
Ocean Science, 2, 1-9, 2006 
www.ocean-science.net/os/2/1/ 
SRef-ID: 1812-0792/os/2006-2-1 
European Geosciences Union

Ocean Science

Transient residence and exposure times
E. J. M. Delhez

University of Liège, Mathematical Methods and Modelling, Belgium

Received: 11 April 2005 -  Published in Ocean Science Discussions: 26 May 2005 
Revised: 1 December 2005 -  Accepted: 6 December 2005 -  Published: 9 January 2006

Abstract. The residence time measures the time spent by 
a water parcel or a pollutant in a given water body and is 
therefore widely used in environmental studies. The adjoint 
method introduced by Delhez et al. (2004) to compute this 
diagnostic is revised here to take into account the effect of 
the initialization and of the boundary conditions.

In addition to the equation for the mean residence time, it 
is suggested to solve a simple advection-diffusion problem to 
quantify the effect of the initialization and clarify the inter­
pretation of the results.

Using the two same equations but with modified bound­
ary conditions, the method can also be used to quantify the 
accumulated time spent by water/tracer parcels in a control 
domain. This diagnostic is called “exposure time’’.

Analytical and realistic model results are used to illustrate 
the concepts.

1 Introduction

The residence time of a water parcel in a water body is usu­
ally defined as the time taken by this parcel to leave this water 
body (e.g. Bolin and Rhode, 1973: Takeoka, 1984: Zimmer­
man, 1988: Monsen et al., 2003: Braunschweig et al., 2003). 
As such, it is a valuable diagnostic tool to describe and under­
stand environmental issues. The residence time provides in­
deed a global measure of the influence of the hydrodynamic 
processes on the aquatic systems. In environmental studies, 
this time scale can be compared with characteristic biochem­
ical activity rates to understand the dynamics of a system 
(e.g. Nixon et al., 1996: Braunschweig et al., 2003: Hydes 
et al., 2004) or assess the vulnerability of a water domain to 
potential pollution and eutrophication problems (e.g. Vollen- 
weider, 1976). In a different context, the residence time can
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be used as a measure of the time spent by eggs or larvae in a 
suitable habitat (e.g Wang et al., 2003: Harley et al., 2004).

Basically, the residence time is a property of each water 
parcel : it is Lagrangian by nature. Indeed, the straightfor­
ward procedure to assess the residence time consists in in­
jecting some tracer in the flow, following the path of these 
tracer parcels and registering the time when they leave the 
domain of interest. This procedure can be equally applied in 
real world experiments or in numerical model simulations.

Mathematically, the mean residence time 0(f, X )  at time t 
and location X can be computed by monitoring the temporal 
evolution iñ(tX){t+r)  of the mass of the tracer in the control 
region at the time t + r  after a unit point release at ( f ,  X ) .  Fol­
lowing Bolin and Rhode (1973) and Takeoka (1984), one can 
write

0 ( í ,x ) =  í  r  * ñ ( ,iX) (1)
JO

Delhez et al. (2004) introduced an alternative procedure de­
signed for numerical models. They showed that the resi­
dence time can be computed as the solution of an advection- 
diffusion problem with a unit source term and appropriate 
boundary conditions. The method provides the variations in 
space and time of the residence time with a single model run. 
The method doesn’t require any Lagrangian module. It is 
Eulerian by nature which makes it more appropriate to long­
term and large scale simulations than the straightforward La­
grangian approach. Considering the potential discrepancies 
between the Lagrangian and Eulerian descriptions of diffu­
sion, the Eulerian approach of the residence time is closer 
to the Eulerian hydrodynamic models and represents a more 
direct diagnostic of the model results.

In their paper, Delhez et al. (2004) raise the issue of 
the appropriate definition of the residence time when water 
parcels leaving the domain of interest are allowed to re-enter 
at later times. They also mention the problem associated 
with the fact that a finite range simulation cannot provide the
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2 E. J. M. Delhez: Transient residence and exposure times

residence time of all the water parcels nor the mean residence 
time.

