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Forew ord

This m anual of recom m ended practices is a product of the "W orkshop on Advance­
m ents in M odelling Physical-Biological Interactions in Fish Early Life Histoiy: Rec­
om m ended Practices and Future Directions" (WKAMF; http://northw eb.hpl. 
um ces.edu/research/wkam f_intro.htm ). The WKAMF was held 3 -5  April 2006 in 
Nantes, France. The goal was to evaluate the current state and next steps in the de­
veloping field of modelling physical-biological interactions in  the early life of fish. 
The w orkshop focused on recent advances in coupled biological-physical models 
that incorporate predictions from  three-dim ensional circulation m odels to determ ine 
the transit of fish eggs, larvae, and juveniles from  spaw ning to nursery areas. These 
coupled biophysical m odels provide new  insight into how  planktonic dispersal, 
growth, and survival are m ediated by physical and biological conditions, and how  
they have contributed to enhanced understanding of fish population variability and 
stock structure.

The w orkshop was designed to 
survey major com ponents of bio­
physical m odels of fish early life, 
address num erical techniques and 
validation issues, define recom ­
m ended m odelling practices, and 
identify future research needs. Sev­
eral aspects of m odelling fish early 
life histoiy were addressed, includ­
ing: initial conditions (egg produc­
tion, spaw ning location/time),

, , , \  WKAMF logo,
small-scale processes (turbulence,
feeding success), mesoscale transport processes (physics and larval behaviour), and 
biological processes (developm ent, growth, mortality, juvenile recruitm ent, m eta­
morphosis, settlement). W orkshop participants agreed on six major them es that rep­
resented im portant research needs in modelling physical-biological interactions and 
w ould  result in advances in the field: validation and sensitivity m ethods, m odel 
complexity, m ortality, behaviour and cues, energetics, and  physics.

Papers based on some of the research presented at WKAMF appeared in a them e sec­
tion in  the Marine Ecology Progress Series entitled "Advances in  m odelling physical- 
biological interactions in fish early life history". These open-access publications can 
be found at http://w ww .int-res.com /abstracts/m eps/v347/.

WKAMF was attended by 54 participants from  14 countries and was chaired by Ale­
jandro Gallego (UK), Elizabeth N orth (USA), and Pierre Petitgas (France). WKAMF 
was held under the auspices of the ICES W orking G roup on Physical-Biological In­
teractions and the ICES W orking G roup on Recruitm ent Processes. It was hosted by 
the French Research Institute for Exploitation of the Sea (IFREMER) w ith support 
from  IFREMER, US National Science Foundation (NSF), US National M arine Fisher­
ies Service (NMFS), UK Fisheries Research Services (FRS), and the University of 
M aryland Center for Environm ental Science (UMCES). It was endorsed by Global 
Ocean Ecosystems Dynamics (GLOBEC) and Eur-Oceans.

http://northweb.hpl
http://www.int-res.com/abstracts/meps/v347/
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Executive su m m a ry

The objectives of this m anual of recom m ended practices (MRP) are to sum m arize 
appropriate m ethods for m odelling physical-biological interactions during the early 
life of fish, to recom m end m odelling techniques in the context of specific applica­
tions, and to identify gaps in knowledge. This m anual is in tended to provide a refer­
ence for early-career m odellers w ho are interested in applying num erical m odels to 
fish early life and w ho w ould  benefit from  a sum m ary of recom m ended practices for 
coupled biological-physical m odels that incorporate predictions from  three- 
dim ensional circulation m odels to determ ine the transit of fish eggs, larvae, and ju­
veniles from  spaw ning to nursery areas. For current practitioners of num erical m od­
elling in fish early life, the m anual provides updates on latest techniques and areas in 
need of further research. A lthough the m anual focuses on finfish, m any of the sum ­
m arized m odelling techniques and recom m ended practices apply to m odelling 
planktonic organisms, including Zooplankton and other m eroplankton (e.g. molluscs 
and crustaceans).

It is im portant to recognize that "best" m odelling practices depend  upon the objective 
of the m odelling exercise. In other w ords, no single m odel is appropriate to all appli­
cations. Instead, m odel form ulations are situation-specific. Because m ethodologies 
depend upon the goal of the endeavour, this m anual includes an overview  of basic 
com ponents of fish early life models and presents recom m endations in the context of 
three specific applications: adaptive sampling, connectivity, and recruitm ent predic­
tion.

The first three sections (Section 1-H ydrodynam ic models, Section 2-Particle track­
ing, and Section 3-Biological processes) sum m arize m ethodologies that are im por­
tant com ponents of three-dim ensional m odels of the early life of fish. The next three 
sections (Section 4 - Application 1: adaptive sampling, Section 5-A pplication  2: con­
nectivity, and Section 6-A pplication 3: recruitm ent prediction) discuss the applica­
tion of selected m ethodologies to specific issues that are commonly addressed w ith 
these models. The final section sum m arizes the inform ation gaps and  research needs 
identified throughout the m anual.

This MRP grew  out of participant discussions at the "W orkshop on Advancem ents in 
M odelling Physical-Biological Interactions in Fish Early Life Histoiy: Recom m ended 
Practices and  Future Directions" (WKAMF) held on 3 -5  April 2006 in Nantes, France. 
This m anual does not contain an exhaustive review  of all approaches to m odelling 
the early life of fish. Instead, it is in tended to be a general reference for fish early life 
m odelling that includes citations that will direct readers to in-depth treatm ents of 
specific topics. In addition, it should be noted that this docum ent does not represent 
the consensus recom m endations of all authors. Each section was w ritten separately. 
In some cases, differences in  recom m endations and perspectives exist. These appar­
ent contradictions m ay stem  from  dissim ilarity in the tim e or space scale of the m od­
els used by the authors or the ecosystem in which the authors are m ost experienced 
(e.g. tem perate vs. tropical). The issues on which recom m endations or perspective 
diverge are those that rem ain an active area of research. This m anual is a "living" 
docum ent: future revisions and updates are expected as our understanding and 
m ethods evolve.
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1 H ydrodynam ic m ode ls

G enevieve Lacroix, Paul M cCloghrie, M artin Huret, and E lizabeth W. North

Three-dim ensional hydrodynam ic m odels form  the basis for m odels of the early life 
h istoiy of fish. Predictions of current velocities and  diffusivities are used to calculate 
m ovem ent of eggs and larvae. Salinity, tem perature, and density predictions are used 
to estim ate the buoyancy of fish eggs, as well as the developm ent, growth, and m or­
tality rates of eggs and larvae. An appropriate hydrodynam ic m odel is critical. This 
section describes hydrodynam ic m odel com ponents and identifies the characteristics 
of an appropriate hydrodynam ic m odel in the context of m odelling fish early life. It is 
m eant to provide inform ation about aspects of hydrodynam ic models that could in­
fluence biological predictions.

1.1 Hydrodynamic model components

From the so-called "prim itive equations", hydrodynam ic m odels calculate velocities, 
turbulence, tem perature, and  salinity (and from  these, density). These equations are 
discretized, that is, form ulated so that they can be evaluated at discrete points in 
space and time. There are several techniques em ployed for discretization that create 
different types of hydrodynam ic models. A short description of the discretization 
m ethods and  types of hydrodynam ic m odels used in fish early life m odels follows. 
For a m ore com prehensive list of hydrodynam ic models, see more complete reviews 
(e.g. Jones, 2002). These first steps tow ards developing a hydrodynam ic m odel are 
critical because they will influence which physical processes can be resolved and 
how.

1.1.1 Horizontal discretization

The dom ain over w hich the prim itive equations are solved m ust be discretized on the 
horizontal dim ension in a given coordinate system. Most existing models use the 
spherical coordinate system  to fit the natural shape of the Earth, although a simple 
Cartesian system  m ay be acceptable for some local applications. Two m ain types of 
grids, structured or unstructured, can be applied to these coordinate systems (Figure 
1.1.1).

Chesapeake Bay Finite Element Mesh

Figure 1.1.1. Left: example of structured curvilinear grid (courtesy of M ing Li (Li e t  a l ,  2005)), and 
right: unstructured finite elem ent grid (courtesy of Thomas Gross) for hydrodynamic m odels of 
Chesapeake Bay.
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A structured  grid  uses quadrilateral grid  cells. In m ost applications, these grids are 
approxim ately rectangular and regular, bu t possible transform ations allow for local 
refinem ent in areas of interest (stretched or telescoping grids) and better coastline 
fitting (curvilinear grid; see Figure 1.1.1, left panel). W ith this type of grid, equations 
are solved w ith the simple and relatively fast finite-difference m ethod of discretiza­
tion (e.g. Blumberg and Melior, 1987; Song and Haidvogel, 1994).

The m ost commonly used structured grids can be subdivided into a num ber of types 
(Arakawa, 1966), according to w here in each cell the state variables are defined. The 
m ost common types are Arakawa-B and Arakawa-C grids, and  it is im portant to 
know  which grid  type is being used to ensure that the correct interpolation locations 
are chosen w hen interpolating from  the hydrodynam ic output to the locations given 
by the early life-history model. An example of an Arakawa-C grid  is given in  Figure 
1 .1 .2 .

Plan View

/ /
0

* X e
0

/ /

0  w  -  ve rtica l v e lo c ity  0  u -  h o rizon ta l ve lo c ity  

0 V -  h o rizon ta l ve lo c ity  X  dens ity , sa lin ity , te m p e ra tu re

Figure 1.1.2. Schematic of Arakawa-C grid. Left: plan view , and right, depth view . Locations
where water properties are estimated are indicated by coloured sym bols. Dashed lines suggest
perspective.

The unstructured  grid type usually adopts triangular elements (Figure 1.1.1, right 
panel) and consequently requires other discretization m ethods to solve the equations, 
such as the element (variational approach, e.g. Lynch et al, 1996) and finite-volume 
(integration approach, e.g. Chen et al, 2006) m ethods. The flexibility of the unstruc­
tu red  grids helps resolve complex coastline and bathym etry, and associated proc­
esses, w ithout dram atically increasing the com puting time. The form ulation of the 
finite-volume m ethod ensures mass conservation, as m ay be the case for finite differ­
ences. Note that the finite-volume m ethod is not restricted to the unstructured  type of 
grid.

For all types of grids, nesting can be used to w ork w ith tw o different fixed resolu­
tions, allowing refinem ent in the area of interest. The connection betw een the two 
grids is either "one-way", w here the inner m odel uses inform ation from  the outer 
m odel for boundary conditions, or "tw o-w ay", w here both m odels are dynamically 
linked.

1.1.2 Vertical discretization

In areas w here the w ater colum n is consistently vertically well mixed, it m ay be ad­
visable to use a tw o-dim ensional m odel grid (no vertical dimension). However, for 
m ost early life-history models, vertical heterogeneity is im portant, and three- 
dim ensional m odels are required.
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There are also three common vertical grid  set-ups. The first is the z-levels system, 
w here each level represents a fixed depth. The second is the terrain-following coordi­
nate system  (or sigma-levels), w hich is also com m on in coastal applications. Here, 
each level is a fraction of the total local w ater-colum n depth, allowing for an im ­
proved representation of the bottom  topography and time-evolving free surface. The 
th ird  approach is to use isopycnal coordinates, w here each level lies along a density 
surface, the preferential location of diffusion. This system  is generally used for oce­
anic models.

Some vertical coordinate systems em ploy a hybrid of these methods, one of the goals 
of w hich is to avoid the generation of spurious circulation over steep bottom  topog­
raphy, w hich m ay be encountered w hen using sigma-coordinates. Double sigma- 
coordinates, w here a fixed horizontal layer is specified w ith a set of sigma- 
coordinates above and below, will keep a sufficient refinem ent of sigma-layers at the 
surface w hen the dom ain covers both  shallow and deep bathym etry. For the same 
purpose, s-coordinates, or generalized sigma-coordinates, use a function of the loca­
tion (and hence bathym etry) to define the sigma-levels.

1.1.3 Time evolution

H ydrodynam ic m odels predict their state at the next tim e-step from  their current and 
prior states. The length of the tim e-step is restricted by the size of the grid  cells and 
the speed of propagation of disturbances. This is know n as the C ouran t-F ried richs- 
Lewy (CFL) condition. In essence, the time-step used m ust be short enough to pre­
vent a disturbance propagating across m ore than  one grid  cell in a time-step. Short 
time-steps are required at high spatial resolutions, w hich can lead to prohibitive 
com putational costs. In order to alleviate this, some m odels use a technique called 
"m ode splitting", w here the fast (but com putationally cheap) barotropic processes 
(such as the propagation of the tide) are calculated on a short time-step, whereas the 
slow baroclinie processes (com putationally expensive because they m ust be calcu­
lated separately for each vertical level) are calculated on a longer time-step. The baro­
clinie (or internal) time-step can be as m uch as 40 times longer than the barotropic (or 
external) time-step.

1.1.4 Using hydrodynamic output for particle tracking

Particle-tracking m odels use the ou tput of a hydrodynam ic m odel to provide velocity 
fields. The g ridded  velocities are in terpolated to the position of each particle, and the 
particles are m oved to new  locations based on the in terpolated velocity and the time- 
step of the particle-tracking model. Particle-tracking m odels can be run  either online 
or offline. Running online m eans that the particle-tracking calculations are m ade 
w ithin the hydrodynam ic m odel program ; velocities are calculated, the particles are 
transported, and then, at the next time-step, velocities are calculated, particles are 
transported, and so on. Running offline m eans that the hydrodynam ic m odel is run  
once and the velocity fields for the period required are saved. The particle-tracking 
m odel then reads the velocity fields, interpolates, and steps forw ard in  time, then 
reads the next set of fields. Running online allows the particle-tracking m odel to use 
the velocity fields at the high native resolution (in both  space and  time) of the hydro- 
dynam ic model, bu t it m eans that each new  particle-tracking experim ent requires the 
hydrodynam ic m odel to be rerun, which can be com putationally prohibitive. Al­
though running offline allows ou tpu t from  one hydrodynam ic sim ulation to be used 
for m ultiple particle-tracking sim ulations, the saved velocity fields will usually be a



M odelling  p h y sica l-b io lo g ica l in te rac tio n s  d u rin g  fish e a rly  life

lower resolution than  the native hydrodynam ic m odel ou tpu t as a consequence of 
storage space and  read -w rite  speed constraints.

W hen interpolating g ridded  velocities to the particle locations, it is im portant to ac­
count for any horizontal offsets caused by the hydrodynam ic grid  type. The offsets 
are usually different for horizontal velocities (u, v), vertical velocities (w), and any 
scalar properties, such as tem perature. This is equally true w hen interpolating in the 
vertical.

Characteristics of an appropria te  hydrodynamic model

W hen assessing w hether a hydrodynam ic m odel is appropriate to particle tracking 
and early life-history modelling, there are a num ber of points to consider. Physical 
processes act on the transport/retention of larvae during their pelagic phase (e.g. 
w ind-driven circulation, tides, freshw ater buoyancy, fronts), on their settlem ent (e.g. 
bottom  stress), and on conditions affecting larvae survival (e.g. tem perature, light). 
Ensuring that the m odel (i) covers the dom ain of interest and  (ii) simulates all the key 
physical processes for both circulation and larval fish (e.g. tem perature) is of prim ary 
importance. Physical processes w ith tem poral scales close to the time-scales of fish 
larvae (e.g. larval stage duration) should be considered. The choice of physical proc­
esses that are to be explicitly resolved should be m ade by considering the spaw ning 
frequency and the larval stage duration, and by taking into account possible links 
w ith larval behaviour (e.g. vertical and horizontal m igration, feeding processes).

The following list includes some of the physical processes that can affect fish larvae 
during their pelagic phase and some possible links w ith larval behaviour. This list, 
far from  being exhaustive, is given to help the m odeller choose w hich physical proc­
esses to consider in the context of the spatio-tem poral scales of the region of interest 
and the purpose of the study.

• Ocean currents. General circulation, coastal currents, m eanders, jets, ed ­
dies, shelf-edge fronts. The m ain variability is "m arine w eather" (depres­
sion regimes, storms).

• Tides. Tidal currents (can be im portant in shallow w aters and reefs, de­
pending on the topography), residual circulation, tidal fronts, vertical gra­
dients of horizontal currents. The m ain variability is (semi-)diurnal, lunar 
cycle (spring/neap tides), seasonal cycle (equinoxes, solstices). Possible re­
lationships w ith "larval behaviour" (synchronization of vertical m igration 
of larvae w ith eb b -flo o d  tidal cycle), spaw ning tim ing (synchronization 
w ith sp rin g -n eap  tidal cycle), and spaw ning location (spawning depth).

• Freshwater input. Presence of hydrological fronts in  the proxim ity of river 
m ouths, freshw ater buoyancy circulation, w ater stratification density (may 
act as a barrier to vertical movements), periodic low-salinity w ater in tru­
sions (may affect depth  of larvae). The m ain variability is (semi-)diurnal 
(link w ith tides), seasonal, and  interannual. Relationship w ith spaw ning 
tim ing (synchronization w ith  high/low  river discharges).

• Wind. W ind-driven circulation, internal waves, Langm uir cells, upw el- 
lings/dow nwellings (and associated fronts and convergences). The m ain 
variability is "m arine weather" (duration, depression regimes, storms), 
seasonal (monsoons), and interannual.

• Fronts. Fronts (whatever their origin) can act as a barrier that limits larval 
transport, bu t they are also the seat of circulations leading to conver­



ICES C o o p e ra tiv e  R esearch  R eport N o. 2 9 5

gence/divergence zones. Instabilities (e.g. eddies) can transport "isolated" 
w ater masses over long distances.

The size of the m odel dom ain and the grid size m ust be chosen in accordance w ith 
the physical processes to be included, the purpose of the study, and the biology of the 
fish. Processes sm aller than the grid  size m ust be param eterized (see Section 1.2.4 
Small-scale physics), and processes acting at scales larger than  the m odel dom ain 
should be considered by appropriate boundary conditions (e.g. harm onic tides) or by 
nesting. The limits of the dom ain should be chosen sufficiently far from  the spaw ning 
location(s) and the assum ed settlem ent region(s) to avoid problem s related to bound­
ary effects (loss of particles, uncertainties of boundary reflection scheme). For some 
particular studies, it m ay be necessary to consider a refined grid  (e.g. shallow coastal 
waters, local retention, heterogeneity of sediment, needs of a fine vertical resolution). 
Sensitivity studies are recom m ended to determ ine the optim al grid resolution (verti­
cal and horizontal). If a refined grid is needed, and if the m odel dom ain m ust encom­
pass a w hole region, it is appropriate to consider m odel nesting.

1.2.1 Boundaries and initial conditions

Close to their open (wet) boundaries, the predictions from  hydrodynam ic models are 
strongly influenced by the conditions im posed on the m odel at the boundaries. For 
example, baroclinie velocities depend on the density structure of the water, that is, 
both tem perature and salinity. Surface tem peratures will usually decrease close to 
dynam ic equilibrium  w ithin days as a result of rap id  heat exchange w ith the atm os­
phere, whereas bottom  tem peratures in stratified w ater m ay take m uch longer. Salini­
ties in non-coastal areas can rem ain dom inated by boundary effects throughout the 
m odel domain. Fortunately, w hen considering large areas, salinity gradients can of­
ten be accurately reproduced, although the absolute values m ay be incorrect. Baro­
tropic velocities, driven by tidal boundary conditions, usually propagate through the 
entire m odel domain.

W hen choosing the extent of the m odel domain, it is im portant to exceed the area of 
interest for the tracking m odel because of the influence of boundary conditions on the 
m odel predictions. Boundary condition data are usually given at low er resolution 
and m ay be derived from  a climatology rather than  for the specific dates being sim u­
lated. These boundary values then propagate their influence into the m odel dom ain 
for a distance that is a factor of the local flow rates and the rate at w hich the values 
are m odified to fit w ith  the internal dynamics. The key to accurate representation is, 
therefore, using high-quality data on the boundaries and undertaking a careful vali­
dation process.

The same considerations need to be applied to the initial conditions for the hydrody­
nam ic model. The period during w hich initialization effects are significant is a factor 
of the rate of change of the variables. To avoid initialization effects, a hydrodynam ic 
m odel is usually "spun up" for a period of tim e before the outputs are used. For baro­
tropic velocities, this m ay only require a couple of weeks; however, for baroclinie ve­
locities, it will usually take m onths. Because of the slow rate of adjustm ent of 
tem perature and salinity in stratified bottom  waters and seasonally stratified areas, 
hydrodynam ic m odels are usually spun  up  during winter.

1.2.2 Resolution

The choice of m odel resolution is usually strongly influenced by the available com­
pu ter resources. H igher horizontal resolution allows models to resolve m ore of the
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physical processes. However, a doubling of horizontal resolution implies an eightfold 
increase in com putational expense. (The factor of eight comes from  a doubling in the 
x, y, and time dimensions. The requirem ent for shorter time-steps at higher resolution 
comes from  the CFL condition). W hen an im provem ent in  the resolution is not neces­
sary over the w hole dom ain, curvilinear and unstructured  grids allow the resolution 
to be location-dependent (which does not remove the constraint on the time-step, but 
does reduce the num ber of cells over which the calculations are made).

The ability to resolve the mesoscale is a significant im provem ent gained from  higher 
resolution. The size of mesoscale features (eddies, etc.) is determ ined by the local 
Rossby radius (L), w hich can be calculated from

L ^g H /f,

where H  is the w ater depth, ƒ  is the Coriolis param eter, i.e. 2 * 7.29 * IO-5 * sin (lati­
tude), and g  is the reduced gravity at the pycnocline. A typical shelf-sea mesoscale 
eddy at 55°N will have a diam eter of roughly 20 km. To resolve this eddy, a hydro- 
dynam ic m odel will need to have six to ten grid  points across the eddy and therefore 
a resolution of at least 3 km.

1.2.3 Model validation

Only thoroughly validated hydrodynam ic models, including all key physical proc­
esses, should be used for particle-tracking studies. The m odeller should at least verify 
that current velocity (horizontal and vertical) and/or trajectory paths are correctly 
sim ulated. After that, depending on the situation or the purpose of the study, particu­
lar attention should be paid to the accuracy of additional param eters, such as salinity 
(regions of freshw ater influence), light attenuation (predator-avoidance behaviour), 
tem perature (if tem perature-dependent processes are considered), and  bottom  stress 
(settlement). M odel error quantification techniques include cost functions (Delhez et 
al, 2004; Radach and Moll, 2006), root-m ean-square error of m odelled vs. observed 
values, m odel skill scores (W arner et al, 2005), and  Taylor diagram s (Taylor, 2001).

Sensitivity studies (combined w ith  validation) should allow the m odeller to deter­
m ine the degree of im portance of the physical processes and  help w hen choosing the 
key processes to include, according to the purpose of the study and the larval behav­
iour considered (e.g. Hill, 1994; Lefebvre et al, 2003; Ellien et al, 2004; Sentchev and 
Korotenko, 2004).

