria for any contaminant using any effects measure provided it can be statistically 
evaluated;
does not require prior knowledge of mechanisms;
biological effects always occur above AET, so it is not uncertain.

Disadvantages:

requires large database;
can be influenced strongly by unknown toxic compounds; 
bioassay methods may not reflect chronic effects; 
no mechanism has been established to separate individual effects;
not conservative (some toxic sediments will be missed)—as more data are added, the AET can only stay the same 
or increase (i.e., become less precautionary);
does not establish safe levels;
produces a single SQG number, thus failing to recognise the fact that data from real sediments are too uncertain to 
support more than a range of values.

7 Sediment Quality Triad

This approach is based on correspondences between three measures: sediment chemistry to determine contamination, 
sediment bioassays to determine toxicity and in situ bioeffects to determine alteration of resident communities.

Advantages:

uses a combination of three different measures; 
does not require prior assumptions about mechanisms; 
can be used for any contaminant; 
accounts for both acute and chronic effects.

Disadvantages:

requires a large database;
can be strongly influenced by unmeasured compounds; 
statistical criteria have not yet been developed; 
methodology not yet fully developed.

8 Conclusions

It is apparent from the above that no single method for setting SQGs is free of problems. Several (e.g., background 
sediment chemistry; water quality criteria; equilibrium partitioning) are too simplistic because they either make no 
allowance for variations in bioavailability caused by differing sediment conditions, or assume incorrectly that all 
exposure occurs via the interstitial water. There is no doubt that the ingestion of sedimentary particles is a significant 
route by which adsorbed particulates exert toxicity, so methods which ignore this should not be considered further.

In theory, a much better approach would be to use sediment bioassays as the basis for setting SQGs, because they 
measure sediment toxicity to real sedimentary organisms and the contaminants present in a reasonably natural manner. 
However, it has to be recognised that spiked sediment tests do not mimic perfectly the bioavailability of some 
contaminants which have entered sediments naturally. Furthermore, there are only a few sediment toxicity test 
procedures available, with a relatively small number of taxa, and very few chronic test methods. This would severely
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limit the reliability of SQG-setting based on safety factors because insufficient species and endpoints are currently 
available. This would in turn force the use of unrealistically high safety factors.

The Sediment Quality Triad is a more promising approach as it is based on the correspondence of chemical, bioassay 
and in situ biological data from a given site. However, the methodology for integrating data to give a reliable weight-of- 
evidence is not fully developed and the approach is probably too data-hungry and cumbersome to form the basis for 
operational sediment assessment for more than a handful of substances and locations.

The remaining methods are all variations of the co-occurrence concept. These approaches make use of all available data 
from many sediment studies, and they have the advantage that the detailed methodology has been fully worked out and 
to some extent validated. The Apparent Effects Threshold is the least attractive of the co-occurrence procedures because 
it is insufficiently precautionary. The other two main methods (TEL/PEL and ERL/ERM) are very similar and 
sufficiently conservative, with little to choose between them. However, the ERL/ERM is simpler to operate and has 
received the most validation. Of the available methods, it is therefore considered to be the most promising.

However, although the ERL/ERM approach therefore forms the soundest basis on which to develop SQGs for the UK, 
it is certainly not free from drawbacks, and these are discussed more fully in the next section. Until the ERL/ERM 
methodology has been fully validated for use with UK sediments and benthic organisms, it cannot be considered ready 
for operational deployment in this country. It will be important to establish that North American SQGs are both 
protective and predictive in local UK sediments and with tests of local fauna. The only way to do this is to analyse data 
from samples for which there are matching contaminant and biological data. It will be important to establish that 
samples in which no SQGs are exceeded are non-toxic; that the incidence and degree of toxicity increases with 
increases in the number of SQGs exceeded and the degree to which they are exceeded; and that dose-response 
relationships observed in UK sediments mimic those reported for North American sediments.
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ANNEX 5: TECHNICAL ANNEX ON NORMALISATION

NORMALISATION OF CONTAMINANT CONCENTRATIONS IN SEDIMENTS

This annex provides guidance on the application of methods to normalise contaminant concentrations in sediments.

