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ABSTRACT: A method was derived tha t max­
imizes the genetic level of selected animals while 
constraining their average coancestry to a predefined 
value. The average coancestry of the selected parents 
equals the inbreeding level in the next generation, so 
tha t rates of inbreeding were controlled. When this 
method was applied for several generations of selec­
tion, stable rates of genetic gain were attained, which 
indicates tha t the method could control the short- and 
long-term effects of selection on inbreeding. At equal 
rates of inbreeding, genetic gains were 21 to 60% 
greater than tha t with selection for BLUP-EBV, 
because of increased selection differentials. The differ­
ence was larger when the desirable rate of inbreeding

was smallest. Selection with a constraint on inbreed­
ing required only EBV of, and relationships between, 
the selection candidates and is therefore easy to apply 
in practice. The optimal solution is expressed in 
genetic contributions of selection candidates to the 
next generation, which is equivalent to numbers of 
offspring per candidate. These optimal numbers of 
offspring may be difficult to attain because of female 
reproductive limitations. The optimal method could be 
adapted to situations with additional reproductive 
constraints. The method can also be used to constrain 
the variance of response by restricting the average 
prediction error variance of the selected animals.
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Introduction

Selection schemes are usually designed to maximize 
genetic gain with no or an implicit limitation of rates 
of inbreeding. Some authors have designed selection 
methods tha t reduce rates of inbreeding. Grundy and 
Hill (1993) and Verrier et al. (1993) reduced the 
weight of the family mean in their selection index 
relative to tha t in BLUP EBV, which reduced the 
probability of coselection of relatives and thus reduced 
inbreeding. Brisbane and Gibson (1994) and Wray 
and Goddard (1994) selected animals while putting a 
cost on the average relationship of the selected 
animals. There is no guarantee tha t these methods 
yield maximum genetic gains a t some level of inbreed­
ing. Further, the actual rate of inbreeding is not 
known before the breeding scheme commences.

Goddard and Howarth (1994) advocated the use of 
dynamic selection rules in contrast to static designs of 
optimal breeding schemes. Dynamic rules optimize the 
selection of the actual available candidates and thus

'F in a n c ia l su p p o rt of Flolland G enetics is g ra te fu lly  ac­
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take advantage of opportunities tha t were not foreseen 
when the breeding program was planned. My article 
presents a dynamic selection rule tha t maximizes the 
genetic level of the selected parents while restricting 
their average relationship and hence the future 
coefficient of inbreeding. I assumed tha t acceptable 
rates of inbreeding were approximately known (e.g., 
from Meuwissen and Woolliams, 1994a). Breeding 
schemes were simulated to test whether the intended 
rate of inbreeding was achieved and to compare rates 
of gain to tha t with BLUP selection. Mating was at 
random for all the breeding schemes considered.

Methods

Optimal Genetic Contributions to the Next Genera­
tion. Within every round of selection, we want to 
maximize the genetic level of the next generation of 
animals Gt+p

Gt+i = ct EBVt, [1]

where EBVt = vector of BLUP estimated breeding 
values of the candidates for selection in generation t 
and ct = vector of genetic contributions of the selection 
candidates to generation t+ 1. The problem is to find an
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optimum ct. The genetic contributions of all males 
sum to 1/2, and likewise for all female candidates:

Q'ct = 1/2, [2]

where Q = known incidence matrix for sex (the first 
column yields ones for males and zeros for females, 
and the second column yields ones for females and 
zeros for males); and Vi = a vector of halves of order 2.

Further, we restrict the average coancestry between 
selected animals, because the increase in coancestry 
equals the future increase in inbreeding:

Ct+i = ct'Atct/2, [3]

where At = the matrix of additive genetic relationships 
among selection candidates in generation t, which 
equals twice the matrix of coefficients of coancestry. 
Constraint [3] replaces the constraint Ct+j > Ct'AtCt/2, 
because objective [1] is linear, such tha t the optimum 
is always at the boundary of the space Ct+j > Ct'AtCt/2, 
(i.e., where constraint [3] holds). When generation 0 
is noninbred (F q = 0), we may set Ct+j equal to 
A F(t+l), where AF is the desired rate of inbreeding.

