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ABSTRACT

A  reliab le estim ation of contact forces betw een a  
ship’s hull and constructions pro tected  by fenders 
requires the knowledge o f the tim e history o f hydro­
dynam ic forces acting on the ship. As large decelera­
tions may occur, memory effects becom e im portant 
and a  quasisteady approach, which is commonly in 
use in  manoeuvring simulation, cannot be applied.

T he first p a rt of the paper gives an  alternative review 
of m athem atical models suited for calculation of 
hydrodynam ic forces on ships in  im pact o r collision 
situations. Particular attention is paid to  m athem ati­
cal m odels making use o f impulse response function 
techniques and the application of state vectors. The 
second p art gives the outlines o f the theoretical base 
for th e  im plem entation of m em ory effects in  a  m an­
oeuvring sim ulation program.

IN TR O D U CTIO N

T h e  forces acting on a  ship which is navigating in 
confined w aters can be influenced substantially w hen 
th e  distance to the boundaries o f the navigational 
a rea  decreases. T he forces caused by the vicinity of 
these boundaries can be divided in  th ree types.

A first group of forces, bank suction, is caused by the 
com ponent o f the ship’s speed parallel to  a  closed 
boundary. Unless the ship’s course follows th e  cen­
terline o f the waterway, latera! forces a re  induced by 
the asymmetric flow around th e  ship’s hull. Forces of 
this kind will not be discussed in  this paper.

Contact forces, are caused by contact betw een the 
ship’s hull and the boundary o f the navigational area 
(bank, quay wall, fender, bridge, bridgehead, jetty, ...). 
Following effects have to be taken into account:
- a  restoring force which is a  function o f th e  defor­

m ation of the boundary by th e  ship’s hull or v.v.;
- a  dam ping force which is a  function of th e  relative 

speed com ponent perpendicular to the contact 
plane;

- an inertia term  depending on the movable m ass of 
the boundary;

- a  frictional term  caused by the com ponent o f the 
relative speed in the contact plane.

Finally, a  third group of forces can be defined as 
unsteady hydrodynamic forces, acting on the ship as a

consequence o f relatively large accelerations or dece­
lerations. The la tte r not only occur if the ship comes 
into contact with the boundaries of the navigational 
area, but can also be induced by other causes (tugs, 
anchors, rudder and m achine manoeuvres). Unsteady 
hydrodynamic forces act on  the ship in case of con­
tact w ith open (e.g. quay wall) as well as closed (e.g. 
jetty) boundaries, bu t their characteristics are influ­
enced substantially by the boundary’s nature. If a 
Ship is laterally approaching a  closed boundary, the 
w ater level between hull and boundary increases, 
causing a  transverse flow in  the underkeel clearance 
and a  longitudinal flow in the-quay clearance.

A  reliable m athem atical model o f these forces is 
requ ired  for sim ulation o f  manoeuvres in confined 
waters. In a  prelim inary stage of the implementation 
of contact forces and unsteady hydrodynamic forces 
into the manoeuvring sim ulator of the Hydraulics 
R esearch Laboratory o f Antwerp-Borgerhout, the 
Office o f Naval Architecture o f G hent University was 
charged with the selection and development of a 
suitable m athem atical model. The choice of the 
m athem atical m odel is subject to some restrictions, 
as simulations take place in real time :
- th e  integration time increm ent cannot be decreased 

without restriction; it should not be less than 0 2  s;
- th e  additional computing tim e required for force 

calculation should b e  as small as possible: this im­
plies e.g. tha t the unsteady hydrodynamic force 
com ponents should be presented as functions o f a 
lim ited num ber of param eters expressing the relati­
ve position betw een ship and boundary.

R EV IEW  O F  M ATHEM ATICAL MODELS

A  large majority of the publications handling contact 
forces and hydrodynamic memory effects have been 
developed from the viewpoint of the engineer res­
ponsible for the design of berthing and mooring 
facilities. As a  consequence, most of the calculation 
m ethods described in literature are focused on an 
overall approach incorporating all force effects or on 
the estim ation of extrem e conditions. On the contra­
ry, in a  mathem atical model suited for manoeuvring 
simulation an analysis o f all effects acting on the ship 
is required, resulting into a  reliable prediction of the 
tim e history of kinem atic and dynamic characteristics.
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T his is the reason why the approach followed by the 
au thor in  this review might seem  ra th e r unusual. 
C alculation methods based on considerations, based 
on kinematics or statistics, about th e  fraction of 
ship’s kinetic energy which has to be absorbed by the 
m ooring facility and its fenders will not be discussed 
in this paper, as they cannot b e  applied to  real-tim e 
sim ulation. F or a  com prehensive review of these 
energy methods the reader is referred  to  [1],[2],[3].