1.2.4 Small-scale physics

In hydrodynam ic modelling, processes that occur at scales too small for the m odel 
resolution to sim ulate accurately are param eterized to allow for their diffusive effect 
on the large-scale structure. (Note that m odels require a resolution in excess of five 
times the scale of a feature in order to be able to resolve the feature.) The param eter 
used is know n as the "eddy diffusivity" and accounts for unresolved advective proc­
esses, such as frontal instabilities, steering by unresolved topographic features, and 
sea breezes. Om ission of physical processes generally requires an increase in the 
specified eddy diffusivity. This param eter also depends largely on the m ethod used 
to solve the advection equations. Low-order m ethods are inherently m ore diffusive 
than  higher order approxim ations. In m any cases, this num erical diffusion is enough 
to account for small-scale processes; however, additional diffusion is often added  to 
im prove m odel stability.
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2 Particle track ing

David Brickman, Bjurn Ádlandsvik, Uffe H. Thygesen, Carolina Parada, Kenneth 
Rose, Albert J. Hermann, and Karen Edwards

Particle-tracking m odels form  the backbone of three-dim ensional m odels of fish early 
life. These m odels use predictions of current velocities and diffusivities from  hydro- 
dynam ic models to calculate the m ovem ent of individual particles in  space and time. 
The goal of this section is to provide a set of recom m endations for particle tracking in 
estuary and ocean modelling. Because the m otivation comes principally from  its ap­
plication to biophysical modelling, the case of biologically active particles is specifi­
cally considered. The first part of this section presents, in a concise form, the essential 
aspects of best practices for particle tracking. Extra m aterial is contained in Annexes 
1 -5 . The second part presents a num ber of cases designed to test the perform ance of 
a particle-tracking routine.

2.1 Best practices for particle tracking

W hat m akes particle tracking in an oceanographic (biophysical m odelling) context 
different from  tracking in an atm ospheric context? The sim ple answ er is that, histori­
cally, developm ent of particle-tracking theory and  techniques in the atm osphere was 
concerned principally w ith  the atm ospheric boundary  layer, w ith  an em phasis on 
correctly describing the statistics of dispersion for time-scales shorter than  the La­
grangian time-scale (T l), the time-scale at w hich velocity fluctuations are correlated. 
Generally, the com putations were done for short periods (m inutes to hours) and in 
one or tw o dim ensions (for w hich analytic models exist; see W ilson et al, 1981; Legg 
and Raupach, 1982; Thomson, 1987). These Lagrangian stochastic models (LSMs), or 
"random  flight m odels", are m athem atically complicated, bu t are valid at all time 
scales (except below  the Kolmogorov microscale, w here viscosity becomes relevant; 
Thomson, 1987; Rodean, 1996). In addition, a critical problem  of buoyant particles, 
"the trajectory crossing problem ", has only approxim ate solutions for LSMs (Sawford 
and Guest, 1991; Olia, 2002).

For biophysical modelling in the aquatic realm, w e tend  to be interested in time- 
scales longer than  T l and in three-dim ensional drift for periods as long as several 
m onths. A nother crucial difference is that m any biophysical particles (representing 
planktonic larvae) have directed sw im m ing m otions that m ust be incorporated into 
the particle-tracking algorithm. This necessitates the use of random  displacem ent 
m odels (RDMs, also know n as random  walk models). These m odels are valid for 
time-scales » T l (T l vertical = 3-10  min; T l horizontal = 1 -8  d  (near surface; greater at 
depth)). That the time-scales of interest in the ocean are not always »  T l (especially 
on the horizontal plane) m eans that the use of RDMs in oceanographic particle track­
ing can be considered a "best-we-can-do" approach.

2.1.1 Choice of model

For the reasons outlined above, an RDM is recom m ended for oceanographic applica­
tion. If we assum e that the turbulence at each point is isotropic in  the horizontal (i.e. 
its local statistics are invariant to rotations around a vertical axis), then turbulence is 
characterized by the horizontal diffusivity Ku = K22 and the vertical diffusivity Ka. The 
three-dim ensional RDM then becomes (Rodean, 1996):
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dxs = u , v ,  0 + ™or.
dt + (2Kü(x ,t)d t) in Qir (1)

where dxi is the displacem ent in the ¿th direction (i = 1, 2, 3 = x, y, z), Ui is the velocity, 
X denotes three-dim ensional position, t is time, Ku is the eddy diffusivity, át is the 
time-step, and Q is a Gaussian random  variable w ith  zero m ean and unit variance. 
The term  for the spatial derivative of the diffusivity dKii(x ,t)/dxi is a drift correction 
term  required to remove erroneous aggregations, or evacuations, of particles (see 
H unter et al. (1993); Visser (1997) for other form ulations of the RDM). This term  is 
required in order to m aintain a well-mixed condition (WMC), that is, the requirem ent 
that an initial uniform  concentration of particles remains uniform  for all time (Brick- 
m an and Smith, 2002). For m ost applications, the algorithm  based on Equation (1) 
will use circulation m odel ou tpu t to provide the velocity and diffusivity fields. These 
fields exist on discrete grids, w hich m ay be problem atic (see below).

2.1.2 Time discretization

The RDM is a stochastic differential equation, w hich in practice is solved using a dis­
cretization technique. The tw o commonly used are the Euler and R unge-K utta  rou­
tines. The form er is a simple, first-order forw ard discretization routine, which 
generally executes quickly but is subject to truncation errors and (possible) instabili­
ties. The latter is a higher order routine that is num erically m ore accurate. In the ab­
sence of turbulence, a higher order differencing scheme is recom m ended.

In the presence of turbulence, the choice of discretization technique is less obvious, 
because the precision gained by a high-order routine could be lost as a result of the 
"noise" of the turbulence. To examine this possibility, experim ents were perform ed 
com paring the Euler and the R unge-K utta  routines for tw o different analytic flow- 
fields plus a turbulent com ponent (see Annex 1). H istogram s were created of the dif­
ference betw een endpoint positions for the tw o routines for 5000 different particle 
releases. These histogram s resem bled zero-m ean Gaussian distributions, indicating 
that the difference betw een the tw o routines was random , not systematic. This sug­
gests that the error introduced by use of an Euler stepping routine, in the presence of 
turbulence, itself looks "turbulent" and m ay reduce concerns about the relative accu­
racy of this scheme. A lthough the Euler scheme m ay be adequate for some situations, 
the effect of different discretization techniques on biological predictions has not been 
investigated and should be assessed in  the context of specific m odelling objectives.

2.1.3 Choice of time-step

In an RDM, as in any num eric algorithm  for discretizing a continuous-tim e phe­
nom enon, the time-step should be sm aller than time constants of the system. This 
leads to upper bounds on the tim e-step (Thomson, 1987; W ilson and Flesch, 1993). 
The exception to this general rule is the Lagrangian time-scale characterizing the 
decorrelation of turbulent velocity fluctuations. RDMs are accurate descriptions of 
turbulent dispersal only on time-scales larger than  the Lagrangian time-scale, so there 
is no reason to force the tim e-step below  the Lagrangian time-scale.

For pure stationary diffusion in  one dim ension w ith  diffusivity D(z) (m 2s '), the time 
constants D/(öD/öz)2 and 1/1 ö2D/öz21 describe w hen the expected change in diffusiv­
ity is larger than the diffusivity itself and, therefore, provide upper bounds on the 
time-steps. The time-scale of vertical m ixing will, in m ost applications, be signifi­
cantly larger; for Couette flow (the flow betw een tw o planes m oving relative to each 
other), the half-time of the slowest m ode of vertical mixing is H 2(log 2)/(8 max-.
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(D(z))), w here H  is the w ater depth. This time-scale can be used as a rough m easure 
of vertical mixing in other flows as well, or m ore accurate time-scales can be obtained 
analytically or num erically for the specific flow.

Additional time-scales m ay characterize horizontal m otion or other (e.g. biophysical) 
processes. The chosen tim e-step m ust ensure that all processes are accurately re­
solved. For an example of the effects of different choices of tim e-step see Annex 2.

2 .1 .4  Number of particles

A single-particle trajectory in  a turbulent flowfield can be considered one trial of a 
statistical ensemble of w hich we are interested in  the ensem ble-averaged behaviour. 
If too few particles are released in a particle-tracking experiment, it is possible that 
the trajectories are polluted by statistical outliers and do not satisfactorily represent 
the desired ensemble average. There is a risk that this can lead to erroneous conclu­
sions. A lthough there is no generic answ er to this problem , we recom m end that at 
least some tests be done to check w hether or not sufficient particles are being used; 
for example, an experim ent to m easure the concentration of particles in some dow n­
stream  grid  cell at a given time after release (where concentration = # particles in grid 
cell/total num ber released) and repeating this experim ent for an increasing total 
num ber of particles. This concentration, as a function of the total num ber of particles, 
will stop fluctuating w hen a sufficient num ber of particles are being used. For more 
details on such techniques, see Brickman and Smith (2002). In general, the oceano­
graphic literature contains num erous instances of poorly perform ed particle-tracking 
experim ents. The basic prem ise of perform ing a particle-tracking experim ent should 
be the ability to do it correctly. There is no excuse for using too few particles.

2 .1 .5  Choice of random number generato r

The random  num ber generator should perform  well enough to ensure that the results 
are not artefacts of the particular algorithm. Some fairly common random  num ber 
generators have been dem onstrated to be flawed; these generators have typically 
been included in general-purpose developm ent environm ents, as opposed to envi­
ronm ents designed specifically for scientific com puting. The typical problem s w ith 
poor generators are short periods and correlation in the random  num bers. Short peri­
ods m ean that the sequence of random  num bers repeats itself too soon. Correlation in 
the random  num bers m ay result in incorrect dispersion: either too weak or too 
strong, depending on the correlation pattern. Both flaws seriously underm ine the 
credibility of the study.

There is no reason to use a random  num ber generator w ith  insufficient performance. 
It m ay be easier to obtain and install a state-of-the-art generator than to determ ine the 
properties of the built-in generator. Currently, the "M ersenne Twister" seems to be 
the strongest algorithm; this is, for example, the default generator in R and is also 
available in Matlab. C source code, m ade by the original designers of the algorithm, is 
available at http://ww w .m ath.sd.hiroshim a-u.ac.jp/~m -m at/M T/em t.htm l. Source 
code in other languages and a list of libraries that include the algorithm  can be found 
at http://www .W ikipedia.org under M ersenne Twister.

A general introduction to random  num ber generators can be found in Ross (2001) 
and similar textbooks on stochastic simulation. The standard  tool for verifying built- 
in random  num ber generators is M arsaglia's D iehard battery of tests (see 
http ://w w w .stat.fsu.edu/pub/diehard/).

http://www.math.sd.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.Wikipedia.org
http://www.stat.fsu.edu/pub/diehard/
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2.1 .6  Boundary conditions

The boundary conditions for an RDM are similar to those for an ocean circulation 
model, that is, a condition of no flux through the boundaries. For an RDM, this means 
that no particle should cross a boundary or, equivalently, that particle num bers 
should be conserved. This is im portant because the calculation of particle concentra­
tions, or probability density functions (PDFs), can be incorrect if particles are lost 
from  the domain. This boundary condition is enacted as a reflection scheme. H ow ­
ever, the requirem ents of this scheme can be non-trivial, as certain properties have to 
be m aintained upon  reflection, especially the WMC. A n incorrect reflection scheme 
can lead to spurious particle concentrations near boundaries. For an LSM, these re­
quirem ents have been determ ined (Wilson and Flesch, 1993), bu t for the RDM, they 
are less clear. In practice, m any of the theoretical requirem ents for a boundary reflec­
tion scheme are not met, bu t this does not seem to have any great effect on the result 
(Legg and Raupach, 1982).

Owing to the various uncertainties in the theory and practice of boundary reflection 
schemes, no simple best practice can be recom m ended, except to state that such a 
routine is required for a valid particle-tracking model. Experience indicates that these 
schemes can be complicated to code and should be tested carefully before proceed­
ing.

2 .1 .7  Additional considerations

2.1 .7 .1  The use of discrete circulation model fields

M ost particle-tracking m odels rely on space- and tim e-discretized fields from  an 
ocean circulation model. A num ber of problem s can arise because of this, including 
interpolation w ithin grid  cells near m odel boundaries and the use of discretized tu r­
bulence quantities.

• Interpolation within grid cells near model boundaries. Circulation m od­
els typically have no slip and no flux boundary conditions on velocity, so 
that flow runs parallel w ith closed boundaries. The determ ination of the 
velocity w ithin such boundary cells can be complicated, especially w here 
flows are "turning corners" following a coastline. This can result in parti­
cles erroneously crossing a boundary  as a result of the com bination of ve­
locity and time-step, or drifting in  an incorrect direction (see test case, 
Section 2.2.2 Flow around an obstacle). The addition of turbulence to this 
process is a further complication resulting in  the expenditure of significant 
coding and execution time handling particle tracking near boundaries. The 
best practice recom m endation in this case is to be aw are of this problem  
and to check carefully that the algorithm  is perform ing correctly.

• The use of discretized turbulence quantities. Circulation m odels can pro­
duce discontinuous turbulence fields, particularly in the vertical dim en­
sion. The particle-tracking m odel (Equation 1) requires values and 
derivatives of these quantities, w hich can lead to problem s in  the correct 
prediction of particle positions if these fields are sufficiently non-sm ooth 
(Brickman and Smith, 2002; Thygesen and Âdlandsvik, 2007). A solution 
can be to sm ooth these fields before use (Brickman and Smith, 2002; N orth 
et al, 2006), bu t it is difficult to determ ine the degree to which this is neces­
sary or successful in  a complicated m odel setting. The best advice in  this 
case is to be aw are of this problem, proceed carefully, and check that the 
algorithm  is perform ing correctly w henever possible.
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2 .1 .7 .2  Backwards particle tracking

In problem s of egg/larval drift, w e often have an estim ate of the distribution of eggs 
or larvae, provided by survey data, bu t incom plete know ledge of the release area of 
the propagules. In other words, we often have more data at the endpoint than  at the 
starting point. One benefit of the particle-tracking technique is the ability to reverse 
time and perform  backw ard particle tracking in order to find the m ost likely origin 
for observed propagules. For example, w e consider the case of truly planktonic parti­
cles in  a flowfield u that is divergence-free and does not cross boundaries. In this 
case, it is reasonable to use the simple one-dimensional, time-reversed, Euler scheme:

xt-dt =x t ~  u(xt)dt + VK (xt)dt + y¡2K(xt)dt Q , (2)

where Q has the same m eaning as in Equation (1). Starting from  the final position and 
time (xf, if) w hen the sim ulation reaches the starting time to, the density of larvae at 
any position xo will be proportional to the likelihood function of the initial condition 
xo, view ed as an unknow n param eter. (For m ore details on this example, see Thyge- 
sen, in prep.). O ther papers on biophysical backw ard particle tracking include 
Batchelder (2006) and Christensen et al. (2007). A paper to be recom m ended from  the 
atm ospheric literature is Flesch et al. (1995).

2 .1 .7 .3  Coupling particle tracking with continuous fields from NPZ models

There are several issues to consider w hen coupling particle-tracking models to the 
continuous fields generated by nutrient-phytoplankton-zooplankton (NPZ) models. 
The continuous fields are the spatially explicit, physics-related outputs (e.g. velocities 
used for advection-diffusion m ovem ent of the particles) and biologically related out­
puts (e.g. Zooplankton densities as prey for the particles) generated by the NPZ 
model. Some of these issues relate to the quality of these continuous fields, whereas 
other issues relate to the mechanics of how  the particles are coupled to the fields.

The first issue is the quality of the ou tputted  fields from  the NPZ, including the over­
all stability of the NPZ model, the realism  of the NPZ-related param eter values, the 
form ulation of the predation-closure term s used to im pose m ortality on the Zoo­
plankton, and the inform ation on m odel perform ance provided by data assimilation 
and validation efforts (see Annex 3).

The second issue also influences the quality of the fields and involves the w ay in 
w hich the NPZ subm odel is coupled to the physics model. Issues such as w hether the 
NPZ is ru n  online or offline w ith the physics, and the compatibility of the spatial and 
tem poral resolutions betw een the NPZ and physics models, affect the realism  and 
quality of the ou tpu tted  NPZ fields (see Annex 4).

The th ird  issue relates to how  the particles are coupled to the NPZ fields (see Annex 
5), for example, w hether or not a sufficient num ber of particles (e.g. larval fish) are 
followed in order to properly represent their interactions w ith prey patchiness, the 
fact that one-way coupling prevents trophic feedback from  the particles to their prey 
and from  prey exhibiting avoidance behaviours or other responses, and the degree to 
w hich m ovem ent of particles (e.g. larval fish) is purely physics-driven or involves 
active behaviour (e.g. vertical m igration, swimming). A ddressing the patchiness, tro­
phic feedback, and prey-response issues requires the NPZ and  particle-tracking m od­
els to be solved sim ultaneously using a large num ber of particles. H ow  to m eld 
advective and behaviour m odes of m ovem ent rem ains an open question. Both the 
active behaviour of the particles and the reactions of the prey can change the trajecto­
ries of the particles (individuals in the model) and the predicted densities of the prey.
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Test cases

In this section, we present a num ber of test cases designed to test the perform ance of 
a particle-tracking routine and  illustrate problem s that can arise w hen interpolating 
near boundaries.

2.2.1 Vertical distribution of buoyant particles

2.2 .1 .1  Purpose

The purpose is to test how  well the particle-tracking code handles buoyant particles, 
especially in relationship to the surface and bottom  boundary conditions.

2 .2 .1 .2  Background

The need to handle non-neutral particles arises in m any applications, including 
phytoplankton, sediments, or, in this test case, fish eggs. The stationary case was 
treated  by Sundby (1983). The general problem  is easily handled in  the Eulerian (con­
centration-based) setting. A M atlab toolbox was developed by A dlandsvik (2000). 
This point of view  has been adopted for the sam pling of anchovy and sardine eggs 
using the C ontinuous U nderw ater Fish Egg Sampler (CUFES; Boyra et al, 2003). For 
particle tracking, the binned random  w alk part of this test case was given by Thyge- 
sen and  Â dlandsvik (2007).

2 .2 .1 .3  Analytical solution

This test case considers a one-dim ensional w ater colum n w ith non-neutral particles 
w ith a buoyant velocity w and  eddy diffusivity K. The vertical coordinate z points 
upw ards, w ith  z = 0 at bottom  and z = H  at the surface. The concentration (ft of parti­
cles is governed by the Eulerian conservation law,

M + A (W) = L { k ^ \
dt dz dz dz J ^

The boundary conditions are zero flux through the surface:

W<j> = K ^ - ,  z  = 0,H ■
dz (4)

The solution evolves tow ards a stationary solution w here the flux is zero in the whole 
w ater column. W ith constant coefficients, this ordinary differential equation gives a 
truncated exponential distribution. W ith m = w/K  and a vertical integrated concentra­
tion O, this can be written

ffl
<t> = ® '  e mz'  mH i

e - 1 (5)

This has m ean height above bottom

V =  H  +  “ — 7m e - 1 , (6)

and variance

2emH -  m 2H 2 - 2 mH  -  2 
m \ e mH - 1)=  2 / mH 1N ^  •

(7)

Further details are given in Sundby (1983) and  A dlandsvik (2000).
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2 .2 .1 .4  Specification

The specific values used for this test case are given in Table 2.2.1. These values give a 
stationary m ean depth  (from surface) of 9.25 m  and a standard  deviation of 8.34 m. 
The particles are released 12.5 m  above bottom, and  the sim ulation time is 48 h.

Table 2.2.1. Variable settings for the buoyant test case.

Variable Value Unit

H 4 0 m

w 0 .0 0 1 m s -1

K 0 .0 1 m s -2

2 .2 .1 .5  Continuous random walk model

The continuous random  walk m odel (i.e. RDM) for this problem  w ith  constant coeffi­
cients is im plem ented in a E u ler-Forw ard  fashion by,

Z"+1 = Z" + wAt + -JlKAl Q '
(8)

where Z is displacem ent and Q is a random  variable w ith  zero m ean and unit vari­
ance. The boundary  conditions are m ore difficult; the usual reflective boundary 
scheme at the surface,

Z"+1 <- 2H  -  Z"+1 1, if Z»+i >H, (9)

corresponds to

^  = 0 ,
&  (10)

which differs from  the correct boundary  condition in Equation (4). In fact, the ana­
lytical stationary solution has the m axim um  of the derivative at the surface.

The num ber of particles in this test case is 40 000. Two different time-steps, 5 and 
30 min, are considered, and a Gaussian distribution is used for the random  walk. The 
5 m in case has also been ru n  w ith a uniform  (top-hat) distribution for the random  
component. The reflective boundary  condition is applied. For the plot, the particles 
have been counted in 1 m  bins.

The result dem onstrates that the RDM solutions are good (Figure 2.2.1) except w hen 
they are close to the surface, w here they underestim ate the concentration. The height 
of the boundary zone depends on w hen the particle m ovem ent is influenced by the 
boundary, that is, the length scales wAt and ^2KAt. In this case, the shape of the ran­
dom  walk distribution influences the result, w here the Gaussian shape is superior to 
the top-hat. This is probably caused by the top-hat distribution giving higher prob­
abilities further from  the mean, m aking the random  walk "feei" the boundary at 
longer distance.

2 .2 .1 .6  Binned random walk

The binned random  walk does not have boundary problem s because it is constructed 
by finite volum e m ethods for the advection-diffusion equation (see Thygesen and 
Adlandsvik, 2007). The w ater colum n was discretized into eight uneven bins, w ith
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depths of 10, 5, 5, 5, 5, 5, 3, and 2 m, counted from  the bottom. The time-step used 
was 5 min, and both the first-order upstream  and a second-order scheme were con­
sidered. The results are given in  Figure 2.2.2. This figure also shows the analytical 
solution, averaged into the same bins. The upstream  solution shows too m uch mix­
ing: underestim ating the concentration near the surface and overestim ating it near 
the bottom. The second-order m ethod follows the analytical solution well but over­
shoots near the surface.
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Figure 2.2.1. Results for the continuous random w alk model.
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Figure 2.2.2. Results for the binned random w alk model.

2.2.2 Flow around an  obstacle

2.2 .2 .1  Purpose

The purpose is to test how  different horizontal advection im plem entations handle a 
curved flowfield and a land obstacle.

2 .2 .2 .2  Background

Non-rotational flow around a cylinder is one of the classical examples considered in 
alm ost all hydrodynam ics textbooks. Of particular interest is the book by Bennett 
(2006), w hich takes a Lagrangian point of view.

2 .2 .2 .3  Analytical considerations

The example is considered in a coastal oceanographic setting; the cylinder becomes a 
circular island. As the example is symmetric, only the upper half is considered. That

—  upstream  
  2nd order
—  analytical

d t= 3 0 0 s
d t= 1 8 0 0 s
analytical
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is, we consider a straight coast at y = 0 w ith ocean in the upper half plane (y >0) and 
w ith a half-circular peninsula w ith centre (xo, o) and radius R.