The optimal ct+j tha t maximizes Gt+j under con­
straints [2] and [3] is obtained by introducing LaGran- 
gian multipliers, similar to the approach of Wray and 
Goddard (1994), who applied this method within 
their algorithm to obtain optimal contributions of 
selected animals. We would like to maximize Ht for ct, 
Xo, and X, with

Ht = ct'EBVt -  X0( ct'Atct -  2Ct+1)
-  (c t 'Q-l/2')X, [4]

where Xo and X are LaGrangian multipliers (X = a 
vector of two LaGrangian multipliers).

Equating the first derivative of Ht with respect to ct 
to zero yields

EBVt -  2X0Atct -  QX = 0.

Solving for ct yields

ct = At_1( EBVt-QX)/2X0. [5]
From the constraint Q 'ct = 1/2 follows an equation

for X:

Q'At-lQX = Q'At-lEBVt -  1X0, [6]

and from the constraint Ct'AtCt/2 = Ct+j follows 

8Ct+1\ 02 = (EBVt-QX)'At-l(EB V t -  QX). 

Solving this equation and [6] for Xo yields

ebv/( v - a^QÍ Q 'V’QF’Q 'V1) EBVt
V  =  ------------------ = ---------------;------------7— i----------------- •

8Ct+1 -  l'(Q 'V  Q) 1 [7]

A negative right hand side of equation [7] implies that 
the constraint Ct'AtCt/2 = Ct+j cannot be met. The 
minimum average relationship tha t can be achieved is 
1/41'( Q'A which is readily obtained by
minimizing Ct'AtCt under the constraint Q'ct = 1/2.

The value for Xo from equation [7] is used in [6] to 
obtain X. Now equation [5] yields the optimal ct. This 
ct may contain negative values for some animals with 
poor EBV. Negative values of ct are easily constrained 
to zero by eliminating those animals from the 
optimization process. The elimination of animals with 
negative ct is repeated, one a t a time, until all 
elements of ct are positive. This will yield an optimal 
ct within the solution space ct > 0, as the following 
will show.

Because the objective ct'EBVt is linear, the optimal 
ct(max) is at  the boundary of the ellipsoid solution 
space Ct'AtCt = 2Ct+1, with ct(max)'EBVt = Gmax and, 
say, cy(max) < 0, where cti(max) = 1th element of 
ct(max) • If we let the value of ct'EBVt decrease 
somewhat to Gsu|, < Gmax, the solution space for cy 
increases from the point cy(max) to the small interval 
c ti(  max) -  o. because the boundaries are the solution to 
the quadratic equation tha t results from substituting 
ct'EBVt = Gsub and all possible ctj, j ^ i in Ct'AtCt = 
2Ct+j. When Gsub decreases further, the size of the 
interval cy(max) + ó increases and, when ó = cy(max), 
will include 0, which is a permissible solution for cy 
and yields highest Gsub- Because the optimal permissi­
ble is cy = 0, this solution could also be obtained by 
directly constraining the negative cy solution to zero.

Limitations of Reproductive Techniques. Optimal 
genetic contributions of sires can be achieved in 
practice, when each sire can inseminate the required 
number of dams. If only a limited number of dams can 
be inseminated by one sire, an additional constraint 
can be applied for each sire tha t exceeds the biologi­
cally maximum contribution (i.e., ct < cmax, where 
cmax = the biologically maximum contribution of a 
sire). The contributions of the sires tha t exceed cmax 
are set equal to cmax, and the remaining contributions 
are optimized as in the Appendix. This yields optimal 
results under the restriction ct < cmax because of 
arguments analogous to those for the ct > 0 restric­
tion.