The purpose of this paper is to clarify these two issues 
and complement the adjoint method advocated by Delhez et 
al. (2004) with appropriate definitions and additional control 
variables.

be integrated backwards in time with homogeneous bound­
ary conditions. The integration backwards in time is clearly 
necessary for stability reasons associated with the apparent 
negative diffusion term in Eqs. (3) and (6). It is also a conse­
quence of the fact that one does not know in advance the fate 
of the particles.

2 Backward procedure for the computation of the resi­
dence time

Because of diffusion, different water parcels released at the 
same location and the same time follow different paths, exit 
the control domain co at different times and have therefore 
different residence times in co. To describe this situation, Del­
hez et al. (2004) define the cumulative distribution function 
D(t,  x, x) as the fraction of the mass of the tracer released at 
time t and location X whose residence time is larger or equal 
to r . This is also the mass of tracer in the control region at 
time i + T  following a unit release at time t and location X,  

therefore

D(t,  r, X )  =  m (iiX)(i +  r )  (2)

This cumulative distribution function is shown to satisfy 

dD dD
. V ■ VZ)

dt dx
D(t,  0 , x )  =  Se>(x)

K  • VD =  0
(3)

where v is the velocity vector, K  denotes the symmetric dif­
fusion tensor and

5®(x) =
if X t f f l

if X ^  CO
(4)

is the characteristic function of the control region co.

The zeroth order moment of the cumulative distribution 
function, i.e.

6(t, X )  =
fJo

D(t,  x, X ) d x (5)

is the mean residence time if D  satisfies particular boundary 
conditions (Delhez et al., 2004).

Assuming that D(t,  x, x) decreases to zero when r  tends to 
infinity, i.e. that the whole material is eventually flushed out 
of the control region, Eq. (3) can be integrated with respect to 
x to simplify the problem into the more classical differential 
problem

90
—  +  + v ■ V0 +  V
a t

K  • V0 =  0 (6)

for 0(í, x). For 0 to be equal to the mean residence time, 
Eq. (6) must be solved with the boundary condition that 0 
vanishes on the boundary 5co of the control domain.

Equations (3) and (5) are derived from the adjoint of the 
forward advection-diffusion problem. They must therefore

3 Finite range simulation

In principle, Eqs. (3) and (6) must be integrated backwards 
from i= + o o  in order to be able to describe the full distribu­
tion of residence times, including the fate of particles with a 
very large residence time. In practice, of course, the equation 
is integrated backwards from some finite time T  at which the 
real conditions are unknown. As a result, the solution will not 
provide the exact mean residence time until the uncertainty 
about the initial conditions has disappeared. Intuitively, one 
can expect that the effect of the initial conditions smears out 
after a period of integration of several multiples of the resi­
dence time.

A more accurate appraisal of the effect of the initial con­
ditions can be given by a careful analysis of Eq. (3). Clearly, 
the uncertainty about what happens after the “initial” time 
T  affects only the cumulative distribution D(t,  x, x) in the 
range of r  > T —t. As t decreases, while proceeding with the 
backward integration, an increasing portion of the distribu­
tion of the residence time is uncovered.

If the initial condition at time T  is D = 0, then D  is also 
zero for all r > T —t,

f  D(t ,  x,  X ) d x  = f
Jo Jo

T - t

D(t,  x,  X ) d x (7)

and the solution 0 of Eq. (6) characterizes only the water 
parcels with a residence time smaller than T —t. While 0 
tends to the mean residence time for large values of T —t, the 
actual rate of convergence is not known.

