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Abstract

In navigation areas with bottoms covered by a fluid mud layer, the nautical bottom  concept is introduced 
to assess the under keel clearance and the level of dredging. Up till now the nautical bottom has always 
been defined using the characteristics of the mud layer. However, criteria based on ship behaviour may 
result in a more efficient definition of the nautical bottom. A mathematical model formulation for ship 
manoeuvring in muddy areas, based on systematic captive model tests is proposed. Full mission ship 
manoeuvring simulator runs were carried out to review the nautical bottom concept in the harbour of 
Zeebrugge, Belgium; a selection of simulation results is presented.

1 Introduction

The last decade the dimensions and capacity of container vessels has increased sig­
nificantly. In order to maintain their competitive position, it is important for the port 
authorities to keep their harbour accessible for the largest ships without jeopardising 
safety of shipping traffic. Especially an increase of draft may cause problems, as a 
minimal under keel clearance is required, not only to decrease the probability of bot­
tom contact, but also to avoid unacceptable effects on the manoeuvrability of the ship.

The available gross under keel clearance of the ship is known whenever the water 
depth is. If the bottom of the fairway is covered with a layer of fluid mud, it is more 
difficult to assess the available under keel clearance, as the physical characteristics of 
a mud layer -  such as density, viscosity, yield stress -  vary with the depth. In many 
areas, the upper part of a mud layer can be considered as a fluid with low density and 
viscosity; both parameters increase more or less gradually with depth. Often a signifi­
cant increase of the rheological properties occurs at a certain depth: this is referred to 
as the rheological transition.

It is unlikely that a ship will suffer damage when its keel touches the upper part of the 
mud layer, as would occur when touching a hard bottom. On the other hand it is likely



that the presence of the mud will modify the manoeuvring behaviour of the ship. In 
order to define the reference level for maintenance dredging works and for estimating 
the available under keel clearance in muddy areas, the nautical bottom is defined as 
the level where physical characteristics o f the bottom reach a critical limit beyond 
which contact with a ship’s keel causes either damage or unacceptable effects on 
controllability and manoeuvrability [PIANC, 1997].

Nowadays the nautical bottom concept is applied worldwide by several waterways 
authorities responsible for harbours and access channels suffering from fluid mud 
sedimentation. In the harbour of Zeebrugge, Belgium, the nautical bottom is theoreti­
cally linked to the rheological transition level. However, frequent monitoring of 
dredging works and updating of nautical charts requires continuous survey methods; 
unfortunately, up till present the latter are not available for measuring rheological 
properties. Therefore, for practical reasons the operational definition of the nautical 
bottom is linked to a critical density value, as continuous density gauges have been 
developed (e.g. Navitracker®, [De Vlieger, 1987]). During a measurement campaign 
in the 1980s the rheological transition in Zeebrugge always occurred at a density 
which was higher than 1150 kg/m3, so that the latter was consequently used as a safe 
critical limit. Other harbours use different values, depending on the local properties of 
the mud layer, e.g. Cayenne: 1270 kg/m3, Rotterdam: 1200 kg/m3.

A more recent measurement campaign in 1997 revealed that the rheological transition 
in Zeebrugge occurred at a density level significantly above the current critical den­
sity of 1150 kg/m3; on the other hand, the thickness and viscosity of the mud layer 
above this transition appeared to have increased significantly. A review of the critical 
density level would have been a logical measure; on the other hand, this would result 
into more frequent and deeper penetrations of the ship’s keel into the mud layer, with 
possible unacceptable effects on manoeuvrability. As little was known on the ma­
noeuvrability of deep drafted ships in such conditions an extensive research project 
had been set up at Flanders Hydraulics Research, the hydraulic research station of the 
Waterways and Maritime Affairs Administration of the Ministry of Flanders, with the 
scientific support of the Maritime Technology Division of Ghent University. The 
research program included captive manoeuvring tests, fast-time and full mission 
bridge simulation runs.

2 Experimental program

2.1 Facilities

To carry out captive manoeuvring tests Flanders Hydraulics Research has a towing 
tank for manoeuvres in shallow water (88 m * 7 m * 0.6 m) at its disposal. The tank is 
equipped with a planar motion mechanism with fully automated control and data ac­
quisition system, so that the facilities can be run 24 hours a day, 7 days a week.



