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ABSTRACT

A reliable estimation of contact forces between a
ship’s hull and constructions protected by fenders
requires the knowledge of the time history of hydro-
dynamic forces acting on the ship. As large decelera-
tions may occur, memory effects become important
and a quasisteady approach, which is commonly in
use in manoeuvring simulation, cannot be applied.

The first part of the paper gives an alternative review
of mathematical models suited for calculation of
hydrodynamic forces on ships in impact or collision
situations. Particular attention is paid to mathemati-
cal models making use of impulse response function
techniques and the application of state vectors. The
second part gives the outlines of the theoretical base
for the implementation of memory effects in a man-
oeuvring simulation program.

INTRODUCTION

The forces acting on a ship which is navigating in
confined waters can be influenced substantially when
the distance to the boundaries of the navigational
area decreases. The forces caused by the vicinity of
these boundaries can be divided in three types.

A first group of forces, bank suction, is caused by the
component of the ship’s speed parallel to a closed
boundary. Unless the ship’s course follows the cen-
terline of the waterway, latera! forces are induced by
the asymmetric flow around the ship’ hull. Forces of
this kind will not be discussed in this paper.

Contact forces, are caused by contact between the

ship’s hull and the boundary of the navigational area

(bank, quay wall, fender, bridge, bridgehead, jetty, ...).

Following effects have to be taken into account:

- a restoring force which is a function of the defor-
mation of the boundary by the ship’s hull or v.v,;

- a damping force which is a function of the relative
speed component perpendicular to the contact
plane;

- an inertia term depending on the movable mass of
the boundary;

- a frictional term caused by the component of the
relative speed in the contact plane.

Finally, a third group of forces can be defined as
unsteady hydrodynamic forces, acting on the ship as a
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consequence of relatively large accelerations or dece-
lerations. The latter not only occur if the ship comes
into contact with the boundaries of the navigational
area, but can also be induced by other causes (tugs,
anchors, rudder and machine manoeuvres). Unsteady
hydrodynamic forces act on the ship in case of con-
tact with open (e.g. quay wall) as well as closed (e.g.
jetty) boundaries, but their characteristics are influ-
enced substantially by the boundary’s nature. If a
Ship is laterally approaching a closed boundary, the
water level between hull and boundary increases,
causing a transverse flow in the underkeel clearance
and a longitudinal flow in the-quay clearance.

A reliable mathematical model of these forces is
required for simulation of manoeuvres in confined
waters. In a preliminary stage of the implementation
of contact forces and unsteady hydrodynamic forces
into the manoeuvring simulator of the Hydraulics
Research Laboratory of Antwerp-Borgerhout, the
Office of Naval Architecture of Ghent University was
charged with the selection and development of a
suitable mathematical model. The choice of the
mathematical model is subject to some restrictions,
as simulations take place in real time :
- the integration time increment cannot be decreased
without restriction; it should not be less than 02 s;
- the additional computing time required for force
calculation should be as small as possible: this im-
plies e.g. that the unsteady hydrodynamic force
components should be presented as functions of a
limited number of parameters expressing the relati-
ve position between ship and boundary.

REVIEW OF MATHEMATICAL MODELS

A large majority of the publications handling contact
forces and hydrodynamic memory effects have been
developed from the viewpoint of the engineer res-
ponsible for the design of berthing and mooring
facilities. As a consequence, most of the calculation
methods described in literature are focused on an
overall approach incorporating all force effects or on
the estimation of extreme conditions. On the contra-
ry, in a mathematical model suited for manoeuvring
simulation an analysis of all effects acting on the ship
is required, resulting into a reliable prediction of the
time history of kinematic and dynamic characteristics.



This is the reason why the approach followed by the
author in this review might seem rather unusual.
Calculation methods based on considerations, based
on kinematics or statistics, about the fraction of
ship’s kinetic energy which has to be absorbed by the
mooring facility and its fenders will not be discussed
in this paper, as they cannot be applied to real-time
simulation. For a comprehensive review of these
energy methods the reader is referred to [1],[2],[3].

