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might, however, be a cheap and effective alternative to 
conventional pesticides for vector control, and one th a t 
could preserve the effective use of proven, life-saving, 
compounds, such as pyrethroids.
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Profound indirect ecosystem effects of overfishing have 
been shown for coastal system s such as coral reefs and kelp 
forests. A new  study from the  ecosystem off the  Canadian 
east coast now reveals th a t th e  elimination of large 
predatory fish can also cause marked cascading effects on 
the  pelagic food web. Overall, the  view em erges that, in a 
range of marine ecosystem s, the effects of fisheries extend 
well beyond the  collapse offish exploited stocks.

Introduction
Although the role of fishing in the collapse of exploited 
stocks is beyond doubt, it  has been less easy to determine 
w hether there are indirect effects on other ecosystem 
components. Fish are the m ain predators in most m arine 
systems and one would expect th a t removing them  m ight 
have an  im pact on lower trophic levels. However,
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assessing the relative impact of predators has long been 
a difficult problem in ecology.

When do predators m ake a difference?
The classic dilemma is nicely illustrated  by the account of 
the Italian  scientist Lorenzo Camerano published in 1880
[1] explaining how naturalists in those days were divided 
in two categories. According to Camerano, the first 
category reasoned: ‘Birds feed to a g reat extent on insects; 
so if we increase the num bers of birds, the num ber of 
insects will decrease’. This is w hat we now call top-down 
regulation . The second category had  a ‘bottom -up’ 
perspective: ‘the num ber of birds is high particularly in 
those places w here insects are very abundant. The 
num ber of insects in a region depends essentially on the 
am ount of food found in it. In general, birds have only a 
small role in destroying insects th a t m ight damage crops.’ 

The difficulty w ith bottom-up and top-down regulation 
is th a t they can both be strong a t the same time and th a t
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their relative roles are not easily inferred from field 
patterns. Much of the variation in abundances th a t we see 
in nature is bottom-up regulated and m arine systems are 
no exception. This is illustrated  by a recent study [2] 
showing a strong correlation between chlorophyll concen­
tration and fish yields along the American west coast. 
However, although this suggests th a t prim ary production 
largely determ ines w hat can be harvested from higher 
trophic levels, such empirical relationships cannot tell us 
much about the im portance of top-down forces. For 
instance, correlations between n u trien t richness and 
abundance a t all trophic levels are commonly found in 
lakes [3]. Nonetheless, top-down effects are strong in these 
ecosystems [4]. This has been convincingly dem onstrated 
by the experim ental removal of fish from lakes, and has 
im portant m anagem ent implications [5]. Lake managers 
have found th a t such ‘biomanipulation’ can boost large­
bodied Zooplankton, which then filters the w ater clear of 
excessive phytoplankton.

Given th a t we deplete m any m arine fish stocks so 
dramatically, could top-down forces in the oceans be 
strong enough to imply sim ilar cascading effects? It has 
been shown th a t ecosystem effects of overfishing can be 
strong in coral reefs [6] and other coastal systems [7]. 
However, w ith the exception of the replacem ent of 
exploited stocks by competing species [8], evidence for 
indirect effects of overfishing in the open ocean has 
rem ained illusive. A recent analysis of historical data 
from the Scotian Shelf by K enneth F rank  and colleagues
[9] changes this situation. The authors have now shown 
how effects of the decline of cod Gadus morhua and other 
large predators can cascade down the food web, through 
small fish, crab and shrimp, Zooplankton and phyto­
plankton to the level of nutrients (Figure 1).

Cascading effects of a Canadian cod collapse
The findings of F rank  et al. are based on the analysis of a 
time series th a t shows a rem arkable coincidence of changes 
in the Atlantic shelf ecosystem off the coast of Nova Scotia, 
Canada. During the late 1980s and early 1990s, num bers of 
cod and other large-bodied predators in the benthic fish 
community declined sharply. This appeared to result in the 
near elimination of the ecological role of this group in the 
ecosystem (i.e. as top predators). Indeed, the biomass of 
benthic invertebrates, such as the n o rth ern  shrim p 
Pandalus borealis and the snow crab Chionoecetes opilio, 
and of small pelagic fishes increased m arkedly following 
the collapse of their former predators. The structure of the 
Zooplankton community also changed in a way th a t is 
consistent w ith a top-down effect: large-bodied Zooplankton 
species ( >  2 mm), which are the preferred food of pelagic 
planktivores and early stages of shrim p and crab, declined, 
whereas the abundance of small-bodied species remained 
unaltered. By contrast, phytoplankton has become more 
abundant, which is consistent with the effect of reduced 
grazing pressure by Zooplankton. Finally, the concen­
tration of one of the major limiting nutrients, n itrate, is 
now lower, suggesting th a t it is being depleted more 
strongly by the increased phytoplankton populations.