T hese  reviews m ention two kinds o f mathematical 
models  as well:
- m odels based on the ship’s equations o f m otion 

com bined with impulse response functions;
- m odels based on a long wave approxim ation. 
However, the la tter can be considered as th e  simplest 
case o f  a  m odel making use o f state vectors, storing 
th e  ship’s kinematical history; so far, these models 
have only been  used for the sim ulation o f forces act­
ing on m oored ships or ships in collision situations, 
bu t they can also be applied to  berthing conditions.

M ore recent publications also describe direct time 
approach methods, based on simplified differential 
equations describing the dynamics and kinematics of 
th e  ship and the surrounding water, which are inte­
grated  together with the equations o f motion.

IM PULSE RESPONSE FUNCTION TECHNIQUE.

G eneraljheory.

r b 6

Fig. 1. Degrees of freedom  o f a  ship.

Following general form ulation of the equation  of 
m otion in mode j (see fig. 1 for definitions) is given 
by th e  classical theory o f ship motions (see e.g. [4]) :

6

E  +au ( “  '> ) •* i  +hkj ( '“  > * V i = <  t>
j - i

(1 )

in which akj(u ) ,  bkj(« )  and ckj denote added mass, 
hydrodynamic damping and restoring hydrostatic 
coefficient, respectively; m ultiplied with acceleration, 
velocity and displacement, respectively, in  mode j, 
they contribute to  the force in  mode k. Mtj stands for 
the factor with which the acceleration in mode j must 
b e  m ultiplied for the calculation of the ¡nen ia force 
in  m ode k (e.g. mass, m om ent of inertia).

A dded mass and hydrodynamic damping are related 
w ith the radiation problem: due to the presence o f a 
free w ater surface, ship motions generate a  wave 
pattern . This causes a memory effect: even if the 
m otion o f the ship is stopped, the force action on the 
ship caused by the formerly generated wave system

will continue, so that the ship dynamics is not only 
rela ted  to  the instantaneous kinematics, but also to 
the kinem atic past o f th e  ship.

A s the added mass and hydrodynamic damping coef­
ficients are frequency-dependent, expression (1) is 
only valid if th e  external force Fk is a  harmonic func­
tion  of tim e. If this is no t the case, a  general expres­
sion for the m otion of a  floating body caused by the 
action  o f external forces is given by (see e.g. [5],[6]):

) X j  ( t - s )  d-z + C y X j l  C)

F k ( t

( 2 )

h kj( r )  denotes the impulse response function for the 
hydrodynamic force in  m ode k at t= r  caused by a 
velocity pulse in  m ode j a t t= 0 . The relation between 
frequency dom ain approach (1) and time domain for­
m ulation (2) yields an  expression for this function:

r > 0

= 0 , T<0

(3)

5(t) being th e  D irac function, and denote the 
high frequency limits fo r added mass and damping:

Fti =at J to 0) Kkj (t) s inw 0t  dr

Xkj = l i r a  b k j (. co )

(4)

(5)

while the retardation function  Kkj(t) is given by :

c o sc o  C dco
o
w

-  aw (»)) a  s in a e  da
0

(6 )

Introducing matrix notations, the equations of motion 
o f th e  ship can b e  form ulated as follows :

[F] =
c

([M] + [ p ] ) [ x ]  + U ]  [x]  +ƒ  [ n r ( t - T ) ]  [ x ( r ) ] d t

+ le] lx]

(7)

w here [F],[x] denote 6x1-, and [M],[#*],[A],[K],[a],[b], 
[c] 6x6-matrices. T hese dimensions decrease if  only a  
lim ited num ber o f m otion modes is considered.
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M odels based on impulse response function techni­
ques are applied rather currently for determ ining the 
tim e history of forces and displacem ents in  cases of 
contact between a  ship and a  fixed construction (off 
shore construction, fender): P etersen  & P edersen  [7]; 
Blok, Brozius & D ekker [8]; Fontijn [9],[10],[11]. 
Similar methods were used by P etersen  [12] for 
collisions between ships, and by V an O ortm erssen 
[13],[14], Van Oortm erssen, P inkster &  van den 
Boom  [15] and Rem ery [16] fo r m oored  ships.