These reviews mention two kinds of mathematical
models as well:
- models based on the ship’s equations of motion
combined with impulse response functions;
- models based on a long wave approximation.
However, the latter can be considered as the simplest
case of a model making use of state vectors, storing
the ship’s kinematical history; so far, these models
have only been used for the simulation of forces act-
ing on moored ships or ships in collision situations,
but they can also be applied to berthing conditions.

More recent publications also describe direct time
approach methods, based on simplified differential
equations describing the dynamics and kinematics of
the ship and the surrounding water, which are inte-
grated together with the equations of motion.

IMPULSE RESPONSE FUNCTION TECHNIQUE.

Generaljheory.

rb o6

Fig. 1. Degrees of freedom of a ship.

Following general formulation of the equation of
motion in mode j (see fig. 1 for definitions) is given
by the classical theory of ship motions (see e.g. [4]) :

E. dau (CD)E ARk (F> Vi = <

(1)

in which akj(u), bkj(«) and ck denote added mass,
hydrodynamic damping and restoring hydrostatic
coefficient, respectively; multiplied with acceleration,
velocity and displacement, respectively, in mode j,
they contribute to the force in mode k. Mtj stands for
the factor with which the acceleration in mode j must
be multiplied for the calculation of the jnenia force
in mode k (e.g. mass, moment of inertia).

Added mass and hydrodynamic damping are related
with the radiation problem: due to the presence of a
free water surface, ship motions generate a wave
pattern. This causes a memory effect: even if the
motion of the ship is stopped, the force action on the
ship caused by the formerly generated wave system

will continue, so that the ship dynamics is not only
related to the instantaneous kinematics, but also to
the kinematic past of the ship.

As the added mass and hydrodynamic damping coef-
ficients are frequency-dependent, expression (1) is
only valid if the external force Fkis a harmonic func-
tion of time. If this is not the case, a general expres-
sion for the motion of a floating body caused by the
action of external forces is given by (see e.g. [5],[6]):

) Xj(t-5) dz+CyXjl O

Fk(t

(2)

hki(r) denotes the impulse response function for the
hydrodynamic force in mode k at t=r caused by a
velocity pulse in mode j at t=0. The relation between
frequency domain approach (1) and time domain for-
mulation (2) yields an expression for this function:

r>0
=0, T<0
(3)
5(t) being the Dirac function, and denote the

high frequency limits for added mass and damping:

Fti=atlJto0) Kkj (t) sinw (t dr

C))

Xkj = lira bkj(o) (5)

while the retardation function KIj(t) is given by :

cosco C dco
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Introducing matrix notations, the equations of motion
of the ship can be formulated as follows :

[F] =
C

(IM] +[pD[x] +U] [x] +f [nr(t-T)] [x(r)]dt
+le] Ix]

(7

where [F],[x] denote 6x1-, and [M],[#*],[A],[K],[a],[b],

[c] 6x6-matrices. These dimensions decrease if only a
limited number of motion modes is considered.



Models based on impulse response function techni-
ques are applied rather currently for determining the
time history of forces and displacements in cases of
contact between a ship and a fixed construction (off
shore construction, fender): Petersen & Pedersen [7];
Blok, Brozius & Dekker [8]; Fontijn [9],[10],[11].
Similar methods were used by Petersen [12] for
collisions between ships, and by Van Oortmerssen
[13],[14], Van Oortmerssen, Pinkster & van den
Boom [15] and Remery [16] for moored ships.

Fig. 2. Slender-body approximation : conventions.

Strip theory formulation.

The study of hydrodynamic forces acting on a body
can often be simplified if it is assumed that the order
of magnitude of one of the dimensions surpasses the
other ones significantly, so that the body can be
considered as slender. A ship can, for instance, be
called slender in its longitudinal direction.

