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ABSTRACT

The North Sea region is surrounded by highly industrialised and densely populated areas and
is thus faced with a number of environmental threats, eutrophication being one of them. This
is in particular a problem in the coastal and estuarine areas, which receives large amounts of
riverine nutrients. Studies have shown that changing the ratio of nitrogen and phosphorous
could potentially lead to a shift in the phytoplankton communities, towards more frequent
nuisance algal blooms. The OSPAR Commission, which followed the Paris and Oslo
Commissions, drew a set of Ecological Quality Objectives (EcoQQ’s) in order to assess the
effectiveness of reducing the river nutrient loads by 50%. All member countries must assess
their coastal areas in accordance with the OSPAR Common Procedure and the EcoQQO’s. The
3-dimensional, coupled physical-chemical-biological model NORWECOM was used in order
to assess the long-term effects of reducing riverine DIN and DIP by 50% and 90% on three
environmental parameters (N:P, chl a,,,x and O,,). The model results showed that there was a
decreasing response gradient from near-shore to offshore, where the largest effect for all
parameters was identified along the Dutch coast. The EcoQQO’s of N:P ratio and the chl amax
concentrations were achieved for most areas, whereas the O concentrations had no or very
low response to the modelled nutrient reductions. The correlation between large scale
meteorology (NAO) and the model parameters seemed to be highest in the German coast and
offshore and Dutch offshore, whereas local winds had the highest correlation with the Dutch

coast.
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1. INTRODUCTION

The North Sea is one of the most well studied shelf seas in the world (e.g. Brion et al.,
2004, Ducrotoy et al., 2000, Jarvie et al., 1997, Reid et al., 1990) and covers the area between
the British Isles and the west coast of Norway south of 62°N (Ducrotoy et al., 2000). This
shallow sea, average depth ~90m, is surrounded by highly developed and industrialised
countries. The shallowest areas are found in the south, the Wadden Sea north of the
Netherlands and the German Bight. The deepest part of the North Sea is the Norwegian
Trench, reaching down to about 700m (Ducrotoy et al., 2000). The economic and political
importance of the sea is evident in the largescale fisheries, aquaculture, shipping and

petroleum activities taking place during the last century.

1.1. Nutrient inputs to the North Sea and political management

Nutrient enrichment, due to anthropogenic activities, has been identified as the main
cause of eutrophication in coastal areas (Cloern, 2001). This is in particular linked to river
discharges and enhanced concentrations of inorganic nitrogen in estuaries. The initial
investigations of the coastal systems response to nutrient enrichment was based on knowledge
from freshwater eutrophication. Over the past 30 years studies have shown that the coastal
zone have a more complex response to nutrient enrichment, with direct and indirect effects
(Cloern, 2001). The North Sea is a complex system with large volumes of freshwater entering
the coastal zone which is mixed with Atlantic Water further offshore. Although the inflowing
Atlantic Water contributes the main portion of nutrients, river loads control the estuarine areas

and this nutrient signal can also be identified further offshore (Hydes et al., 1999).
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Table 1.1. Table 1.1 and 1.2 provides an overview of the reported national reductions of N and P and the
measured load reductions. There is a clear discrepancy between the reported and the measured loadings
of nutrients (OSPAR, 2003a).

Source Load
Country OSPAR 2001 report OSPAR 2003 report
1985-1995 % reduction N 1985-2000% reduction N 1985 2000 %reduction N
Belgium 19 19 Nl 58352 Nl
Denmark 24 43 60220 47039 22
France Nl N 142969 40343 72
Germany 26 38 247410 199250 19
The Netherlands 10 19 455000 372860 18
Norway 20 34 20972 23160 -10
Sweden 22 28 39524 42702 -8
Switzerland 19 27 NA NA NA
UK 12 -10 (1985-1996) 319000 355000 -11
Table 1. 2.
Source Load
Country OSPAR 2001 report OSPAR 2003 report
1985-1995 % reduction P 1985-2000% reduction P 1985 2000 %reduction P

Belgium 45 58 Nl 4170 NA
Denmark Nl 73 2376 1267 47
France Nl N 16604 11867 29
Germany 64 66 16560 8350 50
The Netherlands Nl 71 43300 24250 44
Norway NI 62 643 1035 -61
Sweden 23 34 880 935 -6
Switzerland 61 63 NA NA NA
UK Nl N 58400 33000 43

Monitoring of phytoplankton blooms has been conducted frequently in the southern
North Sea. Some ofthe most productive areas are found in this region due to large fresh water
discharges and high nutrient availability. A growing concern has recently been how changing
nutrient ratios would affect primary production and in particular phytoplankton spéciation

(Muylaert et al., 2006).

Since the 1980’s there has been an abrupt shift in biomass and nutrient concentrations,
in particular with regard to nano-flagellates. A shift in phytoplankton spéciation could reflect
changed N:P ratios due to eutrophication and/or a shift in the hydrodynamic conditions
triggered by the NAO (Wirtz and Wiltshire, 2005).

Since 1988 the basic parameters controlling a Phaeocystis sp. bloom has been studied through
field observations, process-level studies and numerical modelling and experimentations
(Lancelot et al.,, 1997). The main issue in managing the nutrient situation in the North Sea is

the paradox of monitoring nutrient input versus monitoring the effects of nutrient inputs (de
11



Jonge, 2006). The only long-term series which monitors the effects of nutrient inputs are the
Marsdiep series on the coast of the Netherlands, the Helgoland Road series of Germany and

the Continuous Plankton Recorder (CPR) (de Jonge, 2006).

Muylaert ef al (2006) monitored the spatial variation of phytoplankton communities
off the Belgian coast during the spring bloom. The changed nutrient ratios have resulted in a
shift from N or P limitation to Si limitation during the diatom spring bloom. As a result large
amounts of N and P have thus become available for non-diatom algae growth later in the
season (Muylaert et al., 2006). In particular, the undesirable algae Phaeocystis globosa
frequently forms blooms in the Southern Bight of the North Sea (Muylaert et al., 2006). The
Phaeocystis species are one of the most widespread marine phytoplankton, forming nearly
monospecific blooms in several coastal and oceanic waters (Schoemann et al., 2005).
Although the blooms are rarely toxic, the gelatinous colonies can have negative impacts on
the ecosystem as well as on commercially important stocks (fish, mammals and crustaceans
etc) due to low oxygen levels, net clogging and alteration of fish taste (Schoemann et al .,
2005). Phaeocystis is thought not to be P limited as they have shown to be able to grow on
organic phosphorous, a feat which makes them particularly adapted to grow in high N:P

environments such as the North Sea (Schoemann et al., 2005).

The political management of marine eutrophication, defined as over-enrichment of a
water body with nutrients, resulting in excessive growth of organisms and depletion of oxygen
concentration, has historically been closely linked to marine pollution (de Jonge, 2006). The
International Conference on Waste Disposal in the Marine Environment, held in Berkeley,
California, in 1959, initiated national assessments of their sewage treatment based on
requirements from the World Health Organisation (WHO). Three years later, in 1962, the
International Conference on Water Pollution Research was held in London which mainly
focused on research related to mixing and dilution of sewage in coastal waters (de Jonge,

2006).

The Agreement for Cooperation in dealing with Pollution of the North Sea by oil (the
Bonn Agreement) of 1969 marked a turning point in pollution prevention in the Northeast
Atlantic and also acted as the starting point for the processes leading to the Oslo and Paris

Conventions (OSPAR, 2004). Pollution of the North Sea by human activities was now on the
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agenda and in 1972 the Oslo Convention for the prevention of Marine Pollution by Dumping
Jfrom Ships and Aircraft was signed. Two years later, in 1974, the Paris Convention for the
Prevention of Marine Pollution from Land-Based sources was signed (OSPAR, 2004).
In 1992 there was a ministerial meeting in Paris where the 14 signature states to the Oslo and
Paris Conventions were represented. The Ministerial Meeting agreed upon merging the two
conventions into the OSPAR Convention for the protection of the Northeast Atlantic (OSPAR,
2004). The OSPAR convention did not enter into force until 1998, but was practically
functioning straight after the 1992 Ministerial Meeting. The work of the OSPAR Convention
is divided into four main areas:

1. Protection and conservation of ecosystems and biological diversity

2. Hazardous substances

3. Radioactive substances

4. Eutrophication
(OSPAR, 2004).

In 1988, the PARCOM Recommendation on reducing nutrients to the North Sea was
signed by the contracting parties. This paper outlined that the inorganic nitrogen and
phosphorous inputs to the coastal areas should be reduced by 50% of the 1985 concentrations
(PARCOM, 1988). In order to combat eutrophication, OSPAR developed the Common
Procedure for the Identification of the Eutrophication Status of Maritime Areas of the Oslo
and Paris Convention (1997) which was updated in 2005 (OSPAR, 2005a). This is a national
process where the results are submitted to the OSPAR Eutrophication Committee (EUC). The
contracting parties report on source loads and total loads of DIN and DIP in the rivers (see

Table 1.1 and 1.2).

The international management of the North Sea basin is a rather complex story, where
EU directives, such as the Water Framework Directive (WFD), Nitrate Directive (ND) and the
Urban Wastewater Directive (UWWD), to a large extent overlap the governance area of
OSPAR. Whereas the OSPAR strategy are more directly pointed at source reduction of
nutrients, the new EU WFD have quite ambitious goals of achieving good ecological status in

European coastal waters by 2012 (EC, 2000).
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1.2. The circulation patterns and environmental conditions of the North Sea

The study ofthe North Sea dynamics is often thought to have started with the
establishment ofthe International Committee for Exploration ofthe Seas (ICES) in 1902, but
the ICES initiative was based on the work oftwo Swedish researchers, Ekman and Petterson,
who studied the link between herring fisheries and hydrography in the 1890’s (de Jong, 2006,
Smed, 1983). The ICES work has always been focused on the link between hydrodynamics
and biology where one ofthe main research areas have been the dependence of phytoplankton

growth on nutrients, light, vertical circulation and stratification (Smed, 1983).

One of'the earliest attempts to visualise the residual currents in the North Sea was
done by Béhnecke in 1922 and his charts, deduced from the salinity distributions, have been

widely used in the oceanography community (Otto, 1983).

V  Central No*"*

The width of arrows Is indicative of the
magnitude of volume transport. Red arrows

indicate relatively pure Atlantic water.