Two full mission bridge simulators are available for research and training in confined 
and shallow navigation areas such as access channels and harbours: SIM225 with a 
visual system of 225 degrees view allowing a horizontal or vertical tilt of the image, 
and SIM360+ with 360 degrees view and lateral view of the ship’s hull. Both simula­
tors consist of a mock-up of a ship’s bridge with navigation equipment for controlling 
the vessel, digital instruments, communication equipment, radar, ECDIS, etc. Tug 
assistance can be simulated as well. In the frame of the present project, the simulation 
runs were carried out with SIM225.

2.2 Ship models

Three ship models have been selected: two container carriers (D: 6000 TEU; U: 8000 
TEU) and a tanker model (E). All ship models were equipped with a single propeller 
and a single rudder. The main characteristics of the models are resumed in Table 1. In 
this paper only results of ship model D, the 6000 TEU container carrier model, will be 
discussed, as the most comprehensive captive model test program has been carried 
out with this ship model, being a typical ship calling at Zeebrugge harbour.

Table 1. S lip models.
Model D E U Model D E U
Scale 1/75 1/75 1/80 Ar (m2) 60.96 98.34 83.13

Lpp (m) 289.8 286.8 331.8 # blades 5 5 6
B (m) 40.25 46.77 42.82 Dp (m) 8.145 7.733 8.46
T(m) 13.50 15.50 14.54 P/D (-) 0.97 0.65 1.00

CB 0.59 0.82 0.65 AEP (-) 0.8 0.62 0.96

2.3 Bottom conditions

Mud has been simulated using a mixture of two types of chlorinated paraffin and 
petrol. The characteristics of the different artificial mud layers are shown in Table 2. 
A mud layer configuration is defined by two characters: a letter (b,.. .,h) denoting the 
material characteristics and a figure (1, 2, 3) representing the layer thickness.

Table 2. Bottom conditions and tested models.
Mud
type

Density
(kg/m3)

Dynamic 
viscosity 

(Pa s)

Layer thickness 
0.75 m 1.50 m 3.00 m

t t  tt  n y '  "3M

"d" 1100 0.03 D/E D/E D/E/U
"c" 1150 0.06 D D D
"b" 1180 0.10 D D D
tt 1200 0.11 - D -

"h" 1210 0.19 D/E D/E D
"e" 1260 0.29 - D -

"g" 1250 0.46 - D/E D/E
"S" solid bottom



The towing tank was covered with a poly-ethylene coating as a protection against the 
artificial mud. Also the tank had been divided into three sections: a test section 
(length 44 m) and reservoirs for mud and water. The gross under keel clearance rela­
tive to the tank bottom was varied between 7 and 32% of draft, yielding -12 to +21% 
ukc relative to the mud-water interface. Throughout this paper, the under keel clear­
ance will be expressed with the interface water-mud as a referenc, unless specified 
otherwise.

2.4 Test types

As the simulation of realistic harbour manoeuvres is one of the main purposes of the 
research program, sufficient model test data had to be available to simulate a wide 
range of possible manoeuvres. The captive manoeuvring program consisted of bollard 
pull tests with varying rudder angle and propeller rate; stationary tests with varying 
forward speed, rudder angle, drift angle and propeller rpm; harmonic sway and yaw 
tests; multimodal tests with variable speed, rudder angle or propeller rpm. The speed 
of the vessels was varied between 2 knots astern and 10 knots ahead.

Following data were measured: longitudinal and lateral force components fore and aft, 
vertical motion (4 measuring posts: fore/aft, port/starboard), rudder parameters (nor­
mal and tangential forces, torque, angle), propeller parameters (torque, thrust, rpm). 
In particular cases, vertical motions of the mud-water and water-air interfaces were 
registered as well.

3 Mathematical modelling

3.1 Modelling methods

The proposed mathematical model attempts to take account of the physical back­
ground of the hydrodynamic forces as much as possible. A modular model has been 
developed, in which hull (H), propeller (P) and rudder (R) induced forces have been 
modelled separately and are then joined using correlation parameters. Rather than 
attempting to fit the data with analytical functions, the model results are given in 
tabular format, interlaying points being calculated by linear interpolation. The coeffi­
cients of the model are bottom dependent, so during the simulator runs the bottom 
conditions were supposed to be stationary. In future, efforts will be taken to include 
varying bottom conditions in one run.