The steady non-rotational flow is given by a stream  function

u0R 2y
V = -,------- ^ ----- --» o V ,( x - x 0) + y

where no is the along-coast velocity far from  the obstacle. The stream  function is nor­
m alized so that the land boundary is given by the contour ip = 0. The flow follows the 
streamlines, that is, isolines of if> w ith  higher values to the right, m ore precisely

d i y  _  ^  ^  d 2  ( x - x 0 ) 2 -  y 2
u = ---------- = un -  unR~

and

dw _ _2lloR, (*-*o)v
dx ( ( x - x 0Y  + y - y  ' ( 1 2 ^

According to Bennett (2006), it is unlikely that analytical expressions will be found for 
the tim e-dependent particle m ovem ent in this example. Bennet does, however, p ro ­
vide an analytical descr iption of stream  lines. The "exact" solution show n below is 
obtained by using converged R unge-K utta  w ith  a small time-step (36 s), using the 
analytical expression above for the velocities w ithout interpolation. The dashed 
stream  lines are sim ply obtained by contouring the discretized version of the stream  
function.

2 .2 .2 .4  Specification

A dom ain of length L along the coast and w id th  W  is considered. The peninsula 
centre is at x = 0.5 L and the radius R = 0.32 W. The num erical values are specified in 
Table 2.2.2.

Table 2.2.2. Variable settings for the peninsula test case.

Variable Value Unit

L 100 km

W 50 km

Uo

The dom ain is discretized by Ax = Ay = 1 km. The grid  coordinates are chosen so that 
grid  cell (/, j) has its centre at (x, y) = (/Ax, /Ax) for / = 0, . . . ,  99 and j  = 0, . . . ,  49. The 
velocities are sam pled in  an A-grid, that is, in  the grid centres. Denoting the velocity 
arrays U and V, we have

U(i,j) = u(iAx,jAx), V(i, j) = v(iAx, jAx), (14)

w here u and v are given by the analytical formulas above. The velocities are set to 
zero at land, that is, w here ip < 0, in particular U (/, 0) = V  (/, 0) = 0. The initial particle 
distribution is 1000 particles on a line perpendicular to the coast:

X k  = 3, Y k  = 0.45 + 0.045k for k = 1, ...,1 0 0 0 . (15)

The sim ulation tim e is 24 h, for which the particles w ould  be transported  86.4 km  
w ith the reference velocity uo.
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2 .2 .2 .5  Simulations

The first-order Euler forw ard and the R unge-K utta  fourth-order m ethod are consid­
ered. Both m ethods are used here w ith bilinear interpolation to interpolate from  the 
grid-cell centres to the particle positions. The treatm ent of boundaries is simple, w ith 
the zero land  velocity in terpolated to the particle position and no reflection scheme 
im plem ented. This procedure m ay leave particles on land, bu t in the absence of tu r­
bulence, this was not considered to be im portant. A tim e-step of 1 h  was used for 
both m ethods. The results from  this test are presented in  Figure 2.2.3. Far from  the 
peninsula, both m ethods recapture the exact solution (green, red, and black symbols 
overlap). Close to the peninsula, the Euler m ethod fails, leaving a trail of particles 
clearly separated from  the peninsula. The R unge-K utta  m ethod perform s better, 
leaving a tiny tail of particles veiy close to the peninsula that do not overlap those 
p roduced by the exact solution.

• • • •  start position 
• • • •  exact solution 
• • • •  Euler-Forward 
• • • •  Runge-Kutta

40
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20 40 60 60
distance [km]

Figure 2.2.3. Peninsula test case.

The velocities from  the form ulas above are also defined for ip> 0, giving a circulation 
w ithin the "peninsula". Using these velocities in  the interpolation and interm ediate 
R unge-K utta  steps gives a reference solution w ith  ideal land treatm ent. This land 
treatm ent makes the R unge-K utta  indistinguishable from  the exact solution and also 
im proves the results from  the Euler m ethod. These results are show n in Figure 2.2.4 
in w hich symbols for the R unge-K utta m ethod overlap those of the exact solution.

• • • •  start position 
• • • •  exact solution 
• • • •  Euler-Forward 
• • • •  Runge-Kutta
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Figure 2.2.4. Peninsula test case w ith circulation w ithin the "peninsula".
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2 .2 .2 .ó Comment

This test was designed to dem onstrate the difference betw een the Euler m ethod and 
higher order m ethods, such as R unge-K utta, and  to point out problem s associated 
w ith interpolation near boundaries. No random  walk diffusion has been applied, 
w hich could reduce the advantage of higher order m ethods (see Annex 1). Also, 
shorter time-steps im prove the perform ance of both m odels and m ay decrease the 
difference betw een them.
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3 Biological p ro cesse s

3.1 Initial conditions: spawning locations

Alejandro G allego and Elizabeth W. North

The starting position of particles in a heterogeneous flowfield fundam entally controls 
the direction and distance of particle transport. Therefore, the space and time struc­
tures of spaw ning patterns (where, when, and w hat m agnitude) are the initial condi­
tions for individually based models of fish early life that begin w ith egg stages. Initial 
conditions differ in degree of complexity, depending on the objective of the m odel­
ling effort. For example, interannual differences in the m agnitude of egg production 
are needed for predicting recruitm ent variability bu t m ay not be necessary for u nder­
standing transport pathw ays betw een spaw ning and settlem ent areas.

Ideally, fine-scale inform ation on spatial and  tem poral patterns in spaw ning is 
needed to initialize m odels (e.g. frequent surveys of egg distribution and abundance 
throughout a spaw ning area over m ultiple years). However, this inform ation is often 
lim ited or non-existent. Therefore, an estim ate of initial conditions is needed. In the 
m ost basic formulation, random ly distributed particles could be released w ithin the 
spaw ning area th roughout the duration of the spaw ning time w indow . This m ay 
provide inform ation about all possible trajectories through space and time, bu t not 
the actual trajectories of the sim ulated populations in each year because spaw ning 
times, locations, and m agnitudes vaiy  from  year to year. For sim ulating the m agni­
tude and timing of spaw ning events, egg-production models are often required (see 
Section 3.1.1 Egg-production models).

W hen incorporating initial conditions into models, the following questions should be 
asked (C. Mullon, pers. comm.): w hat are the spaw ning patterns that: (i) em erge from 
observations, (ii) can be m odelled w ith simple assum ptions on individual behaviour, 
and (iii) could be related to different regimes of population dynamics? Several factors 
should be considered (C. Mullon, pers. comm.).

• Spatial structure of spawning. Spawning locations/features can affect the 
population structure in a w ay that can be m odelled. W ith inform ation on 
different spaw ning features, the m odel can predict the spatial distribution 
of recruits and allow identification of the ways in which behavioural proc­
esses m ay be m ediated by environm ental conditions, parental condition, 
and gregarious behaviour.

• Time structure of spawning. Spawning features can be related to envi­
ronm ental conditions. W ith observations of spaw ning events (space, time) 
and observed concomitant environm ental param eters, modelling results 
can be used to determ ine if individual spaw ners use environm ental cues to 
optim ize their reproductive success (fitness).

• Evolutionary processes. Spawning behaviour is the result of an evolution­
ary process. W ith different sets of constraints that affect fitness and taking 
account of the spaw ning choices of individuals, predicted spaw ning pat­
terns can be analysed to understand  how  evolutionary processes influence 
opportunism , natal homing, and bet-hedging strategies.

See M ullon et al. (2002), Grim m  and Railsback (2005), and  Jorgensen et al. (2008) for 
additional information.
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3.1.1 Egg-production models

Egg-production m odels use inform ation about adult spaw ners to calculate the m agni­
tude and tim ing of egg production in  a given spaw ning season. A detailed m echanis­
tic fish egg-production m odel was published by Scott et al. (2006) for a batch- 
spaw ning species (Icelandic Atlantic cod, Gadus morhua). The fundam entals of the 
m odel can be applied to other batch-spaw ning species by using spedes-spedfic pa­
ram eters and other input data. The m odel requires length, weight, and expected 
w eight-at-length data for individual adult fish or age/size dasses. The m odel is com­
posed of four m odules (Figure 3.1.1). The first m odule uses equations that are func­
tions of the state (length and weight) of individual fish and calculates condition, 
prespaw ning atresia, m axim um  potential fecundity, m axim um  egg size, num ber of 
batches, proportion of sexually m ature individuals, and proportion of first-time 
spawners. The second m odule calculates the variables that change during an indi­
v idual's spaw ning period (egg size, num ber of eggs per batch, seasonal atresia, and 
period betw een batches). The th ird  m odule calculates the tim ing of the start of 
spaw ning for a fraction of the population. The final m odule sum m arizes the ou tput 
of the previous three m odules and calculates the reproductive potential of the popu­
lation. O n any given day throughout the spaw ning season, fish in  different states 
m ay be spawning, resulting in tem poral patterns that are a function of fish state (such 
as length) and num ber of individuals in a given state. If the available inpu t data are 
spatially disaggregated, this m odel can output the spatial and tem poral distributions 
of egg production.

The m odel presented by Scott et al. (2006) requires a com prehensive know ledge of a 
num ber of relationships (see their A ppendix A), which are m ost probably species- 
spedfic and perhaps even stock-spedfic. This inform ation m ay not be available for a 
large num ber of spedes/stocks, so such a detailed m echanistic m odelling approach 
m ay not be possible. If detailed inform ation is available, then sensitivity analysis can 
be used to determ ine if a less param eter-rich approach could produce a similar out­
come.

Other, sim pler m ethods for estim ating egg p ro d u d io n  exist. H eath and Gallego 
(1998) published an egg-produd ion  m odel based on field data for N orth Sea had ­
dock. H addock are also batch-spawners, w ith  a spaw ning period spanning several 
weeks. A lthough the authors recognized that batch size, num ber of batches, and 
spaw ning duration of individuals m ay vary w ith age, size, or condition, and that a 
p roportion of the potential annual fecundity m ay be resorbed (atresia), their m odel 
d id  not attem pt to incorporate com prehensively all fadors affeding population egg 
production. It did, however, attem pt to reflect the m ain features of the spatial and 
tem poral distribution of spawning, which is neither synchronized in the population 
as a w hole nor at a given spaw ning location. The m odel required an estim ate of the 
age com position of the stock and was achieved by using traw l-survey data (provid­
ing the relative age-dass distribution) to disaggregate stock-assessment data, which 
estim ated the relative abundance of these age dasses. The m odel was tem porally re­
solved by assum ing that a norm al distribution can be used to represent the spaw ning 
fraction of female fish of a given age class (param eterized from  survey data). The 
level of daily egg production by each age class was estim ated from  the annual rela­
tive fecundity, m ean weight-at-age (from stock-assessment data), and an estim ate of 
the spaw ning duration for individual fish. The m odel assum ed that all of the poten­
tial annual fecundity is realized, that a constant fraction of the annual fecundity is 
spaw ned per day during the spaw ning period of individual fish, and that the p ropor­
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tion of spaw ning females of a given age class in the population can be described by a 
norm al distribution centred on the date of peak spawning.

In cases w here the inform ation (data, param eters, and functional relationships) re­
quired for the m odelling approaches described above is not available, inform ation 
about the peak and variability of spaw ning at a given location m ay be sufficient to 
give approxim ate daily egg production. For example, a norm al distribution w ith the 
m ean equal to the peak spaw ning date could be used, along w ith a spaw ning season 
that w ould  correspond to tw o standard  deviations, as long as there is an estim ate of 
total spaw ning (directly from  stock assessm ent or from  estim ates of spawning-stock 
biomass and a w eight-fecundity  relationship).

Some of the m odelling approaches (e.g. those described above) m ay result in  distri­
butions of spaw ning w ith  unrealistically long "tails", w hich w ould  im ply that some 
spaw ning takes place well outside the observed spaw ning season. A practical solu­
tion is to establish a cut-off threshold (e.g. based on field observations), outside of 
which egg production is considered negligible and  ignored. For accuracy, the egg 
production that w ould  have taken place at the tails should be redistributed w ithin the 
accepted distribution of spawning.

In the absence of sufficient data/inform ation to m odel egg production or the d istribu­
tion of spawning, it m ay be possible to use data on the observed distribution of larvae 
to identify the timing and location of spawning. Of course, this approach is only valid 
if the sam pling covers the full geographical dom ain occupied by the larvae of the 
species of interest, and if estim ates of the age and m ortality of the eggs and larvae are 
available. Knowledge of the duration of the egg stage is necessary to identify the 
spaw ning location of pelagic eggs. Inform ation on the m ortality level experienced by 
the eggs and larvae is needed if quantitative estimates of spaw ning are required. 
Unless we are dealing w ith  very young larvae of dem ersal-spaw ning species (or w ith 
a very short egg-stage duration), w here we m ay choose to disregard transport from 
the spaw ning grounds, w e need to account for transport processes from  spaw ning to 
sampling. To do so, the biophysical m odel can be ru n  backw ards (see Section 2.1.7 
A dditional considerations; Batchelder, 2006; Christensen et al, 2007), or a forw ard- 
running m odel m ay be used, covering at least all possible spaw ning sites over at least 
the full duration  of spawning.

W hen using an egg-production m odel to provide initial conditions for a particle- 
tracking model, the spatial and  tem poral resolution of the hydrodynam ic and parti­
cle-tracking models should be kept in m ind. Egg-production models often provide 
continuous predictions (e.g. a continuous function in time), although data used to 
force the m odel are of coarse resolution (e.g. leng th -w eigh t frequency distribution of 
adults, stock-assessment abundance data, etc.). Even so, releases of particles w ithin a 
hydrodynam ic m odel occur at discrete times and  locations. Predictions from  the egg- 
production m odel need to be converted into num bers of particles (or super­
individuals) per un it time/space (e.g. daily releases covering the spaw ning area w ith 
particles d istributed some distance apart). W hen choosing the num ber of particles to 
employ, consideration should be given to the time-step of the particle-tracking m odel 
and the spatial resolution of the physical model, in addition to the biology of the spe­
cies. Finally, buoyancy m ay influence the vertical position of eggs in the w ater col­
um n and affect their transport. Observations or m odels (e.g. Boyra et al, 2003; 
Petitgas et al, 2006) m ay be used to param eterize the initial vertical distribution of
eggs.
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Input to model -  length, weight, expected weight at length.

Calculate variables that are a function of the Individual’s state: length and weight
Condition (C)
Prespawning atresia  (Patr)
Maximum potential fecundity (MPF)
Maximum egg size (MES)
Number of batches (Batn)
Proportion sexually m ature (Pmat)
Proportion of first-time spawners (Prec)

Module 1

Calculate variables that are a function crithe Individual’s  state and batch number
Percentage of eggs spaw ned (PES)
Seasonal Atresia (Atr)
Realized batch size(Rbsize)
Egg size overtim e (Eggt)
Egg survival (Esur)
Duration betw een batches (Hrs)

Module 2

Calculate variables that area function of individual's state and start date
New proportion s tarting spawning on each  s ta rt d a te  (N_Pspa)

Module 3

Summation of dally reproductive output
Daily reproductive output (Rep_out)
Stock reproductive output (Sum_rep)

Module 4

Daily Reproductive Output and Total SRP

2.50E+08

2.00E+08

1.50E+08

1.00E+08

5.00E+07

0.00E+00
1 31 61 91 121 151 181

Day of the Year

—*— Length 75 - - •  - ■ Length 100 —*— Length 150

Figure 3.1.1. Flow diagram of the calculations in  an egg-production model (upper panel), w ith  
example model predictions (lower panel) of reproductive output for three different age/size 
classes of fish (derived from Scott eta l . ,  2006).

3.2 Pelagic larval duration

Claire B. Paris, Jeffrey M. Leis, and Jean-O livier Irisson

Pelagic larval duration  (PLD) is an im portant feature of early life-history models and 
can be defined w ithin a m orphological or ecological fram ework.

The m orphological concept of the PLD represents an im portant key transition from 
the larval to the juvenile phase and  is defined as the tim e from  spaw ning to m eta­
m orphosis into the juvenile stage (frequently defined as w hen squam ation is com­
pleted). The PLD corresponds to the entire pelagic phase in m ost dem ersal species. 
For pelagic species, PLD is defined as the time from  spaw ning to the transition to the 
schooling juvenile phase or w hen larvae enter the nursery grounds. There m ay be 
good reasons for using m orphological criteria to determ ine the limits of the m odel
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run. For example, we m ay w ish to run  the m odel only until the larva reaches a par­
ticular size, or m orphological stage, such as full squam ation. This w ould  be equally 
applicable to dem ersal or pelagic species. Terms such as "m etam orphosis" should not 
be used unless clearly defined for the species of interest.

For dem ersal species, the ecological concept of the PLD m ay be applied. This is the 
period from  entry of the egg or hatched larva into the pelagic environm ent to exit 
from  the pelagic environm ent (i.e. settlement) by the young fish. This ecological con­
cept cannot be applied to pelagic species because they never leave the pelagic envi­
ronm ent. Rather, the m odeller m ay w ish to m odel the dispersal of a pelagic species 
from  spaw ning until the larvae reach a nursery area or achieve some other ecological 
milestone, either spatial or otherw ise (e.g. achievem ent of schooling or a given 
sw im m ing ability).

The PLD can then be subdivided into various stages, determ ining either a m orpho­
logical change (e.g. Kendall et al., 1984) or the onset of ontogenic behaviours (see Sec­
tion 3.5.2.2 O ntogeny of behaviour). Pelagic larval durations are highly variable 
am ong species, ranging from  a few days to a few m onths. W ithin some species, PLDs 
are relatively constant, w ith a small variance around the mean, and they are usually 
treated  as fixed param eters in  connectivity models. However, as w ith behaviour, in­
dividual PLDs need to be adjusted according to the state of knowledge of physical- 
biological interactions (PBIs) that result in larval growth. A faster-growing larva typi­
cally has a better condition, w hich is associated w ith shorter PLD (Searcy and Spo- 
naugle, 2001). Conversely, some species have a more variable PLD, allowing them  to 
extend the larval duration if conditions are not m et for the m etam orphosis (Victor, 
1986; Sponaugle and Cowen, 1994). If PLD plasticity is m odelled, it is im perative to 
include a m ortality function or param eter in order to account for the differential sur­
vival because larvae w ith extended PLDs sustain daily m ortality rates for a longer 
period. For plastic PLDs, rather than  having a single param eter to m odel PLD, tw o 
fixed param eters are needed.

1 ) Precompetency period, before w hich larvae m ay not undergo m etam or­
phosis (for pelagic species) or settle (for benthic species).

2 ) Maximum competency period, after w hich the larval stage ends, corre­
sponding to the endpoint of the individual trajectory. For benthic species,
if the larva has not found a suitable settlem ent habitat by this time, the par­
ticle is rem oved from  the m odelling system.

Ultimately, the tim ing of the competency period and/or PLD depends on the grow th 
of the larvae. A faster grow ing larva will m ore quickly achieve the compe­
tency/recruitm ent or transition size. The advantage of an individual-based m odel is 
that individual particles can be assigned a Gaussian distribution of PLDs, w ith a 
m ean value and standard  deviation. Again, because larvae w ith  longer PLDs sustain 
daily m ortality rates for a longer period, m ortality rates need to be applied to account 
for differences in  individual survival. The only instance for which m ortality can be 
treated  as a post-process is w hen all particles have the same PLD and m ortality is 
non-spatially explicit. Finally, it is im portant to note that PLD is tem perature de­
pendent and, w ithin limits, will decrease w ith increasing tem perature (O 'Connor et 
al., 2007). This has obvious implications for climate-change scenarios.
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3.3 Growth

Thomas Miller, 0yvind Fiksen, and Alejandro Gallego

Decisions regarding the representation of feeding and grow th in coupled physical -  
biological models of fish early life history are intim ately linked. The bioenergetics of 
individual fish represent an energy balance in which any excess energy resulting 
from  the feeding process, once metabolic costs have been paid, can be invested in 
growth. The specific form  of the functional relationship betw een feeding conditions 
(or a proxy of those) and  grow th m ay vary from  a detailed bioenergetic description to 
a simple, empirical statistical relationship. M odelling the feeding process m ay not be 
necessary if the sole objective is to m odel grow th itself, provided  that there is no den­
sity-dependent im pact of cohort abundance on food availability. A num ber of ap ­
proaches of varying degrees of complexity (from highly complex, m echanistic models 
to simple phenom enological models) have been im plem ented successfully in coupled 
physical-biological models. These include m echanistic bioenergetics models, em piri­
cal fo o d -g ro w th  models, and empirical tem perature, age-g row th  models. Here, we 
examine each approach, identifying its strengths and weaknesses, and providing rec­
om m endations for each category of grow th model.

There are num erous examples of the application of m echanistic feeding m odels to 
forecast grow th in coupled physical-biological m odels (W erner et al, 1994, 1995, 
1996, 2001; H erm ann et al, 1996; Hinckley et al, 1996, 2001; Fiksen et al, 1998; Fiksen 
and Folkvord, 1999; Leising and Franks, 1999; M egrey and  Hinckley, 2001; Fiksen and 
M ackenzie, 2002; Lough et al, 2005; Maes et al, 2005; Kristiansen et al, 2007).

M any of these examples have a heritage that can be traced to individual-based m od­
els (IBMs) in  the ecological arena that considered feeding, bioenergetics, and grow th 
of larval fish in a simple, well-m ixed com partm ent (Cowan et al, 1993; Rose and 
Cowan, 1993; Letcher et al, 1996; Rose et al, 1996, 1999). At their heart, these m odels 
used a simple, stochastic scheme for determ ining encounters w ith food and w hether 
or not consum ption per given encounter occurred. The estim ates of consum ption 
were then used in a simple, bioenergetic m odel to forecast surplus energy and, hence, 
growth. W hen applied in a m odel of a simple, well-mixed com partment, the ap­
proach assum es random  encounters described by a Poisson process. It is conceptually 
straightforw ard to include the im pacts of environm ental factors, such as light 
(Aksnes and Giske, 1993), tem perature (Kitchell et al, 1977), and small-scale tu rbu ­
lence (M ackenzie et al, 1994), provided that the distributions of these param eters are 
known. Param eter estimates used in the m odels should be specific to both the species 
and the ontogenetic stage being m odelled, and population-specific w hen evidence 
suggests it is necessary. M odellers can choose: (i) to m ake param eter values a charac­
teristic of the individual, by draw ing param eter estimates from  appropriate statistical 
distributions; or (ii) to update param eter estimates dynam ically to reflect the different 
histories and trajectories of each individual (Rice et al, 1993). However, the accuracy 
and precision w ith w hich the distribution of these environm ental covariates can be 
defined does introduce uncertainty into predictions of foraging rates (e.g. Sundby, 
1997; Visser and M ackenzie, 1998).

