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Abstract Approaches for modelling the distribution 
of animals in relation to their environment can be 
divided into two basic types, those which use records 
of absence as well as records of presence and those 
which use only presence records. For terrestrial 
species, presence-absence approaches have been 
found to produce models with greater predictive 
ability than presence-only approaches. This study 
compared the predictive ability of both approaches for 
a marine animal, the harbour porpoise (Phoceoena 
phocoena). Using data on the occurrence of harbour 
porpoises in the Sea of Hebrides, Scotland, the 
predictive abilities of one presence-absence approach 
(generalised linear modelling— GLM) and three 
presence-only approaches (Principal component anal­
ysis— PCA, ecological niche factor analysis—ENFA 
and genetic algorithm for rule-set prediction— GARP) 
were compared. When the predictive ability of the
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models was assessed using receiver operating charac­
teristic (ROC) plots, the presence-absence approach 
(GLM) was found to have the greatest predictive 
ability. However, all approaches were found to 
produce models that predicted occurrence signifi­
cantly better than a random model and the GLM model 
did not perform significantly better than ENFA and 
GARP. The PCA had a significantly lower predictive 
ability than GLM but not the other approaches. In 
addition, all models predicted a similar spatial distri­
bution. Therefore, while models constructed using 
presence-absence approaches are likely to provide the 
best understanding of species distribution within a 
surveyed area, presence-only models can perform 
almost as well. However, careful consideration of the 
potential limitations and biases in the data, especially 
with regards to representativeness, is needed if the 
results of presence-only models are to be used for 
conservation and/or management purposes.
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Introduction

A detailed knowledge of species’ distribution in 
relation to their environment is essential for under­
standing many aspects of their ecology, as well as for
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effective conservation, management and assessment 
of possible impacts from anthropogenic activities 
(Lindenmayer et al., 1991; Beerling et al., 1995; 
Schulze & Kunz, 1995; Austin et al„ 1996). How­
ever, knowledge on the true distribution of many 
marine animals remains limited, especially for spe­
cies that are hard to detect. In the marine 
environment, poor detectability is primarily a func­
tion of the fact that humans can only directly observe 
surface waters close to the coast with any ease and 
usually require expensive and complex equipment to 
conduct studies on species that occur only in waters 
far from shore (e.g. large research vessels) or below 
the surface (e.g. underwater vehicles and deep-water 
camera sleds— see Robison (2004)).

One solution to this lack of knowledge is to use 
mathematical approaches to model species distribu­
tion relative to various quantifiable aspects of their 
physical environment known as eco-geographic vari­
ables (EGVs). These modelled relationships can then 
be used to predict where species are most likely to 
occur and investigate ecological relationships 
between a species and its environment (Lindenmayer 
et al., 1991; Zaniewski et al., 2002). Many traditional 
modelling approaches require presence-absence data 
(Guisan & Zimmerman, 2000; Hirzel et al., 2001). 
That is, they require data on locations where a species 
is known not to occur (absence data) as well as data 
on locations where a species does occur (presence 
data). It is essential that any absence data used for 
such modelling are accurate and that none of the data 
points represent ‘false’ absences— locations where a 
species occurs but for some reason was not detected 
dining data collection (Hirzel et al., 2002). For hard- 
to-detect species, even in terrestrial environments, it 
can be difficult to obtain datasets that do not include a 
substantial number of false absences. In the marine 
environment, accurate absence data may be all but 
impossible to collect for many species, particularly 
those that occur at great depth, far from shore, are 
very mobile, avoid survey vessels or that are difficult 
to detect in other ways.

The problem of false absences has led to the 
development of modelling approaches that do not use 
absence data (e.g. Robertson et al., 2001; Hirzel 
et al., 2002; Ortega-Huerta & Peterson, 2004). Such 
presence-only approaches are generally based on 
constructing a model of a species’ niche from 
locational records. This modelled niche can then be

used to predict distribution within the available 
environment.

The validity of such modelled niches is contingent 
on having unbiased distribution data available to 
build the models. If survey effort data are available, it 
is possible to both determine whether all habitat types 
have been adequately sampled and to correct for bias 
by using effort as a weighting factor in the model. 
However, as presence-only models do not take survey 
effort into account such models may be affected by 
biases in the collection of presence data. While this is 
less likely to be a problem with large numbers of 
records, as can often be available for terrestrial 
species from sources such as museum collections 
(e.g. Robertson et al., 2001; Reutter et al., 2003), this 
may be an issue when a small number of records is 
used to generate the model.