The slender body approximation implies that the
longitudinal component of the fluid velocity is ne-
glected. In this case, Gauss’ theorem leads to follow-
ing expression for the lateral force ([4], see fig. 2) :

Pty s 4TIy dd (8)

§ being the velocity potential. A general formulation
of § for six degrees of freedom is given in [14] :

4>(t) = £ x3(0 Tj+JXj(C-x) Xj(x) dx ()
3-1

where itf and Xj(t) denote the instantaneous and
time-dependent fractions of the fluid reaction to a
velocity impulse in mode j at t=0. Introduction of (9)
into (8) leads to following expressions for the total
lateral force Y and resulting yawing moment N (see
Appendix A for definitions). From these expressions
(10-11) it can be concluded that a consequent appli-
cation of a strip theory not only requires an addition
of memory terms to the hydrodynamic inertia forces,
but also to the lifting forces (terms in ur and uv).

yhi{c) = +\i22v{1t) * Jk22(x) v(e-t) dx

*\i26£(t) * j'K26(T) r(t-x)dx
-u(t) v(t) (pp-pA)

- u(t)jjSplT) -$A(t)]v( t-X) dx
~u(t) r:)(t) (Xj4iP-x AliA)

»u(t) f[*£%.(t) +XxAEA<T)]r(C-T) dr

0
(10)

Nb{t) = +p26v(t) + v(t) dx
C

+p6or(t) +IJXsU-t) r(t) dx

+u(t)v(t)
+u(e)/[522<t>~ £ f(x) +xafa (t)]
v(Cx)dx
+u(t) r(t) (p26-x¢|iptxipA)
+u(t) jl[S2i (T) -x|£P(T) +x1iA(t)]
r(t-x) dx
(ID

STATE VARIABLES.
General theoretical formulation.

The theoretical background of the use of state varia-
bles for calculating unsteady hydrodynamic forces is
developed by Schmiechen [17],[18]. The hydrody-
namic forces (7) are considered as a functional :

C
[Fh] = [p] [x] *[1] [x] +f [C<t-T) ] (x(T) ] dx
=[P([V(T)D] s -®STLt
(12)
Such a formulation can be approximated by a num-

ber of recursive relationships in which a number of
state variables [s0],[s,],...,[sn] have been introduced :

tan_*(t)]=[on_*isn],[Vv])]
=[sn*.1(t)] -14k] [sO(t)]-[By] [v(t)]
(13)

where k = 0,1,..n and [sfl+1] = [0];

[Fb] =[idsjl, tv«"])]

(14)
= [80] [CT [V(i~]



In (13-14) the second equation is valid for linear
systems. If m=1 in (14), while [CO] and [C,] are
chosen to be /[X] and [f3/, respectively, [sO] expresses
the hydrodynamic memory forces acting on the ship :

[s0] = f [K(t-x) 1 [x(x)]dt (15)

The calculation of [s0] requires the knowledge of the
other state variables [sl],..,[sB, so that the latter can
be considered as parameters for the memory effects.

An estimation of the matrices [AkK] and [BkK] in (13)
has to be based on the frequency response matrices
[a(o)] and [b(0)]. For this reason, system (13) of n+1
First order differential equations is rewritten as one
single differential equation with order n+1 :

[sQn*) (C)] 14K] [si

;m0

©]

Fourier transformation of (16) yields :
(iu)a'I[I] * E ((6)*[AKk]H ~0(co)]
»0

= - £ (Ip>*[**]

[«(ca)]
(17)

in which [s0] can be eliminated making use of follow-
ing expressions for the Fourier transform of the
hydrodynamic forces, derived from (14) and (1) :

[/5 ()] =is0] *(ir[[i]+[X])[2(W)]
=(icu [a(w) ] +/b(u>) 1)[?(«)]

(18)

Manipulation of (17-18) leads to a matrix equation;

¢ (ico)*—MB*) -

/e-0

;E() ii& )kn 1[AK] (io)[a(co) -p] +[!?(to) -X])
- )

ico [a (co)-p] +[¢(to) -1]
(19)

Making use of a least square method, the values of
[a(co)] and [b(w)] for a number of (preferably equidis-
tant) values of co lead to an optimal estimation for
the matrices [AJ and [BK],

This theory has been applied to the case of two
colliding ships by Schmiechen [17],[18], Jiang,
Schellin & Sharma [19] have simulated the horizon-
tal motion of a moored tanker, making use of an
approximation with n=3, which increases the number
of differential equations of motion from 3 to 15.
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Marginal case n=0 - Long-wave approximation.