There are num erous challenges w hen applying m echanistic feeding and grow th 
models. The highly detailed nature of these approaches requires a large num ber of 
param eter estim ates and functional relationships. For example, in their m odel of the 
effects of small-scale turbulence on feeding and grow th of walleye pollock, Megrey 
and Hinckley (2001) required estim ates for 119 param eters. Therefore, the application
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of this approach to any species and  ontogenetic stages that have not been studied 
com prehensively requires either a substantial am ount of prior experim ental w ork 
(w ith the associated problem s of ensuring realistic conditions applicable to field 
situations, etc.) or the "borrowing" of param eter estimates from  taxonomically re­
lated species (a potentially risky approach, given the degree of specialization often 
observed w hen related species are investigated in  depth). Even w here this is not a 
concern, encounter processes betw een planktonic predators and prey are generally 
not well quantified. This area is a focus of considerable research (Visser and Kiorboe, 
2006) and, although it is beginning to be better understood, empirical w ork remains a 
critical need. Inferential approaches can be used to select from  alternative param e- 
terizations (Megrey and Hinckley, 2001; Fiksen and MacKenzie, 2002; Lough et al, 
2005), and sensitivity analysis should be carried out to inform  the m odeller about the 
level of effort w orth  pu tting  into the detailed param eterization of individual proc­
esses.

Thus, the application of process-specific, biophysical models m ay help inform  our 
understanding of the im portance of individual steps in the feeding cycle or of grow th 
bioenergetics on recruitm ent. W ithin coupled physical-biological models, the appli­
cation of m echanistic grow th m odels presents special challenges. M odels require 
forecasts of the prey com m unity and physical environm ent at perhaps tw o to four 
orders of m agnitude sm aller than the m inim um  horizontal resolution of the hydro- 
graphic model. Im portantly, m any hydrographic properties used in m echanistic feed­
ing models are unlikely to be well represented across the m ultiple spatial scales. The 
issue of subgrid processes in biological variables is even m ore challenging than  for 
the physical variables. For example, vertical environm ental gradients are typically 
strong, and this imposes a particular challenge in modelling the vertical positioning 
of predators, larval fish, and their prey.

O ther approaches used to m odel grow th rely on em pirical relationships. The inde­
pendent variables in these phenom enological m odels differ, bu t often include fish age 
and tem perature (Heath and Gallego, 1997, 1998; Brickman and Frank, 2000; Brick- 
m an et al, 2001; M ullon et al, 2003; Suda and  Kishida, 2003). This approach is m oti­
vated by concerns over the accuracy of the representation of subgrid scale processes 
in the hydrographic model, as well as other physical and biological variables, not 
necessarily predicted by it, such as light, turbidity, and prey fields. The conservative 
nature of tem perature m eans that it is less sensitive to subgrid scale concerns, except 
in the vertical in stratified regions, and is therefore likely to be a reliable foundation 
for spatially explicit predictions of growth. Additionally, this approach has the ad­
vantage that there is no need to m odel prey populations, because it is assum ed that 
tem perature, in addition to its direct (physiological) effect, acts as a proxy for the en­
vironm ental changes that tend  to correlate w ith the seasonal tem perature cycle (e.g. 
food availability, daylight length, light intensity).

However, there are also potential pitfalls to this approach if the underlying tem pera­
ture-dependent grow th m odel is incorrectly param eterized or applied to a population 
for which it was not developed (Folkvord, 2005). The param eterization of a tem pera­
ture-dependent grow th m odel m ay not be as straightforw ard as it seems. In particu­
lar, m atching the spatial scale of the larvae w ith that of the tem perature field can be 
difficult. For example, earlier approaches (e.g. C am pana and Hurley, 1989) used daily 
tem perature estimates for the area of interest (Browns and Georges Banks), common 
to all larvae in the area, whereas Gallego et al (1999) used a particle-tracking m odel 
that projected individual larval trajectories over a spatially and tem porally resolved 
tem perature field to estim ate the daily tem perature history of individual larvae. Ad-
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ditionally, the phenom enological m odels are often based on the observed grow th of 
survivors, which m ay be different from the average grow th observed in the cohort 
from  w hich they were derived (M eekan and Fortier, 1996). However, Folkvord (2005) 
has dem onstrated that field grow th rates are often maximal, although Beaugrand et 
al. (2003) found that prey abundance influenced recruitm ent success of N orth Sea 
cod. W hen food is not included in the phenom enological model, the approach also 
implicitly assum es that there is no food-dependent grow th variation, or that such 
variation is negligible, beyond w hat m ay be captured by tem perature as a proxy 
variable. To address this concern, several authors (Leising and Franks, 1999; Bartsch 
and Coombs, 2004; Bartsch et al, 2004) have included food dependence in the phe­
nomenological model. This offers the attraction of coupling food to grow th, bu t it 
reintroduces the difficulties over subgrid scale predictions of prey distribution al­
ready discussed, even if these are generated externally to the m odel (Bartsch et al, 
2004).

Grow th and m ortality are intim ately coupled through a range of mechanisms, such as 
size-dependent predation  patterns, starvation, and  grow th-dependent larval stage 
duration. These m echanisms have received well-deserved attention from  m odellers 
for some time. However, grow th and m ortality are also intim ately coupled through 
larval behaviour, because behaviour-prom oting grow th typically also increases the 
risk of predation (Lima and Dill, 1990; W alters and Juanes, 1993). Such processes 
have received less attention in fishery oceanography, both empirically and  in models, 
although they have been incorporated in ecosystem-based approaches (Pauly et al, 
2000). One example is the trade-off betw een being spotted by visually searching 
predators and the need to find food through visual detection of prey, w hich is the 
m ain forcing of diel vertical m igration. A nother example is the risk of encountering 
tactile or am bush predators through increased swim m ing activity, w hich also in­
creases the encounter rate w ith potential prey items. There are also good reasons to 
argue that such behaviours are state- and size-dependent, and that they interact w ith 
larval dispersal and drift trajectories. Approaches adopted from  behavioural and evo­
lutionary ecology are required to increase understanding of these processes.

Another issue is the need to separate grow th and  developm ent (ontogeny) in deter­
m ining sensory and biomechanical abilities of larvae. All m odels of larval fish early 
life history that include larval sensory or other abilities couple such traits to body 
size, w ith direct feedback on feeding history. In reality, ontogeny can proceed (for 
some time) w ithout food supplies, im proving larval abilities to find and capture prey, 
and currently we are ignoring this in our models. However, although some experi­
m ental w ork has already been carried out on the subject (e.g. Skajaa et al, 2004), a 
greater quantitative understanding of the relative im portance of ontogeny vs. grow th 
for predation  vulnerability and  foraging ability, for example, is still required for most 
species and ontogenetic stages.

3.4  Mortality

Edward Houde and Joachim Bartsch

3.4.1 Introduction

Only in  the m ost studied species (e.g. cod, herring, walleye pollock, some sardines, 
and anchovies) are estimates of early life-stage m ortality available. Even in  these spe­
cies, stage-specific m ortalities or relationships betw een early-life m ortality and  envi­
ronm ental factors generally are lacking. Param eterizing and calibrating coupled
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biophysical m odels in  order to obtain an accurate projection of survival is obviously 
im portant, bu t it is not a simple task.

Fish have high fecundities and experience high and variable m ortality rates during 
early life. In m any stocks, the num bers of eggs spaw ned annually, or num bers of 
new ly hatched larvae, are 1 x 1012 or higher. Reductions in  abundance during egg and 
larval stages clearly m ust be precipitous and, if only m oderately variable, will gener­
ate order-of-m agnitude differences in abundance of recruits. N atural m ortality rates 
are highest in the smallest and  youngest early life stages and decline during ontogeny 
and grow th before becoming relatively stable after fish recruitm ent (Figure 3.4.1; Ta­
ble 3.4.1).

s m a ll Larva  
i M = 0.117

101-

Small Juvenile 
\  M = 0.047

y Juven ile  
\  M = 0 .0 2 8 No Fishing

W ith Fishing

Z  = 0 .0 0 4 d - '=  1 .56  y r 1 

M = F = 0.002d"1 = 0 .7 8  yr

50 d 2 0 0 d  1 y r 2 y r 3 y r 4 y r

Age

Figure 3.4.1. Survivorship curve for a typical marine fish. Three early life stages are represented. 
Also represented is the age 1-4 recruited stage, w ith  and w ithout fishing mortality (from Houde,
2002).

Table 3.4.1. D aily mortality rates (M), cumulative mortalities (MT), and per cent mortalities w ithin  
each life stage during developm ent and growth of a typical marine fish. Rates resemble those of 
w alleye pollock (based on Houde, 2002).

Stage (age) M M Percent mortality

Egg/lan/a (0 - 50 days) 0.117 5.850 99.71

Early juvenile (50 - 200 days) 0.047 7.050 99.91

Late juvenile (200 - 365 days) 0.028 4.620 99.01

Recruited stage (1 -4  years) 0.002 2.190 88.81

Early life stages die from  m any causes, bu t predation is usually the principal factor. 
O ther factors are poor nutrition, disease, and unfavourable environm ental condi­
tions. Dispersal losses can be a major determ inant of survival potential. Partitioning 
com ponent losses into death attributable to biotic causes (e.g. starvation, predation, 
disease) and abiotic causes (e.g. dispersive losses, hydrographic variability) is only 
rarely accomplished in field experiments, bu t is critical in  coupled biophysical m od­
els. In m any cases, dispersive losses equate to m ortality, bu t unless a nursery ground
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is sam pled exhaustively, both spatially and  tem porally, the survival rate and abun­
dance of dispersed individuals will be unknow n.
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Figure 3.4.2. Summary of mortality rates for eggs (E), yolk-sac larvae (Y), and feeding-stage larvae 
(F) of marine fish in relation to length (from Bailey and Houde, 1989).

In general, m ortality rates of early life stages are inversely related to size, in accor­
dance w ith expectations from  size-spectrum  theory (Figure 3.4.2). N atural mortality 
rates of m arine organisms, ranging from  the smallest invertebrate larvae to whales, 
are strongly size-dependent and decline approxim ately as M  = 0.0053 W  02-1 (Peterson 
and Wroblewski, 1984; McGurk, 1986), w here W  is individual weight. The pow er re­
lationship expressed here is believed to represent the outcom e of predation in size- 
structured aquatic ecosystems. N atural m ortality rates of juvenile and adult fish fit 
this picture reasonably well. However, for eggs and larvae, the exponent tends to be 
m ore negative than -0.25, indicating higher-than-expected m ortality rates during 
these stages, followed by rap id  declines in  M  w ith  grow th (McGurk, 1986; Bailey and 
Houde, 1989; Houde, 1997). M ortality rates and their decline w ith respect to size in 
early life are not only high, bu t vaiy  am ong cohorts (or year classes; Table 3.4.2). In 
m odelling m ortality rates in early life, it m ay be sufficient in some circumstances to 
estim ate average levels of m ortality for defined life stages. However, it m ay be m ore 
im portant to m odel patterns of m ortality and include variability in stage-specific 
m ortality in order to obtain accurate projections of survivorship.
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Table 3.4.2. Relationships betw een M  and W for five species of fish during the larval stage. 
M=  daily mortality rate. W= dry w eight (pg; from Houde, 1997).

Species Year Relationship Averaged relationship

American shad 1979 M = 4.477 jy-o.564

1980 M= 0.973 M''-0-319
1981 M= 1.126 I4Z-0.339

1982 M= 1.917 W-°-331 M = 1.724 W-0 392
1983 M= 0.782 W~0-292
1984 A/= 33.294 W~0 SS9

Northern anchovy - - M = 1.073 IT-0-353
Bay anchovy - - M = 2.284 W-o-3*8
Walleye pollock 1985 M= 1.724 W-°-922

1986 M= 1.697 W-
1987 M= 2.430 ™
1988 M= 68.590 W-i-so? M = 3.874 M''-0-622
1989 M= 4.379 W-°eel
1990 M= 1.311
1991 M= 13.515 jy-o.820

Striped bass 1987 M= 0.371 ÍT0082
1988 M= 41.857
1989 M= 22.671 W-0™ M= 4.875 M''-0-424
1992 M = 10.823 M''-»-499
1993 M = 0.284 W-««™

3.4 .2  Larval mortality: concepts and relationships

3.4 .2 .1  Survivorship curves

A plot of loge num bers of survivors w ith  respect to age generates a survivorship 
curve, or "catch curve". Its slope represents the age-specific (or instantaneous) m or­
tality rate. Even small shifts in the slope, w hen num bers are high, will generate order- 
of-m agnitude differences in abundance by the end of the larval stage (Figure 3.4.3). 
Simple sim ulations convincingly dem onstrate that even m odest variability in loss 
rates early in  life, from  w hatever cause, has the potential to coarsely control the fate 
of a cohort's abundance at recruitment.

Survival in a population, at least over relatively small size ranges, is often described 
reasonably well by a simple exponential m odel

-d N  = M - N t  dt, (16)

where N  is the num ber of individuals, M  is the m ortality rate, and t is age, solving

- M  dt = 1/Nt-dN and Nt = No r Mf. (17)

M ortality rates can be partitioned into com ponent causes. For exploitable sizes, natu ­
ral m ortality M  and  fishing m ortality F  are the tw o categories contributing to total 
m ortality Z = F  +  M .  In unfished early life stages, Z  =  M .  In theoiy (and rarely in prac­
tice), M  can be partitioned into its com ponent causes ( M i ,  M i , . . . ,  M k ,  e.g. predation, 
starvation, dispersal losses). In biophysical coupled models, it m ay be a goal to parti­
tion the m ortality and losses into constituent causes.
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Figure 3.4.3. Survivorship curve, show ing effects of different mortality rates during early life 
stages (from FFoude, 2002).

M ortality rates decline w ith size and age during early life. Initially, rates m ay be very 
high, exceeding 50% d in some species and commonly exceeding 10% d (Figure 
3.4.1). In a review  of estimates, the m ean m ortality rate (tem perature-adjusted) for 
larval stages of m arine fish was M  = 0.24, that is, 21.3% d loss (H oude and Zastrow, 
1993). The m ean M  for freshw ater fish larvae is som ew hat lower, on average M  = 0.16, 
that is, 14.8% d . The greater m ortality rate for m arine larvae is probably a conse­
quence of their m uch smaller average size (Houde, 1994) and higher vulnerability to 
a m ore diverse com m unity of predators. The average rates for the larval stage do not 
represent the pattern  of decline in  M  that generally occurs as larvae grow. For m arine 
species dying at the m ean rate >99.95%, m ortality occurs during the m ean larval 
stage duration (D = 36 d). For "average" freshw ater fish larvae, cum ulative m ortality 
is lower, bu t 96.4% are expected to die in the D = 20.7 d  m ean larval-stage duration.

3 .4 .2 .2  Temperature effects

In broad, cross-taxa analyses, m ortality rates of early life stages scale directly w ith 
tem perature. Species developing in low  latitudes, or at seasonally high tem peratures, 
suffer high m ortality rates, whereas species from  cold environm ents suffer lower 
m ortality rates. H oude (1989) and  Pepin (1991) quantified the relationships for larval 
stages. M ortality rates (at the ecosystem level, across taxa) increase at approxim ately 
0.01 per degree C. For 26 m arine species, H oude and Zastrow  (1993) derived the rela­
tionship

M  = 0.0149 + 0.0129T Sb = 0.0029 r 2 = 0.46, (18)

where T represents tem perature and sr represents the standard  error of the regression 
coefficient. This relationship m ay be useful in exploratory modelling if estimates of M  
for a species are unavailable.

Across taxa, m ortality and grow th rates of m arine fish larvae are strongly coupled 
during early life. Species suffering high m ortality rates also have high grow th rates, 
and both rates are strongly and positively correlated w ith tem perature (Figure 3.4.4). 
Species from  tem perate and high latitudes die and grow  at slower rates than species 
spaw ning in tropical habitats or under seasonally w arm  conditions. For weight- 
specific grow th of m arine fish larvae (across ecosystems and taxa), the relationship 
w ith tem perature is (Houde and Zastrow, 1993)

G = 0.0230 + 0.01067 Sb = 0.0016 r 2 = 0.35. (19)

Lacking other knowledge, a first-cut (and coarse) estim ate of m ortality could be de­
rived from  the respective M  and G ecosystem-level estim ators w ith respect to tern-
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perature. Furtherm ore, estimates of grow th rates are m ore often available than m or­
tality rates for larval fish. If an estim ate of G is available at know n tem peratures, then 
a cru de, first-cut estim ate of larval-stage M  is

M  = 1 .2170G -0.0131. (20)

Despite differences in stage durations and daily rates of mortality and grow th for 
species from  w arm  or cold environm ents, their cum ulative or stage-specific m ortali­
ties are similar because of the strong concordance betw een m ortality and grow th 
rates. That know ledge can be used to crudely param eterize models and derive esti­
mates of M. For example, species such as cod (Gadus morhua) and haddock 
(Melanogrammus aeglefinus), w hich spaw n at tem peratures <10°C, spend approxi­
m ately 100 d  in the larval stage, whereas tropical species, such as the dam selfish (Po­
macentridae), spaw n at tem peratures >25°C and spend only 25 d  in the larval stage. 
Yet, average survival at the end of their respective larval stages is similar because M  
and G are strongly correlated and increase at approxim ately the same rate w ith  re­
spect to tem perature (Figure 3.4.4).
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Figure 3.4.4. Effects of temperature on w eight-specific growth (G), mortality (M), and larval stage 
duration (D) for marine fish larvae. Averaged results for a combined taxa analysis (based on data 
from Houde and Zastrow, 1993).

3 .4 .2 .3  Size effects

A lthough m ortality rates decline as developm ent and grow th of larvae occur, the rate 
of decline w ith respect to body size or age varies am ong species and am ong cohorts 
(or year classes). For five species, the average relationships describing declines in M  
w ith respect to w eight (W) during the larval stage (Table 3.4.2) ranged from  W  0313 to 
yy-o.622 Relationships for clupeoid species (e.g. Am erican shad, Alosa sapidissima, 
Yj-0.392- northern  anchovy, Engraulis mordax, W -0-353; bay anchovy Anchoa mitchilli, 
yy-0.318) hocl less negative exponents than  perdform  (striped bass, Morone saxatilis, 
W-°A2i) or gadid  (walleye pollock, Theragra chalcogramma, W-°622) larvae. In all cases 
analysed (Houde, 1997), declines in  M  were m ore rap id  than  the IV 0 23 p red id ed  from 
allometric-scaling and size-spectrum  theoiy. As an example of declines in mortality 
w ith re sp ed  to size, the averaged, estim ated declines in  M  for walleye pollock (T. 
chalcogramma) for seven years were: 5 days old (5.8 mm, 95 pg dry wt), M  = 0.23; 15 
days old (8.5 mm, 400 pg dry wt), M  = 0.09; 26 days old (12.2 mm, 1600 pg d iy  wt), 
M  = 0.04. The m ortality rates and patterns of dedines in M  during the larval stage can 
differ am ong cohorts and interannually in response to variable oceanographic condi­
tions and predation that larvae encounter. Because even relatively small changes in 
stage-spedfic m ortality rates can generate major variability in abundance of survi­
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vors, only coarse estimates of survival can be obtained by param eterizing models 
w ith averaged relationships and rates. These m ay still serve a useful purpose to ini­
tialize m odelling and gauge sensitivity in m odel ou tpu t to variability in stage-specific 
m ortality rates.

3 .4 .2 .4  Stage-specific mortality and estim ates of abundance

W hen mortality is size- or stage-specific, it m ay be desirable to estim ate stage-specific 
m ortality and survival rates for early life stages. These rates can be derived from  es­
timates of M  and G and weights (W) at stages. The ratio M/G, sometimes referred to 
as the "physiological m ortality rate" (Beyer, 1989; Houde, 1997), can be applied to 
define m ortality w ithin a stage(s)

Ms = (M/G)-loge[Ws / Ws-i], (21)

and survival rate is

S s  =  N s  /  N s - i  =  e-Ms = [Ws /  Ws-i] -M/G. (22)

W hen abundance-at-stages (or sizes) is determ ined and grow th rates can be esti­
m ated, M  can be derived from  this relationship. Estimates of Ms range widely, differ­
ing am ong species and interannually in response to particular life history and 
ontogenic patterns, and to environm ental effects (e.g. tem perature; Houde, 1997).

The M/G index is useful for interpretation of cohort dynamics: w hen its value is >1, 
cohort biom ass (B ) is declining; w hen its value is <1, B  is increasing. M/G tends to be 
>1 for m ost m arine fish in the earliest larval stages. Relative, stage-specific cohort 
biomass (Bs) and  its trends during the grow th of larvae can be derived as

B s  /  B s - i  = [Ws / Ws-i](1-[M/GD. (23)

The am ong-cohort or year-class variability in size and age at which early life stages 
transition from  M/G >1 to <1 describes variability in size-specific survival patterns 
and m ay be of use in  distinguishing successful from  unsuccessful cohorts (successful 
cohorts m aking the transition at small size and young age).

3 .4 .2 .5  Size-selective and growth-rate-selective mortality

Compensation and density dependence. A significant fraction of m ortality in  early 
life m ay be density-dependent and can be m odelled based on assum ptions (or obser­
vations) of effects of prey lim itation on grow th (e.g. see Shepherd and Cushing, 1980). 
Small density-dependent regulations of either G or M  can generate substantial vari­
ability in survivor abundance and  act to regulate recruitm ent levels. In practice, few 
estim ates of the density-dependent com ponent of m ortality in early life are available.

To estim ate density-dependent m ortality, pairw ise plots of logio abundance estimates 
for cohorts sam pled at tw o or m ore early life stages can be plotted (e.g. logio Nt+i plot­
ted on logio Nt) and the slope of the resulting relationship estimated; if <1.0, there is 
evidence of density-dependent m ortality, and its m agnitude can be estim ated from 
the regression statistics (Myers and Cadigan, 1993). Alternatively, the presence and 
m agnitude of density-dependent m ortality can be estim ated from  the regression rela­
tionship betw een estim ates of cum ulative m ortality in early life (M a) and initial 
abundance (A) of cohorts or year classes of eggs or larvae. A significant regression 
slope in  this relationship indicates that density-dependent m ortality occurs. The y- 
intercept of the regression (Mo) is an estim ate of the average density-independent 
com ponent of cum ulative m ortality (Savoy and Crecco, 1988). Estimates of the degree 
of density-dependence for any initial level of abundance for cohorts or year classes
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can be derived from  the regression (M a - M o). These approaches m ay be useful in pa­
ram eterizing m odels for early life stages of species w here annual or cohort-specific 
estim ates of abundance-at-stage or estim ates of M  are available.

Estim ating larval m ortality. Successful estim ation of m ortality depends on accurate 
determ ination of abundance and dependable assignm ent of individuals to age classes 
or stages. The general pattern  of survivorship curves in early life is know n (Figures
3.4.1 and 3.4.5). The difficulty and  cost of estim ating m ortality of eggs and larvae are 
greatest in large ecosystems, w hich essentially m ay be unbounded and subject to sig­
nificant losses through dispersal and translocation, in addition to m ortality losses. 
The possibility of success increases in embayments, estuaries, and freshw ater habitats 
that are bounded  and w here dispersal losses are m inor or are of little consequence if 
the entire system  is sampled.