When presence-absence and presence-only mod­
elling approaches have been compared using the 
same datasets, presence-absence models have gener­
ally been found to perform better and have higher 
predictive abilities (Hirzel et al., 2001; Brotons et al., 
2004), leading to most researchers to prefer the use of 
presence-absence models whenever possible. How­
ever, these comparative studies have been limited to 
terrestrial species (Brotons et al., 2004) and theoret­
ical populations (Hirzel et al., 2001) and it is not 
known whether the same relationship will hold in the 
marine environment where detectability of many 
species is much lower than for terrestrial species. 
Here, the abilities of presence-absence and presence- 
only modelling approaches to predict the distribution 
of a marine species, the harbour porpoise (Phocoena 
phocoena Linnaeus 1758), in relation to EGVs are 
compared for the first time.

Harbour porpoises are one of the smallest mem­
bers of the order Cetacea and are known to be hard to 
detect, particularly in rougher seas (Palka, 1996; 
Laake et al„ 1997; Teilmann, 2003). This low 
detectability is primarily a function of small body 
size, small group sizes, boat avoidance and unobtru­
sive surface behaviours. Traditionally, problems with 
detectability have been dealt with by introducing a 
correction factor to estimate the number of animals 
missed, especially for abundance estimates (Teil­
mann, 2003). However, such correction factors can 
be difficult to calculate (Laake et al„ 1997; Teil­
mann, 2003). In particular, visual detectability of 
harbour porpoises varies in relation to many factors.
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such as changes in group size with season (Bannon 
Pers. Obs.), behaviour, time of day and sea state 
(Palka, 1996).

Four modelling approaches were compared in this 
study. These were Generalised Linear Modelling 
(GLM), a widely used presence-absence technique 
(Sparholt et al., 1991; Guisan & Zimmerman, 2000; 
Garcia-Charton & Perez-Ruzafa, 2001; Guisan & 
Hofer, 2003; MacLeod et al., 2004; Evans & Ham­
mond, 2004) which has been compared to presence- 
only techniques in previous studies (Hirzel et al., 
2001; Brotons et al., 2004), and three presence-only 
approaches: Ecological niche factor analysis (ENFA), 
Genetic algorithm for rule-set prediction (GARP) and 
a PCA-based approach. Presence-only techniques 
were selected based on their previous successful 
application in the terrestrial environment (Robertson 
et al., 2001; Hirzel et al., 2002; Stockwell & Peters, 
1999; Ortega-Huerta & Peterson, 2004). Currently, 
there are no published applications of these presence- 
only approaches to model the distribution of marine 
animals. The aim of this study was to directly 
compare the ability of these approaches to predict the 
occurrence of harbour porpoises within a surveyed 
area using a single data set, and, in particular, to 
explore the potential application of presence-only 
models to the marine environment.

Materials and methods

Study area and eco-geographic variables (EGVs)

This study was conducted in the Sea of Hebrides, an 
area of shelf waters to the west of Scotland, UK 
(Fig. 1). A geographic information system (GIS) 
consisting of 15,520 1 km2 grid cells was created 
using ESRI Map Info software to cover this study area. 
Each cell was assigned a value for water depth, seabed 
slope, standard deviation of seabed slope, aspect of 
seabed and distance from the nearest coast using ESRI 
ARCView 3.2 software. The EGVs used in this study 
were primarily related to topography and included a 
number that are commonly used when studying the 
distribution of cetacean species (e.g. MacLeod et al., 
2004; MacLeod & Zuur, 2005; Ingram et al., 2007) and 
that are known to be important for porpoise habitat use 
in the west of Scotland (MacLeod et al., 2007). While 
other variables, not included in this analysis, may also

Fig. 1 The study area used to investigate the ability of 
different modelling approaches to predict the occurrence of 
harbour porpoises in the Sea of Hebrides. Black lines indicate 
route travelled by ferries used to survey for harbour porpoise. 
Shading indicates water depth. Latitudes are in degrees north 
and longitude in degrees west

relate to porpoise distribution, the aim of this study was 
not to identify all factors that relate to porpoise 
distribution but rather to compare modelling 
approaches using the same variables. Therefore, while 
this limitation should be borne in mind when consid­
ering the actual habitat preferences identified by the 
models presented here, it will not affect the results in 
relation to the comparisons of the predictive abilities of 
the different modelling approaches using this standar­
dised data set.