To quantify the proportion of water parcels whose contri­
bution is taken into account in 0, we propose to solve the 
adjoint problem

dC* r -i
T + v ■ VC* +  V • 

dt T 1
>S <1 o

1

=  0

C*(T,  x) =  S®(x)

in addition to Eq. (6). After Delhez et al. (2004), the solution 
C j ( t ,  X)  of this problem can indeed be interpreted as the pro­
portion of the initial point release at (t, x) that is still present 
in the control domain at time T. Conversely,

C U t ,  x) EE 1 -  C U t ,  x) (9)

represents the proportion of water parcels whose residence 
time can be computed with a model run in the time window 
[í, T]. This quantity can be used to quantify the represen­
tativeness of the solution of Eq. (6) as the mean residence
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E. J. M. Delhez: Transient residence and exposure times 3

time. Therefore, the scalar field with concentration C £(i, x) 
is called the “control scalar” in this paper.

To clarify the concepts introduced in this section, it is in­
teresting to consider the highly idealized system of a one­
dimensional domain x e  (—00, 00) and compute the mean 
residence time in the control domain &>=(—00, 0]. We as­
sume that the velocity field is uniform but varies with time as 
in Fig. 1. Diffusion is first neglected to ease the understand­
ing.

From the discussion above, the residence time is obtained 
as the solution 0 of

90 90
—  w(i)—  1 — 0, x  € co
dt dx

0(i, 0) =  0 when u(t) > 0
(10)

This equation must be integrated backwards from some “ini­
tial” time T  taken here as T = 3 T  (Cf. Fig. 1). As the true 
“initial” conditions at that time are unknown we take

0 (7 \x )  =  0 ( I D
The solution of the problem Eqs. (10-11) at different times 
is shown in Fig. 2.

At time t = 2 T ,  the residence time varies linearly between 
7  at x = —U T  and 0 at x= 0 . This is precisely the time for 
a water parcel to be advected from its location at t = 2 T  to 
the boundary of the control domain by the velocity field U 
acting between t = 2 T  and i= 3 T .

The residence time for x <  — U T  seems to be a constant, 
equal to the elapsed time T  of the backward simulation. This 
is however an artefact of the initialization of the computation 
at time T . The water parcels released at x <  — U T  at time 
t = 2 T  do not have time enough to exit the control domain; 
they are still in co at t= T .  Therefore the residence time of 
these water parcels cannot be settled since their exit time is 
unknown.

The resolution of the appropriate form of Eq. (8),

d C j

~ d T
u{t)-

9CÍ
dx

=  0, x  e co

C * ( T , x )  =  1, 

C*(t,  0) =  0

x  e co (12)

when u(t) > 0

is useful to identify the part of the solution of Eq. (10) that 
is affected by the initialization and/or cannot be interpreted 
as the residence time. The solution C j  plotted in Fig. 2 con­
firms that the particles located at x < —U T  at time t = 2 T  do 
not leave the domain during the simulation period.

A quick look at the distribution of the control scalar at 
t = T ,  tells us that none of the particles present in the control 
domain at this time can leave the control domain before t= T .  
Their residence time is therefore unknown. The value of 0 is 
just a lower bound of the residence time.

A similar analysis can be done from the results at i= 0 . In 
this case, the residence time increases linearly from zero at

u ( t )

3U

2 r T  =  3 7

-2 1 1

Fig. 1. Temporal evolution of the velocity u(t).

the origin to T  at x = —3 U T .  The residence time cannot be 
computed in the leftmost part of the control domain.

Similar results are obtained if some diffusion is added to 
the dynamics (Fig. 2). In this case, one must solve

90 90 920 „
  U ( t  )   -(- K  — 0,
dt dx d x 2

x  e co

9{T, x)  =  0, 

0(i, 0) =  0 

and 

9C*
u(t)~

dCt
dt dx

C * ( T , x )  =  1,

C U t ,  0) =  0

x e 00

d2C* 

x  e co

(13)

=  0 , x  e co

(14)

by backward integration from t= T .  Similar conclusions are 
obtained with, of course, smoother spatial distributions of 
the residence time and of the control scalar C j .  Because of 
diffusion, the initialization is seen to affect the results in a 
larger part of the control domain and/or for earlier times t. 
The spatial distribution of the control scalar is not strictly 
equal to unity in the control domain, even in its leftmost part. 
This shows that some water parcel can now escape the con­
trol domain by diffusion within the studied time window. In 
such areas, 0 provides a lower bound for the residence time 
but cannot be interpreted as a valid approximation of the res­
idence time unless C j  is close to zero.