yh { c) = +\i22 v {  t )  * J k22(x ) v ( e - t ) dx

* \ i 26£ ( t )  * j"K26( T)  r ( t - x ) d x  

- u ( t )  v ( t )  (p p - p A)

-  u (  t )  j j S p l T )  - $ A( t ) ] v (  t - X)  d x  
0

- u ( t )  r ( t )  (Xj4iP- x A|iA)
0»

» u (  t )  ƒ[*,£*.( t )  + x A£A<T)]r( C-T) d r  
0

( 1 0 )

Fig. 2 . Slender-body approxim ation : conventions. 

Strip theory formulation.

T he study o f hydrodynamic forces acting o n  a  body 
can  often be simplified if it is assum ed th a t th e  order 
o f m agnitude o f one of the dim ensions surpasses the 
o ther ones significantly, so tha t th e  body can  be 
considered as slender. A  ship can, for instance, be 
called slender in  its longitudinal direction.

T he slender body approximation im plies th a t the 
longitudinal com ponent o f th e  fluid velocity is ne­
glected. In this case, Gauss’ theorem  leads to  follow­
ing expression for the lateral force ([4], see fig. 2) :

I ' ! * )  = - P m m  ƒ  4 > f l y d l  ( 8 )d e

§ being the velocity potential. A  general form ulation 
o f § for six degrees o f freedom  is given in  [14] :

4>(t) = £
3 - 1

x 3 ( 0  Tiij + J X j ( C - x )  X j ( x )  dx ( 9 )

w here i|tj and Xj(t) denote the instantaneous and 
tim e-dependent fractions of the fluid reaction  to  a 
velocity impulse in mode j a t t = 0. Introduction o f (9) 
into (8) leads to  following expressions for the total 
la teral force Y and resulting yawing m om ent N (see 
Appendix A  for definitions). From  these expressions 
(10-11) it can be concluded th a t a  consequent appli­
cation of a  strip theory not only requires an addition 
of memory term s to  the hydrodynamic inertia forces, 
but also to the lifting forces (term s in u r and uv).

C

Nb { t )  = + p 26v ( t )  + v ( t)  dx
-•o
c

+ p 66r ( t )  + J X s U - t )  r ( t )  dx 
- »

+ u ( t ) v ( t )

+  u ( e ) / [ 5 2 2 <t > ~x £ f ( x ) + x a £a ( t ) ]

v ( C—x ) dx 
+ u ( t )  r ( t )  ( p 26- x ¿ | i p + x ip A)

+ u ( t )  j][S2i (T ) - x | £ p ( t ) + x l i A( t ) ]

r ( t - x )  dx

( I D

STATE VARIABLES.

G eneral theoretical form ulation.

T he theoretical background of the use of sta te  varia­
bles for calculating unsteady hydrodynamic forces is 
developed by Schmiechen [17],[18]. The hydrody­
nam ic forces (7) are considered as a  functional :

C
[F h] = [p ] [x] * [1] [x] + ƒ  [JC< t -T)  ] (x (T )  ] dx 

=  [ P ( [ V ( T ) ] ) ]  ,  - ® S T £ t

( 12 )

Such a  form ulation can be approximated by a  num ­
ber o f recursive relationships in which a num ber of 
state variables [s0],[s,],...,[sn] have been  introduced :

t á n_ * ( t ) ] = [ o n_ * ü s nJ , [ v ] ) ]
= [ s n.* .1 ( t ) ]  - l A k] [ s 0 ( t ) ] - [ B y ]  [ v ( t ) l

( 1 3 )

w here k = 0,1,...n and [sfl+1] = [0]; 

[Fb] = [ i d s j l ,  t v « " ] ) ]

= [S0] [C J  [ V (i>]
( 1 4 )
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In (13-14) the second equation is valid for linear 
systems. If m = l  in (14), while [C0] and [C,] are 
chosen to  be [X] and [ß], respectively, [s0] expresses 
the hydrodynamic memory forces acting on the ship :

[ s 0] = ƒ  [ K ( t - x )  1 [ x (x )  ] d t (15)

T he calculation of [s0] requires the knowledge o f the 
o ther sta te  variables [s1],..,[sB], so that the la tte r can 
be considered as param eters for the m em ory effects.