Achieving the optimal genetic contributions of 
females will require high female reproductive rates, 
which may be possible in poultry, pigs, or in cattle by 
the use of Ova Pick Up (Kruip et al., 1994). For 
instance, when the number of sires selected exceeds 
the number of dams, the optimal solution requires the 
mating of one dam to several sires. Such flexible 
female reproductive techniques may not be available 
and often a predefined number of dams is selected, say 
n(|, with equal genetic contributions per dam. In this 
situation, we may simply select the n(|, dams with the 
highest optimal contributions.

Also, it may be practical or desirable to have equal 
numbers of offspring per selected sire an d (or) per
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selected dam. In this case, the contributions of 
animals i with small cml are set to zero until the 
remaining animals (i.e., the selected animals) fulfill 
the constraint ct 'Atct < 2Ct+j when their contributions 
are set to equal values, where cmi = optimal contribu­
tion of animal i without the equal contribution 
constraint. Because of the similarity between this 
approach and the implementation of the ct > 0 
constraint, it is expected tha t this solution will be 
close to optimal.

When the contributions of the dams are modified 
due to reproductive limitations, the contributions of 
the sires may be reoptimized conditional on the 
suboptimal contributions of the dams (see Appendix). 
The method in the Appendix can also be used to 
reoptimize the contributions of the dams, when the 
contributions of the sires have been modified.

Simulation. Closed nucleus programs were simu­
lated from generation 1 (the base generation) until 
generation 10. In the base generation, all animals 
were unrelated and genotypes, g,, were from the 
distribution N(0,.25). Independent environmental ef­
fects, ej, were obtained from the distribution N(0,.75), 
which implies a heritability of .25. Phenotypes were 
obtained from p¡ = g¡ + e¡ (i.e., no fixed effects were 
simulated). In later generations, gj was simulated 
from N (l/2gs+l/2gcj,.125), which ignores the effect of 
inbreeding on the within-family variance. The latter 
implies tha t an equilibrium genetic variance will be 
achieved after some initial decrease of genetic vari­
ances because of the Bulmer (1981) effect. Thus, 
equilibrium genetic gains are expected to be obtained 
except when it becomes increasingly difficult during 
the course of selection to select animals tha t satisfy 
the average relationship constraint.

Every generation, 50 male and 50 female selection 
candidates were born. A sire and dam for each 
candidate were chosen at random with probabilities 
tha t correspond to the genetic contributions tha t were 
obtained from the previously described algorithm. In 
the case of BLUP selection, the best ns sires and best 
n j dams were selected based on EBV and had 
contributions of l/2ns and l/2n(|, whereas the other 
animals had zero contributions. It may be noted that 
the predefined genetic contributions are expected 
contributions; the actual contributions will vary due to 
sampling according to the multinomial distribution 
with a fixed total number of offspring.

Results

Optimal Contributions. Table 1 shows the results 
when the average coefficient of coancestry of the 
parents of generation t is limited to (t-l)A F  for t=2,.., 
10, where AF=.025 per generation. The average 
coancestry constraint was achieved in all generations 
and without reduction of rates of genetic gain in later

Table 1. The average coancestry of the parents of 
generation t, the inbreeding in generation t, and the 

genetic gain from generation t -  1 to t, when the 
average coancestry was limited to .025 (t -  1) and 

genetic contributions were optimized within 
each generation for both sexesa

G enera tion
(t)

C oancestry
p a ren ts Inb reed ing

G enetic
ga in

2 .025 0 .380
3 .050 .029 .322
4 .075 .052 .293
5 .100 .076 .318
6 .125 .100 .287
7 .150 .127 .303
8 .175 .150 .301
9 .200 .175 .311

10 .225 .202 .315

aA verage of 100 rep lica ted  sim u la tio n s of th e  b reed ing  schem e. 
The s ta n d a rd  e rro rs  of th e  in b reed ing  an d  genetic  ga in  w ere approx­
im ately  .0011 and  .011, respectively. The coancestry  did no t vary, 
because it  w as constrained .

generations. The initial reduction in genetic gain is 
due to reduced genetic variances because of selection 
(Bulmer, 1981). During later generations, rates of 
genetic gain seem to increase slightly. Although this 
increase is small relative to the standard error, and 
thus not statistically significant, an explanation may 
be tha t the inbreeding constraint becomes less strin­
gent. The absolute increase in inbreeding is .025 per 
generation, and this implies initially a rate of 
inbreeding of .025 and later in generation 10 of .0303 
(=.025/(l-Fg), with Fg = .175).