Water depth was interpolated from the ETOP02 
global 2 ’ elevation dataset (National Geophysical 
Data Centre 2001) at a 1 km by 1 km resolution, and 
slope, standard deviation of slope and aspect for each 
cell were derived using ARCView functions. In order 
to make aspect a suitable parameter for inclusion in 
the analysis, it was converted into two linear 
components: aspect easting (the sine of the aspect 
value) and aspect northing (the cosine of the aspect 
value). For all modelling approaches, the modelling 
process started with all six variables. However, the 
EGVs included in the final model were identified 
through the modelling process independently for each 
modelling approach. Finally, each grid cell was 
assigned a random number using the random grid 
function in ArcView.
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Data collection

Data on the occurrence of harbour porpoises were 
collected from repeated surveys along five fixed 
routes in the months of May to July 2003 and 2004 
using passenger ferries as research platforms (Fig. 1). 
While these ferry routes may not cover a represen­
tative sample of habitat within the study area, the 
same data set was used for all four models and 
therefore allows a direct comparison of the predictive 
abilities of the different modelling approaches for the 
surveyed areas. In addition, the repeated coverage of 
these routes allowed a large number of grid cells to be 
surveyed on multiple occasions, a feature that was 
important for reducing the likelihood of false 
absences within the dataset, at low cost. The surveys 
were conducted by a single observer situated approx­
imately 15 m above sea level to one side of the 
vessel. This gave a field of view that covered from 90 
degrees on the observer’s side of the bow to 20 
degrees to the other side.

This field of view was continuously swept with 
7 X 50 reticulated binoculars and with the naked eye. 
At the start and end of each survey, as well as every 
15 min during the surveys, the position, direction of 
travel and speed of the ship were recorded using a 
GPS receiver, along with environmental variables 
such as sea state. Assuming a straight line course 
between the locations of the ship recorded every 
15 min allowed the ship’s track between these two 
points to be plotted. When any harbour porpoises 
were detected, the distance to the animals was 
estimated with the reticules in the binoculars (fol­
lowing the trigonometric methods of Lerczak & 
Hobbs, 1998) and a relative bearing to the animals 
was recorded using a compass rose, along with the 
group size, the ship’s position, course and speed. This 
information allowed the actual position of each group 
to be estimated, in terms of latitude and longitude, 
and plotted in the GIS.

In order to identify those cells that were surveyed, 
all 15-min track segments surveyed in sea states of 
Beaufort 3 or less were identified. Around these 
survey segments, a cut off point of 750 metres from 
the vessel was defined as the point beyond which the 
observer could not accurately detect harbour porpoise 
at the surface (although even within this distance 
animals that were underwater would still be missed). 
This distance was based on previous experience with

surveys from these vessels, the binoculars used and 
the distances over which porpoises could be visually 
detected. Due to the restricted field of view, this 
resulted in a survey swath width of 1,000 m, 750 m 
on the side of the vessel where the observer was 
positioned and 250 m on the opposite side. Since 
results are not used to estimate absolute abundance of 
porpoises, no bias will result if the real swath width 
was not exactly 1,000 m. A cell was defined as 
surveyed if the survey swath covered a portion of the 
cell defined by a triangle with a hypotenuse of at least 
500 m, or approximately one-eighth of the cell, 
although for the majority of surveyed cells the 
proportion of the cell within the survey swath was 
much greater than this. The total number of times 
each cell was surveyed throughout the study was then 
calculated. Finally, the sightings data associated with 
the 15-min segments conducted in sea states 3 or less 
were compared to the survey swathe and only those 
where the estimated position fell within it sightings 
for which used to identify which surveyed cells could 
be assigned as porpoise presence.

The surveyed cells within the study area were 
divided into a model construction dataset and a model 
testing dataset in a ratio of 2:1 using the random 
number assigned to each cell. Within each set, any 
cell where one or more groups of harbour porpoises 
were recorded were classified as ‘presence’, while all 
cells that were surveyed at least three times without 
recording any harbour porpoises were classified as 
‘absence’. This provided a relatively strict rule for 
classifying cells as ‘absence’ and reduced the like­
lihood of false absences (i.e. cells that are used by 
harbour porpoises but where they were not detected) 
within the datasets used for presence-absence mod­
elling and intermodel comparisons.