Figure 1.1. Map of the circulation pattern and a visual overview of the volume transport of the different
water masses in the North Sea. The red arrows indicate relatively pure Atlantic water and the width of the
arrows indicate the magnitude of the volume transport. Obtained from Turrell (1992).
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The Greater North Sea covers an area of approximately 750 000km* (OSPAR, 2005c¢)
and the inflow of Atlantic water coupled with the effect of the Coriolis force together drive
the cyclonic circulation within the North Sea basin (Otto et al., 1990). The circulation pattern
and mixing regime of the North Sea is, in addition to the Atlantic inflow, strongly influenced
by fresh water entering from continental Europe, UK, the Scandinavian peninsula and the
Baltic Sea (Ducrotoy et al., 2000). About 1/3 of the fresh water entering the basin originate
from Scandinavian melt-water. The large European continental rivers which drain into the
North Sea include; the Meuse/Rhine, Scheldt, Ems, Elbe, Humber, Thames, Weser and Seine.
The discharged river water creates freshwater induced circulation, as is evident in surface
plumes of fresher water. Due to the well mixed environment of the southern North Sea, some

of these plumes are rather poorly defined (Ducrotoy et al., 2000, Otto et al., 1990).

The fluxes of Atlantic Water into and out of the North Sea vary seasonally. The main
controlling factor is the North Atlantic Oscillation (NAO) index, which is the pressure
difference between the Azores high pressure zone and the Iceland low pressure zone. Positive
NAO index causes strong south-westerly winds and thus favours an increased inflow into the
North Sea, whereas negative NAO index yields more variable winds and usually colder winter
conditions with easterly winds (Winther and Johannessen, 2006). The index is usually
stronger during winter than summer, so winters will be associated with higher inflows of

Atlantic Water than summer (Winther and Johannessen, 2006).

The most important inflow area of the Northern North Sea is the subsurface inflow
occurs along the western edge of the Norwegian Channel followed by the Orkney-Shetland
passage (the “Fair Isle current”) and then the Pentland Firth inflow between Scotland and
Shetland (Prandle, 1980, Turrell, 1992). The main outflow of North Sea waters occurs along
the Norwegian Coastal Current (NCC) (Otto, 1983). The exchange between the Skagerrak and
the Kattegat are highly affected by the wind conditions. The net inflow from the Baltic Sea
into the Kattegat has its maximum in spring and minimum in late autumn, and the net inflow
from the Kattegat to the Skagerrak has its maximum in summer and minimum in winter
(Svansson, 1980). These patterns suggest the importance of the seasonal variations in

freshwater runoff in the Baltic Seas.
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Backhaus and Maier-Raimer (1983) compared the residual currents in the North Sea in
March and August, where the model simulations looked at the patterns with and without the
wind-stress component. They found that the circulation pattern of the North Sea had a strong
seasonal signal, where the most pronounced difference was found in the northern North Sea in
late winter (March). In addition they concluded that density gradients and wind-stress were
more important than the tidal component when looking at the total residual currents in the

North Sea basin (Backhaus and Maier-Raimer, 1983).

1.3. Ecosystem modelling

Pelagic eutrophication modelling should focus on nutrient enrichment relative to
dilution and losses, increases in biomass and primary production and ultimately the
consequences of such developments. Some of the main modelling issues are related to the
complexity of the physical and biochemical environments. In particular the complexities
involved with chemical and biological parameters are crucial in order to simulate the real-

world effects of nutrient-enrichment.

An important tool for monitoring nutrient and ecosystem dynamics are 3D models.
Moll and Radach (2003) made an extensive overview if the existing 3D ecosystem models
which have been developed for the North Sea shelf (Moll and Radach, 2003). The first
ecosystem model to be tested for the North Sea was the NORWECOM model in 1993.
Several other well-known models; ERSEM and ECOHAM (1995), COHERENS (1999) and
POL3dERSEM (2000) followed, all focusing on slightly different parts of the system (Moll
and Radach, 2003). Common for the 3D models was that they initially addressed the pelagic
systems but were later extended to include benthic re-mineralization and sedimentation (Moll

and Radach, 2003).

The NORWECOM model was first applied to simulate mesocosm experiments and
then to simulate the spring bloom of the North Sea. The simulations were verified by field
data and proved to be able to predict several features of the spring bloom (Moll and Radach,
2003). In recent years the NORWECOM model has been applied for ecosystem simulations at
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several occasions, for the whole North Sea system or more localised scenarios such as floods
(Skogen and Moll, 2005, Skogen et al., 2004, Skogen, 1998). NORWECOM is a coupled
physical-chemical-biological model, where the basis of the model is a 3D physical model to
best try and simulate the complex hydrodynamic environment of the North Sea (Skogen et al .,

1995b).

Modelling is an efficient tool for simulating biological effects of nutrient enrichment, but
there are major drawbacks to the method. Most models have a fairly simple biological model
which may or may not include grazing. There are no ecosystem models which simulates all
the interacting trophic levels, as the uncertainties related to these parameters would be too
large to account for by mathematical equations. The physical models also have their
limitations due to the spatial resolution. A 10 x 10 km grid net, such as used by the
NORWECOM in the North Sea, is far to coarse to simulate the processes occurring near
shore. Newer physical models, such as ROMS, enables much finer resolution, but the problem
still arises when larger areas are to be covered (Skogen, 2006, pers.comm.). As pointed out
previously, the NAO has a substantial impact on the circulation pattern of the North Sea.
Attempts have been made to downscale atmospheric models and couple them with physical
models already existing for the North Sea (Adlandsvik, 2006). The coupling of atmospheric

and oceanic models might be the beginning of a new era in regional ecosystem modelling.

1.4. Aim and Objectives

The short term effects of reducing nutrient loads in the North Sea have been
extensively modelled and studied (e.g. Byun et al., 2005, Lenhart, 2001, Lenhart et al., 1997,
Skogen and Moll, 2000, Skogen et al., 2004, Skogen et al., 1995a, Wirtz and Wiltshire, 2005).
A study by Lenhart ef al (1997) showed that when reducing the river DIN and DIP loads by
50% the largest effect could be detected in the coastal areas (15% reduction in primary
production) whereas the offshore areas had little or no response to these reductions. The

model was only run over a two year period (1988-1989) (Lenhart et al., 1997).
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The aim of this study is to identify the long-term effects of reducing the nutrient loads
to the North Sea. In order to achieve an understanding of how the system responds to
inorganic nutrient reductions, the analysis is based on seven boxes scattered around the North
Sea over a period of ten years (1985-1995),. Moreover the results will be linked to existing
environmental targets set by OSPAR, in order to say whether the reductions are sufficient to

achieve the management goals.

As meteorology has been identified as the main forcing in the North Sea, comparisons
between larger scale meteorology and the local meteorology used in the model will be made.
This might give an indication of the importance of larger scale meteorology in the different

regions of the North Sea and whether this influences the modelled parameters.

18



2. MATERIALS AND METHODS

The NORWECOM model has generated the simulation data. Morten Skogen and Henrik
Soiland at the Institute of Marine Research, Bergen, have developed this model in
collaboration with the Institutt for Fiskeri og Marinbiologi and Det Norske Meteorologiske
Institutt. It has been used for various studies regarding primary production, nutrient budgets
and the transportation of particles in the North Sea basin (Skogen et al., 1995a, Skogen et al.,
1998a). It has especially been adapted to model the nutrient-primary production link, as has
been described in several articles and reports (e.g. Skogen and Moll, 2005, Skogen et al,,
2004, Skogen et al., 1995a).

2.1 The NORWECOM model

The NORWegian ECOlogical Model system (http://www.imr.no/~morten/norwecom.html) is
a coupled physical, chemical, biological model system (Aksnes et al., 1995, Skogen et al.,
1998a, Skogen et al., 1995a) and has been validated by comparison with field data in the
North Sea/Skagerrak in various studies (Skogen et al.,, 1997, Svendsen et al., 1996).

The physical model is based on a three dimensional, wind and density driven Princeton Ocean
Model (Blumberg and Melior, 1987). In the present study the model is used with a horizontal
10x10 km resolution in an area covering an extended North Sea (Figure 2.1). In the vertical

direction 21 bottom following sigma layers are used.
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http://www.imr.no/~morten/norwecom.html

Figure 2.1. Overview of the model domain and the bathymetry of the NORWECOM model. The
horizontal resolution is 10 x 10km and the vertical resolution is 21 bottom-following sigma layers.

The chemical-biological model is linked to the physical model through the subsurface
light, the hydrography and the horizontal and vertical water movement (see Figure 2.2). The
prognostic variables in the model are dissolved inorganic nitrogen (DIN), phosphorous (PHO)
and silicate (SI), two different types of phytoplankton (diatoms and flagellates), two detritus
(dead organic matter) pools (N and P), diatom skeletals (biogenic silica), inorganic suspended
particulate matter (ISPM) and oxygen. A complete description of how the NORWECOM
model is set up can be found in Skogen and Soiland (1998).

The processes that are included are primary production respiration, algae death,
remineralization of inorganic nutrients from dead organic matter, self shading, turbidity,
sedimentation, resuspension, sedimental burial and denitrification (Skogen and Soiland,

1998).
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/-Wind
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-Diatom production/biomass

- Flagellate production/biomass

Figure 2. 2. Main components of the meteorologically driven simulation model for phytoplankton
production. Modified from Aksnes, et al (1995).

Phytoplankton is expected to have an exponential growth under optimal conditions and

mortality is given as a constant fraction (10 % day'l) which is assumed to also include

Zooplankton grazing. Small fractions ofthe dead material are instantaneously regenerated as

DIN and DIP (10 % and 25 % respectively) which are then automatically available for uptake

by phytoplankton (Bode et al., 2004, Garber, 1984).

The sedimentation and re-suspension of particulate matter both depend on the bottom stress,
and in the shallow North Sea this is a function of both internal currents and waves (Skogen
and Soiland, 1998). The wave component of the bottom stress is calculated based on data
from the operational wave model (WINCH) run by Det Norske Meteorologiske Institutt
(DNMI) (Reistad et al., 1988, SWAMP-Group, 1985).
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2.1.1. Model set-up, forcing and initialisation

Five different simulations were done with identical forcing and set-up except for the river
nutrient loads. All simulations started on January 1, 1985 and were then run progressively
through to 1995. The model was spun up by running 1985 four times. This is done to ensure
that the model is in equilibrium with the boundary conditions and river loads and thus
eliminate the effect of the initial conditions.
The five simulations include

1. Fixed river nutrient loads to 1985 values (reference run)

2. 1985 values (fixed) but DIN and DIP reduced by 10 %

3. 1985 values (fixed) but DIN and DIP reduced by 50 %

4. 1985 values (fixed) but DIN and DIP reduced by 90 %

5. Actual 1985-1995 river loads
The forcing variables were atmospheric pressure and wind stress, obtained from the European
Centre for Medium-Range Weather Forecasts (ECMWF), four tidal constituents, evaporation,
precipitation and freshwater runoff. The surface heat fluxes were calculated on the basis of

data from the ECMWF (M. Skogen, 2007. pers. comm).