An estim ation o f the matrices [Ak] and [Bk] in  (13) 
has to  be based on the frequency response matrices 
[a (o )] and [b(o)]. For this reason, system (13) o f n+ 1  
First o rder differential equations is rew ritten  as one 
single differential equation with order n + 1 :

[ s 0(n*l) (C) ]  lAk] [ s i  (C) ]
¿■0

= - EJc-o
[V<*> ( t ) ]  

(16)

F ourier transform ation of (16) yields :

( i u ) a' 1 [ I ]  * E  ( ¿ ö ) * [ A k] H ^ 0 (co)]
*»0

= -  £  ( !» > * [* *  1 [«’(ca)]

(17)

in which [s0] can be elim inated making use o f follow­
ing expressions for the Fourier transform  of the 
hydrodynamic forces, derived from  (14) and  (1) :

[ / „ ( « ) ]  = i s 0] * ( i » [ | i ] + [ X ] ) [ ? ( w ) ]  ( 18)
=(icu [ a ( w )  ] +[b(u>) ] ) [ ? ( « ) ]

M anipulation o f (17-18) leads to  a  m atrix equation; 

¿  (ico)*—MB*) -
/c-o

£  i i & ) k~n 1 [Ak] ( io )[a(co)  - p ]  + [ !? ( to) -X] )
k-0 )

= ico [ a  ( co ) -p ]  + [ ¿ ( to )  - 1 ]  
(19)

Making use o f a  least square m ethod, the values of 
[a(co)] and [b(w)] for a  num ber o f (preferably equidis­
tan t) values of co lead to  an optimal estim ation for 
the m atrices [A J and [Bk],

This theory has been applied to the case of two 
colliding ships by Schmiechen [17],[18], Jiang, 
Schellin & Sharm a [19] have simulated the horizon­
tal m otion o f a  m oored tanker, making use o f an 
approxim ation with n = 3, which increases the number 
o f differential equations of motion from  3 to 15.

M arginal case n = 0  - Long-wave approximation.

(19) takes following form  if n = 0  ;

( iw  [ I ]  + [A0]) 'M B 0] = i u  [ a ( u )  - p ]  + [2>(co) -X]

( 2 0 )
' j

If only the lateral force caused by the sway motion is 
taken  into account, (20) yields:

a 22( a )  -  p 22 =

* » < • )  - 1 »  -  - ^ 7  A0 + (03

( 2 1 )

( 2 2 )

D ifferential equation (16) takes following form :

[á 0] * [ A 0] [ s 0] » -CB0] [ v < c ) l  (23)

which, taking account o f (14), leads to :

[ F J * [ |» I  [O]
+([X] + U 0] [ p ] ) ( v ] * ( [ A 0] [X] + [B0] ) [v]

=  0

(24)

leading to  following expression for the lateral force 
caused by th e  uncoupled sway m otion :

r *  +  F 2 2  * + ( * 2 a + A ,  p 2 2 )  v * ( a 0 x 2 2 + b 0)v=  0

(25)

A  rem arkable similarity exists between this equation 
and th e  results o f a  long-wave approximation, applied 
by M iddendorp [20] (see also [3],[11]). Following this 
approach, a  two-dimensional situation is considered 
in  which a  simplified, rectangular ship’s section per­
forms a  la teral m otion, causing an elevation of the 
w ater level a t one side and a sinkage at the other 
side o f the ship. T he velocity of these dénivellations 
equals c„ = (gh)*. Dynamics and kinematics of the 
ship and the surrounding w ater is described by equa­
tions expressing continuity, mass conservation, mo­
m entum  conservation and the equation of motion. 
A pplication to a  harm onic sway motion of the ship 
yields expressions for added mass and hydrodynamic 
dam ping coefficients as a  function of frequency, 
which take following form  if viscous friction in the 
underkeel region is neglected :

a 22( u )  = pLBT h - T A S l L
T  u 2 B 2h  + 4 ,çr{h-T)2

(26)

2c„,
¿>22(U) = p L B T —-ft io B T

B w z B z h  + 4 g ( h - T ) 2 

Equations (21-22) and (26-27) are identical if :

(27)
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¿0= 2'fà5
h - T
B h

B0 = - p L B T

^ 2 2 = 0

h - T  4 g T 2
T  B 2 h

so tha t (25) is simplified to  :

■V-,

(28)

(29)

(30)

(3 1 )

(32)

which can be used for the im plem entation of nonsta- 
tionary hydrodynamic forces into a  manoeuvring 
sim ulation program.