Age-specific losses are often estim ated from  a "catch curve", in which abundance-at- 
age of survivors is plotted on age (Figure 3.4.5). A log-linear regression equation of 
loge abundance on age (stage) estim ates the instantaneous m ortality rate:

loge N t  =  loge N o - M ' t ,  (24)

where N t  is abundance at age t  (usually days for early life stages), N o  is estim ated 
abundance at the beginning of the stage, and the regression coefficient M  estimates 
the instantaneous m ortality rate. C um ulative m ortality is M - t  and the survival rate is 
S  = e~Mi. In practice, catch curves are best fitted to stages w ith relatively short du ra­
tions (age intervals) to minim ize errors in M  associated w ith its decline during 
growth.

A hypothetical survivorship curve (Figure 3.4.1) and tabulated sum m ary (Table 3.4.1) 
illustrate a survivorship analysis based on catch curves for three prerecruit stages and 
a post-recruit stage of a typical m arine fish (param eter estimates resemble those of 
walleye pollock, T. chalcogramma). At youngest ages and smallest sizes, m ortality 
rates are highest, often >10% d 1. They generally decline during grow th and ontog­
eny. Cum ulative m ortalities ( M - t )  are high during the egg-larval (high M, short du ra­
tion) and juvenile stages (low M, long duration) w hen >99.5% of individuals may 
perish.

M odelling m ortality w hen rates are declining during early life m ay be best accom­
plished w ith  a m odel other than the log-linear catch curve. For example, the Pareto 
m odel assum es that m ortality is a pow er function of age (or size):

loge N t  — loge N o  + [3*fa, (25)

where the coefficient ß estim ates the overall rate of decline and a  is the shape pa­
rameter. This m odel m ay be particularly effective in estim ating m ortality w hen the 
decrease in m ortality is particularly steep betw een the earliest life stages (e.g. eggs or 
yolk-sac larvae) and later stages (Figure 3.4.5).
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Figure 3.4.5. Survivorship curve (catch curve) for early life stages of striped bass, Morone saxa­
tilis. Results of two m odel fits are included: exponential model (r2 = 0.86) and Pareto model 
(r2 = 0.93). Data point at day 0 represents egg abundance; remainder of data are for larvae (from  
FFoude and Secor, 1996; unpublished report).

3.4 .3  Causes of early-life mortality

3.4 .3 .1  Starvation and nutritional deficiencies (and critical periods)

Larval fish m ay die from  starvation or other nutrition-related causes. Estimating or 
m odelling this com ponent of m ortality m ay be im portant. Direct estimates are diffi­
cult to obtain because poorly nourished larvae weaken, become increasingly vulner­
able to predation, and therefore occur less frequently than  expected in 
ichthyoplankton collections. Selective predation on slower grow ing bu t healthy indi­
viduals m ay also occur, a m ortality process potentially independent of larval nu tri­
tional condition, bu t still nutrition  related. Back-calculation procedures, based on 
otolith m icrostructure analysis of early life stages sam pled in tw o or m ore periods, 
can docum ent and quantify relative losses to m ortality of slow- and fast-growing lar­
vae in a population, allowing estimates of growth-related m ortality to be made.

Critical periods (sensu Hjort) are observed infrequently in  the sea. H igh mortalities of 
larvae at the time of first feeding, resulting in order-of-m agnitude losses to the popu­
lation and concentrated in  period of a few days, signify a critical period. Critical peri­
ods certainly can be evaluated in field research and sim ulated/param eterized in 
models.

3 .4 .3 .2  Predation

Predators are probably the biggest single cause of m ortality to early life stages of fish. 
Explicitly estim ating the com ponent of m ortality attributable to predation is difficult. 
Predation losses m ay be linked to nutritional deficiencies that increase vulnerability 
of young fish to predators. Predation on fish eggs is size-specific, and predation on 
larvae m ay be both size-specific and grow th-rate-dependent. As larvae grow  and de­
velop, becoming less vulnerable to predators, m ortality rates attributable to predation 
decline. Despite a w ealth of laboratory research evaluating predation on fish eggs 
and larvae, and a proliferation of m odels on the predation process, predation  remains 
difficult to detect or evaluate in the sea. Eggs and especially larvae are soft-bodied
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and are destroyed upon  consum ption or are digested quickly. As a consequence, eggs 
and larvae m ay go undetected or be underrepresented as prey in p redator guts.

Im portant predators of fish eggs and larvae include juvenile and adult fish, jellyfish 
(ctenophores and  medusae), chaetognaths, and euphausiids. There is a general lack of 
inform ation on the com m unity of predators consum ing fish eggs and  larvae, espe­
cially in quantifying m ortality attributable to specific predators, m aking it difficult to 
evaluate predator taxa and the taxon-specific m ortality im posed on eggs and  larvae. 
Research to date, including m odelling approaches, has rarely succeeded in convinc­
ingly partitioning m ortality of young stages of fish am ong the array of predator taxa 
and sizes present in the sea.

Vulnerability of larval fish to types of predators can be m odelled and illustrated prin­
cipally by dom e-shaped curves in  relation to larval size (see Figure 9 in Bailey and 
H oude, 1989). The susceptibility of larvae to attack and capture by a particular type 
and size of p redator generally declines as larvae grow, being a function of increases 
in sw im m ing speeds, im proved ability to detect predators, and  better avoidance and 
escape capability. Vulnerability, representing the net effect of ontogenetic changes in 
encounter probability and susceptibility, m ay increase for interm ediate-sized larvae, 
at least for a particular predator of specific size and capability. W ith continued 
growth, fish larvae become increasingly adept at avoiding predation, thus reducing 
their vulnerability, despite the increased probability of encounter. Through growth, 
larvae also eventually reach sizes that reduce their vulnerability to gape-lim ited 
predators.

Laboratory experim ents have dem onstrated the size-specific nature of predation. 
Predators, independent of taxon, tend  to consum e larval fish prey that, on average, 
are about 10% of the predator's body size (Paradis et al., 1996); this is a useful value 
for exploratory m odelling applications. Perhaps surprisingly, Paradis et al. (1996) 
found that the 10% value applied to both invertebrate and vertebrate predators.

M ortality from  cannibalism on pelagic eggs is common in some clupeoid fish, either 
by incidental filter-feeding or by selective consum ption. A significant fraction of egg 
and yolk-sac larval m ortality (e.g. 20%) in sardines (Sardinops spp.) and anchovies 
(Engraulis spp.) in upw elling ecosystems can be accounted for by egg cannibalism. 
Cannibalism  m ay also occur w hen m etam orphosing larvae settle onto substrate al­
ready occupied by older and larger conspedfics. Sibling cannibalism, in w hich larvae 
prey upon siblings, is reported  in m any taxa, in d u d in g  freshw ater characids and m a­
rine scombrids.

3 .4 .3 .3  Physics: transport, retention, and dispersal

Losses of early life stages to dispersal m ust be accounted for in  coupled biophysical 
models. If eggs and larvae w ere passive partides, estim ation of dispersal losses 
w ould  be fairly straightforw ard. Behaviour of larvae, espedally  vertical m igratory 
behaviour, in  a stratified ocean adds complexity to estim ating the loss term  from  dis­
persal. Dispersal losses m ay be a com ponent of m ortality if eggs or larvae cannot 
survive in environm ents w here they are dispersed or cannot re tu rn  to juvenile nurs­
eries. Fine-scale variability in water-colum n properties, espedally  stratification and 
its relationship w ith vertical distributions of fish eggs and larvae, their predators, and 
prey, plays a critical role in controlling conditions that determ ine retention or disper­
sal of early life stages and their potential for survival.

Dispersal losses are generally higher in  sm aller (or partly sam pled) ecosystems than 
in larger ecosystems. Helbig and Pepin (1998b) defined m ethods useful for providing
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coarse estimates of advective losses as a function of ecosystem size. Their approach 
and results m ay be useful in param eterizing m odels that explicitly attem pt to esti­
m ate m ortality and advective losses (see Figure 1 in Helbig and Pepin, 1998b). Helbig 
and Pepin (1998b) defined relationships for apparent m ortality rate (Alt) and advec­
tive losses (Md) w ith respect to size of the sam pled ecosystem based on several stud­
ies, from  w hich they then derived estimates of actual m ortality (M):

M  = M -Aid. (26)

A lthough it is clear that physics at meso- and broader scales (from one to hundreds of 
kilometres) plays a role in  controlling levels of m ortality of larval stages, physics at 
finer scales (e.g. on m illim etre to m etre scales) can also be im portant. It is these spa­
tial scales that determ ine contact rates betw een young fish, their prey, and predators. 
Rates of contact, controlled by micro-scale turbulence, for example, can directly influ­
ence the nutritional status of larvae and indirectly affect their vulnerability to p reda­
tion. M odelling research, laboratory experiments, and some field observations on the 
role of m icro-turbulence in prom oting larval feeding success, growth, and survival 
have helped to explain how  high survival of fish larvae in  the sea is possible under 
conditions w here average prey levels apparently  are lower than  required  for larval 
survival. For Atlantic cod larvae (and by inference, other species), it is apparent that 
survival is m axim ized under m oderate w ind conditions, which generate m icro­
turbulence sufficient to enhance encounter rates betw een larvae and prey, bu t not so 
turbulent that larvae are unable to capture prey (MacKenzie and Kiorboe, 2000).

3 .4 .3 .4  Water quality and habitats

Contam inants and toxic materials, acting either chronically or episodically, can be 
lethal to eggs and larvae of fish, or m ay prevent successful spaw ning by adults. This 
is probably m ost im portant in small ecosystems, such as bays and estuaries, and for 
populations quasi-restricted to these areas. O ther w ater-quality factors m ay act indi­
rectly or interactively. For example, increased loadings of nutrient, such as nitrogen 
and phosphorus, can lead to eutrophication of m any fresh waters, estuaries, and 
coastal ecosystems, which can deplete dissolved oxygen, leading to hypoxia or anoxia 
that is lethal to fish eggs and larvae. In another example, effects of contam inants or 
poor w ater quality m ay alter behaviour of larvae, so im peding feeding and  reducing 
grow th rates, or m aking larvae m ore vulnerable to predation.

3 .4 .3 .5  D iseases and parasites

Except in aquaculture, w e seldom  consider or estim ate m ortality of fish eggs and lar­
vae from  diseases or parasites, although these sources of m ortality m ay be im portant. 
Parasites of eggs and larvae, including dinoflagellates, protozoans, helm inths, and 
copepods, have been reported  regularly, although m ortality rates and population- 
level consequences are unevaluated. In the sea, diseased, parasitized, and  poorly 
conditioned larvae and eggs disappear rapidly from  populations either through se­
lective predation or through decom position and settlem ent of dead bodies.

3 .4 .3 .ó Interacting factors

In m any circumstances, it is a simplification to assign conditional probabilities to 
sources of m ortality w ithout understanding potential interactions. For example, the 
fraction of young stages dying from  starvation or predation  cannot be easily parti­
tioned because the tw o sources of m ortality interact. Poorly fed, slow-grow ing larvae 
are m ore vulnerable to predators. In laboratory experim ents and m odel simulations, 
such larvae are selectively predated  and have a relatively low  probability of survival.
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In the sea, it remains problem atic to quantify the fractional m ortalities on larval fish 
from  either starvation or predation. Low prey levels reduce grow th rates, leading to 
longer stage durations during early life and a greater probability of being predated. 
M odelling experim ents (IBMs) have dem onstrated how  grow th rate and its variabil­
ity can modify effects of predation on survival of larval fish (Rice et al, 1993; Cowan 
et al, 1996; Letcher et al, 1996). H igh grow th rates, and also variable grow th rates, 
low er the overall expectation of m ortality in a larval population vulnerable to size- 
selective predation.

Param eterizing models to depict accurate m ortality requires consideration of the in­
teractions am ong the physical and biological processes affecting survival. In m any 
cases, failed retention, unfavourable transport, or poor environm ental conditions (e.g. 
tem perature, pH, hypoxia) act directly to kill some fraction of eggs and  larvae, but 
these same conditions will also affect the predators and prey of early life stages, creat­
ing a complex web of interactions affecting early life survival. Cascading effects can 
increase the m ortality risk to eggs and larvae in stressed ecosystems. For example, an 
excess of nutrients can prom ote eutrophication, leading to low  dissolved oxygen, 
harm ful algal blooms, losses of aquatic vegetation, and probable increases in some 
larval predators (e.g. jellyfish), as the trophic state of an ecosystem shifts. Evaluating 
the effects of such m ultiple, complex sources on early-life m ortality is difficult and 
seldom  achieved, except in modelling, w here sim ulations m ay provide valuable in­
sight into these interacting processes.

3 .4 .4  C a s e  study: m orta lity  a n d  th e  su p e r - in d iv id u a l c o n c e p t

A major problem  in an individual-based model, once m ortality is included, is that 
extraordinarily large num bers of individuals are needed at the start of a sim ulation if 
they are to be continually elim inated by a m ortality function during the course of the 
simulation. Obviously, this procedure results in  prohibitive com putational times and 
m ay cause storage problems. Additionally, this common solution, that is, the contin­
ual reduction of the num ber of individuals in the model, can lead to loss of variation, 
irregular dynamics, and a large sensitivity to the value of the random  generator seeds 
in troduced at the start (Schetter et al, 1995). The super-individual concept developed 
by Schetter et al (1995) is ideally suited to eliminate, or rather circumvent, these prob­
lems. The solution is to add  an extra variable to each m odel individual, nam ely the 
num ber of individuals it actually represents. In essence, each particle is considered as 
a super-individual representing a specific num ber of eggs at the outset of the sim ula­
tion, w ith this num ber declining according to the m ortality function applied during 
the course of the simulation. Thus, the resulting super-individuals are, in fact, classes 
of individuals (Schetter et al, 1995).

To elucidate the incorporation of m ortality in individual-based m odels (IBMs) using 
the super-individual concept, an example of a mackerel IBM is presented below, 
w hich has been successfully used to predict the survival of mackerel post-larval 
stages in the N ortheast A tlantic (Bartsch and Coombs, 2004; Bartsch et al, 2004; 
Bartsch, 2005). This IBM is com posed of a num ber of physical and biological m odules 
to sim ulate transport, growth, and mortality. It is an ¿-space configuration m odel 
(DeAngelis and Rose, 1992) in w hich large num bers of individuals are followed as 
discrete entities. As the param eterization of m ortality in this IBM is based on daily 
absolute grow th rates, a brief description of the grow th m odule is given for the sake 
of both clarity and completeness.
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3.4 .4 .1  Growth module

In the grow th m odule, the grow th rates of larvae and post-larvae are calculated daily 
as a function of tem perature, length, and am bient food concentration. In the absence 
of sufficient detailed inform ation on the changing spatial and seasonal vertical distri­
bution of food particles, the food-concentration data are specified as being vertically 
hom ogeneous w ithin the entire depth  range of the larvae and  post-larvae (the upper 
60 m  of the w ater column). The data w ere com puted as weekly fields for the m odel 
area for the period from  m id-January to mid-Septem ber for each of the years 1998, 
1999, and  2000.

Food concentrations were m odelled from  egg-production rates of representative large 
(Calanus) and  small (Acartia) copepods, these constituting 39-58%  of the diet of larval 
and post-larval mackerel (H illgruber et al, 1997; Conway et al, 1999; H illgruber and 
K loppm ann, 2001; SEAMAR, 2002). Based on the form ulations given in Prestidge et 
al. (1995), the egg-production rates were calculated based on the input variables of 
satellite-derived sea surface tem perature (SST) and chlorophyll a concentration, p ro ­
viding m onthly fields interpolated to weekly averages for each year. Egg-production 
rates per female w ere raised to population-production rates using C ontinuous Plank­
ton Recorder data (Sir Alistair H ardy Foundation for Ocean Science, Plym outh, UK) 
and SEAMAR field sam pling data on sex ratio and relative abundance of copepodite 
stages. Finally, production was converted to biom ass using published copepod 
dem ographics and raised proportionately to total biomass based on the observed 
fraction of plankton dry w eight represented by Calanus and Acartia. A full description 
of the food availability m odel is given in SEAMAR (2002).

A first analysis of grow th from  field data sam pled on cruises during 1999 dem on­
strated that a logistic curve was an appropriate approxim ation of mackerel larval and 
early post-larval grow th (SEAMAR, 2002), using a variable exponential param eter r 
(Bartsch, 2002):

L = L»(l + expJ-rf+cJT1, (27)

where L is the length in m m  at time t, L is a constant representing the m axim um  
length attainable in the initial larval and early post-larval grow th stanza (set at 
80 mm), r is a function of tem perature and food concentration (see below), c is the 
constant of integration, and L = 3 m m  at time t = 0, that is, at hatch.

The absolute grow th rate is a function of length and the exponential param eter r:

dL/dt = G = rL(l -  (L / L»)). (28)

Tem perature and food m ediation of the param eter r is carried out as follows:

r = (ropt -  d(ToPt -  T)2)F¡ (29)

where ropt is the m axim um  specific grow th rate (ropt = 0.125), d  is a constant 
(d = 0.00085), Topt is the optim um  tem perature for grow th (19°C), T is the tem perature 
encountered, and Ft is a m odel food index (MFI: see below).

The range of appropriate values for ropt and  d  depends m ainly on the seasonal tem ­
perature range and grow th rates. Using the available field data, values for the pa­
ram eters ropt and  d  w ere determ ined in order to provide realistic values of r, that is, r 
m ust rem ain positive and should tend  to some m inim um  value rmtn (Bartsch, 2002) 
that corresponds to the lowest grow th rates observed in the field w hen substituted 
into Equation (28). The tem perature optim um  for grow th (ToPt = 19°C) was selected on 
the basis of the field tem peratures likely to be encountered by larval and post-larval
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mackerel (m axim um  of ca. 20° C) and the general energetic consideration that, w ithin 
the norm al ecological range of a species, higher tem peratures lead to increased 
grow th rates (see e.g. Otterlei et al. (1999) for optim um  grow th tem perature for larval 
cod, Gadus morhua).

The first stage in  setting the MFI in Equation (29) is calculation of the ratio of avail­
able food to the required  daily ration for a particular sized larva or post-larva. This is 
based on a simple energetics m odel (SEAMAR, 2002) of w eight-based daily grow th 
rate, body length, food concentration, light level, and food capture efficiency. The 
num erical value of the ratio varies betw een 0.00001 and » 1 .  Values >1 are set to 
unity, because these values denote m axim um  grow th in optim um  food concentra­
tions (i.e. food concentrations above w hich no further food assimilation can be 
achieved). For use in Equation (29), the range of ratio values was linearly rescaled to 
give an MFI w ith  a range of 0.4-1.0. The lower boundary for the MFI was determ ined 
from  sensitivity tests, such that grow th rates from  Equation (28), using r from  Equa­
tion (29) and  substituting MFI = 0.4, were not lower than  observed in the field during 
SEAMAR. A full description of the param eterization of the food and grow th relation­
ship is given in SEAMAR (2002).

For each super-individual in  each grid  box, the calculated MFI is m odified by a ran­
dom  AMFI to m imic subgrid variations in  food concentration, which are not resolved 
by the m odel grid. These random  AMFI are draw n from  a top-hat distribution of 
w id th  0.2, w hich results in a m axim um  deviation of ± 0.1 from  the calculated MFI for 
a super-individual d _1. Values calculated at <0.4 were set to 0.4. The choice of the 
num erical value for AMFI was based on the requirem ent to allow subgrid variation 
w ithout modifying MFI significantly.

3 .4 .4 .2  Mortality module

The daily m ortality rates of the super-individuals are calculated as a function of 
length and absolute grow th rates. This determ ines the daily decrease in  num bers of 
the original IO6 individuals represented by each super-individual in the mackerel 
IBM. Conceptually, each super-individual can be considered a subset of a cohort. On 
any day D, N d,¡ is the num ber of eggs or larvae represented by each super-individual 
and is term ed the num ber of "virtual individuals". In essence, N d,¡ is different for 
each particle, because egg-developm ent tim e is tem perature-dependent, grow th is 
tem perature- and food-dependent, and  m ortality depends on absolute grow th rates 
and length, and so implicitly dependent on tem perature and food concentration.

The m athem atical relationships betw een grow th and m ortality have been examined 
in a num ber of papers, those of m ost significance to the present form ulation being 
A nderson (1988), Miller et aí. (1988), Beyer (1989), Morse (1989), H oude (1989, 1997), 
and Pepin (1991, 1993). The conclusion is that grow th can be used to represent rela­
tive survival, because length-specific grow th rates and m ortality interact to determ ine 
survival of a cohort during the prerecruit period. M ortality considered here is caused 
by both starvation and predation. Based on this, m ortality was form ulated such that:

• Absolute grow th rates and  m ortality rates are positively correlated;

• M ortality rates are inversely correlated w ith larval length, that is, mortality 
decreases as length increases;

• C um ulative m ortality w ithin a specific length range decreases w ith in­
creasing length.

The m athem atical relationship linking m ortality w ith grow th rates and length in  the 
mackerel IBM was based on an em pirical relationship given by Pepin (1991):
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M  = 5.17G0-74L“L17, (30)

where G is the absolute grow th rate in m m  d and L is length in  mm. The empirical 
form ulation given above is principally similar to an equation of the form

M  = cG ^/L 1«, (31)

where c is a constant.

Using daily data over a length range of 3 -80  m m  from  the logistic curve for G and  L 
(Equations (27) and (28)), a range of sensitivity tests were carried out to find an ap­
propriate value for x in Equation (32) below  that w ould  satisfy the above three crite­
ria. These results dem onstrated that x should be >0.3. A num erical value of x = 0.3 
was selected, because this provided  exponential values for G and L that were suffi­
cient for m eeting the criteria and closest to their exponential values in Equation (30). 
Thus, the final form ulation for the daily m ortality rate in the mackerel IBM was

The super-individual concept used in the determ inistic mackerel IBM described 
above has the following advantages over IBMs that do not use this concept.

• There is no need for extraordinarily large num bers of particles at the be­
ginning of the simulation.

• C om putational time is drastically reduced.

• There is no need to remove specific particles from  the simulation, that is, 
the problem  of reseeding does not arise.

The m athem atical form ulation described here to param eterize larval mackerel m or­
tality yields higher grow th rates at higher tem peratures and, hence, higher daily m or­
tality rates, bu t the stage-specific m ortality rates are lower for fast-growing 
individuals, that is, they m ove faster through (not only) vulnerable stages.

Generally, larval mackerel m ortality rates in  the IBM usually start off at about 30- 
40% d _1 and drop below  10% d ra f te r  about 3 5 -4 5 d. However, it should be noted 
that these values vary w idely betw een separate individuals because m ortality de­
pends on tem perature and food concentration, w hich are both spatially and  tem po­
rally variable. This results in a w ide range of surviving virtual individuals per super­
individual and, hence, a m arked inhom ogeneous distribution of m odel survivors 
over the whole m odel area (Bartsch et al, 2004). This is dem onstrated in Figure 3.4.6.

M  = 5.0G07/L 13. (32)
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Figure 3.4.6. (a) Initial particle (egg) distribution for 12 M arch-3 June, as used in  all model runs; 
(b) regional distribution of the total remaining virtual individuals w ithin  each model grid box at 
a length of 50 mm for 1998; (c) for 1999; and (d) for 2000.