Model construction

GLM

As the data were binary (presence/absence), a bino­
mial regression was applied to the presence-absence 
data in the construction dataset. All linear and 
quadratic terms were included as potential predictors 
in the building of the model. Co-variance between 
each variable was assessed using pair plots and only 
variables with co-variance <0.8 were considered for 
the GLM. In order to select the model that explained
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the most variation using the fewest number of 
variables, a ‘backwards stepwise’ procedure was 
used (BRODGAR software. Highland Statistics Ltd). 
The statistic used to select the final linear model was 
the Akaike Information Criterion (AIC—Chambers 
& Hastie, 1997). For the final model, the probabilities 
of harbour porpoise occurrence were calculated for 
all grid cells in the study area by substituting the 
intercept value and the coefficients for each of the 
variable into the following equation:

Probability of occurrence =  e"1'

where g(x) is the regression equation from the GLM.

PCA

PCA-based modelling followed the method provided 
by Robertson et al. (2001). For presence cells within 
the model construction dataset, a mean and standard 
deviation was calculated for each EGV. The values 
for each EGV for each presence cell were then 
standardised by subtracting this mean and dividing by 
the standard deviation. Standard PCA analyses were 
conducted using Minitab statistical software (Minitab 
Ltd) on these standardised values using all possible 
combinations of three or more variables. For each 
PCA, the predicted likelihood of occurrence in each 
cell was calculated by first standardising the values 
for each EGV of every cell in the study area by 
dividing it by the species mean and subtracting the 
species standard deviation for that variable. Then a 
total eigen score was calculated for each cell for each 
principal component by weighting each EGV used to 
construct the model with its principal component- 
specific eigen score. The total eigen score for each 
principal component was then divided by its eigen 
value. Finally, the resulting values for each principal 
component were squared and summed until the 
accumulated variation explained by the principal 
components was >90%. The Chi-squared distribution 
was then used to produce a likelihood of occurrence 
based on this value. The model-testing dataset was 
used to assess the predictive ability of all models 
using a receiver operating characteristic (ROC) plot.

ROC plots provide a threshold-independent 
method for assessing the predictive ability of eco­
logical models and allow the predictive abilities of 
models constructed using different techniques to be 
directly compared (Fielding & Bell, 1997). For every

possible threshold value for separating model pre­
dictions into predicted presence and predicted 
absence, sensitivity and specificity values were 
calculated. Sensitivity values indicate the proportion 
of cells where the model correctly predicted presence 
in relation to all presence cells in the testing dataset. 
Specificity values indicate the proportion of cells 
where the model correctly predicted absence in 
relation to all absence cells in the testing dataset. 
When one minus the specificity value (on the X-axis) 
and the sensitivity value (on the T-axis) at every 
possible threshold value are plotted on a scatter plot, 
the area under curve (AUC) provides a measure of 
predictive ability. A random model (i.e. does not 
predict occurrence better than randomly selecting 
cells from the testing dataset) would be expected to 
have an AUC of 0.5, while a model that was in 
perfect agreement with the testing dataset would have 
an AUC of 1.0 (Fielding & Bell, 1997). The higher 
the AUC, the greater the predictive ability of the 
model under consideration and the further it differs 
from a random model.

ROC analysis was conducted using the Analyse-It 
‘Add-In’ to Microsoft Excel produced by Analyse-It, 
LTD. The PCA model with the highest AUC was 
defined as the best PCA model of harbour porpoise 
occurrence within the study area.

ENFA

ENFA was conducted using Biomapper 3 software 
(Hirzel et al., 2000). An EGV grid for each variable 
was imported into the Biomapper programme along 
with a grid identifying which cells were classified as 
‘presence’ within the model construction dataset. The 
EGV grids were standardised using a Box-Cox 
transformation. The broken stick rule was used to 
suggest how many niche factors should be used to 
construct the final habitat suitability map. This habitat 
suitability map classified cells on a scale of 0-100 
based on its combination of values for the EGVs, 
weighting each one in a similar way to the PCA 
analysis. A cell with a habitat suitability value of zero 
would have the least suitable combination of values 
for all variables, while a cell with a value of 100 
would have the most suitable combination. This 
habitat suitability map was then assessed using jack- 
knife cross-validation and area-adjusted frequencies 
(Boyce et al., 2002).
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GARP

GARP was conducted using GARP Desk Top soft­
ware (University of Kansas Centre for Research, 
Inc.). This software was set to automatically conduct 
20 runs of every possible combination of the EGVs 
consisting of at least three EGV s and using four-fifths 
of the presence cells in the construction dataset. The 
final fifth was used for an assessment of each model 
to identify the best combination of EGVs based on 
the lowest mean omission error across the 20 runs. 
For the best model, the output maps of all 20 runs 
were imported into the GIS and summed. This 
resulted in a map that gave each cell a value between 
0 and 20. A zero value meant that presence was not 
predicted in a cell in any of the 20 runs, while a value 
of 20 meant that presence was predicted in all 20 
runs.