This approxim ation is clearly useless for high fre­
quencies, as the high frequency limits o f (21-22) for 
added mass and dam ping axe in contradiction with 
experim ental and theoretical da ta  (see fig. 3).

If n = l ,  (19) takes following form  :

( U J  - u 2 [I] + io) l ^ ]  )’l ( [B0] + io) [Bj] ) (33)
= io> [a (u )  —|i] + [-b(u) -X]

If the lateral m otion is uncoupled, (33) leads to  
following expressions for added mass and hydrodyna­
m ic damping if the la tte r is assumed to  vanish for 
very small and very large frequencies (see fig. 4):

a22(w) - p22 =

b 22 ( u )

B J A 0 - u 2

(A0 -  0)2)2 ♦ 0)2A;

o)2A1Bl 

(Ao- o)2)2 + o>2A Î

(34)

(35)

(see also [18]). Following differential equation for 
the unsteady hydrodynamic force is obtained :

Yh + A ^ h+A0Yh (36)
+ \i2zV2+Al \L22v2+(Aoii 22+B1)v2 = 0

which is equivalent with following system of first 
order differential equations:

_ Ia

cu

Fig. 3 . Two-dimensional sway added mass and 
dam ping : state space model, n  = 0.

a 22

Ao

hip.  4. Two-dimensional sway added mass and 
dam ping : state space model, n  = 1.

Á .2  A  S0.2

ä 0 . 2 = S 1, 2 - A 2 S 0' 2 - B 1 V2

y h = s 0_2 - \ i 22v2

(37)

(38)

(39)
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T he correspondence between (34-35) and the real 
curves for added mass and hydrodynamic dam ping as 
functions o f frequency has already im proved compa­
red with a  long-wave approximation. M oreover, the 
typical shape of the curves due to  the presence of a 
closed boundary (quay wall) can be ob ta ined  by a  
suitable choice o f A 0, A ,, B0, Bj (see fig. 5).

¡250. h  .1167IS

I O

5

0

I o

1.2 20 0 .2 1

PUBT V 9

io

0 .4 1 . 2 1 .4 1 .0

Fig.5. Sway added mass and dam ping near quay wall: 
sta te  space m odel (n=  1).

DIR ECT. .TIME. APPROACH.

I f  one succeeds in  presenting the behaviour o f the 
w ater in  the vicinity o f the ship by m eans o f a  lim ited 
num ber o f param eters, the tim e history o f the ship’s 
kinem atics and dynamics can be form ulated by a  
lim ited num ber o f differential equations, which can 
be integrated together with the equation o f motion.

Such a  m ethod is based on a  num ber o f hypotheses; 
a  typical example is the long-wave approximation, 
m entioned in a  form er paragraph, which assumes 
tha t the hydrodynamic forces acting on a  (rectangu­
lar) ship in  a  pure sway m otion depend on only five 
param eters (rja, r)c, v„ vb and vc, see fig. 6), so that 
the equation  of m otion in lateral direction is comple­
ted  with five supplem entary differential equations. 
E lim ination o f rjc, v? and vc leads to  following 
system o f two differential equations w ith two un­
known tim e functions x, and vb :

( 4 0 )

+ 2 7 ( f e r (v^ )=0

+ *■ 2 - 3 -  Cv ■ CvT~ V b { h ~T) [vb ( h - T ) * x 2T] 
^  B ?  c l - X¡  1 1

+ ------ £ ï — \ v b ( h - T )  *x 2T\2
r.R T  ,  _2 ...2\ 2 1 b 2 jLBT

p L T  h  ' 2 p L B T

( 4 1 )

■y:v..

F ig. 6. Long-wave approxim ation [11].

W ith som e additional simplifications, (4041) lead to 
one single differential equation  (32). However, direct 
in tegration  o f (4041) m akes it possible to  account 
for several nonlinear effects, thus leading to an  ap­
p roach  with a  m ore solid physical base.