3 .5  B eh av io u r a n d  se tt le m e n t

Jean-O livier Irisson, Jeffrey M. Leis, Claire B. Paris, and H oward I. Browm an

3 .5 .1  In trod u ction

Fish larvae are not passive particles, and  it is becoming increasingly obvious that they 
have behavioural capabilities that m ay greatly influence dispersal outcomes and 
other biophysical processes (Leis, 2006). Thus, the simplifying assum ption of passive 
behaviour, w hich has been the basis for m any biophysical models in the past, can no 
longer be justified as the default assum ption (Leis, 2007). Behaviour as a potentially 
im portant factor that can influence the outcom es of such m odels m ust be considered 
as a real alternative. This requires an understanding of the behaviour of the larvae, 
som ething that is frequently lacking. Recent research has dem onstrated that fish lar­
vae have behavioural capabilities in areas of swimming, orientation, and sensory 
abilities that were unknow n and  unexpected only ten years ago.

"Behaviour" refers to the actions or reactions of organisms, usually in  relation to the 
environm ent. Larval behaviour can become overw helm ingly complex because indi­
viduals acquire behavioural capabilities as they develop. However, a "good" m odel 
should not tiy  to be exhaustive, bu t only include observed behaviours that are suffi­
cient to reproduce patterns and/or mechanisms relevant to the scope of the study. 
Sensitivity analyses, in which different behaviours are added  to the m odel to assess 
their influence on outcomes, can aid in determ ining w hich behaviours to incorporate.

In this section, we consider vertical positioning, horizontal swimming, orientation, 
foraging, p redator avoidance, schooling, and settlement. All these behaviours can 
influence the outcom e of the larval phase and m ay need to be considered w hen de-
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signing a model. The following sections provide clues on w hether or not it is w orth 
im plem enting each behaviour, depending on the a priori know ledge of the system 
and the other processes already included in the model. Each is organized in a similar 
fashion: (i) outlining how  the behaviours can be im portant to the processes that the 
m odel seeks to address, (ii) proposing sim ple tests on how  to determ ine w hether or 
not it has any influence, (iii) giving insights on how  to obtain relevant data and point­
ing to appropriate literature references, and (iv) suggesting im plem entations for this 
behaviour in  a model.

We further encourage m odellers to test the relative influence of separated physical 
conditions and behaviour for their particular m odel/species/area of interest. Sensitiv­
ity analysis of m odel ou tpu t to behaviour-related param eters or functions should be 
done routinely after each behaviour is im plem ented, as well as com parison of predic­
tions w ith empirical data. The following sections are in tended to help the reader an­
sw er the question, w hat are the priorities for im plem entation of different behaviours?

3 .5 .2  G e n e r a l q u e s t io n s  o n  b e h a v io u r -r e la te d  tra its

3 .5 .2 .1  Mean vs. mean + variance vs. maximum

All behavioural traits are variable: swim m ing speeds and vertical position change 
am ong and betw een individuals; sensitivity to environm ental cues for orientation can 
similarly vary, as can response to these cues, etc. Therefore, the description of behav­
iour has to be probabilistic to account for these variations. Behavioural studies, 
w hether they are experim ental or done in the field, allow an estim ate of population 
traits. The question then is, w hich population descriptors are m ost relevant to a 
m odel of the early life history of fish?

In such models, we are m ostly interested in the individuals that survive the larval 
phase and recruit successfully. If m ost larvae succeeded, their m ean behavioural 
traits, and  those of the whole population, w ould  be similar. Hence, including m ean 
population traits in m odels could suffice to predict recruitm ent correctly. However, 
very few larvae survive the larval phase (see Section 3.4 M ortality; Doherty, 1983), 
and the few that do probably succeed because their traits are different from  the others 
and well suited to the circumstances they encountered w ithin the heterogeneous pe­
lagic environm ent (Fuiman and  Cowan, 2003). For example, there is now  evidence 
from  several systems and  species that the fastest growing individual larvae are most 
likely to survive, and the same m ay apply to behavioural performance. Therefore, 
using m ean population perform ance in models will not be appropriate if the survi­
vors constitute only a small portion of the perform ance distribution. Variance around 
the m ean has to be derived from  observations (e.g. Browm an et al., 2003) or estim ated 
from  published accounts and incorporated into the m odel to provide a realistic range 
of individual results. In addition, m axim um  values should also be considered be­
cause successful recruits m ay be the very few "best" individuals of each cohort. 
C om parison of m odel results based on both m ean and best perform ance should be 
informative. Such a probabilistic approach can be accom plished through individual- 
based m odels (IBMs), w here traits of individual particles can be assigned following a 
probability density function.

3 .5 .2 .2  Ontogeny o f behaviour

Like m orphology, behaviour develops during the pelagic larval stage from  essentially 
planktonic at its start to nektonic at its end. The passive portion of the pelagic larval 
stage is likely to be short, and  m odels that m ake the simplifying assum ption are
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likely to be applicable to only a short portion of the larval stage. In addition to onto­
genetic changes in  behavioural ability, there are often ontogenetic changes in the use 
of those abilities (e.g. age-related changes in depth  or in swim m ing direction). M eth­
ods for m odelling behaviour need to be adjusted according to the state of knowledge 
of physical-biological interactions that result in larval growth. Indeed, m ost studies 
indicate that size (or stage of developm ent) is a better predictor of behavioural ability 
than  age (Fuiman and Higgs, 1997).

• W hen grow th or developm ent is explicitly included in the m odel (possibly 
via trophic interactions), behaviour can be form ulated as a function of size 
or developm ental stage. In addition, this relationship should consider not 
only the m ean value for the population bu t also associated variation. In 
this case, as larvae are subjected to differential grow th (e.g. in a m odel
w ith heterogeneous spatially explicit resources), they will have differential
perform ance of a given behaviour.

• W hen larval grow th is not resolved in the model, or w hen not enough in­
form ation is available to predict a continuous relationship between size 
and behavioural performance, milestones can be used to m odel behaviours 
in a simplified, stepwise m anner. M orphological or ontogenetic stages can 
be expressed by a dimensionless metric, such as an ontogenetic index
(Fuiman and Higgs, 1997) or developm ental age (Job and Bellwood, 2000).

3 .5 .2 .3  Taxonomic resolution of behaviour

Ideally, the behaviour of the larvae of the species to be m odelled should be incorpo­
rated  into the model. However, it is im portant to know  the degree to w hich the be­
haviour of a particular species can be extrapolated to other taxa, because it is unlikely 
that we will ever have even partial inform ation on the behaviour of all fish species. 
Currently, the am ount of inform ation available on any particular behaviour is lim ited 
to relatively few species and, for the vast majority of these, to only a portion of the 
larval stage (usually older larvae). W hen deciding w hether or not behavioural infor­
m ation from  species A can justifiably be used in a m odel for species B, tw o things 
m ust be considered at the outset: (i) the closeness of the relationships of the tw o spe­
cies, and (ii) the similarity of the environm ent in  w hich the species live.

The vast diversity of teleost fish species -  approxim ately 27 000 species in 448 families 
d ivided am ong 40 orders (Nelson, 2006) -  m eans that some species are very distantly 
related, w ith  evolutionary histories that have been separate for tens of millions of 
years. Am ong orders in particular, there is no reason to assum e that behaviours will 
be similar. W ithin mam m als, for example, no one w ould  assum e that the behaviour 
of a tiger (O rder Carnivora) w ould  be similar to that of a dugong (Order Sirenia). 
Likewise, no one should assum e that the behaviour of a plaice larva (Order Pleu­
ronectiformes) w ould  be similar to a herring larva (Order Clupeiformes). As a gen­
eral rule of thum b, in the absence of other information, the closer the relationship 
betw een tw o species, the m ore justifiable it should be to assum e they have equivalent 
behaviour. The use of well-corroborated phylogenies that encompass the species un ­
der consideration is essential in assessing the closeness of relationships, bu t such 
phylogenies do not exist for m any fish taxa. Even this rule of thum b should be ap­
plied cautiously because there are m any examples of larvae of confamilials w ith dif­
ferent behaviours. For example, in  pom acentrids, the larvae of some species are 
found in  m idw ater, whereas those of other species prefer the top  few centimetres of 
the w ater colum n (Leis, 2004). Sibling species (e.g. Pacific herring and Atlantic her­
ring) are more likely to have similar behaviour than random ly chosen confamilials.
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At this point in  our know ledge of the behaviour of fish larvae, it is difficult to make 
any defensible statem ent about how  closely related tw o species m ust be before it is 
justified to assum e that the behaviour of their larvae is similar. An analysis of the be­
haviour of fish larvae in the context of phylogeny, w ith a view  to establishing 
w hether relatedness provides a sound basis for inferring behaviour, w ould  be most 
useful.

Even w ithin a family, the larvae of a species that is pelagic as an adult is unlikely to 
behave similarly to the larvae of a species that lives on a coral reef or in an estuary. 
Therefore, if it is not possible to obtain behavioural data on the species of interest, the 
species supplying the behavioural data should at least live in the same habitat as the 
species of interest, in both the adult and larval stages. Echoing the com m ent above, 
an analysis of behaviour of fish larvae to determ ine the extent to which habitat simi­
larity provides a sound basis for inferring behaviour w ould  be very valuable. The use 
of behavioural data from  a distantly related species that lives in a different habitat 
should be avoided.

There are indications that some behaviours, particularly sw im m ing speed, can be 
predicted from  the m orphology of the larvae (Fisher and Hogan, 2007). Therefore, the 
use of swim m ing data from  species w ith similar larval m orphology m ight be appro­
priate. In addition, even larvae of the same species can exhibit significant differences 
in overall activity and sw im m ing in different geographic locations (Skiftesvik, 1992; 
Puvanendran and Brown, 1998; Leis and Carson-Ewart, 2000; Leis, 2004). Therefore, 
any generalization should only be m ade w ith great caution.

3 .5 .3  V ertica l p o s it io n

3 .5 .3 .1  Why incorporate this behaviour in a model?

Any vertical heterogeneity in the current field will interact w ith the vertical d istribu­
tion of larvae and indirectly influence their dispersal, as dem onstrated by m odelling 
(Arm sw orth et al, 2001) and empirical (Paris and Cowen, 2004) studies. Of course, 
m any things in addition to current velocity vary vertically in the ocean (e.g. tem pera­
ture, light, food concentration) and m ay influence growth, survival, or dispersal of 
fish larvae. Of all behaviours, vertical distribution is the m ost w idely recognized as 
being influential, and it is the behaviour m ost often incorporated into biophysical 
models. Particles located at different depths will be subjected to different current vec­
tors, and therefore their Lagrangian trajectories will be different. Tem perature influ­
ences pelagic phase duration (Houde, 1989), developm ent rates (Otterlei et al, 1999), 
and swim m ing speed (Leis, 2006). Food resources are often greater near the therm o- 
cline, and fish larvae m ay accum ulate in these depths (Boehlert et al, 1992; Gray, 
1996; Rissik and Suthers, 2000). Conversely, they m ay use diel vertical m igration to 
avoid predation near the surface (Gray and Kingsford, 2003). Larvae m ay use sensory 
cues for orientation, such as sun angle or sound, so that the absolute depth  or vertical 
position of a larva relative to the therm ocline m ay influence its ability to detect such 
cues and orientate using them. The vertical position of larvae can, therefore, influence 
their feeding success, predation risk, growth, sw im m ing ability, and  ability to detect 
sensory cues, all of w hich can influence their trajectories (Fiksen et al, 2007).

In coastal waters, larvae m ay occupy the epibenthic boundary layer, w here current 
velocity can differ substantially from  that in the w ater column. Unfortunately, infor­
m ation on the occurrence of fish larvae in  the epibenthic boundary layer is limited, 
especially in deeper w ater and  over a very irregular or hard  bottom. Occupancy of 
the boundary layer not only places the larvae in  a different current regim e bu t m ay
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also expose them  to increased risk of predation from  benthic predators and to in­
creased turbidity, and m ay place them  in a different food regime. Similarly, some 
m arine structures, such as kelp beds and reefs or other high-relief bottom  topogra­
phy, provide areas of flow that differ substantially from  those in the far-field w ater 
column; these should be taken into account if larvae occur near them.

3 .5 .3 .2  How to determ ine whether or not this behaviour influences dispersal outcom e

C urrent velocity, hydrography (e.g. salinity, tem perature), and fluorom etry profiles 
(or their m odelled equivalents) over the estim ated spatial scales and depth  range of 
interest (i.e. observed larval fish depth  range) are required to evaluate the degree of 
vertical shear in  the current, tem perature gradient, and depth  of chlorophyll m axi­
m um . Larvae m ay use sensory cues for orientation, such as sun angle or sound em a­
nating from  a settlem ent habitat, so the absolute depth  or vertical position of a larva 
relative to the therm odine m ay influence their ability to detect such cues and orien­
tate using them. Clearly, if heterogeneity in the velocity field is detected, vertical dis­
tribution of larvae m ust be included in  a model. If some m odel param eters or 
functions (such as survival, grow th rate) explicitly depend on food availability or 
tem perature, and if these are not hom ogeneous on the depth  range of interest, verti­
cal position m ust be included. Finally, sensory cues m ust be included if they are 
know n to be used by larvae for orientation and are also affected by the vertical struc­
ture of the w ater column. Some m odels integrate w ater m ovem ent over the surface 
Ekm an Layer, bu t w ater velocity over this layer is know n to differ w ith  depth. This 
m eans that larvae at different depths w ith in  the Ekm an Layer will be subject to dif­
ferent current speeds and directions, and this should be reflected in  the model.

3 .5 .3 .3  Simple tests

W hen a three-dim ensional oceanographic m odel is available, the influence of vertical 
m igration can be assessed by com paring the fate of particles constrained to the top 
and bottom  layers w ithin the species' depth range. W hen three-dim ensional oceano­
graphic m odels are com putationally infeasible, then tw o-dim ensional models are of­
ten em ployed. If the m odel simulates horizontal (e.g. cross-shelf) and vertical (e.g. 
depth) dimensions, then the influence of vertical position can be tested in a m anner 
similar to that used for three-dim ensional models. If the m odel dim ensions do not 
include the vertical, then there is no simple test for the potential influence of vertical 
m igration in the model. If a strong vertical current shear is observed in the field and 
larvae are observed to m igrate through it, then the use of a three-dim ensional m odel 
is recom m ended.

3 .5 .3 .4  How to obtain the relevant data

Vertical distribution is probably the behaviour about w hich we have the m ost infor­
mation. It has been explored prim arily w ith tow ed nets, perform ing stratified sam ­
pling of the w ater column. This requires m ultisam pling nets, preferably the Multi 
O pening and Closing Net and Environm ental Sensing System (MOCNESS), or re­
peated single-net (e.g. bongo net) sam pling of the same area at different depths. To 
resolve diel vertical migration, a few stations should be sam pled over several 24 h 
cycles. Similar inform ation can be obtained from  pum p samples, bu t pum ps suffer 
from  significant avoidance, particularly w hen sam pling larger larval stages. Nets also 
suffer from  avoidance, and care m ust be taken w hen analysing ontogenetic vertical 
distribution data (e.g. gear selectivity can be calculated from  the net opening, m esh 
size, and leng th -frequency  distribution of the larvae caught).
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Acoustic m ethods can also provide useful inform ation on vertical distribution, but 
suffer from  difficulties in  identifying the species whose vertical distribution they por­
tray. Finally, in situ observations of larvae by divers (Leis, 2004) can provide detailed 
inform ation on vertical distribution and changes therein from  the individual larvae 
that are caught, typically w ith  light traps, and subsequently released. This approach 
is lim ited by diver-safety considerations to relatively shallow depths and  can only be 
used in the daytim e and for larvae > ca. 5 mm.

This kind of sam pling provides inform ation about the concentration of larvae caught 
w ithin specific depth  intervals. Sampling can be carried out repeatedly along a single 
transect, generating tw o-dim ensional data, or over a spatial dom ain to obtain a three- 
dim ensional description of larval patches (e.g. Paris and Cowen, 2004). In order to 
describe the vertical distribution of the larval population, tw o-dim ensional sam pling 
is adequate, and  the resulting inform ation needs to be sum m arized using statistical 
descriptors. Interesting descriptors are the depth  centre of mass of the larval patch, its 
variance, the total depth  range in which larvae are caught, and dep th-frequency  dis­
tribution. Each observation (i.e. dep th  interval) m ust be reduced to its m ean depth. 
Raw larval counts should be converted to concentrations, using the volum e sampled, 
and standardized using the depth  range of the interval. Finally, m ean depths should 
be w eighted by these standardized concentrations to com pute descriptive statistics of 
the vertical distribution of larvae: w eighted m ean depth  (i.e. depth  centre of mass), 
standard  deviation, quantiles, etc. An alternative to a depth  centre of m ass portrayal 
of vertical distribution is a dep th-frequency  distribution. D epth bins, usually deter­
m ined by the vertical resolution of the sam pling design, are established, and the 
m ean percentage (and associated variance) of the larval population in the sam pled 
w ater colum n is calculated for each bin. This offers some advantages over the centre 
m ass in term s of detail, bu t is less robust in respect to deviation from  the sam pling 
plan (e.g. different depth  intervals betw een stations) and  m ore difficult to transfer to 
a model.

In addition, these descriptive statistics should be discussed dynam ically in time and 
ontogeny. For example, the differences betw een day and night conditions, or between 
several ontogenetic stages, should be investigated and described, if present.

Furtherm ore, the m ovem ent of individuals, and not only the distribution of the popu­
lation mean, is im portant. A simple example highlights this fact taken from  Leis 
(2006).

Imagine a stratified system  w ith a flow of x in  an upper layer equal, bu t op­
posite, to that in a lower layer, and w ith the larvae equally distributed verti­
cally betw een the tw o layers. If there is no m ovem ent by individual larvae 
betw een layers, at the end of time t the larvae in the upper layer will be ad- 
vected a horizontal distance of 2zt relative to those in  the low er layer. If 
m ovem ent of larvae betw een layers is constant and individuals spend an 
equal am ount of tim e in each layer, then the larvae in the tw o layers will not 
become horizontally separated at all. Depending on the proportion of time an 
individual spends in each layer, any other result interm ediate betw een these 
extremes is possible.

This inform ation can be obtained by in situ observations of larvae over time to deter­
m ine their individual vertical m ovem ents (e.g. Leis, 2004) or by the use of specialized 
sam pling equipm ent that can determ ine the upw ard  and dow nw ard m ovem ent of 
individuals rather than vertical shifts of population m eans (e.g. Pearre, 1979).
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3 .5 .3 .5  How to incorporate data into the model

Vertical distribution can be introduced in a three-dim ensional m odel (i) as a param e­
ter referring to a user-controlled function, or (ii) as an em ergent property  of the 
m odel resulting from  other processes being m odelled explicitly.

A straightforw ard im plem entation of (i) is either to initialize the m odel w ith  different 
num bers of particles in each depth  stratum  or to w eight the results of dispersal in 
each depth  layer using num bers or weights, w hich respect the observed vertical dis­
tribution of larvae (represented, e.g. by a probability density function). This is valid 
only if the structure of larval patches is constant throughout the larval phase. If not, 
at each time-step, particles can be m oved betw een depths using a random  process 
that represents the probability density function appropriate to the age or size of the 
larva as observed in  the field (Paris et al, 2007).

If vertical distribution is to be obtained as an em ergent property of the system, the 
processes evoked above m ust be explicitly m odelled. For heterogeneity of the current 
field to be exploited, vertical swim m ing w ith some sort of criteria to choose depth  
should be m odelled (Vikebo et al, 2007; Fiksen et al, 2007). For food or tem perature 
heterogeneity to be exploited, grow th and/or survival should be m odelled explicitly 
(see appropriate sections in this m anual). If swim m ing speed depends on condition, 
food and tem perature heterogeneities can have an indirect im pact on dispersal trajec­
tories by m odifying larval condition, and hence swim m ing speed (although we cur­
rently know  very little about such relationships). This is probably unim portant for 
vertical motion, in w hich even small swim m ing speeds can have a dram atic impact, 
bu t it is w orth considering in the case of horizontal swimming.

3 .5 .4  H o r izo n ta l sw im m in g

3.5 .4 .1  Why incorporate this behaviour in a model?

Horizontal sw im m ing of larvae affects dispersal trajectories by partly disconnecting 
them  from  the current field (Brickman et al, 2007); therefore, it has a direct influence 
on dispersal outcomes. Trajectories, including horizontal swimming, can diverge sig­
nificantly from  purely passive Lagrangian trajectories and can result in significantly 
different dispersal outcomes, especially if sw im m ing is orientated. U norientated 
sw im m ing can increase the am ount of search area covered by a larva, and hence im ­
prove survival or settlem ent probability by chance alone. Unorientated horizontal 
sw im m ing can also increase variance in  a m anner similar to increasing diffusion, and 
hence increase the dispersal kernel (i.e. the probability distribution of distances in 
successful dispersal events).

In addition to resulting in different dispersal outcomes in terms of settlem ent posi­
tion, these differences in trajectories could also influence growth, condition, and sur­
vival, for example, by passing into or out of food and/or predator-rich areas.

3 .5 .4 .2  How to determ ine whether or not this behaviour influences dispersal outcom e

This can be reform ulated as, how  great m ust sw im m ing perform ance be before it can 
significantly influence trajectories? Num erical m odels of circulation indicate that 
m odest speeds (0.3-10 cm s ) can have large effects on dispersal. Similarly, heuristic 
models inform  us that speeds of 1 -5  cm s can strongly influence dispersal outcomes 
(Codling et al, 2004). The following are some examples from  Leis (2006).

A vertical sw im m ing speed of >5 cm s was considered necessary "to over­
come vertical mixing" in a tidal channel (Smith and Stoner, 1993). Near 
Georges Bank, on-bank swim m ing by larvae of 0.3-1.0 cm s_1 "w ould sub­
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stantially enhance shoalw ard displacement" and result in m odelled d istribu­
tions consistent w ith field observations (W erner et al, 1993). O n the N ew ­
foundland shelf, directed horizontal swim m ing of 1 -3  cm s_1 by cod larvae 
was considered able to "greatly increase their retention on the shelf (and on 
banks, too"; Pepin and Helbig, 1997). In a num erical m odel of the Florida 
coast, sim ulated larvae that sw am  at only 1 cm s _1 had  settlem ent 36 to 300% 
greater than  passive larvae, whereas larvae that sw am  at 10 cm s_1 had  set­
tlem ent rates "m any times" greater (Porch, 1998). In a num erical m odel of an 
A ustralian coral reef, a sw im m ing speed of 10 cm s_1 by sim ulated settle- 
m ent-stage larvae resulted in a duplication of m easured distributions of lar­
vae that was im possible to achieve w ith passively drifting m odel larvae 
(Wolanski and Sarenski, 1997).

Nevertheless, m ost of these examples assum e orientated swimming, which under­
lines the fact that orientation is a very im portant factor.