Intermodel comparison

ROC plots were calculated for each model using the 
testing dataset, allowing a direct comparison to be 
made between the predictive abilities of each model 
within the surveyed area (Fielding & Bell, 1997). In 
addition, the spatial predictions of the models were 
compared by using the models to predict species 
occurrence for all cells (including those not surveyed) 
within the study area. The study area was then 
divided into 12 sub-areas based on coarse oceano­
graphic similarities and differences (Fig. 5). The 
average predicted occurrence for cells within these 12 
sub-areas for each model was then compared using 
Pearsons correlation to assess whether each model 
was predicting relatively high and relatively low 
occurrences in the same spatial areas.

Results

Harbour porpoises were recorded on 159 occasions in 
sea states of 3 or less, in 101 separate grid cells 
(Fig. 2). This surveyed area constitutes a substantial 
proportion of the Sea of Hebrides (around 10%), 
however all results presented below are only applied 
to the surveyed areas. Of these presence cells, 68 
were partitioned into the model construction dataset 
and 33 into the testing dataset. Of the remaining cells 
in the study area, 965 were surveyed three times or

7° 20' 7° 00' 6° 40' 6° 20' 6*00'

Fig. 2 Cells defined as surveyed during this study. Black— 
cells where harbour porpoises were recorded; dark grey— Cells 
surveyed three or more times without harbour porpoises being 
recorded; Light grey— Cells surveyed only once or twice times 
without harbour porpoises being recorded

more. Of these, 679 were classified as absence data 
for model construction and 286 for model testing.

For GEM, all six variables considered were found 
to have a sufficiently low co-variance to be included 
in the model as separate terms. The model with the 
best ‘fit’ used three variables: (i) distance from coast 
(ii) standard deviation of slope and (iii) aspect 
northing. The AIC value for this model was 363.6. 
Both distance from coast (P — 0.004) and standard 
deviation of slope (P — 0.002) had highly significant 
effects, with porpoise presence decreasing with 
increasing distance from the coast (co-efficient: — 
0.0002537) and increasing with greater standard 
deviation of slope (co-efficient: 0.8957). Aspect 
northing had a positive effect on porpoise presence 
(co-efficient: 0.3642), but this was not significant 
(P > 0.05). However, including it increased the fit of 
the model as measured by the AIC. For the PCA, the 
model with the highest AUC used four EGVs: 
distance from the coast, water depth, and aspect 
easting and aspect northing. Four principal compo­
nents were used to construct this model accounting 
for 100% of the variation in the presence data 
(Table 1). In the ENFA, four niche factors were 
selected accounting for 88.4% of the variation 
(Table 1). For GARP, the best model (the one with 
the lowest omission error for the internal testing
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Table 1 Components and niche factors used for PCA and ENFA modelling of harbour porpoise distribution. The most important 
variable for each component/niche factor is highlighted in bold; the second most important is highlighted in italics

PCA Variable Component 1 Component 2 Component 3 Component 4

Distance from coast -0 .6 4 5 0.153 -0 .2 9 3 0.689

Aspect easting 0.380 03 4 0 -0 .8 5 6 -0 .0 8 3

Aspect northing -0 .1 3 9 0.916 0322 -0 .1 9 7

W ater depth 0.648 0.149 0.280 0.693
Eigen Value 1.6089 1.0246 0.8808 0.4848

Accumulated Variation Explained 0.402 0.659 0.879 1.000

ENFA Variable Niche Factor 1 Niche Factor 2 Niche Factor 3 Niche Factor 4

Distance from coast -0 .5 9 9 0.694 -0 .521 0.107

W ater depth 0.523 0.703 0.087 -0 .2 7 9
Aspect northing 0.107 -0 .1 0 2 -0 .3 5 7 -0 .7 3 3

Aspect easting -0 .0 1 6 -0 .0 6 5 0.043 0.098

Slope 0.157 0.035 0.395 -0 .2 1 9
Standard deviation slope 0.576 0.092 -0 .6 6 1 0.563

Eigen Value 6.805 2.943 1.116 1.046

Accumulated Variation Explained 0.505 0.723 0.806 0.884

procedure) was produced using three EGVs, distance 
from coast, slope and standard deviation of slope.