(19) takes following form if n=0 ;
(iw [1] +[AO)'MBO] =iu [a(u) -p] +[2X{co) -X]
.. (20)
J
If only the lateral force caused by the sway motion is
taken into account, (20) yields:

a22(a) - p22 = (21)

¥p<e) - 1y (22)

A
40 + (03

Differential equation (16) takes following form :

[40] */A40] [s0] » -CBO] [v<c)l (23)

which, taking account of (14), leads to :

[FI*[|»1 [O]
+([X] +U 0] [pD(v]I*([AO] [X]~+[BO])[v]
-0

(24)

leading to following expression for the lateral force
caused by the uncoupled sway motion :

r* + F22* +(*2a +A,p22)v*(alx22+b0)v=0

(25)

A remarkable similarity exists between this equation
and the results of a long-wave approximation, applied
by Middendorp [20] (see also [3],[11]). Following this
approach, a two-dimensional situation is considered
in which a simplified, rectangular ship’s section per-
forms a lateral motion, causing an elevation of the
water level at one side and a sinkage at the other
side of the ship. The velocity of these dénivellations
equals c,, = (gh)*. Dynamics and kinematics of the
ship and the surrounding water is described by equa-
tions expressing continuity, mass conservation, mo-
mentum conservation and the equation of motion.
Application to a harmonic sway motion of the ship
yields expressions for added mass and hydrodynamic
damping coefficients as a function of frequency,
which take following form if viscous friction in the
underkeel region is neglected :

h-T

a22(u) =pLBT ASIL (26)
T u2B2h +4,¢r{h-T)2
2¢, io B T
>22(U) =p LBT—"ft (27)
B wzBzh+4g(h-T)2

Equations (21-22) and (26-27) are identical if :



L h-T
0= 21a5 "5, (28)

la

Bo=-prLpT " T 4872 (29)
T  B2h

N22=0 (30)

(31)

so that (25) is simplified to :

wl (32)

which can be used for the implementation of nonsta- . . .
tionary hydrodynamic forces into a manoeuvring Fig. 3. Two-(.ilmensmnal sway added mass and
simulation program. damping : state space model, n = 0.

This approximation is clearly useless for high fre-
quencies, as the high frequency limits of (21-22) for
added mass and damping axe in contradiction with
experimental and theoretical data (see fig. 3).

a22

Ao
If n=1, (19) takes following form :

(UJ -u2[l] +io) 1] 1([BO] +io) [Bj]) (33)
=io>[a(u) -] +[-b(u) -X]

If the lateral motion is uncoupled, (33) leads to
following expressions for added mass and hydrodyna-
mic damping if the latter is assumed to vanish for
very small and very large frequencies (see fig. 4):

BJAO-u 2
a22(w) - p2 = (34)
(40- 022 ¢ 0)2A;

0)2A1BI
b22(u) 3 (35)
(Ao-022 + 0241

(see also [18]). Following differential equation for hip. 4.
the unsteady hydrodynamic force is obtained :

Yh+A N h+A0Yh (36)
i 2 V24A1 \[22v 2 +HAoii 22+B)v2 =0 A2 A S02 37

Two-dimensional sway added mass and
damping : state space model, n = 1.

which is equivalent with following system of first

. — _ ' _ 38
order differential equations: 40.2=51,2-4250'2-81y2 (38)

yh=s02-1i22v2 (39)
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The correspondence between (34-35) and the real
curves for added mass and hydrodynamic damping as
functions of frequency has already improved compa-
red with a long-wave approximation. Moreover, the
typical shape of the curves due to the presence of a
closed boundary (quay wall) can be obtained by a
suitable choice of AQ, A,, B0, Bj (see fig. 5).
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Fig.5. Sway added mass and damping near quay wall:
state space model (n= 1).