1 Introduction

Normalisation is defined here as a procedure to correct contaminant concentrations for the influence of the natural 
variability in sediment composition (grain size, organic matter and mineralogy). Most natural and anthropogenic 
substances (metals and organic contaminants) show a much higher affinity to fine particulate matter compared to the 
coarse fraction. Constituents such as organic matter and clay minerals contribute to the affinity to contaminants in this 
fine material.

Fine material (inorganic and organic) and associated contaminants are preferentially deposited in areas of low 
hydrodynamic energy, while in areas of higher energy, fine particulate matter is mixed with coarser sediment particles 
which are generally not able to bind contaminants. This dilution effect will cause lower and variable contaminant 
concentrations in the resulting sediment. Obviously, grain size is one of the most important factors controlling the 
distribution of natural and anthropogenic components in sediments. It is, therefore, essential to normalise for the effects 
of grain size in order to provide a basis for meaningful comparisons of the occurrence of substances in sediments of 
varying granulometry and texture within individual areas, among areas, or in time.

When analysing whole sediment (i.e., <2 mm fraction) for spatial distribution surveys, the resulting maps give a direct 
reflection of the seabed sediments. However, in areas with varying grain size distributions, a map of contaminant 
concentrations will be closely related to the distribution of fine-grained sediments, and any effects of other sources of 
contaminants, for example anthropogenic sources, will be at least partly obscured by grain size differences. Also in 
temporal trend monitoring, differences in grain size distribution can obscure trends. If samples used for a spatial survey 
consist predominantly of fine material, the influence of grain size distribution is of minor importance and may probably 
be neglected.

2 Normalisation Procedures

Two different approaches to correct for variable sediment composition are widely used:

a) Normalisation can be performed by relating the contaminant concentration with components of the sediment that 
represent its affinity for contaminants, i.e., binding capacity. Such co-factors are called normalisers (cf. Section
4). Simple contaminant/normaliser ratios or linear regression can perform normalisation. Another procedure takes 
into account the coarse fraction containing natural metal concentrations in the crystal structure before the 
normalisation is performed. Using multiple regression and also combinations of co-factors can be identified as 
normalisers.

b) Isolation of the fine fraction by sieving (e.g., <20 pm, <63 pm) can be regarded as a physical normalisation to 
reduce the differences in sediment granulometric compositions and is applicable to both metals and organic 
contaminants (Ackermann et al., 1983; Klamer et al., 1990). Consequently the coarse particles, which usually do 
not bind anthropogenic contaminants and dilute their concentrations, are removed from the sample. Then, 
contaminant concentrations measured in these fine fractions can be directly compared. Subsequently, the 
differences in sediment composition due to geochemical nature remaining after sieving can be further corrected for 
by the use of co-factors. Thus, sieving is a first powerful step in normalisation.

3 Limitations of normalisation

Clearly, normalisation procedures may not apply equally well to all elements at all sites; especially important in this 
respect are elements that participate in diagenetic reactions. In cases where there is a lack of full understanding of the 
geochemical processes operating, care should be taken when normalising for grain size differences. These processes can 
create important natural enrichment of metals at the sediment surface, as a result of the surficial recycling of 
oxihydroxides or deeper in the sediment as the result of co-precipitation of the metals with sulphides (cf., e.g., Gobeil et 
al., 1997), which cannot be accounted for by normalisation.
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4 Normalisation with Co-factors

Normalisation by calculation with the content of a certain grain-size fraction such as <2 gm (clay), <20 gin and <63 g m 
can be used. This normalisation technique is based on the fact that the binding capacity of the sediments can be related 
to the content of fines (primary) in the sediments.