3 .5 .4 .3  Simple tests

Testing for the im portance of unorientated sw im m ing can be achieved by augm ent­
ing the variance of the random  flight in  the Lagrangian tracking scheme (see Annex 2 
for a description of the random  flight model). This is especially efficient for sw im ­
m ing speeds that are low  relative to am bient current velocities (e.g. one or m ore or­
ders of m agnitude lower). If orientation behaviour is unknow n, testing extreme 
orientated swim m ing scenarios can give insights on the extent to w hich swim m ing 
can influence trajectories. Such scenarios can include, for example, adding a m ove­
m ent at full speed, perpendicular to, or parallel w ith  current direction at each time- 
step; and testing full-speed m ovem ent relative to w hatever cues m ay exist (e.g. the 
presence of an island). If these tests lead to the conclusion that orientated swim m ing 
could m ake a large difference (which it will in  m ost cases), then inform ation on orien­
tation is needed (see Section 3.5.5 Orientation).

3 .5 .4 .4  How to obtain the relevant data

Inform ation on horizontal swim m ing is becoming m ore w idely available, bu t m ost of 
it concerns tropical species. In addition, several m ethods have been used to estimate 
larval fish swim m ing speeds (see Leis, 2006 for a review). These are (from high to 
low): burst speed, which m easures the speed at which larvae flee in response to a 
stimulus; critical speed (lient), w hich m easures the speed of flow against which larvae 
can m aintain their position in swim m ing channels (Stobutzki and Bellwood, 1994); 
m axim um  sustainable sw im m ing speed, which m easures the speed that can be m ain­
tained in a sw im m ing channel over 24 h  (Fisher and Wilson, 2004); in situ speed in 
w hich scuba divers follow larvae in the sea and m easure their speed (Leis et al, 1996); 
and routine speed, w hich m easures sw im m ing speeds of undisturbed  larvae in labo­
ratory containers, w hich m ay be large or small (Fisher and Bellwood, 2003). These 
techniques do not m easure the same thing, and the speed estimates that they provide 
differ. Therefore, they are not equally suitable for use in  dispersal models, and  care 
m ust be taken to ensure that the type of sw im m ing-speed m easurem ent is suitable for 
the purpose.

Routine speed has the advantage of being a m easure of sw im m ing speed undisturbed 
by divers or any overt forcing by the investigator, bu t carries the disadvantage of be­
ing m easured in artificial laboratory conditions. In situ speed has the clear advantage 
of being m easured in the sea, bu t w ith  the unknow n influence of the observing di­
vers. LZcrit is m ost relevant to com parisons of relative performance, bu t is not a per­
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formance m easure that can be included directly in dispersal m odels and  is almost 
certainly faster than  larvae actually swim  in the sea. The least appropriate m easure is 
burst speed (the highest speed of which a fish is capable), as this is m easured and can 
be m aintained only for very short periods and is considered to be fuelled anaerobi­
cally (Plaut, 2001). Because burst speeds can only be m aintained over very short peri­
ods of time (typically <20 s; Plaut, 2001), they are inappropriate to considerations of 
dispersal, although they have been used for this purpose (e.g. Bradbury et al., 2003). It 
would, however, be appropriate to use burst speed w hen examining predator escape 
or avoidance of plankton nets.

If actual sw im m ing speeds are to be included "as is" in a m odel of the early life his­
tory of fish, in situ  speed is the best existing m easure of how  fast larvae actually swim 
in the sea and, therefore, the m ost relevant to this purpose. On the other hand, if po­
tential, rather than actual, sw im m ing speeds are needed, the m axim um  sustainable 
sw im m ing speed of Fisher and W ilson (2004) is a well-suited m easure. It has to be 
noted that, for the nine species for w hich it was m easured, m axim um  sustainable 
sw im m ing speed was equal to about one half of Uca and similar to values of in situ 
speed of settlem ent-stage larvae of the sam e or related species.

In addition, using a constant m ean or m axim um  sw im m ing speed is justifiable only if 
the larvae are considered never to be fatigued (food supplied ad lib., no m uscular fa­
tigue, etc.). In m ost cases, m ean swim m ing speed, variance in  swim m ing speed, and 
sw im m ing endurance should be estim ated. This necessitates determ ining the rela­
tionship betw een swim m ing speed and endurance, w hich is theoretically cubic 
(Fisher and  Bellwood, 2002; Fisher and Wilson, 2004). Furtherm ore, it is know n that 
feeding greatly enhances endurance. Endurance of fed larvae m ay be virtually open- 
ended  for some species, bu t significant swim m ing endurance m ay not develop until 
relatively late in ontogeny (Leis, 2006). Even so, com parison betw een fed and unfed 
larvae in sw im m ing channels can provide valuable information, especially if some 
sort of energy budget is included in the model. Finally, swim m ing speed and endur­
ance are highly variable th roughout the larval phase and should be estim ated for 
several ontogenetic stages (Leis, 2006).

If no inform ation about swim m ing speed is available, some theoretical mechanistic 
rules should be represented w hen param eterizing m axim um  swim m ing speed (using 
relative speeds, as in Bellwood and Fisher, 2001), sw im m ing endurance (Fisher and 
Bellwood, 2002), or developm ent of swim m ing abilities (Fisher et al., 2000). Note that 
these rules were all exam ined in a tropical context and, given that tem perature has a 
great influence on sw im m ing speed and energetics, it m ay be m isleading to assum e 
that they will apply in cold water.

3 .5 .4 .5  How to incorporate data into the model

Lagrangian stochastic m odels (LSMs) can be used to incorporate horizontal swim ­
ming. The baseline random  walk m odel (i.e. RDM) is first-order M arkovian for the 
particle position (x) and  velocity field (u), and is the m ost commonly used stochastic 
transport model, for w hich the governing equations are (for each axis)

dx = [<u (x) > + u r\ dt + du'dt (33)

áu’ = [-u '/T l + a (x  ,u ') \ d t  + b (x) dW(t), (34)

where the first and second term s in Equation (33) are the m ean velocity and the tu r­
bulent velocity, respectively, dt is the time-step, x is the vector of coordinates. The 
first term  in Equation (34) represents a fading m em ory for velocity fluctuations, and
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a, the drift correction term, is zero w hen turbulence is stationary and hom ogeneous 
(Veneziani et al, 2004). The second term  in Equation (34) represents random  forcing, 
w here dW  is a random  incl em ent from  a W iener process (i.e. continuous-tim e Gaus­
sian stochastic process) w ith zero m ean and  variance át; b, the tensor am plitude, m ul­
tiplies the random  increm ent (sensu Berloff and McWilliams, 2002). Thus, b can 
describe larval swim m ing w ith random  or oriented m otion (Codling et al, 2004).

However, caution is advised for situations w here the decorrelation time-scales in  the 
Lagrangian equation, dictated by the velocity field, do not correspond to that of the 
active larva. Choosing the sw im m ing direction and speed should be based on behav­
ioural rules, w hich depend on the environm ent of the larvae. This is discussed in Sec­
tion 3.5.5 below. An alternative is to include non-explicit sw im m ing behaviour 
during the end  of the larval pelagic phase by assum ing that a larva can actively re­
cruit once it is found at a determ ined distance from  the nursery habitat (Cowen et al,
2003).

3 .5 .5  O r ie n ta tio n

3 .5 .5 .1  Why incorporate this behaviour in a model?

As m entioned in Section 3.5.4, random  horizontal swim m ing can change the outcom e 
of the larval phase. The im pact of swim m ing can be even greater if, for example, the 
larvae are able to orient tow ards areas of greater food supply or tow ards settlem ent 
sites. Such orientation abilities exist even if the associated environm ental cues are not 
always known. C urrent know ledge related to each potential cue (which mainly con­
cerns coral reef fish) is sum m arized in Table 3.5.1.

Table 3.5.1. Potential orientation cues for coral reef fish.

C ue C o m m e n t R eferenc es

Vision Can improve the choice of settlement site; visual 
acuity in surface layers (where light is abundant) 
is 12 - 30 m for late larvae; can mediate 
schooling.

Lara, 2001; Kingsford eta/., 2002.

Hearing Detection of coastal areas using reef-associated 
choruses, or breaking waves at distances of kms, 
but probably not tens of kms.

Kingsfoid eta/., 2002; Leis and Lockett, 
2005; Montgomery eta/., 2006; K. J. Wright, 
pers. comm.

Olfaction Land-associated chemicals could guide larvae 
towards the coast. At a smaller spatial scale, 
settling individuals can detect conspecifics or 
habitats using chemical signals.

Sweatman, 1988; Kingsford eta/., 2002; 
Atema eta/., 2002.

Magnetic sense Could be used for navigation; sensitivity to 
electromagnetic fields has been demonstrated 
in hammerhead sharks, salmon, tuna, and eel, 
but not in larval stages of marine fish.

Klimley eta/., 1992; Nishi eta/., 2004; 
Kingsford eta/., 2002.

Lateral line Associated with behavioural responses, e.g. prey 
detection, obstacle or predator avoidance, and 
schooling, but only over short distances.

Alexandre and Ghysen, 1999; Fuiman and 
Magurran, 1994.

Solar compass Sun angle could be used as a compass; implied 
but not demonstrated in larval fish.

Leis and Carson-Ewart, 2003.

Polarized light Could be used for navigation; never 
demonstrated in the larval stage.

Hawiyshyn, 2000.

Evidence that orientation occurs, or at least can occur, is needed before it is incorpo­
rated  into the model. For other larvae, orientation can be dem onstrated in laboratory 
experim ents that test the preference of larvae for a given environm ental signal (e.g. 
coastal vs. oceanic water, reef sounds vs. random  sound). However, field observa­
tions are necessary to dem onstrate that orientation truly occurs. These observations
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can be perform ed w ithout any hypothesis about the cues involved. Such laboratory 
and field experim ents have revealed that coral-reef fish larvae can sw im  directionally 
at sustained speeds for long periods (hours to days; for a review, see Leis, 2006) be­
fore settlement. However, the onset of this behaviour is not certain, nor do we know  
the distance from  w hich a larva, or schooling larvae, can "sense" the reef.

3 .5 .5 .2  Simple tests

O rientation can be added  gradually, starting w ith  a very simple set of behavioural 
rules, then testing the im pact of each step of the implementation.

3 .5 .5 .3  How to obtain the relevant data

Inform ation on the orientation of fish larvae is lim ited to relatively few studies (see 
review  by Leis, 2006). O rientation data can be provided by field studies involving the 
release of w ild or reared larvae at sea and tracking by divers (Elliott et a l, 1995; Leis et 
a l, 1996; Trnski, 2002; H indell et a l, 2003). In situ  orientation chambers can also p ro ­
vide similar inform ation on the orientation of fish larvae (Stobutzki and Bellwood, 
1998; Paris et a l, unpublished data). Testing the ability of larvae to detect a cue is a 
second step (Sweatman, 1988; A rvedlund et a l, 1999; A tem a et a l, 2002; Tolimieri et 
a l, 2002, 2004; Leis and Lockett, 2005; W right et a l, 2005), and  the last step w ould  be 
to describe thresholds for detection. The first step is testing for the ability to detect a 
cue in the laboratory or in field experim ents (Sweatman, 1988; A rvedlund et a l, 1999; 
A tem a et a l, 2002; Tolimieri et a l, 2002; W right et a l, 2005), bu t this can only reveal 
w hether the cue can be detected and at w hat level. It will not reveal w hether or not 
the cue is actually used for orientation or over w hat scales, although it can describe 
the ontogeny of this sensory ability. U nderstanding the spatial scale over w hich cues 
can be detected and used for orientation is difficult, bu t this is essential inform ation 
for incorporation into the model.

Nevertheless, know ing the cue used for orientation is not m andatory for incorporat­
ing orientation data in a model. If orientation behaviour is observed repeatedly in a 
specific location, it can be incorporated "as is" in a m odel of this location. A lterna­
tively, it m ay be possible to establish that the given orientation is not site-specific, in 
w hich case the orientation can be incorporated throughout the model. Thus, orienta­
tion data can be thought of as cue-specific (e.g. swim m ing tow ards a sound source), 
location-specific (e.g. swim m ing away from  a reef during the day), or general (e.g. 
sw im m ing west). This can help to determ ine how  to incorporate such orientation into 
the model.

3 .5 .5 .4  How to incorporate data into the model

Incorporating orientation into a m odel is closely associated w ith  the incorporation of 
sw im m ing (both horizontal and vertical); orientation is simply a choice am ong the set 
of possible sw im m ing vectors. Once again, tw o approaches can be taken: (i) behav­
ioural rules in response to the environm ent can be defined a priori, based on observa­
tions and experim ental work; and (ii) these behavioural rules can em erge from  the 
m odel by defining the set of possible sw im m ing vectors, a "goal" for the larva (e.g. 
settlement), and letting an algorithm  choose the suite of best decisions to achieve this 
goal (see Irisson et a l, 2004 for an example of the use of an optim ization algorithm).

In both cases, orientation is a function that associates a behavioural decision to a state 
of the larva, such as

ƒ: (state) x (time) x (environment) —> (swim m ing speed) x (swim m ing direction).
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The am ount of detail of the orientation behaviour is determ ined by w hat is incorpo­
rated  in each of the left-hand variables. In the simplest m odel in w hich orientation is 
observed but the cues are unknow n, orientation depends only on the position (state) 
of the larva and time. W here responses to sensory cues are involved, the environm ent 
m ay include tem perature, food, predators, current fields, land-associated chemical 
concentrations, sun orientation, etc. If some kind of energy budget is present, the 
state of the larvae also encompasses energy reserves. This form alization is very scal­
able.

3 .5 .ó Foraging

3.5 .6 .1  Why incorporate this behaviour in a model?

Behaviours associated w ith prey search and foraging are unlikely to have a strong 
and direct influence on the trajectories of dispersing larvae. Indeed, for m ost of the 
larval period, these behaviours will occur on a relatively small spatial scale. N onethe­
less, if these behaviours m otivate the larva to undertake vertical and/or horizontal 
m ovem ents in search of food, such repositioning could indirectly influence pelagic 
trajectories in  conjunction w ith the behaviours discussed above. The likelihood of this 
will increase rapidly as the larva 's activity and swim m ing ability increase.

Food is typically lim iting for fish larvae, at least in  respect of it being less than  they 
w ould  require to achieve maximal grow th rates. Grow th rate, in turn, influences 
sw im m ing speed, survival probability, and pelagic larval duration, w hich are all key 
processes in  the early life-history m odels of fish. For m ost larvae, the efficiency of 
foraging probably has little influence early on (except in term s of conserving energy 
and delaying the "point of no return"), bu t perhaps has m ore as they approach the 
juvenile stage.

3 .5 .6 .2  How to obtain the relevant data and incorporate it into a model

The tem poral and spatial scales over w hich fish larvae can perceive their prey are 
orders of m agnitude smaller than the scales over w hich their prey fields are surveyed 
(Pepin, 2004). Therefore, w hen modelling the encounter rates betw een fish larvae and 
their prey, there is a discontinuity betw een the data available to characterize the prey 
fields that are available to fish larvae vs. the operational prey field (from the perspec­
tive of w hat the larva can actually perceive). Two things are required  to bridge this 
gap: (i) sam pling of prey fields at tem poral and spatial intervals that are m ore closely 
aligned w ith the perceptual abilities of the larvae; and (ii) em pirical characterization 
of the perceptual fields of fish larvae for different prey under different conditions 
(e.g. light, turbulence) and at different sizes (developm ental stages).

3 .5 .6 .3  Turbulence and predator-prey interactions in the plankton

Substantial effort has been applied to dem onstrate that microscale turbulence can 
significantly increase the feeding rate of planktonic predators (reviewed in D ower et 
al, 1997). This effort has been driven by the theoretically derived conclusion that m i­
croscale turbulence increases the encounter rate betw een planktonic predators and 
their prey. The original theory assum ed that the geom etry of the w ater volum e per­
ceived (i.e. searched for prey) by a predator is spherical (Rothschild and Osborn,
1988). M ore recent theoretical formulations assum e a forwards-projecting hem i­
spherical perceptual volum e (reviewed in  D ower et al, 1997; Galbraith et al, 2004). 
However, for all planktonic taxa for which such inform ation exists, the geom etry of 
the perceptual field is neither a sphere nor a hem isphere (Lewis, 2003; Galbraith et al,
2004).



M odelling  p h y sica l-b io lo g ica l in te rac tio n s  d u rin g  fish e a rly  life

The m anner in which a non-sym m etrical perceptual field m ight affect the conclusions 
of turbulence-encounter theory was recently exam ined by Lewis (2003) for cruise- 
searching copepods. He concludes that, under turbulent conditions, the optim al 
sw im m ing strategy (associated w ith  prey search) for predators w ith non-symmetrical 
perceptual fields differs radically from  w hat is otherw ise predicted. Analogous w ork 
on larvae of Atlantic cod (Gadus morhua) produced a similar result: the advantage of 
turbulence is greatly reduced w hen the perceptual space is param eterized w ith more 
realistic geom etry (Galbraith et al., 2004). Because virtually all m odels of p redato r- 
prey interactions in plankton have, at their heart, a param eter for the distance at 
which prey can be located, this dem onstrates how  empirical know ledge of the per­
ceptual abilities of m arine organism s is essential. W ithout such information, w e risk 
m aking large errors in prediction, which can lead to m isleading and/or incorrect con­
clusions.

3 .5 .6 .4  "Operational" prey abundance and the myth of prey choice/prey selectivity by small 
zooplanktivores

A lthough the abundance of prey that could be consum ed by small zooplanktivores is 
highly variable, both  tem porally and spatially, it is reasonable to state that it m ost 
often ranges betw een 0 and 100 L 1. The volum e of w ater contained in the visual per­
ceptual field (VPF) of a 6-10  m m  fish larva is approxim ately 0 .8-1 .0m l (Browman 
and Skiftesvik, 1996; G albraith et al., 2004). Thus, at an absolute prey abundance (AA) 
of 100 h 1, only 0.08-0.1 prey items w ould be w ithin the VPF at any given instant. The 
num ber of prey per VPF is the visual abundance (VA) and, from  the perceptual per­
spective of the predator, VA, not AA, is the operational m easure of prey availability. 
Thus, for this predator, AA w ould have to be >2000 h 1 in  order for VA to be >1 (prey 
aggregations at thin boundary layers m ay be this dense; Gallager et al., 2004). These 
VA num bers illustrate that small zooplanktivores (e.g. carnivorous copepods or fish 
larvae) will only rarely have an opportunity  to choose actively from  am ong several 
sim ultaneously available prey items. It is possible that these predators m ake choices 
from  am ong prey encountered sequentially, bu t under anything b u t the highest of 
prey abundance, they m ust eat w hatever and  w henever they can or risk starvation. 
Discussions of prey choice and/or active prey selectivity in these taxa m ust be u nder­
taken w ithin this context.

Conceptual and/or num erical models that attem pt to define feeding rate, prey choice, 
or prey selectivity in  small zooplanktivores all use AA as an input variable. Because 
VA is three orders of m agnitude less than  AA, this represents another example of the 
need for accurate characterization of the perceptual abilities of these organism s to 
param eterize such m odels realistically. Failure to do so raises the risk of m aking in­
terpretive and predictive errors about p red a to r-p rey  dynam ics in m arine foodwebs.

If it is necessary to introduce a condition factor for the larva into the model, there is 
probably no need for a detailed subcom ponent on foraging. For a m odel that is de­
signed to predict larval trajectories (and not grow th or recruitment), there is no need 
to incorporate prey search and foraging unless there is evidence that these are the 
prim ary m otivators for relatively local changes in  vertical and/or horizontal position 
that m ight m ove the larvae into different w ater masses. There is very little evidence 
to support this in the literature.
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3.5 .7  Predator avoidance

3.5 .7 .1  Why incorporate this behaviour in a model?

Traditional aquatic foodwebs place plankton at the base of the food chain, often w ith 
fish as the top predator. However, during ontogeny, fish go through a phase as im ­
portant (albeit transient) members of the plankton. At this small size, fish larvae are 
subject to predation by other plankters: carnivorous copepods (such as Paraeuchaeta 
norvegica), chaetognaths, gelatinous Zooplankton, and other ichthyoplankton.

As early larvae, fish have only a lim ited capability to perceive and escape from  
predators. In contrast, m any adult invertebrates and/or older larval or juvenile fish 
are formidable predators, against w hich early-stage fish larvae w ould  have virtually 
no chance. There are almost no empirical observations of such interactions (Yen and 
Okubo, 2002; Browm an et al, in  prep.). For larvae of greater sw im m ing capability, the 
probability of escape depends strongly on the type of predator. For example, an ag­
gregation of gelatinous Zooplankton sweeping through a population of larvae could 
result in high mortality.

As w ith foraging, predator avoidance occurs on a relatively small spatial scale for 
m ost of the larval period and is therefore unlikely to exert a strong influence on dis­
persal trajectories. If predator-avoidance behaviour m otivates the larva to undertake 
vertical and/or horizontal m ovem ents in an attem pt to distance itself from  predators 
(unlikely early in the larval period), such repositioning could indirectly influence 
dispersal (in conjunction w ith the behaviours discussed above).

3 .5 .7 .2  How to incorporate data into the model

For a m odel that is designed to predict larval trajectories (and not m ortality or re­
cruitment), it is not necessary to incorporate predator avoidance unless there is evi­
dence that this is the prim ary m otivator for relatively local changes in vertical and/or 
horizontal position, which m ight m ove the larvae into different w ater masses.

3.5.8 Schooling

3.5 .8 .1  Why incorporate this behaviour in a model?

Schooling behaviour typically occurs prior to the transition period from  the larval to 
the juvenile phase in some pelagic and benthic species (Leis, 1986; Breitburg, 1989; 
Gallego and Heath, 1994; M asuda et ah, 2003). Potter and Chitre (2006) used simple 
num erical experim ents to dem onstrate that schooling is capable of generating em erg­
ing larval behaviours that enhance the location of reefs by sounds, ultim ately affect­
ing the choice of settlem ent and changing the endpoint of individual trajectories (see 
also Simons, 2004). As schooling is also a strategy to avoid predation, it m ay ulti­
m ately affect survival and  sim ulated levels of recruitm ent. Therefore, im plem entation 
of schooling in m odels of the early life history of fish can become im portant w hen 
m odelling recruitm ent to specific nursery areas or settlem ent to benthic habitats, as 
well as for testing hypotheses on the orientation and sensory capabilities of larvae. 
Schooling will also alter the patchiness of pelagic larvae distributions, which has im ­
plications for sampling, predation, feeding, and patterns of settlement.

Field observations, net sam pling, and acoustic traces indicate that some fish larvae 
undergo a near-bottom  schooling phase prior to recruitm ent (Breitburg, 1989; Nelson 
et ah, 2006). The size of these larvae m ay be interm ediate betw een the sizes of larvae 
collected in  plankton tows and  m etam orphosed juveniles collected from  benthos (e.g. 
Breitburg, 1989). Rearing experim ents also dem onstrated that this behaviour is de­
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veloped early during ontogeny am ong pelagic species (M asuda et al., 2003). A lthough 
schooling is m ediated prim arily by visual cues triggering aggregation, form ation of 
the lateral-line canals appears to im prove coordination of school m em bers for parallel 
orientation (Fuiman and M agurran, 1994).