4 A priori estimate of the initialization time

The computation of C j  is useful to check the influence of the 
initialization a posteriori, i.e. once the simulation has been
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4 E. J. M. Delhez: Transient residence and exposure times

t = 2 r e /T

UT UT
t = T e / T

UT UT
e / T

UT UT

Fig. 2. Temporal evolution of 0 and C j  from a backward integration o f the equations for the mean residence time from t= T .  Results without 
diffusion (thick curve) and with diffusion (thin curve, k = U 2T /4).

carried out. For practical applications, it is also desirable to 
have some a priori estimates of the spin-up time. A com­
promise must indeed be found between the necessity to take 
the “initial time” T  as large as possible to remove the effect 
of the initialization and the wish to reduce the length of the 
numerical simulations. Obviously, the ideal duration of the 
simulation depends on the residence time it self; the larger 
the residence time, the larger the duration of the simulation. 
As a rule of thumb, one could argue that the simulation win­
dow [i, T] should be as large as twice the mean residence 
time for the results at time i to be significant. As the resi­
dence time is not known a priori, rough estimates based on 
simplified models can be used to choose T.

In an advection dominated flow, the backward integration 
of Eq. (8) produces a front generated at the boundary of the 
control domain and moving into it. If U c denotes the char­
acteristic velocity of the flow and if the model is allowed to 
spin-up for A í, then the space swept by the front during that

time interval can be characterized by the advective length 
scale UcAt.  In the meantime, horizontal diffusion smears 
out the front over a length scale which is some multiple a,  
say a=3,  of the diffusion length scale V K c A t  where K c is 
some characteristic (explicit and implicit) horizontal diffu­
sion coefficient. This spreading reduces the influence of the 
boundary signal in the interior of the control domain. There­
fore, C j  will be close to zero only at locations whose dis­
tance to the outflow boundary of the control domain is less 
than

Cc = U c A t  -  W K cA t  (15)

At such locations, the residence time can be reasonably ob­
tained from the solution of Eq. (6) after a spin-up time of Aí. 
If L  denotes the horizontal dimension of the whole control 
domain, then the model should be allowed to spin-up for Aí 
such that

L < Cc = U c A t  -  3+/KcA t  (16)
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The estimate (15) applies reasonably well to the 1-D case 
discussed above if the reversal of the flow (Fig. 1) is properly 
taken into account. For instance, considering the initializa­
tion at t = T  and looking at the results at t= 2 T ,  Eq. (15) gives 
(taking U C=3U  and K C= U 2T /4)

Cc =  -1 .5  U T (17)

which confirms that the residence time computed by Eq. (6) 
cannot be considered to be significant at any point of the 
control domain (Fig. 2). For the conditions prevailing for 
t e  [0, T]  (U C=3U  and K C= U 2T /4) Eq. (15) predicts that 
the initialization at time t = T  would produce reasonable es­
timates of the residence time at i= 0  for

x  >  1.5U T  (18)

which can be confirmed by inspection of Fig. 2.

5 Residence time vs. age theory

The two Eqs. (8) and (6) are very similar to the two equation 
system introduced by Delhez et al. (1999) to compute the age 
of tracers. In the case of a conservative tracer, these can be 
written as

SC
—  +  v . VC =  V • ( K ■ VC) 
dt

and

da
—  +  v . V a =  C +  V • ( K ■ Va)  
dt

(19)

(20)

where C is the concentration of the tracer and a  is the so- 
called age concentration. The mean age ä is related to C and 
a  by

ot
a =  — 

C
(21)

The method discussed here for the computation of the 
residence time can therefore be understood as an exten­
sion of the Constituent-oriented Age Theory (Delhez et al., 
1999; Deleersnijder et al., 2001; Delhez and Deleersnijder, 
2002). This consolidated theory is hence called “Constituent- 
oriented Age and Residence time Theory” (CART).