A Flow Relaxation Scheme (FRS) has been used in the model along the boundaries of the
model area. This acts as a buffer zone where the prognostic values near the boundaries are
forced to relax towards monthly climatological fields for the Northeast Atlantic in the
NORWECOM model. The buffer zone is 7 grid cells wide.

In order to keep the model simulations stable a weak relaxation towards climatological sea
surface temperatures (SST) and sea surface salinities (SSS) is done. This implies that during
calm meteorological conditions the surface values will adjust to the climatological values

after about 30 days.

River data (freshwater discharges and nutrient loads) originates from national authorities of
the North Sea countries; Rijkswaterstaat (Belgium and the Netherlands), Arbeitsgemeinschaft
fiir die Reinhaltung der Elbe and Niederscichsisches Landesamt fiir Okologie (Germany),

National Environmental Research Institute (Denmark), The Swedish Meteorological and
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Hydrological Institute and Swedish University of Agriculture (Sweden), the Norwegian Water
Resources and Energy Directorate and the State Pollution Control Authority (Norway). Data

from the United Kingdom are processed from raw data provided by the Environment Agency.

2.2. The North Sea Task Force Sub-regions and model boxes

The model grid covers the entire North Sea, but in order to assess the expected varying

effects of reducing nutrient inputs it is more feasible to look at smaller areas.

In the present study seven boxes, from which data from the model have been
extracted, have been chosen to be used. Five of these are located in the southern and central
North Sea and two are located in Skagerrak (see Figure 2.3).

The five southern North Sea boxes have been used in previous reports produced by the
OSPAR Workshop on eutrophication modelling (OSPAR, 2005b). These boxes were chosen
as they were already defined within the North Sea eutrophication management programme of
OSPAR and their strategic location in relation to the main European rivers (G-C1, NL-C1 and
NL-C2). The offshore boxes (G-O1 and NL-O1) were chosen as they would reflect the system
response of areas which are not immediately influenced by the river nutrient loads.

The self-defined Skagerrak boxes (SK-1 and SK-2) were chosen in order to assess the system
response of this area to nutrient reductions. The hydrological conditions of the two boxes are

very different and they are thus expected to display distinctive responses.

In 1987 a request from the Second Ministerial conference on the Protection of the
North Sea was directed to the International Council for the Exploration of the Sea (ICES) and
OSPARCOM. The request regarded the establishment of a task force who should carry out
work leading, in a reasonable time-scale, to a dependable and comprehensive statement of
circulation patterns, inputs and dispersions of contaminants, ecological conditions and effects
on human activities in the North Sea (NSTF, 1993a). The resulting reports have been used to
describe the physical and environmental conditions of the model box areas. In 1993 the North

Sea Task Force (NSTF) published 13 Quality Status Reports, which aimed to provide an
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overview of the circulation patterns, inputs and dispersions of contaminants, ecological
conditions and human activities in the North Sea (NSTF, 1993). The descriptions of the

physical and environmental status of the modelled boxes are mainly based on these reports.
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Table 2. 1. Overview of the NSTF sub-regions and the boxes within the sub-regions

NSTF Box number and description

Sub-region

NL-C1: Rhine Plume

NL-C2: Frisian Island, coastal
5 G-C1: German Bight

G-01: German Offshore
NL-O1: Oyster Ground

7b

SK-1: Jammerbugt, Denmark
SK-2: The Norwegian Trench, Arendal-Porsgrund (Norway)

2.2.1 Sub-region 4: Rhine Plume and Frisian Island, coastal

Sub-region 4 covers the two Dutch boxes NL-C1 (Rhine plume) and NL-C2 (outside
the Frisian Islands), the Belgian coast and the Strait of Dover. The maximum water depth of
this region is very shallow, only reaching down to 40 metres, which makes this a well-mixed
environment (NSTF, 1993a). The two most predominant estuarine systems in this region are
the Rhine (average discharge of 2200 ms™") and the Scheldt, which drain densely populated,
farmed and industrialised areas (NSTF, 1993a). Freshwater outflow into the estuaries are
regulated by man which leads to alterations of the upstream tidal surge to some extent (NSTF,
1993a).

The bottom topography is characterised by numerous sandbanks which are strongly

influenced and influencing the hydrographical conditions, such as strong tidal currents
(NSTF, 1993a).

The general circulation of the area is defined as anti-clockwise where Atlantic water
enters trough the English Channel and is then mixed with freshwater entering from the rivers.
Water transport and circulation is influenced by the wind direction. Along the Dutch coast the
prevailing wind direction is from the south-west, except April-June where the mean wind
direction is from the northwest (NSTF, 1993a). The residual current has a NE component due

to the Coriolis force confining the Rhine outflow to follow the shoreline and thus allowing for
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other driving forces to influence the circulation patterns. The flushing time of this region is
about three months (NSTF, 1993a). The hydrodynamic processes of this region are dominated
by tidal currents which lead to vertical stirring and well mixed conditions of the water column

(NSTF, 1993a).

Density stratification plays an important role in the front formation in the transition
zone between low-salinity coastal water and the saline Atlantic water (NSTF, 1993a).
Thermal stratification only occur at the northern boundary of the region and low oxygen
concentrations have been observed in the Oyster Ground area in relation with prolonged
periods stratification (NSTF, 1993a). This is a direct result of meteorological conditions as
warm weather creates deeper thermal stratification and thus inhibits both vertical mixing of
water and oxygen in the water column and oxygen production in the bottom mixed layer

(BML).

Nutrients in the region originate both from riverine inputs and oceanic input, where
the inflow of Atlantic water through the English Channel is the largest source of inorganic
nitrogen and phosphates (NSTF, 1993a). The riverine inputs of N and P from the Rhine and
Meuse systems were during the period 1985 and 1990 reduced by 40% (P) and 20% (N). For
the Western Scheldt the reductions of N and P were 39% and 64%, respectively. These values
were calculated using the PARCOM method and only accounts for the inputs into the estuary
and not the actual concentrations in the estuary. They should therefore not be considered
absolute values, as the inter-annual freshwater loadings varies a lot and also because the

numbers do not account for the biochemical processes in the estuary (NSTF, 1993a).

2.2.2 Sub-region 5: German Bight
The G-C1 (German Bight) box of the model is situated in the area defined by the

NSTF as sub-region 5. It covers an area of 32000 km? in the southeastern part of the North

Sea.
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The box covers the north coast of Germany and the western coast of Denmark. The main
freshwater influence comes from the German rivers Elbe, Weser, Ems and Eider, where Elbe

and Weser contributes the largest freshwater volumes.

The thermohaline circulation is influenced by Central North Sea water flowing in from the
north, and Continental Coastal water that is transported northeast from the English Channel.
The water from the German Bight influences the Skagerrak/Kattegat area and can also be
found off the south and south-west coast of Norway.

The mean long-term circulation within the sub-region is a coastal northward flow. (tidal

influenced bottom and vertical stirring)

There is a tendency towards nitrogen eutrophication the last couple of decades related to the
Elbe outflow. Inorganic nitrogen concentrations increase during flooding events, indicating
increased runoff from agricultural land and other nitrogen-rich soils. The phosphorous on the
other hand is added to the river water from fixed point sources and during floods the P
concentrations will decrease due to dilution. The coastal plume, resulting from the Elbe floods
of 87-88, reflected this high N:P ratio which makes P the limiting nutrient.

Phaeocystis blooms coincided with periods of phosphorous limitation.

The German Bight is particularly prone to eutrophication due to the shallow seas
which leads to a small volume to discharge ratio. Helgoland Data shows an increase in
phytoplankton stocks that is probably due to eutrophication. The light conditions are more
important for bloom development than nutrients, so high nutrient concentrations in the
German Bight might not be reflected by elevated primary productivity due to the turbidity of
the water.

The depth range of Eelgrass is a good indicator of ecological status in near shore areas and
along the Jutland coast the potential depth has been considerably reduced. This reflects a

general deterioration of benthic flora in the German Bight area.
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2.2.3 Sub-region 7b: German Offshore, Oyster Ground

Region 7b covers the south central parts of the North Sea. The water enters from the
north (the “Fair Isle”-current), along the English coast. The area is strongly influenced by the
Flamborough front that stretches down to Flamborough Head (UK) where it branches off and
one part flows east towards the German Bight. (NSTF, 1993a).

The region is overall shallow, dominated as it is by the Dogger Bank, and wind is the main
factor influencing the circulation (NSTF, 1993a). The assessment report stresses the point that
the circulation pattern in this region is not very well understood. In Otfo et al (1990) the
southern and central North Sea hydrological conditions have been descried in depth. As this is
a relatively shallow area overall, wind and tidal movements are the main influencing factors

(Otto et al., 1990).

There is a general lack of data concerning offshore nutrient concentrations. It is not a
straightforward assumption that the input into estuaries will be reflected in the coastal waters
due to the complex biogeochemical interactions in the estuary. In addition along-shore
currents may prohibit the anthropogenic signal reaching offshore (NSTF, 1993a). Based on
Continuous Plankton Record (CPR) data, the NSTF for sub-region 7b was not able to find any
temporal trend in inorganic nutrients oftfshore. There are minor spatial differences between the
Dogger Bank area and the Oyster Grounds due to the lack of direct nutrient inputs to the
regions. The report thus suggests that new regions should be made on the basis of the actual

biogeography (NSTF, 1993a).

The spring bloom seems to start earlier in this region than the rest of the North Sea
(NSTF, 1993a). According to the nutrient data, prior to 1993, there were no indications of
eutrophication in the region, but an investigation of the benthos showed a reduction in species
diversity and a shift from long-lived to short-lived species. Whether this is a sign of
eutrophication or of natural variations was not established by the assessment report (NSTF,

1993a).
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2.2.4 Sub-region 8: SK-1 (Jammerbugt, Denmark) and SK-2 (Norwegian Trench, Norway)

Skagerrak is the link between the North Sea and the Baltic Sea. The hydrographical
characteristics of the area are complex due to the mixing of saline Atlantic water flowing in
from the north through the deep Norwegian Trench and the relatively fresh Baltic water
entering from the Kattegat area (Smed, 1983).