A  direct tim e approach o f problem s concerning ship 
m otions in  confined w aters is developed by Fontijn
[11], who succeeded in form ulating the lateral motion 
o f a  rectangular vessel parallel with a  vertical wall by 
m eans o f th ree simplified differential equations.

SELECTION O F A  MATHEMATICAL MODEL

T he use o f impulse response techniques can be consi­
dered  as the most d irect and  logical method for the 
im plem entation of m emory effects into a  simulation 
program . T he integration procedure o f the equations 
of m otion does no t need  to  be modified, as the un­
steady hydrodynamic forces a re  calculated separately 
and added to  the o ther forces acting on the ship. On 
th e  o ther hand, the calculation of these forces requi­
res num erical integration o f  the product of a  number 
o f retardation  functions w ith the tim e history of the 
respective velocity com ponents, which is a  rather 
lengthy operation. If the interaction of surge motion 
with sway and yaw are not taken into consideration, 
four different retardation functions have to  be hand­
led; these functions depend on the water depth and 
th e  relative position betw een the ship and the closed 
boundaries o f the navigation area.

M odels based on a  state variables approach offer the 
advantage that the inform ation about unsteady hy­
drodynam ic forces is stored  in a  rather limited num-
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ber of param eters. F or example, if  n = l ,  the matrices 
[Aq], [Aj], [Bg], [B,], [/¿] and [A] contain 30 nonzero 
coefficients in case of an  uncoupled surge motion, 
replacing the static added-m ass coefficients X ’,
Yp N^, N°r. These coefficients also depend on the 
w ater depth and ship’s position. O n the o ther hand, 
such models look ra ther artificial: neither the coeffi­
cient matrices [A] and [B] n o r the sta te  variables [s] 
theirselves are clearly related w ith the physical rea li­
ty. The number of differential equations tha t have to 
b e  integrated is increased w ith 3 ( n + l ) ;  as an  accep­
tab le  approximation for the frequency response cha­
racteristics requires n > l, a t least six differential e- 
quations must b e  added to  th e  th ree equations of 
motion. M oreover, some variables are im pliritely 
integrated several times, which can cause num erical 
complications if the tim e increm ent is too large. For 
this reason, application for real-tim e sim ulation does 
no t seem  feasible.

T h e  application of a  direct tim e approach also requi­
res additional variables and differential equations, 
but there is a  clear relationship with the physical 
reality. Unlike the o ther m ethods, nonlinear term s 
can be taken into account. O n the o ther hand, Fon- 
tijn’s publications [9]-[ll] show tha t such an  appro­
ach even for a  ra ther simple case leads to  complex 
formulations. Furtherm ore, qu ite  drastic corrections 
are  required for fitting theoretical and experim ental 
results, so tha t it  is ra ther doubtful tha t a  d irect tim e 
approach would lead to  m ore reliable results than 
th e  other methods. T he la tte r  are mainly based  on 
th e  frequency response characteristics o f th e  ship; if 
th e  la tter are determ ined in  an  experim ental o r a 
verified theoretical way, all influences which are 
considered in a  direct tim e approach are implicitely 
taken into account.

As a  conclusion, the use o f impulse response techni­
ques seems to  be most appropriate for application in 
real-tim e simulation, although the theoretical deve­
lopments concerning state variables will prove to  be 
quite useful for the form ulation o f retardation  functi­
ons. M oreover, the author would like to  em phasize 
tha t state variable techniques have proved to  be 
successful in studies handling unsteady hydrodynamic 
forces on ships (see [17]-[19]), although they have not 
been applied yet to  problem s related  with interaction 
between ships and (fendered) harbour constructions.

Resuming, the mathem atical presentation o f unsteady 
hydrodynamic forces in  the horizontal p lane will be 
given by (10-11), together w ith an  expression for the 
longitudinal force:

CO

Xh ( t )  = p 11ü ( t )  v ( t - r )  d t  (42 )

functions will be integrated along the ship’s length; 
subsequently the integrated functions wall be approxi­
m ated by means of a  limited num ber of parameters 
determ ining the position of the ship relative to the 
boundaries o f the navigation area.

R E T A R D A T IO N  FUNCTIONS O F  A  STRIP.