The ROC plots revealed that all four models differ 
significantly from a random model (AUC =  0.5), 
indicating that all four approaches produced models 
that could predict harbour porpoise occurrence in 
relation to EGVs (Fig. 3). Of the four approaches, the 
GLM had the highest AUC (0.828) followed by the 
GARP model (0.773), PCA (0.746), and ENFA 
(0.745— Table 2).

While these comparisons showed that GLM had 
the greatest predictive ability, the only significant 
differences (at P — 0.05) were that the GLM had a 
significantly greater predictive ability than the PCA. 
However, multiple statistical comparisons were used 
to test the null hypothesis that there was no difference 
in the predictive ability between the modelling 
techniques. As a result, the Bonferroni correction 
(the usual threshold for significance divided by the 
number of statistical tests conducted) should probably 
be applied to reduce the chance of a type 1 error (but 
see Devlin et al„ 2003; Garcia, 2004). This would 
shift the threshold P-val lie for a significant difference 
in predictive ability from 0.05 to 0.0083. At this 
corrected P-val lie, there were no significant differ­
ences in the predictive ability between any of the 
models (Table 3).

0.8 -

 PCA

 ENFA

- - G A R P  

— -  GLM

0.6 0.80 0.2 0.4

1-Specificity

Fig. 3 Receiver operating characteristic (ROC) plots used to 
assess and compare the predictive abilities o f the different 
modelling approaches (as recommended by Fielding & Bell, 
1997). Black lines— ROC plots for individual models; Fight 
grey line— Random model with area under curve (AUC) of 0.5. 
See Table 2 for AUC values o f each model

In terms of the predicted spatial occurrence, all 
models predicted similar areas of high and low 
occurrence. For example, all four models predicted 
the highest likelihood of occurrence within shallow 
coastal areas, such as the Sound of Mull, and the
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Table 2 Area under curve (AUC) for ROC plots of each model type, including the repeat of GARP for the testing dataset

GLM PCA ENFA GARP

Area under curve (AUC ) 0.828 (0.762-0.895) 0.746 (0.676-0.816) 0.745 (0.667-0.823) 0.773 (0.701-0.846)

Numbers in brackets are 95% confidence intervals. All models differed significantly from a random model at P < 0.0001

Table 3 Difference in predictive abilities of the models as measured by ROC plots

Probability that AUCs are different due to chance

Difference in Model GLM PCA ENFA GARP
AUC GLM - P =  0.0256 P =  0.0810 P =  0.1472

PCA 0.083 - P  =  0.9847 P  =  0.4877

ENFA 0.084 0.001 - P =  0.4925

GARP 0.055 0.028 0.029 -

Probabilities in bold indicate significant differences at P  =  0.05. However, if  the Bonferroni correction for multiple statistical tests of 
a null hypothesis is applied there is no significant difference for any pair-wise comparison at P  =  0.0083

lowest likelihood of occurrence in deeper waters 
further from shore, such as the Sea of Hebrides 
(Fig. 4). This apparent similarity was confirmed by 
the correlation of the average predicted occurrence in 
the 12 sub-areas, as there was a strong and significant 
correlation between the spatial predictions of all four 
models (Table 4). Therefore, the relative spatial 
occurrence predicted by each model within the study 
area was very similar.

Discussion

Ecological modelling offers the opportunity to inves­
tigate species distribution and to increase the 
understanding of the biology of individual species. 
However, while mathematically sound, modelling 
approaches can often be difficult to implement due to 
the imperfections and limitations of biological data. 
This can reduce the usefulness of a specific approach 
to model the distribution of a specific species. In 
particular, problems associated with detecting species 
can lead to errors in assigning locations into 
presence/absence categories (Hirzel et al., 2002; 
Williams, 2003) and violate assumptions of accurate 
absence data required for modelling approaches such 
as GLM (although it may be possible to use the 
amount of survey effort at a specific location as a 
weighting factor to at least partially control for the 
risk of ‘false’ absences within the dataset). This is 
likely to be an issue for many marine species that are

inherently hard to detect due to problems associated 
with undertaking surveys for species presence in the 
marine environment. Therefore, modelling 
approaches that do not require accurate absence data 
would appear to offer a solution to these problems, 
provided that the survey coverage is adequate.