Atlantic water is the largest volume of water entering Skagerrak and the AW" (shallow
water) is the most interesting with respect to biology due to its high N, P and Si
concentrations (Table 2.2) (Skogen et al., 1998a). This water enters typically at the Danish
borders of the Norwegian Trench at a depth between 200 to 500 metres (Skogen et al., 1998a).
Water entering from the Southern North Sea is usually very low in nutrients, especially
nitrate, when they reach Skagerrak due to the high production off the Belgian and Dutch

coasts, even in winter (Skogen et al., 1998a).

Table 2.2. Overview of the main water masses in the Skagerrak distinguished during SKAGEX 1.
Obtained from the SKAGEX report by Danielssen et al. (1990)

WATER MASS SALINITY TEMPERATURE COMMENTS

SW, surface water Low nutrients, outgrown;

15-32 10-15 thickness 5-20m
JCW, Jutland High nitrate, low phosphate;
coastal 32-34 10-15 thickness 35m
SNSW Southern Low nitrate, (0 - 1 umol/l)
North Sea Water 34.8-34.9 8-9
CNSW, Central Subsurface nitrate, (2- 5
North Sea Water 34.8-35.0 8-9 wmol/l)
AW " Atlantic Nitrate (0 - 7 mmol/l),
water high 35.0-35.15 8-10 nutrients increasing with
depth
I . ; _
AW ', Atlantic 35.18-35.32 72.8 Nitrate (10 - 15 umol/l)
Water low
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Alongside the SNSW flows the Jutland Current Water (JCW), originating in the
German Bight, and is typically characterised by high nitrate concentrations (high NP ratio).
The salinity increases as this water is mixed with CNSW and AW" (Skogen et al., 1998a).

The Baltic water that enters through Kattegat (at about 56°N) is rapidly mixed to form
a surface layer down to a depth of approximately 10m. This is gradually mixed (both
vertically and horizontally) with water of higher salinities. By the time this water enters the
Norwegian coastline it turns westwards and become Norwegian Coastal water, with surface

salinities of around 25-32 in the upper 10-20 metres (Skogen et al., 1998a).

Wind driven Ekman transport is very important for the circulation of the water masses
in Skagerrak. The inflow of Jutland Current Water (JCW) are frequently blocked from the
Norwegian Skagerrak coast by Atlantic Water forced down by northerly winds (Skogen et al .,
1998b).

The oxygen concentrations and water exchange at depth varies a lot between the two
the Skagerrak boxes. The deep water of the Norwegian Trench are only exchanged due to an
overflow of North Sea Shelf water during cold winters or due to the inflow of Atlantic water
(NSTF, 1993a). After 1987 there were several mild winters that prevented sufficient cooling
of the shelf water and thus restricted the mixing of deep water, which in turn lead to
stagnation and low oxygen concentrations. Then, in 1991, there was an inflow at depth of
high salinity Atlantic water and the oxygen concentrations increased again (NSTF, 1993a).
Measurements along the Danish coast have revealed a decreasing oxygen trend, but no serious
deficiency. As expected, there is a seasonal signal with the lowest measurements taken in late
summer or early autumn with values varying between 4.5 — 7.5 ml/l (NSTF, 1993a).

Along the Swedish Skagerrak coast and the Kattegat a decrease in oxygen has been linked to
increased nitrogen input and primary production, which leads to higher oxygen consumption

(NSTF, 1993a).
The mean winter concentrations of nitrates and phosphates in Atlantic Water amounts

to about 15:1 at the surface, and the deeper water (200-300m) have a ratio of approximately

13:1. The background levels of nutrients are assumed to be equal to that of the southwestern
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Norwegian coast, with N and P at 8-10 and 0.7-0.9 umol/L, respectively (or a ratio of about
11:1) (NSTF, 1993a).

Nitrate concentrations in the German Bight have tripled the last 30 years, with the
largest increase during the 1980’s. This was reflected in 1988, prior to the Chrysochromulina
polylepis bloom, when water from the German Bight and Southern North Sea was identified
in the Skagerrak on the basis of its high N:P ratio (NSTF, 1993a).

2.3. Assessment methods, OSPAR

Category Assessment Criteria

Degree of nutrient enrichment (I) Winter N/P ratio (Redfield 16:1)
Direct effects (1) Maximum chlorophyll a

Indirect effects (I11) Oxygen deficiency

Table 2. 3. Assessment criteria based on the OSPAR Common Procedure (2003a).

Assessing the eutrophication status of the North Sea is a very complex operation,
where several considerations need to be taken into account. A complete assessment of all
system parameters would be far too time and labour consuming to be desirable and thus a few
parameters have been accepted by researchers as indicators for the eutrophication status.

In accordance with current management practices, the OSPAR criteria (Table 2.3 and 2.4) for
eutrophication assessment have been investigated using the NORWECOM model for
simulating the condition of seven North Sea boxes, of which 5 are already defined and used

by OSPAR.

The criteria include winter N and P values (in this work looking at the ratio between N and P),

chlorophyll maximum (Chl a yac) and minimum oxygen values.
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Table 2. 4. The Ecological Quality Objectives from the OSPAR Common Procedure (OSPAR, 2005a).

Background Elevated values

BOX N:P Chla nean g/l Chla gy ug/l Onmin N:P Chla jean ng/l Onmin

G-C1 16 2-4 13-18 > 6 mg/l >24 3-6 4-6 mgl/l
G-0O1 16 2 10-13 > 6 mg/l >24 3 4-6 mg/l
NL-C1 16 10 10 > 6 mg/l >24 >15 4-6 mg/l
NL-C2 16 N/A 16 > 6 mg/l >24 >22-24 4-6 mg/l
NL-O1 16 2-4 N/A > 6 mg/l >24 >4.5 4-6 mg/l
SK-1 16 N/A N/A > 6 mg/l >24 N/A 4-6 mg/l
SK-2 16 N/A N/A > 6 mg/l >24 N/A 4-6 mg/l

Table 2.4 provides an overview of the assessment levels which have been set out in
the OSPAR Common Procedure. The background levels refers to the desirable levels of the
N:P ratio (= 50%), chl amean/max and Omin. The chlorophyll mean levels refer to the mean
concentrations during the growth period, whereas the maximum levels refers to the expected
maximum concentrations during the growth period. The elevated concentrations of
chlorophyll mean are a measure of undesirable levels during a growth period, or an indicator
of eutrophication (OSPAR, 2005a). It should be pointed out that the elevated chlorophyll
mean concentration of the NL-C2 have not been verified by OSPAR (OSPAR, 2005a).

The Redfield ratio for N and P is a very useful tool for quantifying the nutrient
consumption due to biological uptake (Redfield et al., 1963). The model N:P ratio was based
on mean January-February nutrient concentrations for each box. Winter concentrations of N
and P are good indicators for the nutrients available for the springbloom. However, it has been
pointed out that the winter ratio between N and P is more relevant for bloom development
than the concentrations (OSPAR, 2005¢). In the present study the N:P ratio from the surface

layer (upper 5 metres) will be used.

Chl a ax 1s a parameter used as an indication for the quantity of plankton biomass. It
is in reality a measurement of the green pigment in phytoplankton. This is not the most
accurate method for determining the standing stock of phytoplankton, and it does not
distinguish between different species. Nevertheless it is a widely used assessment method due
to its rather simple interpretation. The chl am,, values are based on averaged May values of

the flagellate component in the model.

Oxygen minimum (Omis) 1s the third and last parameter investigated in this study. This

is an indirect effect of plankton blooms, as respiration further down in the water column will
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increase with increasing amounts of organic debris falling out of the surface layer. If the water
column is stratified the effect of such oxygen demand, and possible deficiency, will be
enhanced as deeper water and especially bottom water will become inhibited from exchange

with the oxygen-rich surface layer (Andersson and Rydberg, 1988).

The eutrophication status of the North Sea has been outlined through several reports
and articles by independent researchers and by the OSPAR working groups. The status of the
sub-regions has been assessed using the Common Procedure (OSPAR, 2005a).

2.4. The Cost function

The cost function aims to quantify the discrepancy between models and observations
and was initially intended as a tool for model validation (Berntsen et al., 1996). The function

is defined as

Equation 2.1

Dr = (Fmodel — Fdata)/SDdata
Where Dr is the area average of the absolute values of the cost function field (the model grid),
F is the temporal model or data field and SDgy, is the standard deviation of the temporal
average of the measured field (data) (Seiland and Skogen, 2000, Berntsen et al., 1996).

The cost function values are interpreted such that

0 <Dy < 1 = low discrepancy

1 <Dr <2 = medium discrepancy
2 < Dr = high discrepancy
(Skogen et al., 2006).

In this study, the cost function will be used to quantify the discrepancy between the three
different reduction scenarios (10, 50 and 90%) and the 1985 reference run. Fya, 1s thus
defined as the temporal average of the 1985 reference run and Fp.ae 15 the temporal average
of the 10, 50 and 90% reductions. The resulting values will function as an indicator of the

actual effect of each reduction scenario in relation to each other.
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2.5. The Pearson Correlation

The Pearson correlation (r) has been used in this study to identify different
relationships between the model results and external forcing, such as river nutrient loads and
meteorology. The Pearson correlation is a measure of the correlation between two variables (x
and y). The resulting relationship can either be positive or negative, where (+) 1 indicates full

correlation and 0O indicates no correlation (Wikipedia, 2007).

The correlation has been calculated between all parameters of the 1985 reference run
and the NAO index, the O, concentrations of the 1985 reference run and local wind speeds
and finally between the N:P ratio of the realistic run and measured riverine N:P ratios. In
addition a correlation test was run between the three parameters in order to identify to which

extent they influenced eacother.
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3. RESULTS

3.1. Description of the simulations

The NORWECOM model has been run for five different scenarios. The most

interesting ones, from a management point of view, are the 90 % and 50 % reduction runs.

These give an impression of how the coastal systems would respond to such reductions of the

total nutrient load entering the estuaries.

The 1985 reference run is in reality a representation of the systems response to
changing meteorological conditions as the nutrient loading stays at a constant 1985 level
throughout the ten-year period. This simulation is thus useful as an indicator of the annual
natural fluctuation of the systems and to which extent the reduction scenarios are influenced
by these variations. The simulations also include a realistic run, where the actual riverine
loadings have been modelled for the ten-year period. The 10 % run appears to be similar to

the 1985 reference run and the two will thus not be described in separate terms.