DIR ECT..TIME. APPROACH.

If one succeeds in presenting the behaviour of the
water in the vicinity of the ship by means of a limited
number of parameters, the time history of the ship’s
kinematics and dynamics can be formulated by a
limited number of differential equations, which can
be integrated together with the equation of motion.

Such a method is based on a number of hypotheses;
a typical example is the long-wave approximation,
mentioned in a former paragraph, which assumes
that the hydrodynamic forces acting on a (rectangu-
lar) ship in a pure sway motion depend on only five
parameters (rja r)c v,, vb and vc see fig. 6), so that
the equation of motion in lateral direction is comple-
ted with five supplementary differential equations.
Elimination of rjg v? and vc leads to following
system of two differential equations with two un-
known time functions x, and vb:

(40)

+27 (fer (v )=0

+ W-3-

A

Cv mCvT~Vb{h~T) [vb(h-T)*x2T]
B? cl-X; 1 1

+

vp(h-T) *x272

pLT h "2 PLBT

(41)

v,

Fig. 6. Long-wave approximation [11].

With some additional simplifications, (4041) lead to
one single differential equation (32). However, direct
integration of (4041) makes it possible to account
for several nonlinear effects, thus leading to an ap-
proach with a more solid physical base.

A direct time approach of problems concerning ship
motions in confined waters is developed by Fontijn
[11], who succeeded in formulating the lateral motion
of a rectangular vessel parallel with a vertical wall by
means of three simplified differential equations.

SELECTION OF A MATHEMATICAL MODEL

The use of impulse response techniques can be consi-
dered as the most direct and logical method for the
implementation of memory effects into a simulation
program. The integration procedure of the equations
of motion does not need to be modified, as the un-
steady hydrodynamic forces are calculated separately
and added to the other forces acting on the ship. On
the other hand, the calculation of these forces requi-
res numerical integration of the product of a number
of retardation functions with the time history of the
respective velocity components, which is a rather
lengthy operation. If the interaction of surge motion
with sway and yaw are not taken into consideration,
four different retardation functions have to be hand-
led; these functions depend on the water depth and
the relative position between the ship and the closed
boundaries of the navigation area.

Models based on a state variables approach offer the
advantage that the information about unsteady hy-
drodynamic forces is stored in a rather limited num-



ber of parameters. For example, if n=1, the matrices
[Aql, [AT], [Bgl, [B,], [/¢] and [A] contain 30 nonzero
coefficients in case of an uncoupled surge motion,
replacing the static added-mass coefficients X’,
Yp N» Nr. These coefficients also depend on the
water depth and ship’s position. On the other hand,
such models look rather artificial: neither the coeffi-
cient matrices [A] and [B] nor the state variables [s]
theirselves are clearly related with the physical reali-
ty. The number of differential equations that have to
be integrated is increased with 3(n+1); as an accep-
table approximation for the frequency response cha-
racteristics requires n>1, at least six differential e-
quations must be added to the three equations of
motion. Moreover, some variables are impliritely
integrated several times, which can cause numerical
complications if the time increment is too large. For
this reason, application for real-time simulation does
not seem feasible.

The application of a direct time approach also requi-
res additional variables and differential equations,
but there is a clear relationship with the physical
reality. Unlike the other methods, nonlinear terms
can be taken into account. On the other hand, Fon-
tijn’s publications [9]-[11] show that such an appro-
ach even for a rather simple case leads to complex
formulations. Furthermore, quite drastic corrections
are required for fitting theoretical and experimental
results, so that it is rather doubtful that a direct time
approach would lead to more reliable results than
the other methods. The latter are mainly based on
the frequency response characteristics of the ship; if
the latter are determined in an experimental or a
verified theoretical way, all influences which are
considered in a direct time approach are implicitely
taken into account.