In the system (19)—(20), C measures the concentration of 
the tracer that, taking into account the effect of initializa­
tion, contributes to the age concentration. It plays therefore 
a similar part as the control scalar CJ. in the computation of 
the residence time. The age concentration a  accumulates the 
contribution to the mean age of the different tracer parcels 
forming C. It is comparable to 9.

From this similarity of the concepts, it is tempting to mod­
ify the definition of the mean residence time according to

as only the water parcels forming C J are taken into account 
in 9. This ratio would be interpreted as the mean residence 
time of the water parcels in C J. However, this approach is 
not appropriate. The residence time is a Fagrangian property 
inasmuch as it can be computed for each and every water par­
cel by attaching a “virtual clock” to each parcel and recording 
its exit time from the control domain. But the path of a single 
virtual water parcel subjected to Fickian diffusion does not 
make sense in its own. The paths of different parcels form­
ing a given patch are not independent from each other. This 
is best demonstrated by the contradiction which arises if one 
selects the parcels accounting for C j(io , x ) = l — C j(io , x) at 
some initial time to<T  and use this as initial conditions of a 
forward simulation: while the definition of C J implies that it 
vanishes in the control domain at time T , the forward simu­
lation will produce a non zero distribution at that time. The 
particles accounting for C j(io , x) all manage to escape the 
control domain only because other particles immersed in the 
same diffusive environment remain in co. With the Fickian 
model of diffusion, it is impossible to separate the fate of the 
particles that leave the control domain within a given time 
window and those that do not. The arguments leading to 
Eq. (22) are therefore inappropriate.

9
(2 2 )

6 Residence time and exposure time

The physical interpretation of 9 as the mean residence time 
in the control domain co depends on the boundary conditions 
used to solve Eqs. (3) or (6).

The residence time is usually defined as the time taken 
for a water parcel to leave the control domain for the first 
time (e.g. Bolin and Rhode, 1973: Takeoka, 1984: Zimmer­
man, 1988: Monsen et al., 2003). To compute this diagnostic, 
called strict residence time in Delhez et al. (2004), Eq. (3) or 
Eq. (6) must be solved with homogenous boundary condi­
tions prescribed on the boundary Sco of the control domain 
co. In particular, 9 must vanish at the boundary of the control 
domain.

With such boundary conditions, water parcels leaving 
the domain at some time are not allowed to re-enter and 
D(t,  x, x), which represents the mass in the control domain 
at time i + r  after a unit injection, is a decreasing function 
of r . This decreasing behavior is of course expected from 
the interpretation of D  as a cumulative distribution function. 
It is also required to transform the usual definition of the
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6 E. J. M. Delhez: Transient residence and exposure times

t = 2 r e /T

UT UT

t = T e /T

UT UT

t  =  0 e /T

UT UT

Fig. 3. Temporal evolution of 0 and C J  from a backward integration of the equations for exposure time from t = T .  Results without diffusion 
(thick curve) and with diffusion (thin curve, k = U 2T / A ) .

residence time (1) into (5) along

Í 1 dmn x)
9(t, X )  =  I x dm(t x̂) =  — I t  ------------- +  x)dx

Jo ’ Jo dt

0 JofJo
t  + r)

pO O

/  +  r ) d x
Jo

pO O

I D(t,  r ,  X ) d x  = &(t, x) 
Jo

(23)

(assuming that m(t X) decreases to zero for large r).
In Delhez et al. (2004), it is proposed to solve Eqs. (3) 

or (6) with boundary conditions allowing the water parcels 
to re-enter in the control domain. In this case, the mass 
rñ(t,x)(t+x) is no longer a decreasing function of the delay 
x. Therefore, the first equality in Eq. (23) is not valid and 
the solution of Eqs. (3) or (6) cannot be interpreted as the 
residence time any more. Still D  and 9 have an interesting

interpretation: they can be regarded as measures of the to­
tal time spent by the water parcels in the control domain. In 
particular, 9 measures the area under the curve rh(t,x){t+x) 
for the whole range of values of r  (or r  in [0, T —t] for finite 
range simulations). We propose therefore to call this quantity 
“exposure time”.