3.2 Hull forces

3.2.1 Longitudinal force

The longitudinal hull force is as given by:



X H = (X û ( u ) -m )ú  +m vr +m xGr2 + [ x ^ ( u ) v 2 + X ,( u ) v + X fi( u ) í2 + Xf (u ) r]  

+ ip L T {(u 2 + v2)(X '(ß)) + (u 2 + ( i rL )2) x ’(y) + (v2 + ( i rL )2)x '(x )}

Velocity dependent terms are modelled with tabular functions of the drift angle ß, the 
yaw rate angle y and a correlation angle %. A point of interest is the dependence on 
the accelerations. Usually the longitudinal force will only be affected by longitudinal 
accelerations. However, in case of contact between the ship's keel and high density 
mud (>1200 kg/m3), sway and yaw acceleration also have a significant influence. 
Moreover, the speed-force relation appears to be no longer quadratic, so that for each 
speed a separate tabular function must be introduced. In all other cases those influ­
ences are unimportant. Figure 1 shows the non-dimensional resistance at a speed of 2 
knots. Touching high density mud layers leads to a dramatic increase of resistance.
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Fig. 1. Ship resistance: influence of bottom characteristics and ukc at low speed. 

3.2.2 Sway force and yawing moment

The proposed model for the sway force is given by:
(u 2 + v2) Y '(ß) + (u2 + (-jtL )2 ) Y '(y)

Yh = (Yv - m) v + (Yj (ß) - mx0 )r  - mur + jpL T
■(v2 + ( l r L ) 2)Y ’(x)

(2)

The hydrodynamic inertia increases significantly in muddy navigation areas. As an 
example, Figure 2 shows the sway added mass. Drift and yaw induced forces also 
increase with decreasing ukc. The yawing moment is modelled as:

(u2 + v2)N ’(ß) + (u2 + (jt L)2 ) n ’(Y)
Nh = (N , -m xG)v + (N i (ß ) - Izz) f -m x Gur + ip L 2T

-(v2 + ( irL )2)N '(x)

(3)
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Fig. 2. Sway added mass: influence of bottom characteristics and ukc.

The effect of mud layers on the yawing moment is analogue as with the sway force. 
In general the components of YH and NH in muddy areas can be seen as an extrapola­
tion of the forces in the shallow water domain.

3.3 Propeller forces

3.3.1 Thrust and torque

The thrust coefficient CT and the torque coefficient CQ are available for each propeller 
in open water conditions and are given in function of the hydrodynamic angle e:

: arctan
0.77t nD

: arctan
p /

u ( l-w )  
v0.77t nDp y

in which up represents the advance speed of the propeller:

U p  = (1- w)u

(4)

(5)

with w the wake factor formulating the relationship with u, the forward speed of the 
ship. A different wake factor is calculated for the thrust and the torque. The wake 
factor is given in function of the apparent hydrodynamic angle £*:

( .. A
e* = arctan

0.77U1D
(6)

p /

The wake factor wT for the thrust, which is represented on Figure 3, is significantly 
higher when navigating in muddy areas of a low density. This effect can be related to 
the undulations in the water-mud interface, which increase and move more aft with 
increasing speed and decreasing mud density. With low density mud layers, the undu­
lations are maximal near the propeller and disturb the propeller inflow.



The wake factor for the torque takes high values in contact with high density mud 
layers, due to the fact that the blade tips are moving through the mud, yielding a lar­
ger torque. The combination of a large torque and an increased resistance results in a 
very poor propeller efficiency when the ship penetrates a mud layer.
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Fig. 3. Wake factor for thrust (transparent symbols) and torque (filled symbols). 
Influence of bottom conditions.
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3.3.2 Propeller induced forces

The propeller induces a longitudinal force XP on the hull, which is only a fraction of 
the thrust TP; as usual, this effect is modelled by means of the thrust deduction factor t. 
t increases with decreasing propeller loading and is larger in muddy navigation areas.

ndFlow asymmetry around the propeller a lateral force and a yawing moment. In the 2' 
and 4th quadrant, the ship velocity and the propeller rate are opposite, resulting in

(7)

eddies near the stern and oscillating forces and moments:

~Kj [ ypt (ß,s *) + Ypt (y,e *)] +

K 2 [Ypta (ß,e *)] [cos(co(ß,e *)t + j(ß,e *))] 

[Npt (ß,£ *) + Npt (y,£ *)] +

[ N p t a  (ß- £ * - K 2 )] [cos(co(ß,£ *) t + j(ß,£ *))]

Yp =

N

( Y ”v + Y ”f ) + 

( N ”v + N ”f)  +

Tp (e *)

LppTp (e *) (g)

Ki and K2 are quadrant depending: Ki = Fn in quadrant 1 and equals 1 in other quad­
rants; K2 = 1 in quadrants 1, 2, 3 and takes a value between 0 and 1 in quadrant 4. 
Figure 4 shows as an example the average lateral force due to propeller action in the



first quadrant. An increase of the asymmetry force can be observed in muddy areas, 
especially with positive ukc. Also the difference between port and starboard, due to 
the right handed propeller which the ship was equipped with, increases in muddy 
areas, as well as the amplitude of the oscillations.
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Fig. 4. Average lateral force due to propeller action (1st quadrant): influence of 
bottom characteristics.