As the content of fines is represented by the contents of major elements of the clay fraction such as aluminium 
(Windom et al., 1989) or trace elements enriched in that fraction such lithium (Loring, 1991), these can also be used as 
a co-factor (secondary).

Both aluminium and lithium behave conservatively as they are not significantly affected by, for instance, early 
diagenetic processes or strong redox effects frequently observed in sediments. Problems may occur in cases where the 
sediment is derived from glacial erosion of igneous rocks, with significant amounts of aluminium present in feldspar 
minerals contributing to the coarse fraction. In such cases, lithium may be preferable (Loring, 1991).

Organic matter, usually represented by organic carbon, is the most common co-factor for organic contaminants due to 
their strong affinity to this sediment component. However, trace metals can be also normalised using the organic carbon 
content (Cato, 1977, 1989). Care has to be taken when normalising with organic carbon because organic matter is not a 
conservative component of sediments, for example, as concentrations may vary seasonally.

Figure A5.1. Relation between the contaminant C and the co-factor N  (see text).

Sand

ss

Slope PL=dC/dN

Co-factor i.e. 
normaliser

ss

5 Theory

The general model for normalisation taking into account the possible presence of contaminants and co-factors in the 
coarse material is given in Figure A5.1. Cx and Nx represent the co -factor and the contaminant contents, respectively, in 
pure sand. These “intercepts” can be estimated from samples without fines and organic material. The line of a 
regression between the contaminant and the co-factor will originate from that point. That means that regression lines of 
sample sets with a different contamination level and consequently different slopes will have this point in common (i.e., 
turning point). When this turning point is known, only one sample is required to estimate the slope. This allows 
determination of the contaminant content for any agreed (pre-selected) co-factor content (.Yvv) by interpolation or 
extrapolation. The slope for a sample with a contaminant content ( and a co-factor content of Ns can be expressed as 
follows:
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The extrapolation to an agreed co-factor content, .Yvv. follows the same slope:

p L _ d C  C - C x _ CSS~ C X
dN N S~ N X N SS~ N X

Rewriting gives the contaminant content, ( that is normalised to Nss:

C SS = ( C - C X)  N * ~ N * + C X (3)
N S~ N X

Results of different samples normalised to the agreed Nss can be compared directly.

Normalisation by this model can be applied with different co-factors. Here, primary and secondary co-factors can be 
distinguished. A primary co-factor like clay or organic carbon is not present in the coarse fraction and consequently has 
no intercept ( Yv=0). AÍ and Li are present in the coarse fraction and therefore are considered to be secondary co-factors. 
Provided that Nx and Cx are known the model allows recalculation of total samples to a co-factor content usually found 
in sieved fractions, either <20 pm or <63 pm. However, such an extrapolation for a coarse-grained sample will be 
associated with a large error due to the uncertainty of the intercepts and the analysed parameters. For a more fine­
grained sample, the uncertainty of the normalised result is much lower than for normalisation of a sieved fraction to the 
agreed co-factor content and will result in a more accurate result. The model presented also applies to the normalisation 
of organic contaminants using organic carbon, but in that case the intercepts Nx and Cx will not differ significantly from 
zero.

Principally, the result allows comparison of data on total and sieved samples, irrespective of the sieving diameter but 
the error has to be taken into account. Through propagation of errors, the standard error of the result can be calculated 
from the analytical variation and the natural variation of the intercept Nx. Results can therefore always be reported with 
a standard deviation (Appendix B).

6 Considerations on co-factors

The clay content is the most important co-factor for trace metals. In the model above, the Nx will be zero for clay and 
only the intercept due to the content of the trace metal in the coarse fraction (Cx) has to be taken into account. However, 
current intercomparison exercises do not include this variable. At present, other variables such as aluminium or lithium 
are used to represent the clay content.