When analysing the model simulations one of the striking features is that for the NP
ratio, and to some extent the Chl anay, the effect of the 50 and 90 % reductions seems to
stabilise after the two first years. The oxygen minimum simulations demonstrate that the

reductions have less effect here than in the N:P ratio and chlorophyll maximum simulations.
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3.2 The box results

3.2.1. The Southern coastal boxes, NL-C1, NL-C2 and G-CI
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Figure 3.1. The Rhine Plume box (NL-C1); a) N:P ratio; b) chi anax concentrations; c¢) Oni, concentrations
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The Rhine Plume (NL-C1)

The N:P ratio (Figure 3.1a) stabilises for all the reduction scenarios after just one
simulation year, of which the 90 % reduction is consistently lower at a stable ratio of around
12. The realistic run fluctuates more and does not seem to have a particular trend apart from
an increase towards the end of the simulation period. This is not strongly reflected in the
chlorophyll data (Figure 3.1b), but in the oxygen data (Figure 3.1¢) minimum values are
reached in 1994, which is the same year as the peak in the N:P ratio.

This should possibly be discussed in the light of the parameters used to determine Chl anax.

The Frisian Island, coastal (NL-C2)

The N:P ratio (Figure 3.2a) for all runs, except the realistic, stabilises after the second
simulation year. The realistic run peaks in 1993/1994 then drop slightly in 1995.
There is a general negative trend in the oxygen results (Figure 3.2¢) and minimum levels are
found in the two final simulation years for all scenarios. The simulations all display the same
pattern apart from the 50 and 90 % runs that deviates the most from the realistic run the two
final years. There is no apparent trend in the chl amax (Figure 3.2b) time-series, but similar to
the N:P ratio simulations the chl amax reduction scenarios seem to reach maximum effect
rather rapidly (minimum values after two simulation years). In contrast to the N:P data the

reductions seems to have an immediate effect on reducing the biomass (chl ay,y).

The German Bight (G-C1)

The German Bight represents an area that is strongly influenced by nutrient loadings
from the major German rivers: Elbe, Weser, Ems and Eider. The model results clearly show
that reductions, both 50 and 90 %, have an effect on the system for all parameters (Figure
3.3a, b and ¢). The temporal N:P ratio (Figure 3.3a) reveals a decrease after the first year for
all simulations, and a slight increase again the next year. There is a relation in the fluctuations

between the reduction scenarios and the reference run.
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3.2.2. The Southern offshore gradient, NL-01 and G-01

16 -
Q
10 -
1984 1986 1988 1990 1992
Year
6.25
5.75 -
Ui
E
0
4.75 -
4.5
1984 1986 1988 1990 1992
Year

1994

1994

1996

1996

100

50%
90%

1985
reference

Realistic

OSPAR
goal

1985
reference
Realistic

- 10%
-50%
90%
1985
reference

- Realistic

-OSPAR
goal

©)

Figure 3. 4. The Oyster Ground (NL-Ol) ; a) N:P ratio; b) chi anax concentrations; ¢) Omni, concentrations

41



4 90%

1985
reference
- realistic

sOSPAR
goal

1984 1986 1988 1990 1992 1994 1996

Year

12 . - # 10%
reduction
m— 50%
reduction
A 90%
reduction
1985
reference
—— Realistic

10 -

OSPAR
goal

1988 1990

b)

Year

1006
50%

A 90%
1985
reference

° 55 - Realistic

OSPAR
goal

4.5
1984 1986 1988 1990 1992 1994 1996

Year

Figure 3. 5. The German Offshore box (G-Ol); a) N:P ratio; b) chi amax concentrations;

¢) Oni,, concentrations

42



Oyster Ground (NL-O1)

In the N:P ratio (Figure 3.4a) the 50 and 90 % reductions does not appear to deviate
significantly from the realistic run and there is no defined trend.
The same pattern is found for oxygen minimum (Figure 3.4c), where a minimum value for all
parameters is found in 1989. Here the 50 and 90 % simulations have a consistently higher

value than the realistic run.

The chl a,, (Figure 3.4b) results were very stable for all simulations, with only one
peak deviating from the rest of the data set. The peak occurs in 1993 and is especially marked

in the realistic, reference and 10 % runs.

German offshore (G-O1)

No clear trend for N:P ratio (Figure 3.5a) or Chl anay (Figure 3.5b). Omin (Figure 3.5¢)
has a fluctuating, negative trend with minimum values for all runs at the final simulation year
(1995). Coinciding with the minimum oxygen values is the biggest spread in the data set. This
does not seem to be linked with chlorophyll concentrations, as the 1995 are lower than both

1993 and 1994.

Result values for NP ratio start to spread after two years (1987) and 90% stays
consistently lower in the period 1986-1995.
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3.2.3. The Skagerrak boxes, SK-1 and SK-2
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Skagerrak, Danish coast (SK-1)

The N:P ratio (Figure 3.6a) fluctuates a lot in the first half of the modelling period and
peaks in1990 for all simulations. The 50 % reduction fluctuates from its lowest point at 18
(1987) to its highest point in 1990 at 30 for the N:P ratio, after that the values decrease
towards the end of the period. The 90 % reduction peaks the same year as the 50 % reduction,
although at a lower level. It fluctuates similarly to the other simulations, but the curve is much
smoother. Both reductions are consistently lower than the realistic run throughout the

simulation period.

For the chlorophyll results (figure 3.6b), the 50 % reduction appears to have an effect,
as this scenario is consistently lower than both the realistic and reference run. Although it
stays low in the first half of the simulation period, it increases towards the end of the period
and closes in on the realistic values again. The 90 % reduction, on the other hand, stayed
consistently lower than the other scenarios throughout the simulation period, where minimum

value was reached in 1990.

There is a positive oxygen trend (Figure 3.6¢) in the model data in the latter half of the
simulation period, but in the beginning of the period there is some fluctuation.
There is little difference between the scenarios; the datasets are more or less identical except

in 1992 where the results deviate slightly.

Skagerrak, Norwegian Trench (SK-2)

The reduction scenarios appears to have an effect on the NP ratio (figure 3.7a), where
minimum values are achieved after only two simulation years for both the 50 and 90 %
reductions. The 50 % reduction fluctuate more than the 90, but stays well below the realistic

run, at a ratio between 15 and 20 throughout the period.

The chlorophyll results (figure 3.7b) display a marked drop in concentration in the
first half of the simulation period. Whereas the trend of the scenarios increases, the 90 % stays
stable at a low between 1.5 — 2.5 pgl™. The trend of the 50 % reduction was also increasing

after the low point in 1987, but stayed consistently lower than the realistic run.
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The modelled oxygen trend (figure 3.7¢) is positive for all scenarios where the 90%
run has consistently higher values than the other runs. The realistic run start to increase in

1989 and crosses the 50% series in 1991 then drops below the other runs again.

3.3. Inter-comparison of the model boxes

The N:P ratio of the coastal boxes NL-C1 and —C2 appears to be very similar, in
particular the reduction runs. The realistic run of the two boxes seems to differ slightly, but
both curves peaks around 1994. The G-C1 box is situated in the vicinity of the two Dutch
boxes, but has slightly different response to the reductions. The 50 and 90 % time series of the
N:P ratio fluctuates more in G-C1 than in the other two boxes and the realistic run peaks in
1988 rather than in 1994. The oxygen results for NL-C1 and NL-C2 are similar both in trend
and concentrations. Maximum values are found in 1993 for both boxes and drop to a
minimum level in 1994/1995. There is a larger discrepancy between the simulations of the G-
C1 box and the maximum oxygen values for all simulations occur in 1993/1994 before it
drops in 1995. The three boxes respond quickly to reductions for chl amax. The fluctuations in

the 50 and 90% run smoothen out after the first three years in both G-C1 and NL-C1.

The offshore boxes, G-O1 and NL-O1, do not seem to have a trend in the N:P ratio.
There is a greater discrepancy in the N:P ratio data of G-O1 than NL-O1, but the maximum
and minimum values stays within a range between 11 and 18 for both boxes.
The O, differ between the boxes, where minimum values of the G-O1 box occur in 1995
and in 1989 for the NL-O1. Similar for both boxes is the low discrepancy between the
different simulations. There is a marked reduction in chl an.x for the 90% reduction which is
visible in both boxes. The 90% results seem to stabilise after the first simulation year. The G-

O1 box has higher initial values of chl amay, but both boxes peak in 1993.
There does not seem to be a link between the N:P ratio results of SK-1 and SK-2. Both

50 and 90% reductions seem to be effective in lowering the ratios, but the fluctuations in the

SK-1 box are much larger than in SK-2.
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There are some similarities in the trends ofthe chi anexresults for the two boxes. The 90%
reduction seems to have the largest effect and remains low and stable compared to the other

simulations.

Table 3.1. The table shows the cost function values and the interpretation for each modelled parameter.

The colours refer to the degree of discrepancy between the reduction scenarios and the reference run (red

= low discrepancy, blue = medium discrepancy, green = high discrepancy).

N:P ratio Chi anex Cmin
10 % 50 % 90 % 10 % 50% 90 % 10 % 50 % 90 %
G-Cl1 0.26 1.33 3.33 0.98 5.11 9.35 0.15 0.55 0.83
G-01 0.26 1.18 2.10 0.34 0.76 1.27 0.15 0.47 0.74
NL-C1 1.06 3.22 7.11 0.49 1.85 3.92 -0.04 0.06 0.06
NL-C2 0.63 1.65 3.11 0.24 1.42 3.37 0.08 0.32 0.62
NL-01 0.40 0.76 1.09 0.28 0.63 0.89 0.73 2.11 3.09
SK-1 0.04 1.20 3.02 0.22 2.05 5.17 -0.04 0.06 0.04
SK-2 0.46 2.20 4.15 0.46 1.87 4.61 0.69 1.93

An interesting factor, when considering the effect of reducing nutrient inputs, is to
compare the response ofthe different areas ofthe North Sea and the cost function results
provide a simple interpretation of'the reduction effects in the different model boxes (Table
3.1). The discrepancy ofthe near-shore boxes near doubled from 50 to 90% in the N:P ratio
and all boxes, except NL-O1, had high discrepancy in their 90% simulation.

The highest discrepancy was found in the 90 % reduction scenario and the lowest was found
in the 10 % reduction scenarios for all parameters. The discrepancies in the N:P ratio

increased from 10 to 90 % for all boxes. The lowest increase in the discrepancy occurred in
the two offshore boxes. Overall the least increase in discrepancy was found for all boxes for

the Ominparameter.
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3.3.1. The realistic runs vs. river discharges

Table 3. 2. The Pearson correlation (r) between the N:P ratio of the realistic runs and the N:P ratio
measured in the rivers included in the model. Kanal = Nordsee kanal; Lake = Lake Ijssel; SHK(L) =
Scheldt, Haring Vleet, Nordsee kanal, Lake Ijssel; EFWEm = Elbe, Weser, Ems; GIG6 = Glomma, Géta.
The model box values have been correlated with rivers which are expected to influence that particular
model area, based on knowledge of the circulation patterns.