The results of this study suggest that presence- 
absence approaches provide the best predictive 
ability, and therefore presumably the best under­
standing of species distribution, in relation to 
ecogeographic variables. As a result, when it is 
possible to implement them, such presence-absence 
approaches should be used. However, this study also 
suggests that when no sufficiently accurate and/or 
suitable absence data are available, presence-only 
approaches, such as ENFA, can potentially produce 
models of the distribution of marine species which 
perform significantly better than random models and 
that do not necessarily have a significantly poorer 
performance than presence-absence modelling 
approaches for the same surveyed area. In addition, 
the predicted spatial distributions of the presence- 
absence model and the three presence-only models 
were similar, with all predicting the highest likeli­
hoods of occurrence in similar areas. Therefore, while 
their application may be limited to specific data sets, 
these modelling approaches do appear to offer an 
opportunity to increase our understanding of the 
distribution of marine species.

The results of this study differ from previous 
studies, such as Brotons et al. (2004) that found a
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Fig. 4 Maps of predicted occurrence o f harbour porpoises 
within the study area from each of the four modelling 
techniques. (A) GLM— Predicted probability o f occurrence 
for individual cells ranging from 0 to a highest probability of 
0.755; (B) PCA— Predicted likelihood of occurrence ranges 
from 0 for cells with habitat furthest from the centre of the 
calculated niche to 1.0 for cells with habitat closest to the
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niche preferences calculated during analysis; (D) GARP— 
Values range from 0 to 20 with 20 indicating that occurrence 
was predicted in all 20 runs and 0 that it was not predicted on 
any runs

significant difference in the predictive ability of 
ENFA and GLM for forest-dwelling bird species. 
However, this significant difference was identified by 
comparing the combined outcomes of models for 30 
different species rather than by directly comparing 
the models for individual species. In this study, only a 
single species was examined, so it may be that the 
differences between ENFA and GLM are only

significant when compared across a large number of 
species to take individual variation between species 
into account. Certainly, in over 20% of species 
modelled by Brotons et al. (2004) the AUCs of the 
GLM and ENFA models were similar (within 0.03) or 
the ENFA had the higher AUC, suggesting a degree 
of variation between species in the comparative 
predictive abilities of these approaches. The cause of
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Table 4 Results o f the correlation between mean predicted 
occurrences o f cells within 12 sub-areas on the West Coast of 
Scotland (see Fig. 5)

GLM PCA ENFA GARP

GLM - 0.93 0.841 0.953

PCA P < 0.001 - 0.894 0.951

ENFA P < 0.001 P =  0.001 - 0.957

GARP P < 0.001 P < 0.001 P < 0.001 -

Statistical Test: Pearsons Correlation Coefficient (top right), P 
values (lower left)

7°2 O’ 7°W  6°4(y 6°20' ó^O1

7°00’ 6°4Cy 6°2<y 6“0ff S'W

Fig. 5 The 12 sub-areas used to compare the spatial predicted 
occurrence from the four modelling approaches. These sub- 
areas were assigned based on coarse oceanographic similari­
ties. Shading shows water depth (white: 0-20  m, black: 
>300 m)

this variation is unclear, although the majority of 
these species (six out of seven) had low prevalence 
(were recorded in a relatively small number of grid 
cells in comparison to the total number surveyed) and 
high marginality (how the habitat occupied differed 
from the average habitat in the study area). As a 
result, Brotons et al. (2004) suggest that presence- 
only approaches may be particularly useful for 
modelling the distribution of such species when 
absence data are not available. For this study, the 
ENFA found that the marginality of harbour porpoise 
was relatively high at 0.907 (see Hirzel et al., 2002 
for how marginality is calculated), while the preva­
lence was relatively low (68 cells out of 679, or 0.10, 
within the model construction dataset).

However, there is another possible explanation for 
the difference between the results of this study and 
that of Brotons et al. (2004). Williams (2003) found 
that the predictive ability of some ecological model­
ling approaches varies with species detectability. 
While presence-absence approaches generally have 
higher predictive abilities for species with high 
detectability, they do not perform as well as pres­
ence-only approaches when detectability is low 
(Williams, 2003). Marine species, such as harbour 
porpoises, may have sufficiently low levels of 
detectability that the numbers of false absences 
within the model construction dataset are sufficient 
to violate the requirement of presence-absence 
approaches that all absence data are accurate. As a 
result, the predictive ability of any models generated 
using presence-absence approaches may be reduced 
in comparison to ones produced from datasets that do 
not contain such high numbers of false absences. If 
low detectability is the underlying reason for the 
difference between this study and previous compar­
ative studies, this has important implications for 
modelling the distribution of other marine animals. 
While it is hard to detect in comparison to many 
terrestrial species, the harbour porpoise is relatively 
easy to detect when compared to many other marine 
species, including other cetaceans such as beaked 
whales (MacLeod, 2000; Barlow & Gisiner, 2006). 
However, further research is required to test if this is 
in fact the case.