3 re

Expressions for the tim e functions £(x,t) and K(x,t) 
required  for the calculation o f the retardation functi­
ons occurring in (10-11) (see Appendix A) can be 
based o n  an  approxim ation by means of a transfer 
function of o rder n+1 ,  as suggested by (17-19):

T ( x , a )  s i u ( a ( x ,  o )  - g  ( x ) ) * ( b ( x ,  o>) -A (x) )

E  (¿W)*B*

( ¿ u ) ■ E.<C-0
COI

(43)

w here Aj, and B¡. are functions of x. (43) can be 
rew ritten  as follows :

T { x ,  cu) =
Bo «i i<ùBÏj ) "+BbU>* (44)

> i  ico+A0<J)/ > i  ( i u t ) i + i a A Í j ) "+A¿í)

with n = n ,+ 2 n 2. T he retardation  function K(x,t) is 
ob ta ined  by inverse Fourier transformation;

K ( x ,  t )  = -¿L  f  t (x , w) e iacd o
25t J

• H ( t ) ' -a !»'c
E  B¿írV *

u*i

COS Mo3'  tE K 1"

, . ( j )Wo
s  incoó'11 C

with

^  = K ’" - t K T

(45)

(46)

(47)

so that cross-coupling effects between the longitudi­
nal mode and the other  ones is neglected.

A strip-theory will be applied for the calculation of 
the retardation functions occurring in (10-11). F or 
this purpose, general expressions of the retardation 
functions o f each strip in open w ater and in the 
vicinity of a  vertical wall will be determ ined. These

H U )  =0 , t< 0  ; H ( t ) =  1 , t>0 (48)

£(x,t) is obtained by integration of (45). As a conse­
quence, K(x,t) and £(x,t) are composed of exponenti­
al a n d /o r  exponentially decaying harmonic functions.
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A pplication to  stationary situations shows that a  
consequent use of strip theory requires zero values 
for the hydrodynamic dam ping at zero and infinite 
frequency, so tha t the long-wave approxim ation is in 
contradiction with the general theoretical principles.

SIM PLIFIED  H Y DR OD Y N A M IC CHARACTE­
RISTICS O F  T H E  CO M PLETE SHIP.

Integration  over the ship’s length.

Sections in open water.

A  second o rder transfer function is used:

T ( x ,  a )  = i w ( a ( x ,  w) - p  ( x )  ) + b ( x ,  cu) 
iw B .

( ¿ u )  2 + iwAj_+Aa
(49)

leading to  following expressions for added mass and 
hydrodynamic damping:

a(x , w)  -  n =

b ( x , w)

b ^ A q - w2)

(A0 -  to2) 2 A2 o)2

(Ag- td2) 2 ^ ^ 2

(50)

(51)

This implies tha t the hydrodynamic behaviour o f  a  
section is determ ined by m eans o f four param eters 
(ß , Aq, A j, B,) which can be estim ated if added mass 
and dam ping are  known functions of frequency (fig. 
4). In  a  first approxim ation, a  rectangular section can 
b e  considered, for which results o f a  two-dimensional 
po ten tia l theory or even, for low frequencies, a  long­
wave approxim ation can be used (see Fontijn, [11]).

Se.ÇtignS-in .confined water_(singte_wgü).

Although a  sim ilar procedure applied to  a  half-open 
w ater configuration leads to  a  fair approxim ation of 
added mass and damping, the curves do not tend to 
th e  open-w ater curves with increasing quay clearance 
(QC ). F or this reason, the influence of the vicinity of 
a  closed wall is approxim ated by:

T ( x ,  co)
(O) (1 -e )  i<aB¿(U)

(i tù) 2tici)Ai(0> +Ao<01 ( i c o ) 2
= e r < 0) (x,u>)  + ( i - e )  r (w (x,u>)

Fig. 7. Local quay clearance.

A dded mass a(x,w), hydrodynamic damping b(x,w) 
an d  retardation  function K(x,t) are integrated over 
the ship’s  length; in  the vicinity o f a  vertical wall, the 
local quay clearance is taken into account (fig. 7):

d srz(x )  =  —  + x t  gt Jr-ABU)
COSljf 2

(54)

Simplification o f integrated characteristics.

A  fair approxim ation for open-water characteristics 
can be obtained by m eans o f a  second-order transfer 
function (49).