The rate of inbreeding followed approximately the 
average coancestry of the parents with a lag of one 
generation (Table 1). The average coancestry coeffi­
cient included the coancestry of an animal with itself. 
This coancestry within animals will not result in 
inbreeding in the offspring of the selected parents 
because there was no selfing. However, in the next 
generation, the coancestry of the parent with itself is 
translated into breeding when the genes from the 
same animal can meet due to the matings of sibs. 
Hence, the inbreeding levels lag one generation 
compared with the average coancestry levels.

Best Linear Unbiased Prediction Selection. Figure 1 
compares rates of gain and inbreeding of the optimal 
selection methods to rates obtained from selection on 
BLUP-EBV (BLUP selection). With BLUP selection, 
the rate of inbreeding depends mainly on the number 
of sires and dams selected, which was varied in Figure 
1. Figure 1 also shows the results of schemes that 
optimize the selection of sires and dams but with 
equal contributions of the selected sires and the 
selected dams, as described in Methods. The optimized 
numbers of sires and dams selected were close to the 
numbers based on Wright’s (1931) inbreeding for­
mula for random mating: AF = l/8ns + l/8n(|, where ns
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Figure 1. Genetic and inbreeding levels in generation 
10 with inbreeding levels constrained to .1 and .2 and 
with optimal genetic contributions (Á), optimal selection 
of sires and dams but with equal contributions of 
selected sires and selected dams (■), and BLUP selection 
with selection of (from left to right) 32, 30, 26, 20, 18, 16, 
12, and 10 sires and equal numbers of dams (+).

(nj) = the number of sires (dams) selected (Table 2). 
In later generations, the number of selected animals 
decreased, because the rate of inbreeding increased 
from .025 and .0125 to .0303 and .0137, respectively 
(see previous section).

When 18 sires and 18 dams were selected, BLUP 
selection achieved inbreeding and genetic levels of 
.203 and 2.224, respectively, in generation 10 (Figure 
1 ). At the same level of inbreeding, the genetic levels 
of schemes with optimal genetic contributions and 
optimal sire and dam selection (with equal contribu­
tions) were 27 and 21% higher, respectively. When 
the required inbreeding level in generation 10 was .1, 
genetic levels of these optimized schemes were 60 and 
44% higher, respectively, than tha t of BLUP selection 
where 32 sires and 32 dams had to be selected to reach 
this level of inbreeding. Hence, the superiority of the 
optimal contribution methods increases when smaller 
rates of inbreeding are required.

D iscussion

Wray and Goddard (1994) and Brisbane and 
Gibson (1994) described a method that reduced 
inbreeding by maximizing the objective

ct'EBVt -  k ct'Atct,

where k = a cost factor. They used optimization 
algorithms tha t did not guarantee to find the optimum 
ct, but the optimum solution for the cost factor method 
is found by replacing Xo with k in equations [5] and 
[6], Wray and Goddard (1994) find optimum Ct, 
within the group of animals tha t is selected by their 
optimization algorithm. The cost factor k is usually 
unknown, although Wray and Goddard (1994) calcu­

lated a cost factor based on inbreeding depression, 
variance reductions due to inbreeding, and a time 
horizon. However, inbreeding also increases the risk of 
a breeding scheme, i.e., the probability that deletere- 
ous genes drift to high frequency, and the breeding 
goal is dominated by production traits that show little 
inbreeding depression. The latter results in k-factors 
that allow moderate to high rates of inbreeding, and 
reproductive traits will suffer from substantial in- 
breeding depression, which will eventually increase 
their weight in the breeding goal, but by then a lot of 
positive reproduction genes might have been lost due 
to inbreeding. The presumption made here was that 
practical breeders do approximately know which rates 
of inbreeding are acceptable, but they do not have a 
feei for cost factors and thus are willing to accept only 
cost factors tha t result in acceptable rates of inbreed­
ing. Hence, the cost factor Xo is calculated from the 
acceptable rate of inbreeding by equation [7],