Even though they may not perform as well as 
presence-absence approaches, all the presence-only 
models applied here provided models with signifi­
cantly greater predictive ability than random models. 
In addition, the predicted spatial distribution of these 
models was very similar to that predicted from the 
presence-absence model. Therefore, these 
approaches could potentially allow presence data 
collected opportunistically, non-systematically or 
held in databases collated from surveys using 
incompatible methods to be used to investigate a 
species distribution. In particular, presence-only 
approaches may be useful when a species occurrence 
needs to be understood to allow potential environ­
mental impacts to be assessed and conservation 
strategies developed in the short term rather than 
waiting for logistically complex, time-consuming and 
expensive systematic surveys to collect data of 
sufficient quality for presence-absence approaches
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to be applied. However, clearly due caution is 
necessary since models based on unrepresentative 
(biased) surveys could generate misleading results. 
This can be avoided, even if the quality of the survey 
is unknown, by adequate testing of the model’s 
predictive ability, although assessing the accuracy of 
presence-only models can be problematic. The PCA 
approach requires absence data to test the predictive 
ability of the model and to identify the best combi­
nation of variables to use to model species 
distribution. This can be a sub-sample of the total 
available data and, if they can be identified, the most 
accurate absence data can be assigned to the testing 
dataset. For example, for harbour porpoises, it would 
be possible to use data collected under the best 
conditions, such as sea state zero, when they are most 
detectable and when absence data may be most 
accurate (Palka, 1996) to test the models, while still 
allowing presence data collected under poorer sight­
ings conditions when detectability is lower to be used 
for model construction.

Neither ENFA nor GARP necessarily require any 
absence data and both rely on internal verification 
procedures to test whether a model has a high 
predictive ability (jack-knife cross validation) and as 
a result, there is always the possibility that models 
produced using these approaches, while internal 
verification suggests a good fit to the data, may not 
be biologically sensible due to unidentified biases in 
the presence data associated with the way they were 
collected. Both approaches assume that the presence 
data are representative of the species’ niche in terms 
of the EGVs used in the model. If this is not the case, 
the model may under-predict species occurrence in 
some locations. While this is unlikely to be a problem 
with very large datasets, such as those used by Hirzel 
et al. (2002), this is more likely to be a problem with 
small datasets. Therefore, when applying these mod­
elling approaches, particularly to the small datasets 
that likely be available for hard-to-detect marine 
species, it is important to consider this possibility and 
try to ensure that the presence data are likely to be 
representative of the species niche in terms of the 
EGVs to be used for modelling. If, for some reason, it 
is suspected that a certain EGV is under-represented 
in the presence data, it may be prudent to exclude that 
EGV from any presence-only modelling.

One possible solution to this limitation of using the 
results of presence-only models for conservation and/

or management purposes is to conduct surveys to 
specifically test the models' predictive ability. This 
could involve intensively sampling a representative, 
but small, portion of an area of interest in order to use 
the data to assess how any model performs. This 
combination of presence-only modelling followed by 
the collection of a data set to specifically test the 
models' performance from a more limited, but 
representative, area would potentially allow much 
greater use to be made of currently available data sets 
which contain only locational records, rather than 
presence-absence records, while still retaining a 
strong assessment criterion for the model’s predictive 
ability. With specific reference to cetaceans, such 
surveys could be conducted from platforms of 
opportunity, such as passenger ferries or research 
vessels conducting other activities, as long as they 
pass through representative areas, and this would 
keep costs to a minimum.

However, there may be circumstances where these 
limitations of presence-only models are not as 
important. For example, presence-only models may 
be particularly useful for comparing the relative 
distributions of a number of species. If these data 
come from a single data set, it can be assumed that 
the survey coverage for each species was similar. 
Therefore, any detected differences in the distribu­
tions of species are likely to relate to real differences 
between them. This may be particularly useful when 
assessing whether marine protected areas for one 
species are likely to also protect areas that are 
important for other species.
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