RIVERS

KANAL LAKE SHK SHKL EIWEm GIGo6
NL-C1 0.61 - 0.8 - - -
NL-C2 0.17 0.23 - 0.28 - -
NL-O1 -0.19 -0.35 -0.12 -0.31 - -
G-C1 - -0.52 - -0.43 -0.21 -
G-01 - - - -0.16 -0.25 -
SK-1 - - - - 0.15 0.08
SK-2 - - - - - -0.18

The N:P ratio trend of the realistic run deviates from the other scenarios with fixed
1985 river loads in all the near-shore model boxes. In the offshore boxes the realistic run

usually has higher values although the trends are more or less similar.

Table 3.2 provides an overview of the correlation between the realistic runs and the reported

N:P ratios from the rivers. These data have been used in the model as a forcing of the realistic

run.

The highest correlation between rivers and the near-shore boxes are found in NL-C1
and the mean value of SHK (r= 0.80) and the Nordsee Kanal (r = 0.61). The oftshore boxes
had negative correlations for all comparisons, where the highest correlation was found
between NL-O1 and Lake [jssel (r =-0.35). The G-C1 box also had negative correlation for
all comparisons and the highest correlation is found with Lake [jssel and the mean value of

SHKL (r =-0.52; -0.43, respectively).

The Skagerrak boxes had in general low correlations with the river N:P ratios.
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3.3.2. The 1985 reference runs vs. the North Atlantic Oscillation (NAO) and local wind fields

Table 3. 3. The Pearson correlation (r) between the N:P ratio of the 1985 reference run and the NAO
index mean of January and February. The O,,;, correlation is based on the NAO index mean of July,
August and September. The Chl a,,,, correlation is based on the NAQ index in May.

G-C1 G-01 NL-C1 NL-C2 NL-O1 SK-1 SK-2
N:P ratio (NAO) -0.52 -0.58 -0.18 -0.37 0.17 0.52 -0.46
Chla,, ., (NAO) -0.30 -0.28 0.46 0.30 -0.53 0.22 -0.08
Omin (NAO) -0.60 -0.40 -0.55 -0.45 -0.61 -0.03 0.21

The 1985 reference run is only forced by the meteorology and it would thus be
interesting to see how well the results correlate with a large scale meteorological system such
as the NAO index. In Table 3.3 (N:P ratio) the G-O1 box had the highest correlation (r = -
0.58), closely followed by SK-land G-C1 (r = 0.52 and -0.52, respectively). As for the three
Dutch boxes, NL-C1/NL-C2 and NL-O1, the correlation was much lower (r =-0.18; -0.37 and
0.17, respectively). The effect of the NAO index on the chl am,x seemed to have the highest
correlation with NL-C1 and NL-O1 (r = 0.46 and -0.53, respectively). The correlation
between the NAO and O, seemed to be relatively high in all boxes except SK-1. The near-

shore boxes and NL-O1 appeared to have the highest correlations.

Table 3. 4. The Pearson correlation (Rz) between the O,,;, of the 1985 reference run and two local wind
fields, one in the southern North Sea and one in Skagerrak. The correlation is based on weekly means
(June — September) of wind speed which coincided with the lowest O,,;, values of the different model
boxes.

G-C1 G-01 NL-C1 NL-C2 NL-O1 SK-1 SK-2
-0.02 -0.03 0.36 0.64 -0.16 -0.17 NA

The correlation between local wind speeds and the Oni, values (Table 3.4) were absent

or very low for most boxes, except NL-C2 (r = 0.64) and to a small extent NL-C1 (r = 0.36).
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3.3.3. The relationship between the three parameters

Table 3. 5. the Pearson correlation (r) between the three different parameters for all model boxes.

G-C1 G-01 NL-C1 NL-C2 NL-O1 SK-1 SK-2
N:P vs O, -0.27 0.43 0.33 0.51 -0.14 -0.27 -0.15
N:P vs Chla,,., 0.04 0.31 0.55 0.66 -0.02 0.20 -0.28
Chlag.x VS Omin 0.28 0.36 0.05 0.59 -0.08 0.02 0.58

The highest correlations between all parameters were found in the NL-C2 results
(Table 3.5). The two offshore boxes, NL-O1 and G-O1, deviated in their correlation results,

where G-O1 had high correlations and NL-O1 had low correlations for all parameters.
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4. DISCUSSION

The main findings of this study are related to the modelled effect of the reduction
scenarios. According to the OSPAR Eutrophication Strategy (2005) the process of reducing
DIN and DIP inputs to the North Sea by 50% should by 2010 have achieved to establish and
maintain a healthy marine environment where eutrophication do not occur (OSPAR, 2005a).
The definition of a healthy marine environment has been defined on an area basis, where
background and problem levels for the N:P ratio, oxygen minimum and chlorophyll maximum
has been identified (see Table 2.2). The main issue seems to be that the reported values do not

seem to coincide with the measured values (see Table 1.1 and 1.2).

The model was run over a 10 year period, which was similar to the time period
available to the OSPAR member countries to achieve the desired status. A general trend was
that the boxes in the closest vicinity to the major estuaries seemed to respond to both the 50
and 90% reductions rather rapidly (within the first 2-3 years) then stabilise, whereas the
offshore boxes were affected by the reductions only to a small extent. This provides an
indication of the rapid response time of the North Sea. However, there was a surprisingly low
response to the nutrient reductions in the Oy concentrations in all boxes. When compared to
the NAO index and local winds, it became evident that the modelled oxygen levels were
influenced by vertical mixing and climatological conditions to a larger extent than nutrient

ratios.
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4.1. Limitations

4.1.1. Using the NORWECOM model

A model is the only available tool when trying to predict environmental conditions in
a system like the North Sea. However, there are some important limitations linked to this
method.
Models can only produce results which are already predetermined by the model equations.
This limitation is apparent in the NORWECOM model, which contains a simplified biological
model. As indicated in the introduction, one of the motives leading OSPAR to chose the N:P
ratio as a eutrophication indicator, apart from the apparent biological availability, was that a
shift in the ratio might have triggered the observed phytoplankton regime shift in the late
1980’s that favoured the growth of certain species of dinoflagellates (Muylaert et al., 2006).
As the model only consider the biomass of two phytoplankton groups, it might be hard to
identify a shift in species composition due to eutrophication. There are many studies pointing
out the relevance of benthic sedimentation and remineralisation in the different parts of the
North Sea (Ehrenhauss et al., 2004, Hall et al., 1996, Johannessen and Dahl, 1996, Kirby et
al., 2007), but this process is only represented in the model by a simple remineralisation
equation. The lack of a benthic algae component could potentially lead to incorrect retention

times of DIN and DIP, particularly in the coastal areas (Cloern, 2001).

Model simulations are completely dependent on observational data for validation and
simulation. As is known from empirical data analysis, the quality and accuracy of the
collected data is of the utmost importance. If the data does not reflect well enough the
situation of the specific area the whole simulation might come out with results completely off

the target (ref).
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4.1.2. The model input: Using OSPAR data

The model results are based on reported river nutrient loads (DIN and DIP) from the
member states of OSPAR. By only using the dissolved inorganic components of N and P, the
model might not be able to provide the full extent of the biologically available nutrient pool.
A study by Hydes et al (1999) showed that during the winter months of 1988/89 the N:P ratio
in the southern North Sea was much lower than would be expected from a conservative
mixing of river and ocean waters. This was linked to high rates of denitrification of dissolved
organic nitrogen (DON). In the German Bight only 50% of the observed changes in the nitrate
loads was due to inputs of new nitrogen from rivers and atmosphere, the rest was linked to
denitrification of DON (Hydes et al., 1999).

Atmospheric inputs of nutrients in the OSPAR data are only accounted for on a
catchment basis (OSPAR, 2005a) and this might pose a problem when comparing model

results with realistic results.

Atmospheric inputs of nutrients are both of natural and anthropogenic origin. Dust
storms from the Saharan belt can carry large amounts of nutrients into remote areas and thus
significantly contribute to the local deposition. Large sand storms have become more frequent
since the early eighties as a response to climatic changes in the atmospheric circulation
(Dobricic, 1997) this could lead increase in atmospheric deposition over the North Sea. In
addition, atmospheric nitrogen deposition may have a substantial impact on a local and
regional scale. It was pointed out in the de Leeuw study (2003) that atmospheric inputs added
nutrient pressure to already stressed areas of the North Sea (the southern coastal areas). Even
short but intense events of deposition can trigger algal blooms during nutrient depleted
periods in summer and early autumn (de Leeuw et al., 2003).

Nutrient deposition to the sea has been modelled with atmospheric models, but the chemical
processes of coastal systems are rarely included (de Leeuw et al., 2003). The NORWECOM

model only considers atmospheric deposition of N in the simulations.

Most OSPAR countries, except Denmark, report their emissions on the basis of a
source oriented approach (OSPAR, 2003a) due to the management focus on mitigation
actions (Borgvang et al., 2006). In general terms these are methods of quantifying nutrient
loads through modelling, where loss coefticients and data discharges from point sources are
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used. The load oriented approach, used by Denmark, is based on quantification of nutrient
loads through direct measurements of concentrations and transport values in rivers (Borgvang
et al., 2006). In addition to this, the member states also report on measured nutrient loads
from monitoring stations in the estuaries (Jarvie et al., 1997, OSPAR, 2003a, OSPAR, 2005a).
The model results and results measured at monitoring stations along the coast and estuaries do
not agree with the nationally reported reductions (see Table 1.1 and 1.2). A study by Jarvie et
al (1997) analysed the Paris Commission (previous to the OSPAR Commission) data and the
national monitoring strategies. One of the main limitations pointed out in their study was that
despite the attempts made to standardise the monitoring strategies, some important
methodological discrepancies still remained. In the study the location of the sampling site in
relation to the saline and tidal limits was identified as the factor which caused the largest
discrepancy. The problems with collecting data within the tidal reaches were linked to
sedimentation and resuspension as these processes would have implications for the
interpretation of the river load data and the consequences for the estuarine and coastal
environmental status (Jarvie et al., 1997). This would in turn influence the model output as the

values were so strongly linked to the input data.