The aluminium content in the sandy fraction may vary from area to area. For some areas, aluminium contents in the 
sandy fractions are found at the same level as found in the fines (Loring, 1991) and therefore the intercept Nx becomes 
very high. In equation (3) this implies that the denominator is the result of subtracting two large numbers, that is the 
normaliser content in the sample (Yv) and the normaliser content in only sand ( Yv). Consequently, due to their individual 
uncertainties, the result has an extremely high error. Obviously, normalisation with low intercepts is more accurate. 
Much lower intercepts are found if partial digestion methods are used that digest the clay minerals, but not the coarse 
minerals. Using partial digestion, the spatial variability of the results of aluminium analyses in the sandy fraction has 
been found much smaller than with total methods. Although normalising fine-grained material will always give more 
accurate results, an error calculation will identify whether using coarse samples (and total methods, e.g., HF, X-ray 
fluorescence) the requirements of the programme are still met.

For most areas the lithium content in the sandy fraction is much lower than in the fine fraction. In addition, results from 
partial digestion and total methods do not differ significantly. There is only little spatial variability of the lithium 
content in the sandy fraction. Generally, compared to aluminium, more accurate normalised data can be expected using 
lithium.

As for clay, no intercept ( Yv) applies for organic matter that usually is represented by organic carbon. Organic matter 
will also occur in the coarse fraction but is then still a co-factor that contributes to the affinity for contaminants, whereas 
the aluminium in the coarse fraction does not. Furthermore, organic matter in a sample is not always well defined as it
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can be composed of material with different properties. The most variable properties will be found in the organic matter 
present in the coarse fraction, that means not associated with the fines. In fine sediments or in the sieved fine fractions, 
the majority of the organic matter is associated with the mineral particles and it is assumed to be better defined than in 
the total sample. In addition, the nature of the organic matter may show spatial variation. For samples with low organic 
carbon content close to the detection limit, the normalisation using this co-factor suffers from a large relative error. This 
results from the detection limit and the insufficient homogeneity that cannot be improved due to the limited intake mass 
for analysis.

For further interpretation of data, the proportion of fines determined by sieving can be useful. Provided that there are 
no significant amounts of organic matter in coarse fractions, the proportion can be used as a normaliser. The error in the 
determination of fines has to be taken into account and will be relatively high for coarse samples.

7 Considerations on Contaminants

Almost all trace metals, except mercury and in general also cadmium, are present in the coarse mineral matrix of 
samples. The metal concentrations show a spatial variability depending on the origin of the sandy material. As for 
aluminium with partial digestion (no HF) lower values are measured in the sand compared to total methods. This 
implies that partial digestion results in lower intercepts (turning point is closer to the zero). However, the partial 
digestion must be strong enough so that the clay will be totally digested, and the aluminium content measured remains 
representative for the clay. It was demonstrated that for fine material similar results are obtained for partial and total 
methods (QUASH/QUASIMEME).

In general, the correlation of the organic contaminants with organic carbon has no significant intercept. Obviously a 
normalised result from a coarse sample will show a large error as, due to the dilution by sand, the concentrations are 
often close to or even below the detection limit. At present, for PAHs organic carbon is usually applied for 
normalisation. It should be recognised that due to the possible presence of undefined material, for example soot or ash, 
elevated PAH concentrations may occur in specific fractions that may have limited environmental significance. 
Although this needs further investigation, existing results indicate that PAH concentrations in the sieved fractions were 
not affected significantly.

8 Isolation of Fine Fractions for Analyses

Samples must be sieved over 2 mm mesh as soon as possible after sampling to remove large detritus and benthic 
organisms. Otherwise during further sample handling like storage, freezing or ultrasonic treatment, this biotic material 
will deteriorate and become part of the sediment sample. Until the final sieving procedure that isolates the fines, the 
sample can be stored at 4 °C for about a week and up to 3 months when frozen at -20  °C, although direct wet sieving is 
preferred. For prolonged storage it should be considered to freeze-dry samples. In that case contamination and losses of 
contaminants during freeze-drying have to be checked. Air-drying is not appropriate due to high contamination risks. In 
addition, samples may be difficult to be disintegrated and mineral structures may be affected.