If acceptable rates of inbreeding are unknown, it is 
also possible to generate a response surface of 
inbreeding against selection response by simulating 
schemes with different constraints on the rate of 
inbreeding such as Figure 1, but with more levels of 
the constraint. Based on this response surface, a small 
rate of inbreeding may be chosen tha t still yields a 
high selection response, whereas a further decrease of 
the inbreeding rate would yield a substantial reduc­
tion of the selection response. A similar approach was 
taken by Brisbane and Gibson (1994) to find their k- 
factor. A drawback of this approach is tha t simulation 
of the breeding scheme is needed to find the response 
curve, and every change of the breeding scheme would 
require new simulations to assess this curve.

The present method of selection achieves, on 
average, a predefined rate of inbreeding. Realized 
rates of inbreeding fluctuate around this desired rate. 
This is because the realized contributions of the 
parents fluctuate around the optimal contributions 
due to variances of family sizes. However, because the 
average relationships among the selected parents did 
not vary around their predefined levels, the standard 
deviation of the inbreeding level at generation 10 was 
much lower than with BLUP selection (.013 vs. .028, 
respectively, when the level of inbreeding was .2).

The present method constrained the average coan­
cestry of the selected parents instead of the average 
inbreeding coefficient of their offspring. In the latter 
case, only one sire and one dam would have been 
selected from the unrelated base population yielding 
full sib offspring with a coefficient of inbreeding of 0. 
When parents are selected from this generation of full 
siblings, only full sibs can be selected as parents and 
the rate of inbreeding cannot be lower than .25. This 
shows that a direct constraint on inbreeding cannot 
effectively control rates of inbreeding. When the 
coancestry was constrained, it did not become increas­
ingly difficult to achieve the predefined rate of
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inbreeding during the course of selection; the rates of 
gain did not decrease (Table 1) and numbers of 
animals selected did not increase (Table 2), which 
suggests that previous selections affect future inbreed­
ing only by affecting the present coancestry.

This implies tha t nonrandom mating cannot control 
inbreeding, because the relationships between the 
selected parents will in later generations be converted 
into inbreeding. Nonrandom mating can postpone the 
time until the close relationships are converted into 
inbreeding, but cannot prevent it. However, nonran­
dom mating, in which the selected animals with many 
coselected relatives are mated to those with few 
coselected relatives, reduces the cumulative effect of 
multiple generations of selection on inbreeding by 
reducing the variance of the long-term genetic contri­
butions (Santiago and Caballero, 1994). The effect of 
reducing the coselection of relatives (e.g., by the 
present method) and compensatory mating on in- 
breeding is additive (Grundy et al., 1994); hence, both 
BLUP selection and the present method can equally 
benefit from it.

Wray and Thompson (1990) showed tha t rates of 
inbreeding can be predicted from the sum of squares of 
the long-term contributions: AF = lM SSC ^) = l/4£let 
C i ( o o )  2 ,  where cqy) = contribution of ancestor i to the 
descendants in generation T; and summation is over 
all ancestors in generation t. Figure 2 compares the 
effects of optimal selection with constrained inbreed­
ing and BLUP selection on SSCt( m). When going from 
generation 9 to 1 (i.e., from young to old ancestors of 
generation 10), the SSCt(jo) increases steadily with 
BLUP selection. Hence, BLUP selection affects the 
contributions of old ancestors, which contributes to 
inbreeding. When inbreeding is constrained and when 
going from generations 9 to 1, SSCt(jo) increases only 
for the first two generations (from 9 to 7) and 
stabilizes or decreases for old ancestors. This shows 
tha t the constrained selection achieves the genetic
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Figure 2. Sum of squared contributions (SSC) of 
ancestors in generation t to descendants in generation 10 
with BLUP selection of 18 sires and 18 dams, which 
yielded an inbreeding coefficient of .2 in generation 10 
(A) and optimized parental contributions with the 
inbreeding constrained to .2 in generation 10 (+).