The concept of exposure time and its computation can also 
be demonstrated with the idealized one-dimensional system 
introduced above. This time, Eqs. (6) and (8) must be solved 
in the whole spatial domain x  e  (—oo, oo) without prescrib­
ing auxiliary conditions at the boundary x = 0  of the control 
domain. The results are shown in Fig. 3.

At all times and locations, the value reported for 9 mea­
sures the total time spent by the water parcels in the control 
domain between the current time t and the initialization time 
T. The concentration CJ. of the control scalar can be used to 
identify the water parcels that are still in the control domain 
at t = T  and those which left (and did not re-enter) the domain 
before that time.

Ocean Science, 2, 1-9, 2006 www. ocean-science.net/os/2/1/
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t / r

Fig. 4. Temporal evolution of the location (thin curve) and exposure 
time (thick cuive) o f particles released a t.x = —X.5UT  (plain cuive) 
and x = - 0 .7 5 t /T  (dashed cuive) at time f= 0.

At t = 2 T ,  the spatial distributions of 9 and C j  are iden­
tical to those computed in the previous section. This is 
of course due to the fact that the velocity is positive for 
t e (2T , 3T ), i.e. that all the water parcels are leaving the 
control domain.

Between t = 2 T  and t = T , all the water parcels that left the 
domain are advected back into the control domain by the re­
versing flow (Fig. 1). The value of 9 plotted in the left panel 
for t = T  is affected by the initialization at t = T  in the range 
x c U T  as shown by the value of C j  in this part of the do­
main. The results for x > U T  are not affected by the initial­
ization. The values reported for 9 in this range can therefore 
be understood as the true exposure time of the water parcels, 
i.e. as a measure of the time spent by the water parcels in the 
control domain. This measure is representative inasmuch as 
the water parcels have left the control domain before t= T .  
Of course, a reversal of the flow at t > T  could however push 
the parcels back into the control domain at later times.

Particles in x < — 2 U T  at f= 0  are still in the control do­
main at t = T  while those located at x > —2 U T  at time f= 0  
have all left the control domain at t= T .  The latter exhibit 
exposure times between 0 and 2T .  The stair case distri­
bution of 9 reflects the different paths of the parcels. As 
shown in Fig. 4 in the particular case of particles released at 
x = —1.5U T  and jv= —0.75U T ,  some particles are present in 
the control domain during two distinct time intervals while 
others spent their time in co in one single time interval. In 
both cases, the exposure time is the accumulated time spent 
in the control domain.

356" 358 " 0 " 2 " 4 "

2" 52 "

forth ß e aU.K.

B e lg ium  51

English Channel0‘ 50 °

F ran ce
Control region

9 ‘ 49 °

Fig. 5. Schematic view of the general circulation in the English 
Channel and location o f stations A and B.

Similar results are obtained when diffusion is added to the 
system (Fig. 3). As for the residence time, the spatial dis­
tribution are smoother and the effect of the initialization is 
increased by diffusion. This last effect appears even worse 
in Fig. 3 than in Fig. 2. There is indeed no strong boundary 
condition at x = 0  which can constrain the solution and make 
it converge faster.

7 Realistic application

The concepts introduced above are illustrated here with 
results of realistic simulations carried out with a three- 
dimensional hydrodynamic model of the Northwestern Eu­
ropean Continental Shelf (Delhez and Martin, 1992). The 
model domain covers the whole shelf between 48° N and 
62° N. The shelf break (200 m isobath) is the Western bound­
ary. The model horizontal resolution is 10'x 10' in longitude 
and latitude. Sigma coordinates, with 10 levels, are used in 
the vertical.