3.4 Rudder forces

3.4.1 Forces acting on the rudder

Open water drift and lift coefficients (CD, CL) are available for a 360 deg range of 
rudder attack angles a R . The longitudinal and lateral rudder forces are modelled as:
F x  — t P A r V r  [C L ( u r  )sinßR + CD (a R )cosßR J (9-10)

F y  = T pARVR [C l  ( o r  )cosßR - CD (a R )sinßR J

in which ßR represents the drift angle of the flow near the rudder. The longitudinal 
inflow velocity at the rudder depends on the ship’s speed and the propeller loading. 
To model the latter, the impulse theory has been used. The effect of the hull is mod­
elled using a wake factor, which has an analogue definition as in eqn (5). As with the 
wake factor for the thrust, a larger wake is observed in low density muddy areas, 
which again can be explained by undulations of the water-mud interface near the stern.

3.4.2 Rudder induced forces

The longitudinal rudder force yields an extra resistance XR on the ship’s hull. XR does 
not seem to be significantly different from Fx, so that both are modelled in the same 
way. The asymmetric flow induced by the rudder not only results in a lateral force FY 
on the rudder (with application point xR), but also in an extra lateral force aHFY (with 
application point xH) due to an asymmetric flow around the hull. This leads to:
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YR = ( l  + aH)Fy

N r  =  ( x r  + a HX H ) F y

( H )
(12)

In the first quadrant aH reaches a maximum at a certain propeller loading, which is 
noticeably lower above solid bottoms. In self-propelled conditions aH increases with 
decreasing under keel clearance and decreasing layer thickness. In the 4th quadrant a 
different effect is observed. For positive under keel clearances, aH lies between 0 and 
-1, but when the ship’s keel is near the interface, an is more or less -1. In this case the 
rudder has no effect upon the hull. With even smaller ukc the rudder induces an oppo­
site effect. The application point xH moves to amidships with decreasing ukc.

4 Simulation runs

The simulation program had to meet three objectives:

1. Validation of the mathematical model, by simulations in situations the pilots are 
familiar with, such as a solid bottom.

2. Defining the limit of controllability: a selection of conditions with small negative 
under keel clearance to define the nautical bottom.

3. Assessing the navigability in contact with mud layers. Adopting a larger critical 
limit will lead to contact between the ship’s keel and mud layers of a lower den­
sity. A number of those conditions has been selected as well.

For the assessment of the runs, the following criteria have been taken into account:

1. Speed. Can the vessel, when leaving the harbour, develop sufficient speed to 
counteract the currents outside the breakwaters?

2. Is the course stability sufficient? The standard deviation on the yaw rate of the 
ship seemed a suitable evaluation parameter.

3. Are the ship’s own controls and the offered tug assistance S sufficient to carry out 
the manoeuvres safely and in an economic way? The controllability has been 
evaluated by analysing the impulse of steering force and moment, defined by:

IY = I YT+IYR = X j S 1dt + j|Y R|dt ; IN = INT + I NR = X / Sixidt + J |N R|dt (13-14)
i i

The result of this analysis is presented in Figure 5, valid in case the ship is assisted by 
two tugs of 45 ton bollard pull. Based on the results of the real-time simulations, the 
critical density of the harbour of Zeebrugge can be increased to 1200 kg/m3. Flowever, 
the penetration depth into mud layers of lower density should be subject to restric­
tions. The analysis of the results also revealed the importance of tug assistance. More 
tug power reduces the constraint of navigability in contact with lower density mud 
layers, but does not affect the definition of the nautical bottom. If less tug power is 
available, the mud-water interface should be considered as the nautical bottom.
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Fig. 5. Ship D, real time simulations. Quantitative evaluation of all criteria with as­
sistance by two tugs of 45 ton bollard pull (dotted area = "unacceptable").
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