4.2. The realistic run

The present study focuses mainly on the long-term effects of nutrient reductions, but it
is useful to consider the effect on the system from actual river nutrient loads during the model
period. The realistic run, which was forced with continuous river runoff and meteorology,
deviated quite substantially from the reduction runs particularly in the coastal boxes. By
comparing the modelled effects of the realistic river loads with measured values in the rivers
an assumption regarding the extent of the riverine impact offshore and along-shore can be
made. The N:P ratio was chosen for this comparison as this has been identified by OSPAR as
a measure for the degree of nutrient enrichment (OSPAR, 2005a). Of all the model boxes, the
NL-C1 box had the highest correlation with the river N:P ratio of the Nordsee Kanal and the
mean ratio of Scheldt, Haring Vleet and the Nordsee Kanal (SHK) (r=0.61 and 0.8,

respectively). This was not such a surprising result as the box is situated in the Rhine Plume.
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The G-C1 box had higher correlation with Lake Ijssel and the SHK+Lake Ijssel (r =-0.52 and
-0.43, respectively) than with the German rivers, Elbe, Ems and Weser (r = -0.21). This may
indicate the importance of the along-shore current when considering the transport of nutrients.
The modelled N:P ratio of the offshore and Skagerrak boxes appeared to be following the
fluctuations of the 1985 reference run. As the fluctuations in the reference run are a signal of
the meteorological forcing, an initial conclusion may be that these boxes are to a larger extent

influenced by meteorology than the nutrient signals from the rivers.

4.3. Inter-comparison of the boxes - The effects of reducing DIN and DIP

From a management point of view, reducing the nutrient load to the North Sea by 50%
of 1985 concentrations has been proposed to be sufficient in order to achieve good
environmental conditions (OSPAR, 2003a, PARCOM, 1988). As estuaries and near-shore
areas are most affected by river water, these areas are of particular interest in management

strategies.

When river water enters an estuary it mixes with coastal water and becomes diluted.
The signal from the river will become weaker further offshore until it is finally absent (Hydes
et al., 1999). This gradient is important as it gives an indication of how large the effects of
reducing nutrients will be on the North Sea system going offshore. Likewise, the along-shore
gradient would be indicative of how the different nutrient sources influences the coastal boxes
and to which extent reducing the nutrient inputs from one river system would impact not only
the areas in the immediate distance, but also areas which would be expected to receive water

transported from these rivers.

Previous model studies of the North Sea have shown that short term effects of nutrient
load reductions only had a noticeable effect on the coastal zone of the North Sea (Lenhart,
2001, Lenhart et al., 1997, Skogen et al., 2004). This was linked to reduced loads of the three
rivers Rhine, Meuse and Elbe which to a large extent controlled the nutrient regime of this

region during spring and summer (Lenhart et al., 1997).
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4.2.1. The southern coastal boxes; NL-C1, NL-C2 and G-C1

The southern coastal boxes, the NL-C1, NL-C2 and G-C1, showed similar patterns for
all parameters. The boxes are situated in the immediate distance of large estuaries and would
thus be expected to show a response to reduced nutrient input. The results showed that for the
N:P ratio, the 50% reduction was sufficient to achieve the desired Redfield ratio (£50%) in all
the model boxes after only two simulation years, except G-C1. The German coastal box had
an immediate response to the 90% reduction scenario and reached the desired 16:1 ratio the
second simulation year. The 50% reduction scenario had a generally decreasing trend, but

only reached the Redfield ratio (£50%) in 1991.

The effect of the nutrient reductions was further established through the cost function
where there was a clear trend of increasing discrepancy between the reduction runs and the
reference run as the reductions increased. The discrepancy of the N:P ratio was significant for
all three boxes in the 90% simulation, but only NL-C2 had significant discrepancy in the 50%
run. When considering the effect on N:P ratio the reduction potential seemed to be fully
utilised after the second year in all three boxes. Over a 10 year period, the fluctuation in the
50% run of the G-C1 and NL-C1 boxes was within a natural fluctuation as the cost function
did not exceed 2 standard deviations. The influence of Atlantic Water in the North Sea is to a
large extent related to the NAO index but the direction of this water within the North Sea
basin is not fully understood (Winther and Johannessen, 2006). In order to analyse the effect
on the coastal region a correlation between the model results and the NAO index was
performed. The results revealed that the German box, G-C1, had higher correlation (r = -0.52)
with the NAO than the NL-C1 and NL-C2 (r =-0.18 and -0.37, respectively). This indicates
that the German Bight is more strongly influenced by the NAO and thus Atlantic Water than
the Dutch coast.

The chlorophyll a results indicated a response to both 50 and 90% reduction similar to
the effect visible in the N:P ratio. The cost function showed that for all three boxes the 90%
run yielded values with a significant discrepancy to the meteorological fluctuations whereas
only the G-C1 box achieved this for the 50% run. These results show that near-shore areas,
such as estuaries, have a natural variability and that there is a relationship between the N:P

ratio and the chl an., concentrations. The correlation between these two parameters were
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moderate in all three boxes but the peaks in chl a,,. coincided with the peaks of the NP ratio.
The chlorophyll results were in general closely linked to the meteorological signal and
comparison with the NAO indicated some correlation. The highest value was found in NL-C1
(r=10.46), but this was only slightly higher than the NL-C2 and G-C1 results (r = 0.3 for both
boxes). Compared with the N:P ratio, the NL-C2 box had the highest correlation between the
N:P ratio and the chl a,.x concentrations whereas the G-C1 had very little correlation (r =
0.04). This may imply that the phytoplankton biomass is more strongly connected to the
nutrient ratios in the Dutch boxes. However, all boxes seem to have similar responses to the

climatological signal regarding the chl a,;,, concentrations.

The nutrient reduction’s effect on the oxygen conditions was surprisingly low. Apart
from the G-C1 box, the southern coastal boxes showed little or no effect in the O, results
from neither the 50 nor the 90% run. This was reflected in the cost function where the three
boxes all had low discrepancy with respect to the 1985 reference run. In order to quantify the
affinity with the meteorological signal the 1985 reference run results were compared to local
wind conditions and the NAO index. Of the three boxes, the G-C1 had the highest correlation
values for Omin with the NAO index (r = -0.60), but no correlation with the local wind
conditions. The two Dutch boxes, NL-C1 and NL-C2, also showed a fairly good correlation
with the NAO (r = -0.55 and -0.45, respectively). In contrast to G-C1, NL-C2 had a
correlation with local wind conditions of r = 0.64. This was the highest correlation of all
boxes, both near shore and offshore. It would be expected that due to their vicinity to each
other G-C1 and NL-C2 would react similarly to the local wind conditions, but this was not the

case.

On the whole the G-C1 box seems to be more influenced by regional climatic
conditions than the two Dutch boxes. This is reflected in the correlation between the NAO

index and the N:P ratio and between the local wind conditions and the O,,;, concentration.
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4.2.3. The southern offshore gradient

Ao conceqy

Salinity

Figure 4.1. Schematic overview of variations in nutrient concentrations with a dominant riverine source.
The letters A, B, C, D and E indicate nutrient concentrations at specific salinities. Line A-B represents
steady-state well mixed winter conditions, line A-C-D represents the summer conditions and line A-E-B
represents conditions after deep winter mixing off the shelf. From Hydes et al (1999).

Moving offshore, the influence from the rivers become weaker and a stronger signal
from Atlantic Water can be detected. Figure 4.1 provides a schematic overview of how
nutrient concentrations decrease with increasing salinities. To a large extent this theory fits
with the reduction scenarios ofthe two offshore boxes G-Ol and NL-Ol. According to the
cost function neither ofthe boxes had a significant response to the 50% reduction and only G-
01 had a significant response to the 90% reduction. These results reflect the theory that the
riverine signal is to a large extent confined to the coastal zone and further offshore the signal
weakens and finally becomes absent (Lenhart, 2001, Hydes et al., 1999). Instead, the
fluctuations ofthe N:P ratio are similar to that found in Atlantic Water, with values between
11 and 16 (M. Skogen, 2007. pers. comm.). When comparing the N:P ratios with the NAO
index, the G-O1 had the highest correlation ofthe two boxes (r = -0.58). The initial
assumption would be that this box is more influenced by the NAO index when it comes to

nutrient concentrations than the NL-O1 box.

For the chi anaxresults, the highest correlation with the NAO index was found in the
NL-OI box (r=-0.53 and -0.61, respectively). It appears that large scale meteorology, and

possibly inflow of Atlantic Water, is more important for primary production in this box than
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in the G-O1. The cost function values for the O, NL-O1 deviated significantly from the
1985 reference run for both the 50 and 90% reduction scenarios. The chl an,, concentrations
were generally lower for the NL-O1 than the G-O1. This could be linked to the low
correspondence of the NL-O1 box to reduced nutrient loadings from the rivers, but rather
influenced by water from the central North Sea and the English coast (NSTF, 1993b). The

Omin correlations were identical for the two boxes (r = -0.6).

When compared to the local wind fields, the two boxes had very little or no correlation for
the O, results. In a study by Warrach (1998), the development of thermal stratification in
the central North Sea and to which extent the wind speed and direction influenced the depth
of the mixed layer, was modelled. For all model scenarios the thermal stratification was
evident in the water column until 30™ of August and that mean wind speeds below ~6 m s™
were not sufficient to increase the mixed layer sufficiently to break down the stratification
(Warrach, 1998). This may support the O, results from NL-O1 and G-O1, where the years
of low Omin concentrations for both boxes coincided with relatively low weakly mean wind
speeds for August. This was especially true for 1995 where mean wind speeds were in the
range of 4-5 ms™' for most of August. An additional explanation is that the NAO controlled

Atlantic inflow surpasses the signal of local winds over such short time scales.

This study did not analyse the data in relation to atmospheric temperatures and solar
radiation. This may be just as important as wind stress in determining the vertical mixing
considering the low wind speeds. In addition, the wind speed values are from a non-specified
point in the southern North Sea, and may thus not reflect the actual meteorological conditions

of the NL-O1 and G-O1 areas.
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4.2.3. The Skagerrak boxes; SK-1 and SK-2

The N:P ratio of the two Skagerrak boxes had some similarities in their fluctuations,
especially with regard to the peaks of 1988, 1990 and 1994. These peaks were easily
identified in both boxes although the magnitude of the SK-1 was nearly twice that of SK-2.
The effectiveness of the reductions was most prominent in SK-2, where the 50% reduction
scenario achieved the Redfield ratio (=50%) for N:P ratio within the second year. For SK-1
the 50% reduction scenario fluctuated more and it was only the 90% reduction scenario which
stabilised around the desired Redfield ratio. This difference in the two boxes was further
found in the cost function values, where the SK-2 showed a significant response to the 50%
reduction compared to the 1985 reference run whereas the SK-1 stayed within the range of
natural variability. A significant response was identified in relation to the 90% reduction in
the SK-1 box. The correlation of the N:P ratio and the NAO index yielded similar values for
both SK-1 and SK-2 (r = 0.52 and -0.46, respectively). This implies that the N:P ratio of SK-1

and SK-2 both respond to the meteorological forcing, but with different outcome.