As a conclusion, the use of impulse response techni-
ques seems to be most appropriate for application in
real-time simulation, although the theoretical deve-
lopments concerning state variables will prove to be
quite useful for the formulation of retardation functi-
ons. Moreover, the author would like to emphasize
that state variable techniques have proved to be
successful in studies handling unsteady hydrodynamic
forces on ships (see [17]-[19]), although they have not
been applied yet to problems related with interaction
between ships and (fendered) harbour constructions.

Resuming, the mathematical presentation of unsteady
hydrodynamic forces in the horizontal plane will be
given by (10-11), together with an expression for the
longitudinal force:

Xh(t) =plli(t) v(t-r) dt (42)

so that cross-coupling effects between the longitudi-
nal mode and the other ones is neglected.

A strip-theory will be applied for the calculation of
the retardation functions occurring in (10-11). For
this purpose, general expressions of the retardation
functions of each strip in open water and in the
vicinity of a vertical wall will be determined. These
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functions will be integrated along the ship’s length;
subsequently the integrated functions wall be approxi-
mated by means of a limited number of parameters
determining the position of the ship relative to the
boundaries of the navigation area.

RETARDATION FUNCTIONS OF A STRIP.
3re

Expressions for the time functions £(x,t) and K(x,t)
required for the calculation of the retardation functi-
ons occurring in (10-11) (see Appendix A) can be
based on an approximation by means of a transfer
function of order n+1, as suggested by (17-19):
T(x,a) siu(a(x, o) -g (x))*(b(x, ®-A(x))
E ((W)*B*

(¢u) a

"5

(43)

where Aj, and Bj. are functions of x. (43) can be
rewritten as follows :

T{x, cu) = .
Bo « i<uBlj) "+BbUS*  (44)
>i icotAOIY >i (iut)i+iadlj) Az

with n=n,+2n2 The retardation function K(x,t) is
obtained by inverse Fourier transformation;

K(x, t) :_ﬁ.”SIffT(X’W) eiacdo

’ 'A,/ ’
“H(t) E Bjirv* ¢
u*i
E K 1nCOSM03't
sincoo'llC

“(6')

(45)
with

(46)
47
A =K "™-tK T 47
HU) =0 , t<0 ; H(t)=1, t>0 (48)

£(x,t) is obtained by integration of (45). As a conse-
quence, K(x,t) and £(x,t) are composed of exponenti-
al and/or exponentially decaying harmonic functions.



Application to stationary situations shows that a
consequent use of strip theory requires zero values
for the hydrodynamic damping at zero and infinite
frequency, so that the long-wave approximation is in
contradiction with the general theoretical principles.

Sections in open water.

A second order transfer function is used:

T(x, a) =iw(a(x, w)-p (x) ) +tb(x, cu)
iwB. (49)
(yu) 2+iwAj +Aa

leading to following expressions for added mass and
hydrodynamic damping:

BMA Q- W2)

a(x,w) - n=
(AO- to2)2 A20)2

(50)

b(x,w) (51)
(Ag-td2)2~ ~ 2

This implies that the hydrodynamic behaviour of a
section is determined by means of four parameters
(3, Aq, Aj, B,) which can be estimated if added mass
and damping are known functions of frequency (fig.
4). In a first approximation, a rectangular section can
be considered, for which results of a two-dimensional
potential theory or even, for low frequencies, a long-
wave approximation can be used (see Fontijn, [11]).

Se.CtignS-in.confined water_(singte_wgii).

Although a similar procedure applied to a half-open
water configuration leads to a fair approximation of
added mass and damping, the curves do not tend to
the open-water curves with increasing quay clearance
(QC). For this reason, the influence of the vicinity of
a closed wall is approximated by:

T(x, co)
Q) (1-¢) i<aB/Y
(itu) 2tici)Ai(0>+Ao0l  (ico)2
=er<0) (x,u>) +(i-e) r (w (x,u>)
(52)

The parameter ¢ takes a value between 0 (QC=®)

and 1 (QC=0); acceptable results are obtained as
follows:

(@2

(OU (W2

AT
Ag0' + AGI0

(53)

In a first approximation, Fontijn’s formulae [11] for
rectangular sections in the vicinity of a vertical wall
can be used in order to obtain curves for added mass
and hydrodynamic damping.