gain by changing the contributions of young ancestors 
rather than those of old ancestors. Contributions of old 
ancestors are hardly changed and do not contribute to 
rates of inbreeding. This agrees with Woolliams and 
Thompson (1994), who concluded tha t the changes in 
genetic contributions of old ancestors added much 
more to the rate of inbreeding than to the genetic gain 
and should be avoided when rates of inbreeding are to 
be reduced. Thus, at equal rates of inbreeding, 
selection differentials are higher when the contribu­
tions of the selection differentials are optimized 
compared with when BLUP selection is applied.

Generations were assumed discrete here, but in 
practice they overlap. Overlapping generations are not 
a problem for the presented algorithm; it will limit the

Table 2. Optimal numbers of parents selected when the number of offspring per 
sire and per dam are equal. For comparison, the numbers according to 

Wright’s (1931) random mating formula are given

AFinit = 025a AFinit = ,0125a

G eneration Sires D am s S ires D am s

2 10 10 21 20
3 10 10 19 19
4 10 10 18 19
5 9 9 18 18
6 9 9 18 17
7 9 9 17 17
8 8 8 17 17
9 8 8 16 17

10 8 8 17 16
W righ t’s form ula 10 10 20 20b

aAFinit = th e  In itia l ra te s  of inbreeding; in  la te r  g en era tio n s AF increased  to .0303 an d  .0137, 
respectively.

W righ t’s form ula is AF = l/8 n s + l/8 n d, w here  th e  n u m b ers  of m ales (n s) an d  fem ales (n d) are  
assum ed  equal.
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average coancestry of the animals selected across the 
generations to the desired level. However, the al­
gorithm will not be optimal because it neglects the 
relationships between the animals born in year t  and 
those born in year t  -  1, which will serve together as 
selection candidates in the future. In practice, it seems 
unlikely tha t the average relationship between the 
animals born in year t  and year t  -  1 is larger than 
tha t among the animals born in year t, such that 
selection across age classes is not hampered by high 
average relationships between animals from age class 
t  and class t  -  1. If the relationships between age 
classes turn  out to be extremely large, an additional 
constraint could be applied tha t constrains the aver­
age coancestry between the selected parents for the 
offspring in year t  and the animals born in year t  -  1 
to equal tha t among the animals born in year t  -  1.

Extension of the method to m ultitrait breeding 
goals is straightforward by setting EBV = Ev¡ ebv¡, 
where ebvj = the vector of estimated breeding values 
for the ith breeding goal tra it and v¡ is its economic 
value. Note tha t ebvj may also reflect breeding values 
for maternal effects if they are included in the 
breeding goal. Inbreeding depression was not consi­
dered here, because the constraint on the inbreeding 
implicitly determines how much inbreeding depression 
is accepted in the breeding scheme, and the BLUP 
breeding value estimation should correct for it, ju s t as 
it should correct for any fixed effects tha t are present 
in practice but not simulated here.

Woolliams and Meuwissen (1993) used a cost 
factor method to reduce the variance of the selection 
response. The present method can also be used to 
constrain the variance of the response by replacing At/ 
2 with PEVt in equations [5], [6], and [7], where PEVt 
= the prediction error (co)variance matrix of EBVt. 
The Xo from Equation [7] will yield the cost factor for 
Woolliams and Meuwissen’s method to obtain a 
predefined variance of the selection response. The 
latter would provide a dynamic selection rule as an 
alternative to the static optimal designs of Meuwissen 
and Woolliams (1994b).