To isolate the fine-grained fractions, either the fraction <63 pm or <20 pm, a wet sieving procedure is required (freeze- 
dried samples will have to be resuspended using ultrasonic treatment). Sea water, preferably from the sampling site, 
should be used for sieving, as it reduces the risk of changes in the sample, i.e., losses through leaching or 
contamination. Furthermore, sea water supports the settling of fine particles after the sieving. If water from the 
sampling site is not available, then sea water from an unpolluted site, diluted with deionised water to the required 
salinity, can be used. The amount of water used for sieving should be kept to a minimum and water can be reused for 
sieving subsequent batches. Sediments should be agitated during sieving, in order to prevent clogging of the mesh and 
to disintegrate agglomerates of fines.

The currently most efficient sieving method pumps sea water over a sieve that is clamped onto a vibrating table. The 
water passing the sieve is led to a flow-through centrifuge that retains the sieved particles and the effluent of the 
centrifuge is returned to the sieve by a peristaltic pump. Large sample amounts, up to 500 g, can be handled easily. 
Alternatively, small portions, 20-60 g, can be sieved by a manual system using an 8-cm sieve in a glass beaker placed 
in an ultrasonic bath. Particles can be isolated from the water passing the sieve by batch-wise centrifugation. The upper 
water can be reused for a subsequent batch of sediment. In case of sandy samples, when large amounts of sediments 
have to be sieved, removal of the coarse material by a pre-sieving over, e.g., a 200 pm mesh can facilitate the sieving 
process.

To prevent contamination, it is recommended to use large sample amounts for sieving. No significant contaminant 
losses or contamination was detected when at least 25 g of fine fraction was isolated (QUASH).
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Isolated fine fractions have to be homogenised thoroughly, preferably by a ball mill, as centrifugation produces
inhomogeneous samples due to density differences in different grain-size fractions.

More information about the sieving procedures is available on a video produced by the QUASH Project (QUASH
1999).

Recommendations

1) For both temporal trend and spatial monitoring, it would be ideal to analyse samples with equal composition. This 
could be confirmed by determination of the co-factors Al, Li, OC and grain size distribution. However, this 
situation will not always occur, particularly not in spatial surveys.

2) New temporal trend programmes should be carried out by the analysis of fine sediments or a fine-grained fraction, 
isolated by sieving. Existing temporal trend programmes could be continued, provided that assessment of the data 
indicates that the statistical power of the programme is adequate for the overall objectives.

3) Contaminant concentrations in whole sediments can be subjected to normalisation using co-factors for organic 
matter, clay minerals, etc., taking into account the presence of both co-factors and target contaminants in the 
mineral structure of the sand fraction of the sediment. Taking into account these non-zero intercepts of regressions 
of contaminant concentrations with co-factors, normalisation to preselected co-factor content will reduce the 
variance arising from different grain sizes. Normalised values for sandy sediments will have greater uncertainties 
than for muddy sediments. The propagated error of the variables used for normalisation may be unacceptably high 
for sandy sediments, if both contaminant and co-factor concentrations are low, particularly when approaching 
detection limits. In that case, in order to draw reliable maps, alternative procedures, such as sieving, need to be 
used to minimise the impact of this error structure.

4) Variance arising from grain size differences can be reduced in a direct way by separation of a fine fraction from 
the whole sediment. Spatial distribution surveys of the concentrations of contaminants in separated fine fractions 
can be used to prepare maps, which will be much less influenced by grain size differences than maps of whole 
sediment analyses. There will still be some residual variance arising from differences in the composition 
(mineralogy and organic carbon content) of the sediments.

5) The natural variance of sample composition will be smaller in the fraction <20 pm than in the fraction <63 pm. 
Therefore, the fraction <20 pm should be preferred over the fraction <63 pm. However, separation of the fraction 
<20 pm can be considerably more laborious than the separation of the fraction <63 pm and might be an obstacle to 
its wide application. For this practical reason, the fraction <63 pm is nevertheless an acceptable compromise for 
both temporal trend and coordinated large-scale spatial surveys.