SIMPLIFIED HYDRODYNAMIC CHARACTE-
RISTICS OF THE COMPLETE SHIP.

Integration over the ship’s length.

Fig. 7. Local quay clearance.

Added mass a(x,w), hydrodynamic damping b(x,w)
and retardation function K(x,t) are integrated over
the ship’s length; in the vicinity of a vertical wall, the
local quay clearance is taken into account (fig. 7):
dsrz(x) = (54)

oS +xt gtJr—IZABU)

Simplification of integrated characteristics.

A fair approximation for open-water characteristics
can be obtained by means of a second-order transfer
function (49).

In the vicinity of a vertical wall, the frequency res-
ponse characteristics display extrema at one or two
frequencies. Following transfer function is suggested :

{Gt 4G (X(a) +ew) T() (Xfu) +eu) r u) £Xi u)

(55)
with (i = 0,1,2)
T (x,u) w (56)
X,u) =°
(iu)2+iuA 1<) +ad)
e<o> +e(i) +g(2) =i (57)

T*0" representing the open-water transfer function.

A relationship between the coefficients determining
the retardation functions and position parameters
(quay clearance d” and heading angle ir) is now exa-
mined. For each combination (d -ijr) two "equivalent
quay clearance" values dsgdg(1) en asqoq?2) are defined:

Wsq, eq;ds. + ¢ U)ijr (58)

c(* and c(1 being independent of the motion mode.
Ao(l), A/T, Bi0) and e0) can be approximated by a
function [m d*"* 0’ + q]'l. Some of the coefficients m
and q depend on the motion mode.



Retardation functions resulting from strip theory are
compared with the approximation in fig. 8.
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Fig.8. Retardation functions for a tanker near a quay
(da,04-B=034; h-s-T=13; tjr=5°): strip theory
and parameterized approximation (------ ).

eNCLUSIONS

The use of impulse response techniques can be consi-
dered as the most appropriate method for implemen-
ting hydrodynamic memory effects, which have to be
taken into account in impact or collision situations,
in a real-time manoeuvring simulation model.

The outlines of a practical procedure for this imple-
mentation are given, taking account of the relative
position between the ship and the closed boundaries
of the navigation area by means of a limited number
of parameters, influencing the hydrodynamic coeffi-
cients and retardations functions. So far, the latter
have been calculated by means of a simplified strip
method, but the presented method for parameterisa-
tion can also be applied to results of more sophistica-
ted computational methods (e.g. 2- or 3-dimensional
boundary element methods) or experimentally deter-
mined frequency response characteristics.
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APPENDIX
A simple representation of results of integration of

the velocity potential $ in (9) over the contour length
of each strip requires following definitions:

pix) =p [ ili2(x) nydl (A1)
2,(x)
5(x,0=p f x2Ix, t) nydl (A.2)
2,,U)

Integration of these functions over the ship’s length
yields:

r

P22 =f P (x) dx (A.3)
X,
p26 *Ip(x) xdx (A.4)

X

p66 =fpix) x 2dx (A.5)

£22(t) *fS(x, t) dx (A.6)
X\

S26(t) =f£(x, ¢) xdx (A.T)
Xi

B and $ take following values at the aft and fore
perpendicular:

(A.8)
(A.9)
GA(1) (x4, ¢ (A.10)
1P(t) =I(xF ¢) (A. 11)

lim e derivation of $(x,t) leads to an expression for
the retardation function for lateral motion of a strip:

I'l (x,¢)=K(x, 1) (A.12)

which is integrated over the ship’s length:
Kzz(t) :fK{xr de (A13)
iqg6(c) =fK(x, t) xdx (A.14)
(O =fK(x, O x2dx (A.15)

u,v and r respectively denote the ship’s longitudinal
and transversal velocity components and rate of turn.

The corresponding force and moment components
are X,Y,N.