It might be expected that the fluctuations of Atlantic Water N:P ratio would surpass
that of the local inputs, due to the sheer volume of water flushing through the system. The N:P
results do not directly support such a straightforward assumption. The different responses may
be explained by the fact that the inflowing Atlantic Water is more saline than the surface
water and will thus enter Skagerrak at intermediate depths. The surface water originating from
the Baltic Sea will thus dominate the upper layer at SK-2 (NSTF, 1993¢, Skogen et al.,
1998a). In the SK-1 box, the surface layer is a mix of Atlantic Water and the Jutland Current
Water, originating from the German Bight and thus reflects the riverine signal of this region
(NSTF, 1993c¢, Gustafsson and Stigebrandt, 1996, Skogen et al., 1997). It appears as if high
N:P ratios of the SK-2 box corresponds to low values of the NAO index, whereas the opposite
is true for SK-1. A possible explanation to this may be that strong south-westerly winds,
associated with high NAO index values, increases the transport of water from the German
Bight and along the Danish Coast, whereas the same winds will retard the outflow of Baltic
water into the Skagerrak (Rydberg et al., 1996, Winther and Johannessen, 2006). This
confines the nutrients in the less saline surface layer to the eastern parts of Skagerrak, and the

N:P ratio of SK-2 will to a larger extent reflect the ratio of Atlantic Water.
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The chl a, results in both boxes did not seem to have any particular trend. In SK-2
only the 90% reduction scenario indicated a clear decrease which was reflected in the cost
function, whereas a significant response was found in the chl amax results for the 50%
reduction in SK-1. When comparing the 1985 reference run to the NAO index, the chl a,,.
results show some correlation in the SK-1 box (r = 0.22) and no correlation in SK-2. Judging
by the low correlation values, it may suggest that the primary production of the Skagerrak

area is not fluctuating with respect to the NAO index, at least not the northern parts.

The Opin results of SK-1 appeared to have no correlation with the NAO index, but had
a slight negative correlation with the N:P ratio (r = -0.27). Surprisingly there was no

correlation with the chl a,,x concentrations.

The Op, results for SK-2 had a clear positive trend for all simulations, but no
correlation analysis was made for these concentrations. The reason for this decision was that
these results might not be representative of the actual situation in the deep parts of the
Norwegian Trench. The Institute of Marine Research in Fledevigen, Arendal, have long time
series of Oy, measurements from the Torungen — Hirtshals transect, which contradicts the
results from the model. The time series does not display any trend, only a slight drop in the
concentration in the period 1988 to 1990. This drop was most probably due to warm winters
and thus stronger thermal stratification and decreased winter mixing of bottom water

(Johannessen, 2007. pers. comm, Johannessen and Dahl, 1996).
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4.4. The effects of the management approaches in the North Sea

The North Sea environment is managed through several international institutions
conventions, the OSPAR Convention being one of them. In 1988, the PARCOM
recommendation on nutrient reductions was agreed upon by the member countries and the
goal of reducing N and P by 50% was first proposed (PARCOM, 1988). Later, the PARCOM
and OSCOM merged into OSPAR and the 50% reduction goal was transferred to the new

commission.

The strength of the OSPAR EcoQO’s (OSPAR, 2005¢) is their simplicity. From a
management point of view this is important due to their clear goals and procedures, but as it
has been pointed out in Borgvang ef a/ (2006) and Jarvie ef al (1997) the monitoring
procedures might not be sufficient in determining the effect of nutrient reductions in the
coastal areas. The realistic model results show that, despite the reported reductions, the
nutrient dynamics in the near-shore areas have not responded to these reductions. On the
contrary, the model boxes closest to the major river outlets (NL-C1, NL-C2 and G-C1)
seemed to have a slight increase towards the end of the modelling period. A changing climate
is further complicating the management of nutrient inputs, causing an increase in river run-off
to areas which are already stressed by high nutrient loadings. Judging by the model data of
Skagerrak and the offshore areas, the realistic run seemed to be controlled by meteorology to

larger extent than river runoff.

The 50% reduction scenario was able to meet the EcoQO’s for the N:P ratio for most
of the coastal boxes within the first two simulation years, except G-C1 and SK-1. Whereas the
G-C1 box reached the EcoQO towards the end of the modelling period, the SK-1 box
appeared to be more linked to fluctuations in the meteorology. The Danish box receives
nutrients from several sources, and the largest contributor is the Atlantic Water which enters
at the western edge of the Norwegian Trench. Whereas the quantity of nutrient concentrations
due to anthropogenic activities to a certain extent can be identified in river water, this is not a
straight forward procedure for the Atlantic Water. Here, atmospheric deposition is a very
important anthropogenic signal (de Leeuw et al., 2003, Rendell et al., 1993) and should

maybe be accounted for to a larger extent in modelling and the monitoring procedures.
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In addition, the appropriateness of using the Redfield N:P ratio (16:1, £50%) has been
debated. Estuaries, and as indicated in this model study; near-shore areas, rarely achieve the
desired ratio due to their naturally high N:P ratio, so rather than using a fixed ratio a

possibility is to use a sliding assessment level based on salinity (OSPAR, 2003b).

The EcoQO of Oy, for a healthy bottom environment is set to 6 mgl™ for the whole
North Sea region. This goal was not achieved for any of the boxes and surprisingly the
nutrient reductions had little or no effect on the minimum values during the duration of the
modelling period. The O, parameter is an important indicator of the health state of a system,
as hypoxia and anoxia can seriously harm the benthic biota (Cloern, 2001). However, this
parameter was clearly controlled by meteorology and long warm summers and insufficient
vertical mixing during winter can lead to a more stratified North Sea, with prolonged periods
of low oxygen concentrations. It seems that reducing the nutrients will not be sufficient to

increase the oxygen concentrations in the North Sea.

The chlorophyll a concentrations did not exceed the background levels for chl amax
defined for the different regions in any of the boxes. The EcoQQ’s are based on national
assessments and differs quite a lot from region to region. The most noticeable difference is
found in the EcoQO’s for elevated levels of the mean chlorophyll a concentration in NL-C2
and G-C1, >22-24 pgl™ and >3-6 ugl™, respectively. With such large deviance between the
assessments levels and the fact that G-C1 is upstream from the NL-C1 box, it may be difficult

to achieve the desired goal in the German Bight area.

The quality status reports of the North Sea were based on the spatial restrictions of the
NSTF boxes. The regions might be politically practical, but the model results indicated that
there might be large intra-regional differences. These differences were identified in region 7b
(NL-O1land G-O1) and in region 8 (SK-1 and SK-2). The responses of the Skagerrak area to
nutrient reductions are different in the north (SK-2) and the south (SK-1). This is linked to the
nature of the surface waters entering the region, where the north-east is mainly influenced by
Baltic water whereas the south-west is influenced by the Jutland Current which originates in
the German Bight. The southern offshore box, region 7b, also appeared to have different

responses to nutrient reductions in the two model boxes. On the basis of these results the
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appropriateness of the current NSTF regions as management units should maybe be re-

evaluated.

After the political agreements in the 1980’s on how to handle the eutrophication
problem there has been a general decline in the political interest for these issues. The task is
now to implement these decision and a shift towards eutrophication management at EU level
is becoming more and more prominent (de Jong, 2006). Future management strategies in the
North Sea include a harmonisation of the OSPAR Eutrophication Strategy and the EU
directives relating to marine eutrophication. As stated in the Strategy for a Joint Assessment

and Monitoring Programme (JAMP) (2006):

“It is particularly important that synergy is achieved between the monitoring activities under
the JAMP and the requirements of E.C Directives (such as those relating to the Water
Framework Directive (WIFD) and the Habitats Directive). So far as there is a spatial overlap
in coastal waters between OSPAR and the WFD and an overlap in the issues addressed, there
is a need to ensure a consistent approach in both organisations, and for each to prevent
duplication by making the best use of the expertise and tools developed by the other.”
(OSPAR, 2006).

Previously, the EU directives (ND, UWWD) have mainly focused on continental and
estuarine environmental impacts of increased nutrient loadings, but with the WFD and the
new European Marine Strategy (EMS) the marine engagement is extended into areas already
covered by OSPAR. With this extension it has become increasingly important to harmonise
the management approaches. In general, the OSPAR assessment and classification strategies
are more clearly defined than both the UWWD and WFD (OSPAR, 2005d). One of the most
important features in the OSPAR assessment is the inclusion of “transboundary affected”
problem areas. These are areas where the nutrient loadings have not increased, but where
direct and/or indirect effects of eutrophication can be identified (OSPAR, 2005d). As has been
pointed out in this study, the transboundary transport of nutrients can affect areas which may
not naturally be subjected to eutrophication. This is thus a very important element which

should be included in any future harmonised eutrophication approach.

One of the largest challenges for future North Sea management is to harmonise the

eutrophication strategies of OSPAR, the WFD and the EMS. As the WFD and the EMS are
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legally binding instruments it becomes increasingly important to establish an international
nutrient monitoring programme, identify suitable EcoQO’s and have a common classification

strategy of marine areas (de Jong, 2006).

5. CONCLUSIONS

Previous studies have focused on modelling the short-term effects of reducing the
nutrient loads to the North Sea system. These studies revealed that the only noticeable effects

occur in the near-shore areas of the North Sea.

This study, which had a span of 10 years, that the largest and most rapid response was
found in the N:P ratio for all model boxes. All three parameters (N:P, chl amax and Opp) in the
G-01 and NL-O1 boxes had the largest correlations with the NAO index. The highest
correlations with the local wind field, which was compared to the O, concentrations, were
found in NL-C2 and NL-C1. These results indicate that the offshore areas seem to be more
strongly influenced by the large scale meteorology than the near-shore boxes, in particular
along the Dutch coast, which are influenced to a larger extent by the riverine nutrient loads.
This study supports previous studies on the short-term effects of nutrient reductions and also
predicts a rapid response time of the North Sea coastal areas. Another interesting result is the
importance of large scale meteorology, such as the NAO index, in the region and how this

affects the fluctuations in nutrient and oxygen concentrations.

The only modelled parameter which did not seem to be influenced by reduced nutrient
loads in any of the boxes, except the Dutch offshore box (NL-O1), was O, Perhaps this
parameter, rather than having a fixed minimum value for the whole North Sea region, should
be defined on a more region specific basis, as it appears to be quite closely linked to

meteorological conditions.
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