A schematic description of the residual circulation in this 
region is shown in Fig. 5. In addition to this picture, the 
region is known for its strong tidal signal with a characteristic 
tidal velocity of about 1 m/s.

For this illustration, the Eastern Basin of the English Chan­
nel is taken as control domain (Fig. 5). The residence 
time and exposure time are computed from the results of 
(backward) simulations running from September 1995 to 
July 1993. Realistic 6 hourly wind forcing data (NCEP- 
reanalysis) are used to force the model.

The Figs. 6 and 7 show time series of the residence time 
and exposure time and related control scalar concentrations 
at the surface at two stations A and B in the control domain 
(see Fig. 5 for the location of these stations). Snapshots of 
the spatial distribution of the residence time can be found in 
Delhez et al. (2004).

In both Figs. 6 and 7, the concentration of the control 
scalar is seen to decrease with a time scale that is of the same
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1 /7 /1 9 9 3  1 / 1 /1 9 9 4  1 /7 /1 9 9 4  1 /1 /1 9 9 5  1 /7 /1 9 9 5
150

125

lO O

75

50

25

0
-800 700 -600 -500 -400 -300 -200 -100 0

T im e (day)

1 /7 /1 9 9 3  1 /1 /1 9 9 4  1 /7 /1 9 9 4  1 / 1 /1 9 9 5  1 /7 /1 9 9 5
30

20

10

0
-800 700 -600 -500 -400 -300 -200 -100 0

Fig. 6. Time series o f the residence time (thick solid curve) and 
exposure time (light solid curve) at station A (see Fig. 5 for loca­
tion). The corresponding time series for the concentration o f the 
control scalar (right axis) are plotted with dotted lines (thick curve 
-  residence time/light curve = exposure time).

Fig. 7. Time series of the residence time (thick solid curve) and 
exposure time (light solid curve) at station B (see Fig. 5 for loca­
tion). The corresponding time series for the concentration of the 
control scalar (right axis) are plotted with dotted lines (thick curve 
-  residence time/light curve = exposure time).

order of magnitude as the mean residence/exposure time. 
The control scalar for the residence time decreases slightly 
more rapidly than its counterpart for the exposure time. The 
potential biais introduced by the initialisation procedure can 
be neglected after about 220 days at station A and after about 
40 days at station B.

The time average values of the residence times at sta­
tions A and B are, respectively, around 85 and 7 days. As 
expected from the definition of the two concepts, the expo­
sure time is larger than the residence time at all times and 
locations.

The differences between the two concepts are small at sta­
tion B which is located close to the downstream boundary of 
the control region. At station A, on the contrary, large dif­
ferences are computed. The residence time at this location 
shows large temporal oscillations which do not appear in the 
time series of the exposure time. These oscillations are in­
duced by episodes during which the influence at station A of 
the western boundary of the control domain increases (These 
events are poorly sampled by the 10 day model outputs and 
will be the subject of further investigations).

8 Conclusion

The method introduced by Delhez et al. (2004) provides a 
versatile tool to diagnose complex flows. In this paper, we 
showed how the issues of boundary conditions and initial 
conditions must be approached.

According to the kind of boundary conditions that are ap­
plied to the numerical tracer, the method delivers the true 
residence time or the exposure time. Both concepts provide 
interesting information about the combined effects of advec- 
tion and diffusion and are useful in different contexts. Aware­
ness about the differences of the two concepts is essential for

the correct interpretation of these diagnostics. The true res­
idence time in a control domain co measures the (average) 
time spent by water/tracer parcels in co until they leave this 
control domain. The newly introduced exposure time mea­
sures the accumulated time during which a control region is 
affected by a pollutant released in this region, even if the 
presence of the pollutant in co is intermittent.

Both academic and realistic examples demonstrate the dif­
ferent dynamics of these two diagnostics.

By resorting to the computation of a control scalar, the ef­
fect of the initialization on the computed residence/exposure 
times can be assessed. The concentration of the control scalar 
must be as small as possible to avoid any bias of the results 
by the initialization procedure.
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