One m ight suggest th a t the observation of correlated 
changes can be a tricky basis for inferring causal links.
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Figure 1. The cascading effect of the collapse of cod and other large predatory fishes 
on the Scotian Shelf ecosystem during the late 1980s and early 1990s. The size of 
the spheres represents the relative abundance of the corresponding trophic level. 
The arrows depict the inferred top-down effects.

Indeed, as F rank and colleagues show, there have been 
simultaneous changes in the ocean climate on the Scotian 
shelf. The w ater tem perature close to the seabed declined 
steadily during the years preceding the crash of cod. Also, 
although these tem peratures have returned to ‘norm al’, 
stratification continued to intensify during the 1990s. It 
seems likely th a t  these changes would also have 
influenced the biology of the system to some extent.

Clearly, experimental fish removal as is done in lakes, 
monitoring non-manipulated similar lakes as ‘controls’, is 
easier to interpret. But although the controlled experi­
m ental approach is convincing, it cannot be used to unravel 
the forces th a t drive vast open ecosystems such as the 
oceans. One alternative is to compare case studies in 
different places. Such a meta-analysis ofcod-shrimp studies 
has revealed th a t an increase in benthic invertebrates, such 
as shrimp and crab, has occurred almost everywhere where 
cod stocks collapsed on both sides of the Atlantic under 
different climatic conditions [8]. Although F rank  and 
colleagues were unable to compare case studies, the change 
in Zooplankton size and the decrease in n itrate  with 
increasing phytoplankton in their study do look very much 
like the ‘smoking gun’ of a top-down cascade.

Future questions
Unraveling the interplay of bottom-up and top-down 
forces will rem ain a major challenge in m arine research 
over the coming years. Intensive fishing and ongoing 
climatic change imply th a t we are heavily modifying both 
forces, and good m anagem ent should be based on an 
understanding of how this affects the ecosystem. The issue

www.sciencedirect.com

http://www.sciencedirect.com


Update TRENDS in Ecology and Evolution V ol.20 No.11 November 2005 581

is a difficult one as there is much at stake and it is not easy 
to get the balance right. For instance, some have argued 
th a t fishermen should be ‘let off the hook’ because some 
stock collapses appear to be related to climatic changes
[10], even though most scientists agree th a t overfishing is 
an overwhelmingly dom inant force driving stock collapse
[11]. Although the mechanisms th a t drive stock collapse 
can be difficult to unravel, the cascading effects shown by 
F rank  et al. imply th a t we should look beyond the stock 
collapse itself. Their work also suggests two im portant 
questions for future research:

Where shou ld  we expect cascading effects o f  stock  
decline?
Do the findings of F rank  et al. highlight an exceptional 
case or would sim ilar cascading effects occur in other open 
ocean systems? I t is im portant to keep in mind th a t fishing 
is already known to be a major driver of change in many 
coastal ecosystems [7]. A particularly striking example is 
the role of fishing in the collapse of Caribbean coral reef 
ecosystems [6,12]. Depletion of herbivorous fish left sea 
urchins as the only grazer to control macro algae. When a 
disease affected the sea urchins during the early 1980s, 
brown fleshy algae rapidly encrusted the reefs, replacing 
the corals and inducing radical change of the ecosystem at 
all levels.

When m ay m arine  ecosystem sh ifts  be irreversib le?
In both the Scotian shelf and the coral example, there are 
indications th a t the changes observed m ight not be easy to 
reverse. A lthough sea urchins have recolonized the 
Caribbean coral reefs in small numbers, the algae rem ain 
dominant. Similarly, the Scotian shelf system shows no 
signs of recovery despite the near-elim ination of cod 
exploitation and the re tu rn  to normal seawater tem pera­
tures. Although the question of reversibility rem ains open, 
the persistence of the new state is striking.

Conclusions
Overall, the observations on the Scotian shelf and the 
Caribbean reefs are in line w ith the emerging view th a t 
m arine communities are characterized by strong non- 
linearities [13,14]. Such an ecosystem view [15] suggests 
th a t there is a need to look differently a t m anagem ent of 
m arine ecosystems. I t implies th a t sharp irreversible

change can sometimes resu lt from gradually increasing 
fishery pressure, and th a t the critical threshold for such 
change will vary with climatic conditions. Although the 
task  of unraveling the functioning of ocean ecosystems is 
daunting, m any will agree th a t a true ecosystem approach 
is needed if we w ant to predict, and eventually avoid, 
adverse shifts in m arine communities.
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The darting game in snails and slugs
Menno Schilthuizen
Institu te  fo r Tropical B io logy and Conservation, U n ivers iti Malaysia Sabah, Locked Bag 2073, 88999 Kota K inabalu, Malaysia

Love darts are hard 'n eed les ' th a t m any snails and slugs 
use to  pierce their partner during m ating. In a few
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species, darts have been show n to  play a role in sperm  
com petition. Two new  papers, by Davison e t  al„ and 
Koene and Schulen burg, m ight further pique researchers' 
in terest, because they  show  how  th e  full potential of
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