6) The preferred approach for preparing maps of the spatial distribution of contaminants in sediment consists of two 
steps: analyses of contaminants in fine sediments or in the fraction <63 pm followed by normalisation of analytical 
results using co-factors (cf. Section 4). Current scientific knowledge indicates that this procedure minimises the 
variances arising from differences in grain size, mineralogy, and organic matter content. Application of this two- 
tiered approach to fractions <20 pm gives results that can be directly compared to results found by normalisation 
of concentrations measured in fractions <63 pm. This should give the most consistent and comparable data sets 
over the ICES/OSPAR area. Maps of contaminant levels in fine sediments should be accompanied by mapping the 
co-factors in the whole sediments.

7) In order to clarify aspects of data interpretation, analytical data for field samples should be accompanied by 
information on limits of detection and long-term precision. In order to contribute to environmental assessment, 
data for field samples should include grain size distribution of the original samples.
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Appendix A - Testing normalisation methods

As normalisation should correct for sediment composition, a criterion for an adequate normaliser is that after 
normalisation of equally polluted sediment samples with different grain size distributions the results should not differ 
significantly. However, sample sets to test normalisation approaches for this criterion are only rarely available. An 
alternative approach is to take one sample and to produce sub-samples with varying grain size distributions (Smedes 
1997a, 1997b; QUASH, 2000). Both the fine and coarse sub-samples are analysed for contaminants and potential 
normalisers. In that way a higher variability for the normaliser concentrations, i.e., a worst case than ever will occur in 
nature can be obtained which provides a sensitive test for the usefulness of potential normalisers.

Appendix B - Error calculation

To be filled in by Foppe Smedes after adoption of this document by ACME.
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ANNEX 6: TEMPORAL TREND MONITORING (TTMON)

The theory behind the use of sediments as a tool in environmental monitoring is the knowledge that the finer particles in 
the sediment originate from the suspended particulate matter, and that these particles are the carriers of non-soluble 
contaminants. If needed, differences in the sediment matrix can be normalised between different samples, either by 
recalculation methods or select/transfer the samples to comparable composition.

Definition of TTmon:

Temporal trend monitoring is defined as repeated measurement/study of a certain parameter in a certain medium and at 
selected time intervals and using constant procedures. In this context, the medium is marine bottom sediments and the 
parameters are anthropogenic contaminants.

Objectives of TTmon:

Identify temporal changes of contaminant concentrations in sediments.

Methods to use:

Temporal trend monitoring of contaminants in sediments can in principle be executed by the following techniques:

1) Retrospective studies, i.e., studies of down-core concentrations.
2) Comparing concentrations from repeated surface sediment sampling at the same sites.
3) Comparing concentrations of repeated surface sediment sampling at different sites but within the same area.
4) Comparing concentrations in suspended particulate matter (SPM) collected regularly by sediment traps at the same 

sites.

Advantages/disadvantages of the different techniques:

Studies of down-core concentrations have been widely used when anthropogenic inputs to the environment should be 
described. In that case, down-core concentrations have been found to be very useful compared to other media as the 
sediment provides an integrated chemical picture over time and not a snapshot as, e.g., obtained from a single water 
sample. Thus, the down-core concentration technique is particularly useful when time trends over decades or centuries 
should be established. The technique can only be used on fine-grained sediments cored/sampled in areas with a 
continuous deposition. One should be aware that changes in sediment dynamics, changes in redox conditions, 
bioturbation as well as various diagenetic reactions may influence the concentration profile in the sediment.