Implications

A dynamic selection rule was presented tha t yielded 
21 to 60% greater selection response than best linear 
unbiased prediction selection at the same rate of 
inbreeding, which is due to increased selection 
differentials. The rule is easy to implement in any 
breeding scheme. Reproductive limitations may re­
quire some modification of the optimal solution.
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Appendix: Optimal Contributions o f  Selection  
Candidates Conditional on the Fixed 
Contributions o f Other Candidates

Often reproductive techniques will limit the contri­
butions of some candidates (e.g., dams). This may 
result in some fixed contributions. For example, if the 
optimal contribution of an animal is higher than its 
biologic maximum, the contribution of this animal will 
be fixed to the biologically maximum contribution. 
Also, it may be tha t n(| dams are selected with equal 
contributions and tha t the contributions of the males 
need to be optimized. The question is what is the 
optimal contribution of the remaining candidates, 
which will be called class 1 candidates in the 
following. The candidates with fixed contributions will 
be termed class 2.

In this case, we would like to maximize:

H = ci'EBVi -  Xo(ci'Aiici + 2ci'Ai2C2 -  K)
-  (d 'Q j -  s') X,

where cj = genetic contributions of class 1 candidates 
tha t are to be optimized, C2 = known vector of
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contributions of class 2 candidates, EBVj = vector of 
EBV of class 1 candidates, Axy = part of additive 
relationship matrix pertaining to the candidates of 
classes x and y, K = 2C -  C2'&22c2> C = the required 
average coefficient of coancestry, s = 1/2 -  Qx =
known incidence matrix for the sex of class x 
candidates (contains two columns of 0 and 1 figures), 
and Xo and X are unknown Lagrangian multipliers. 
Equating the derivative of H with respect to cj to zero 
yields

EBVi -  2Xo(Aiici + A 12C2) -  QiX = 0. 

Solving for cj yields

c i = A n -1(EBVi -  2 X0A 12C2 -  QiX)/2Xo-[Al] 

From the constraint Q i'cj = s follows equations for X:

Q i'A n^Q nX  = Q i'A n_1(EBVi -  2XoA i2c2)

-  2 X q s , [A2]

which yields only one equation for X when the class 1 
candidates are all of the same sex (e.g., all males; the 
value for females in X is then equal to 0).

From the constraint ci'A ncqi + 2ci'Ai2C2 = K 
follows

XQ = 1/4 EBVj 'P EBVj/[K + c2 'A2 iP A i2 C2 

-  sTQ i 'Ah - ÍQ i H s -  Z s ' Í Q j 'A n ^ Q jJ - k j^ A n - ^ ! ^ ] ,
[A3]

where P  = A n '1 -  A n ^ Q iiQ i'A n ^ Q i)  ^ Q iA n “1. 
The solution of Xo from [A3] is substituted in [A2] to 
obtain X, and Xo and X are substituted in [AÍ] to obtain 
the optimal cj. If some elements of cq are negative, 
those contributions are constrained to zero by deleting 
those candidates from the optimization, and formulas 
[A3], [A2], and [AÍ] are applied again.

In the case where the contributions of the males 
(class 1 ) are to be optimized and those of the females 
are known (class 2), equations [Al], [A2], and [A3] 
reduce to [A4], [A5], and [A6], respectively, which are

c l = A n -1EBVi -  2X0A 12C2 -  Xl)/2Xo, [A4]

with X being scalar and

X = [l'A ii_1(EBVi -  2 X0A 12C2)
-  Xol/l'An“1!. [A5]

X02 = IMIEBVj'Ajj^E B V j 
-  ( E B V j 'A j f V / l 'A j f 1!]/

(2C -  c2'( A22 -  A21A n  ^ 2) c2 

-  [ l 'A j j ^ A jg C g  + HZ]2I V \ n ~h} .

[A6]