In  th e  vicinity o f a  vertical wall, the frequency res­
ponse characteristics display extrema a t one o r two 
frequencies. Following transfer function is suggested :

T ( x ,  a>) =e(o) t <q) (X( a )  +eu) T(i) (Xf u) +eu) r u) {Xi u)

with (i =  0,1,2) 

T U) ( x , u )  =•
iw U>

( i u ) 2 + i u A l<i) + Ag', (t)

(52) e<o> + e (i) +g(2) = i

(55)

(56)

(57)

T he param eter e takes a  value between 0  (QC=®) 
and 1 (QC=0);  acceptable results are obtained as 
follows:

e  = Aj'<o> CO
(0)2

Ag0' + A0<10 „(OU „(W 2 (53)

In a  first approximation, Fontijn’s form ulae [11] for 
rectangular sections in the vicinity of a  vertical wall 
can b e  used in order to obtain curves for added mass 
and hydrodynamic damping.

T*0’ representing the open-w ater transfer function.

A  relationship between th e  coefficients determining 
the retardation  functions and position parameters 
(quay clearance d^  and heading angle i|r) is now exa­
m ined. F or each com bination (d -ijr) two "equivalent 
quay clearance" values dsqÆq(1) en  asq cq(2) are defined:

■‘sq, eq  -  « s .= d  + c U) ijr (58)

c( * and c( l being independent of the motion mode. 
Ao(l), A / 1’, Bj0) and e0) can  be approximated by a 
function [m d ^  ̂ 0’ + q]'1. Som e of the coefficients m 
and q depend on the m otion mode.
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R etardation  functions resulting from  strip theory are 
com pared with the approxim ation in fig. 8.

R EFEREN CES

20

- 2

10O 5

Fig.8. R etardation  functions for a  tanker n ea r a  quay 
(da,o4-B =034; h-s-T = 1 3 ; tjr=5°): strip theory 

and param eterized approxim ation (------).

œ N C L U S IO N S

The use o f impulse response techniques can be consi­
dered as the most appropriate m ethod for im plem en­
ting hydrodynamic memory effects, which have to  be 
taken into account in im pact o r collision situations, 
in a  real-tim e manoeuvring sim ulation model.

T he outlines of a  practical procedure for this im ple­
m entation are given, taking account o f the relative 
position between the ship and the closed boundaries 
of the navigation area  by m eans of a  lim ited num ber 
of param eters, influencing th e  hydrodynamic coeffi­
cients and retardations functions. So far, the la tte r 
have been  calculated by m eans of a simplified strip 
method, but the presented m ethod for param eterisa- 
tion can also be applied to  results o f m ore sophistica­
ted  com putational m ethods (e.g. 2- or 3-dimensional 
boundary elem ent m ethods) o r experimentally deter­
mined frequency response characteristics.
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A PPEN D IX

A  sim ple representation of results of integration of
th e  velocity potential $ in  (9) over the contour length
of each strip requires following definitions:

X,

p 66 = ƒ  p i x )  x 2d x

£22( t )  * ƒ  S (x ,  t )  d x
X\

S26 ( t )  = ƒ  £ (x ,  c) x d x
Xi

( A . 5)

( A . 6)

(A .7)

ß  and  $ take following values a t the aft and fore 
perpendicular:

çA( t )  ( xA,  c)

l P( t )  = l ( x F, c)

( A .8)

(A.9 )

( A .10)

(A. 11)

l im e  derivation o f $(x,t) leads to an  expression for 
th e  re ta rda tion  function fo r la teral motion of a  strip:

I l  ( x ,  c) = K ( x ,  t ) (A .12)

p i x )  = p ƒ  i|i2 (x) n y d l  
2 ,(x)

( A . l )

which is in tegrated over the ship’s length:
x r

K22 ( t )  = ƒ K { x ,  C) d x  (A. 13 )

5 ( x ,  C) = p ƒ  x2 l x ,  t )  n y d l
2„U)

( A . 2) —r

i q 6 ( c )  = ƒ  K ( x ,  t )  x d x ( A . 14)

Integration o f these functions over the ship’s length 
yields:

r

P22 = ƒ  P (x ) dx ( A . 3)

r

( C) = ƒ K ( x ,  C) x 2 d x ( A . 15)

x,
p 26 * J p ( x )  x d x ( A . 4)

u,v and r  respectively denote the ship’s longitudinal 
an d  transversal velocity com ponents and rate o f turn. 
T he corresponding force and moment components 
a re  X,Y,N.
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