When time trends of less than one decade should be studied, the down-core distribution technique is less useful and 
therefore not recommended. This is due to the difficulties of identifying the same time horizon between cores. 
However, laminated sediments are an exception to this statement. When laminated sediments cannot be used and time 
trends over short periods should be studied, the repeated surface sediment sampling technique is recommended. The 
sampling strategy can be based on either repeated sampling of fixed stations or on random sampling methods. The time 
interval between the sampling and/or the thickness of the surface sample taken is dependent on both the sedimentation 
rate and the sediment mixing rate. The former can be measured and the latter calculated.

In highly dynamic areas dominated by sandy bottom sediments, it is not possible to take surface samples representing a 
given time span of deposition. Instead surface samples from such bottom areas are to be considered as representing the 
current level of contamination recorded in the fine fraction of the sediments. No older information on contaminants is 
stored in these types of sediments. In these cases, time trend studies can be conducted by comparing average 
concentrations from repeated sampling of surface sediments. The sampling should be done within the same area but not 
necessarily on the same sites. By following either a random sampling technique or a stratified random sampling 
technique, the statistical probability can be ensured by different methods.

The sediment trap is a technique that has been used in trend monitoring in more limited areas. The traps collect material 
settling throughout the water column, but the influence of resuspension is strong for traps used in shallow areas with 
depths less than the maximum wave base depth. The advantage of the sediment trap method is the fixed time interval 
that can be used when collecting material. The technique may not give comparable results with bottom sediment 
sampling techniques. Another disadvantage of the technique is the costs of traps and that they may create problems and 
conflicts with other uses of the marine environment, e.g., trawling.
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ANNEX 7: SEDIMENT-WATER INTERACTIONS OF CONTAMINANTS

Introduction

An important aspect of the environmental risk of sediment-bound contaminants is whether and to what extent they can 
exchange with the water phase. For a given contaminant this exchange is governed by the sediment particle-interstitial 
water distribution and a by combination of the water-side diffusive resistance and the resistance in the active sediment 
layer.

Generally, contaminants in the dissolved phase are considered bioavailable and thereby very important for the 
interpretation of biological effects measurements. For sediment-living organisms, the ingestion of contaminated 
sediment particles might be an important additional exposure route.

Therefore, to be able to estimate the environmental risk of sediment-associated contaminants it is very important to 
have information on:

1) the freely dissolved concentration in equilibrium with the sediment;
2) the desorption rate from the sediment;
3) the fraction in the sediment that is exchangeable with the water phase.

Newly developed methods can assist in this, as described below.

Freely dissolved concentration in equilibrium with the sediment

The concentrations in the freely dissolved fraction in a sediment-water mixture are not easily quantified. Due to the 
extremely low concentration, it is seldom possible to measure it directly.

The quantification is often influenced by the fraction of the contaminant associated with collodial including dissolved 
organic matter. Alternative methods have recently been developed that may assist in the determination of the freely 
dissolved concentration. The first method is based on the work of Huckinson who deployed low-density polyethylene 
bags filled with triolein (a model lipid) in water systems. The uptake of this so-called SPMD is directly related to the 
exposure time, the exposure surface and the freely dissolved concentration, provided that the temperature and flow 
regime are constant. Exposing SPMDs to a mixture of sediment and water at constant temperature and dynamics for a 
fixed period will allow the establishment of a measure for the freely dissolved concentration. Care should be taken that 
the desorption rate is not limiting the uptake rate of the SPMDs. This is a matter of phase ratio and can be prevented by 
application of sufficient sediment or limiting the surface area of the SPMD.

A second method that has recently been introduced makes use of solid-phase micro-extraction (SPME) for sensing the 
fugacity3 in sediment pore waters. This method gives less chance for sediment exhaustion, as the uptake is very limited 
due to the small surface area. This method has been applied to rather contaminated sediments with promising results, 
but the final detection limits are presently not clear. A drawback is also the absence of sample clean-up possibilities.

Desorption rate from the sediment

The desorption rate from the sediment can be established by performing a so-called TENAX extraction. In practice, an 
amount of sediment containing about 100 mg of organic carbon is mixed with water and 1 g of Tenax (a polymer). The 
mixture is shaken for a selected period of time and allowed to separate or, for faster separation, be centrifuged. The 
sediment will settle and the Tenax will float on top of the water. When the mixing is performed in a separation funnel, 
the outlet can be used to remove the sediment suspension. The recovered Tenax can be extracted by shaking or Soxhlet 
extraction. Subsequent exposures to, each time fresh, Tenax will allow the construction of a desorption curve, and 
consequently the calculation of desorption rates. Comelissen and colleagues, using this approach, demonstrated the 
presence of rapid, slow and very slow desorptive fractions in the sediment of some freshwater locations in The 
Netherlands. Apparently several forms of organic carbon with different sorption characteristics are present, however, 
they have so far not been identified.

Nevertheless, knowledge of the desorption profiles for different types of marine sediments will be of help in models that 
describe the transport and biological uptake of contaminants.
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Fraction in the sediment that is exchangeable with the water phase

Considering that the rapid desorptive fraction is very important for uptake and transport considerations, the Tenax 
extraction is a possible approach for evaluating the extent to which a contaminant concentration in a sediment is 
environmentally relevant, at least on a short term. Measuring the desorption curves on a routine basis would give the 
most complete picture. Probably it is not practically feasible because it implies extensive analyses. A good alternative 
would be to measure the desorbable fraction after a fixed period of time, for example 24 horns. This could be developed 
into a standard method.

Importance for WGMS

Following the work on normalisation, WGMS recognised that investigations on the significance of contaminated 
sediments to water quality would be an important topic to focus on. The methods outlined above might represent a start 
for such work. Foppe Smedes informed the group that experiments are about to start in his laboratory. The impact of 
sediment contamination on the water phase will be investigated by exposing SPMDs to sediments of different origin 
and composition. It is intended to develop this method in the coming year and present some results at the 2002 WGMS 
meeting. It was suggested that a small intercalibration between the members of WGMS could help to show the value of 
the method. Depending on the progress Foppe Smedes will consider the possibility to execute such an exercise 
intersessionally for interested participants.

Information on the exchangable contaminant fractions in sediments of the ICES area using the Tenax method will be a 
next step. This method is slightly more complicated and labour intensive and it is not yet clear how to interpret the 
results. It is suggested that information on the use of this method be collected intersessionally and discussed at the next 
meeting. The above methods focus primarily on organic contaminants. Recently similar methods as described here for 
organic contaminants have been described for metals. It would be useful to collect this information for discussion at 
next year’s meeting.
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ANNEX 8: PAPERS PRESENTED TO THE LISBON MEETING OF WGMS
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ANNEX 9: RECOMMENDATIONS

The Working Group on Marine Sediments in Relation to Pollution [WGMS] (new Chair: F. Smedes, The Netherlands)
will meet at a venue in Spain on dates to be decided in 2002 to:

a) review and revise intersessionally the Technical Annex on metal analyses in sediments and prepare this for
WGMS 2002;

b) produce intersessionally an inventory of national sediment quality criteria values and a report on how they are 
derived and present them for review and comment for the 2002 meeting of WGMS;

c) review and report on a paper on Normalisation methods produced by Michael Kersten;
d) intersessionally work on an Appendix on error calculation to the Normalisation Technical Annex;
e) produce an inventory of national procedures for the implementation of temporal trend monitoring of contaminants

in sediments;
f) continue the work initiated on sediment dynamics of importance to temporal trend monitoring;
g) intersessionally consider the EU Water Framework Directive (WFD) and compile national strategies for 

implementation of the WFD, particularly in relation to sediments. (We foresee that this will be a major topic in the 
future of WGMS);

h) continue the work initiated on temporal trend monitoring.

The group considers that a joint meeting with WGBEC would be appropriate in 1-2 years’ time.

Countries not currently represented in WGMS should be encouraged to participate in future work.
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