3 .5 .8 .2  Simple tests

As this behaviour m ay change spatial patterns of settlement, the rule of thum b is to 
verify that the m odel grid-scale can resolve those spatial differences. The extent of the 
spatial differences (w ith and w ithout schooling) can be estim ated as the distance 
travelled by larvae at the m ean velocity of the flowfield near the settlem ent area from 
the onset of schooling to settlement.

In addition, schooling m ay enhance the sensibility and  precision in orientation. 
Therefore, in a m odel w ith orientation im plem ented as a response to environm ental 
cues, the sensory sensitivity of larvae can be artificially increased and checked to see 
if it has an influence on both survival rates (ability to find suitable recruitm ent habitat 
before the end of the pelagic phase) and spatial patterns of settlement.

3 .5 .8 .3  How to obtain the relevant data

Unfortunately, there is little published inform ation on schooling behaviour during 
the transition from  the larval to the juvenile phase in  fish. D ata can be obtained 
through rearing experim ents (M asuda et al, 2003), direct in situ observations (Leis, 
1986; Breitburg, 1989), and also through acoustic m easurem ents com bined w ith net 
tows (Nelson et al, 2006). Developm ent of optical and acoustic technologies will pro­
vide new  inform ation on larval behaviour. Observations should aim  at giving crucial 
inform ation on the tim ing of the onset of schooling behaviour because this behaviour 
can occur in the oceanic realm, far from  settlem ent habitat (Leis and Carson-Ewart, 
1998; P. Fanning, pers. comm.), or in the coastal environm ent just prior to recruitm ent 
or settlement.

3 .5 .8 .4  How to incorporate data into the model

Im plem entation of schooling behaviour is similar to that of orientation in  that it en­
tails following a set of rules for individual particles. Schooling m ay be related to a 
taxis-type behaviour w hereby sw im m ing direction and speed depend on the inten­
sity of a cue source (sound, chemicals). As the cue decreases in intensity, each swim ­
m ing particle takes a random  step. Alternatively, swim m ing m ay be non-directional 
in response to a gradient (i.e. kinesis), w hereby particles increase or decrease their 
random  acceleration. An additional rule for schooling is that the swim m ing direction 
of each particle is slightly biased tow ards the centre of its surrounding neighbours 
(e.g. the averaging m ethod; see Potter and  Chitre, 2006). However, schooling can also 
be based on the influence of a single neighbour at any one tim e by a decision algo­
rithm  (H uth and Wissel, 1992). Because schooling is a poorly understood social be­
haviour, Lagrangian m odels can end up  containing assum ptions (e.g. m odulation of 
response to neighbours by separation distance, relative orientation, and limits) that 
m ay have large effects on the characteristic aggregation length scales and therefore 
on the dynam ics of the aggregation (i.e. w hen fragm entation and coalescence occur). 
For examples on m odelling various fish aggregation behaviours in a Lagrangian con­
text, see Flierl et al (1999).
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3.5.9 Choice of settlement

3.5 .9 .1  Why incorporate this behaviour in a model?

At the end of the pelagic larval stage of dem ersal teleost fish, there is a major ecologi­
cal (and often morphological) transition that turns a pelagic anim al into a benthic 
one. This transitional process is called settlement; w ithout it, the life cycle of dem ersal 
fish species cannot be completed, nor can the individual fish recruit to a fishery. In 
m ost species of dem ersal fish, settlem ent-stage (i.e. competent) larvae have particular 
habitat requirem ents and will not settle just anywhere. Similarly, some species will 
settle only, or prim arily, at certain times, for example, at night or on a lunar cycle. 
Hence, settlem ent behaviour can influence both the endpoints and the length of dis­
persal trajectories, so it is im portant to obtain such inform ation for the species of in­
terest.

Larvae m ay decline to settle on the first seemingly "appropriate" habitat that they 
encounter after becoming com petent to settle (Leis and  Carson-Ewart, 1999, 2002). 
Sometimes, this is for apparently obvious reasons (e.g. the presence of predators), but 
in other situations (up to 30% of the time), there is no obvious explanation for the 
rejection of appropriate habitat.

The question of w hether larvae become decreasingly selective about w here they settle 
the longer they are com petent to settle (the "desperate larvae hypothesis"; Botello 
and Krug, 2006) remains unansw ered, although circum stantial evidence indicates 
that this m ay be a real phenom enon. For example, tropical fish larvae advected into 
tem perate areas in polew ard currents sometimes settle into habitats in which they are 
never found in the tropics (e.g. butterflyfish in N ew  Jersey estuaries; McBride and 
Able, 1998). If decreasing selectivity w ith time can be docum ented or reasonably in­
ferred, then it should be incorporated into the model.

Mesoscale selectivity of settlem ent location has been dem onstrated in a variety of 
species. For example, larvae of some reef fish will not settle on either leew ard or 
w indw ard  portions of a coral reef, bu t only w ith in  lagoons (Leis and McCormick, 
2002), w hereas other species settle only into sheltered seagrass beds, often in  estuar­
ies. At sm aller scales, larvae m ay select particular microhabitats upon  which to settle; 
for example, am ong pom acentrids, anemone fish (Amphiprion spp.) only settle into 
particular species of anemones (Elliott et al, 1995; A rvedlund et al, 1999), and  Dischis­
todus spp. only settle into sand patches on coral reefs (Leis and Carson-Ewart, 2002). 
The extent to w hich these behaviours m ay be im portant for any m odel depends upon 
the m odel's grid  size; such processes will be subgrid in m any models.

Interaction w ith benthic resident fish, both predators (real and potential) and less di­
rectly deadly residents, can strongly influence the distribution of settlement. Obvi­
ously, predation by benthic residents will prevent settlement. Schools of 
planktivorous fish hovering off a reef edge and aggressive approaches by other resi­
dent fish (even herbivores) can both cause a larva to swim  back out to sea rather than 
settle (Leis and Carson-Ewart, 2002). At least, this will influence the distribution of 
settlem ent bu t it m ay also influence its m agnitude if the larvae driven back to sea are 
subsequently unable to locate suitable settlem ent habitat.

Several interacting sensory cues are probably involved in the selection of settlem ent 
sites (Kingsford et al, 2002). Unlike some invertebrates, no "settlem ent stim ulating 
com pound" has been identified for m arine dem ersal fish (Hadfield, 1998), bu t differ­
ent studies have identified vision, olfaction (including detection of salinity), and 
audition as im portant factors (Leis, 2006; M ontgom ery et al, 2006). There is probably
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a continuum  of cues involved in moving from  open w ater to settlem ent sites, and the 
point w here pelagic orientation ends and settlem ent behaviour begins is not clear. 
Therefore, these are not treated here (but see Section 3.5.5 Orientation).

3 .5 .9 .2  How to determ ine whether or not this behaviour influences dispersal outcom e

The degree to w hich settlem ent behaviour is relevant to a given m odel depends on 
the spatial scale over which the behaviour operates and on the grid  size of the model. 
If the behaviours are subscale, they m ay have im plications for the num bers of larvae 
that survive settlement, bu t they will not influence the spatial pattern  of settlem ent at 
the scale of the model. The non-random  spatial and tem poral patterns of abundance 
of recently settled fish m ight be the result of random  settlem ent followed by selective 
m ortality. However, careful studies of settlem ent reveal that there is strong selectiv­
ity, either shortly before or at the tim e of settlement, w hich results in non-random  
settlem ent patterns.

3 .5 .9 .3  How to obtain the relevant data

Unfortunately, there is no broad review  of settlem ent behaviour in  m arine dem ersal 
fish, although there is substantial literature on the subject. Aspects of settlem ent be­
haviour have been stud ied  in  laboratory experiments, bu t these results should be 
verified by field experiments. Some field studies make inferences about settlem ent 
behaviour based on the spatial and tem poral distribution of recruits, often weeks or 
even m onths following settlement. A lthough the shorter the interval betw een settle­
m ent and study the better, such studies should be treated cautiously for several rea­
sons.

First, m ortality rates of settling and newly settled larvae are extremely high (Doherty 
et al., 2004) and, in  m any cases, have been dem onstrated to be density dependent 
(Schmitt and Holbrook, 1999). Therefore, the distribution of recruits can differ m ark­
edly from  that of settlers. Second, a num ber of species settle in one place or habitat 
and then m ove to another over a period of days to m onths (McCormick and  Mackey, 
1997; N agelkerken and van der Velde, 2003), so the distribution of recruits, even 
seemingly recently settled ones, m ay differ substantially from  that of settling fish. 
Therefore, unless it can be established that such alterations do not take place between 
settlem ent and w henever the study took place, inferences about settlem ent behaviour 
based on distribution of recruits should be treated  w ith great caution. W ell-designed 
field observations and experim ents involving settlem ent behaviour provide the most 
reliable information. These include m easuring w hat settles onto artificial habitat (Leis 
and McCormick, 2002), use of video (Holbrook and Schmitt, 1999) or other remote 
sensing equipm ent to w atch natural settlem ent onto unaltered habitat, complex m ul­
tifactorial designs (Almany, 2003), and divers directly observing larvae that they have 
released into different habitats (Leis and Carson-Ewart, 2002). Published examples of 
all of these can be found, although the range of species covered is narrow . It m ay of­
ten be possible to conduct similar experim ents or observations on the species of inter­
est, and exam ination of published w ork in this area is recom m ended to assist in their 
design. It m ight be tem pting to use recently settled individuals for these experim ents 
or observations, bu t given the extent and rapidity  w ith w hich m etam orphosis and 
alterations in behaviour take place upon settlement, there is little assurance that re­
cently settled juveniles will behave w ith any similarity to settling larvae (e.g. Sto- 
butzki and Bellwood, 1994).
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3 .5 .9 .4  How to incorporate data into the model

W here there is evidence of tem poral factors in settlement, a decision will be needed 
as to w hether the m odel larvae can rem ain near the settlem ent habitat if they arrive at 
the "wrong" time. For example, consider a larva arriving off a reef during daytim e 
w hen it only settles at night, or a larva arriving off an estuary on an outgoing tide 
w hen it only enters an estuary to settle on an incoming tide. W ould these larvae sim­
ply continue past the suitable habitat, using w hatever com bination of currents and 
behaviour they had  used so far, or w ould  they som ehow  sense the presence of the 
habitat and behave in  a w ay that keeps them  in the vicinity until the tim e is "right" 
(e.g. until nightfall or until the tide turns)? There is little direct inform ation on this 
sort of behaviour, although circum stantial evidence indicates that larvae do accum u­
late in  the vicinity of settlem ent habitat to w ait for the appropriate time (e.g. Doherty 
and Mcllwain, 1996). This circum stantial evidence does not, however, help to deter­
mine over w hat periods of time such accum ulation m ight take place. Perhaps infor­
m ation on the swimming, orientation, or sensory abilities of the larvae can be used to 
determ ine w hether or not such accum ulation is possible; this might, at least, allow us 
to elim inate from  consideration accum ulation that is beyond the capabilities of the 
larvae.
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4  A pplication  1 : a d a p t iv e  sam p lin g

Pierre Pepin, C isco Werner, and Johan van der M olen

Adaptive sam pling often refers to survey strategies that are m odified based on the 
presence and absence of organism s along a p lanned course or grid  of stations. W ithin 
the context of the workshop, adaptive sam pling prim arily involves the use of circula­
tion m odels or prior know ledge of the physical features of a region of interest (ROI) 
to guide the field operations. In some instances, adaptive sam pling strategies m ay be 
developed using coupled biological and physical m odels if the population(s) under 
study are expected to undergo significant changes in state (e.g. individual size or 
condition, population num bers) that could affect their interaction w ith  the physical 
environm ent. Adaptive sam pling strategies are aim ed at repeated sam pling of a unit, 
w hether this is an entire population or a patch, in response to observed or expected 
changes in  the currents in the ROI. In contrast to fixed-grid strategies, w hether these 
are based on system atic or random  sam pling designs, adaptive sam pling schemes are 
in tended to direct field activities tow ards ensuring that the unit of interest is sam pled 
in the m ost effective m anner to m eet program m e objectives.

4.1 Key c o n s id e ra t io n s  a n d  p ro c esse s

Adaptive sam pling strategies in oceanographic research are needed because the 
frame of reference for population studies is changing continuously as a result of sto­
chastic variations in environm ental forcing. Transport is one of the m ost im portant 
factors influencing the distribution of plankton, and short-term  variations in  circula­
tion can move a significant portion of a population out of or into an ROI during the 
course of a sam pling program m e. Flux across the boundary of a ROI can represent a 
substantial elem ent in  a population 's vital rates (Taggart and Leggett, 1987; Helbig 
and Pepin, 1998a), w hich can alter the interpretation of estimates of grow th or m or­
tality if not taken into consideration.

Real-time studies of biophysical interactions have dom inated the developm ent of 
adaptive sam pling strategies (e.g. Bowen et al, 1995; Cummings, 2005; W ilkin et al.,
2005) ow ing to their need to forecast the m ovem ent of the population or patch of in­
terest to ensure that sequential observations are based on locating the same unit. Pro­
jects of this nature generally involve short-term  forecasting of current fields based on 
assim ilation of data from  w ind m easurem ents, current meters, drifter buoys, and ver­
tical profiles of tem perature and salinity. However, adaptive sam pling strategies can 
also be used in the developm ent of scenarios to ensure that large-scale surveys are 
designed to provide sufficient coverage and accuracy of the entire population(s) be­
ing m onitored. U nder such schemes, regional circulation models, forced by long-term  
series of w ind observations, can be used to assess the range of probable drift and dis­
persal patterns, w hich can then be used to identify an optim al survey design to m eet 
the program m e's objectives.

Results from  num erous regional studies of the drift and dispersal of fish eggs and 
larvae, as well as Zooplankton, clearly indicate that the m inim al requirem ents for the 
use of Lagrangian particle-tracking m odels in the developm ent of adaptive sam pling 
strategies involve mesoscale, vertically resolved models that capture key physical 
oceanographic processes w ithin the ROI. The role of eddies and fronts in the disper­
sal and retention of plankton m akes it im perative that models are able to perm it the 
occurrence of these key features as well as forecasting their dynamics. Vertical resolu­
tion, to allow for regional variations in shear, also requires some basic biological
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know ledge of the spedes of interest, which m ay involve short-term  (e.g. diurnal) be­
haviour or longer term  ontogenetic changes in behaviour, depending on the applica­
tion. For large-scale and long-term  projedions, models m ay require the incorporation 
of growth, if the latter m ay affect the vulnerability of the spedes of interest to varia­
tions in physical fordng.

A sound know ledge of the initial conditions is a critical elem ent in using coupled 
m odels in the developm ent of adaptive sam pling strategies. For real-time pro­
gramm es, data collection at the outset of the field program m e plays a key role in  bal­
ancing the logistical requirem ents and effediveness of the project. Survey p redsion  
and accuracy become increasingly im portant as the degree of spatial and tem poral 
variability of the drculation in  the ROI increases, because the uncertainty in m odel 
projections will affed  the interpretation of the resulting sam pling program m e. Most 
biological variables can only be sam pled to a lim ited degree because of the need for 
physical observations collected from  ships. In contrast, some physical variables can 
be updated  continuously through remote sensing or com m unication systems, thus 
allowing m ore effedive updating  of projedions than is possible for some biological 
variables. Such updates m ay allow sdentists to modify field activities so that they can 
better achieve the program m e objedives. For scenario building, the resolution of ini­
tial conditions m ay rely m ore on historical observations that allow projedions based 
on the general accuracy of the observational base rather than  on the p redsion  of indi­
vidual realizations.

4 .2  Best p rac t ices

Adaptive sam pling will only be as effective as the circulation m odel on which it is 
based. This is not a "m otherhood" statement. Uncertainty plays an im portant role in 
the ability of a scientific team  to interpret their findings and  determ ine w ith  confi­
dence that the sequential colledions of data represent a consistent un it (e.g. popula­
tion or patch). Consequently, adaptive sam pling should

• Be based on validated state-of-the-art circulation m odels suited to han­
dling data assim ilation and variable fordng;

• Include key physical processes in the region of interest;

• Provide the capadty  for scenario building and sensitivity analysis that can 
be used to assess alternative approaches to sam pling the region of interest 
-  such schemes will clearly depend on the program m e objectives;

• Include input and output capad ty  (e.g. bandw idth, communication, 
power) to allow m axim um  adaptability of the sam pling process;

• Include backup capad ty  to ensure that breakdow n in one elem ent of the 
program m e does not re s trid  the team 's ability to fulfil program m e objec­
tives;

• Evaluate forecasting accuracy based on the sequence of data availability as 
a post-program m e hindcasting exercise in order to provide background in­
form ation that will help in the interpretation of the cruise observations.

Best practices represent a com prom ise betw een available capacity (i.e. skills and 
knowledge) and  resources. W hen ideal drcum stances cannot be achieved, recogni­
tion of the uncertainty in projedions becomes im perative in order to ensure credibil­
ity in the interpretation of observations.
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4 .3  R esea rch  n e e d s

Developm ent of data-assim ilation m ethodology represents a critical issue in the im­
plem entation of adaptive sam pling strategies in oceanographic research. To date, 
there has been greater progress in the application of data-assim ilation m ethods to 
circulation m odels than  to biological models. This dichotomy partly reflects the dif­
ferences in the know ledge of the fundam ental principles that govern the processes 
represented in each type of model. However, the paucity of biological data, which 
has lim ited our ability to effectively im plem ent data-assim ilation schemes in real 
time, is also an im portant factor.

It follows that the developm ent of sam pling devices or approaches that allow in­
creased resolution in space or time represents a key area of research if w e are to move 
tow ards m ore effective real-time coupling of biological and  physical oceanographic 
models. Earth observation arrays and autonom ous profilers currently represent cut­
ting-edge elements aim ed at increasing data availability for real-time forecasting of 
the ocean environm ent. However, there is lim ited capacity in  term s of the array of 
biological variables that can be collected w ith  current technology. There is a growing 
need for reliable in situ sensors that can m easure particle characteristics (i.e. not only 
size, bu t also shape, fluorescence, colour) for a w ide range of organisms. Similarly, 
the developm ent of rap id  biochemical assays that can be perform ed reliably under 
field settings w ould  provide observations of rate processes (e.g. production, growth, 
and uptake) that can now  only be supplied  to observation program m es in a post hoc 
manner.

Scientists involved in  m ultidisciplinary program m es also face the difficulty of coping 
w ith large quantities of complex output. As a result, developm ent of data- 
visualization tools, query capacity, and connectivity are im portant elements needed 
to allow operational adaptability. Increased capacity to interpret the ou tpu t of cou­
pled models will allow research to identify areas of dynam ic change or response to 
environm ental forcing and thus perm it m ore effective sam pling of the ROI.

Finally, there is a need for focused research on the developm ent of capacity for Ob­
serving System Simulation Experiments (OSSEs), particularly for coupled physical- 
biological processes that m ay be operating at different scales. The use of climatologie 
time-series could serve to guide adaptive sam pling strategies that w ould  assist in the 
developm ent of field-observation program m es, even before the proposal stage. Ease 
of access to sim ulation tools for a range of regions could lead to im proved cost- 
effectiveness and sam pling efficiency in the design and im plem entation of field p ro ­
gram m es in  order to better address the needs of m ultidisciplinary research teams.

4 .4  Final r e c o m m e n d a t io n s

Ocean observatories and observing systems represent essential elem ents if m arine 
scientists are to m ove tow ards a m ore accurate understanding of the dynam ic proc­
esses that affect fish eggs and  larvae, and Zooplankton. The Global Ocean Observing 
System (GOOS) and national funding agencies should be inform ed of the need to 
provide a m ore w idespread observation system  designed to m eet the needs of bio­
physical studies and models.
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5 A pplication  2: connectiv ity

Claire B. Paris, Jean-O livier Irisson, G eneviève Lacroix, 0 y v in d  Fiksen, Jeffrey 
M. Leis, and Christian M ullon

5.1 D efinition  of connectiv ity  a n d  s c o p e  of connectiv ity  m o d e ls

Connectivity represents the dynam ic interactions betw een geographically separated 
populations via the m ovem ent of individuals. This term inology comes from  the 
m etapopulation theoiy, which states that spatially structured populations, w ith dis­
tinct units separated by space or barriers, are connected by dispersal (Levins, 1969). 
In the m arine environm ent, pelagic fish are often very mobile, and populations can be 
kept dem ographically open on very large spatial scales by m ovem ent of the adults. 
For coastal and benthic species, m ost interactions betw een breeding populations take 
place through natal dispersal (sensu Sugden and Pennisi, 2006) during the pelagic 
larval phase; for some species, they also occur through spaw ning migrations. Thus, 
population connectivity depends on both seascape (i.e. currents and habitat patches) 
and fish life history.

Connectivity studies provide a continuum  betw een the time- and space-scales of 
ecology and evolution. Evolutionary studies explore long-term  processes, such as 
biodiversity, biogeography, historical events, and population persistence (Hanski,
1989). Low dispersal rates are sufficient to shift the m etapopulation distribution pat­
tern over tim e by the turnover of populations becoming locally extinct and re­
established elsewhere (Levins, 1969). In ecology, the focus is on the larval fluxes re­
quired to sustain a population (e.g. the design of m arine protected areas (MPAs) to 
protect a fished stock, or explaining recent or current genetic population structures). 
Such dem ographic connectivity usually implies that a substantial num ber of indi­
viduals are exchanged at each generation. Therefore, the scales of dispersal relevant 
to ecology are reduced to areas of strong exchange and can be approxim ated to the 
m ode of a dispersal kernel (DK; i.e. probability of successful dispersal). Alternatively, 
from  the evolutionary point of view, a small num ber of exchanged individuals is 
enough to m aintain genetic hom ogeneity betw een discrete populations. Therefore, 
larval exchange relevant to evolution occurs typically at larger spatial scales (i.e. the 
tail of the DK) and on longer tem poral scales. Because of the differences betw een the 
tem poral scales necessary for studies of connectivity, it is critical to form ulate the 
questions and related hypotheses before setting u p  the model.

Connectivity m odels are aim ed at predicting the rate of exchange of individuals (i.e. 
larval fluxes) betw een the populations forming a m etapopulation. Therefore, spa­
tially explicit individual-based models (IBMs) have become the m ost efficient tools in 
connectivity studies (W erner et al, 2001). The typical ou tpu t for n populations is an 
n x n m atrix in w hich elem ent (i,j) is the probability for an individual to transit from  i 
to j  during the time t + k, w here t and k represent the generation time and the pelagic 
larval duration (PLD), respectively. These square matrices are called connectivity m a­
trices, or transition probability matrices (TPMs), each of whose rows (i) contains 
num bers sum m ing to 1. In order to describe a system  at ecological scales, the p ropor­
tion of successful recruits m ust reflect the recruitm ent rates (i.e. num ber of recruits 
per generation) required to replenish the local population to a m inim um  of zero 
grow th (Cowen et al, 2006). Such recruitm ent rates can be estim ated a posteriori to 
m atch adult m ortality rates using simple population grow th m odels (e.g. Nt = Nt-i e "'). 
Similarly, dem ographic connectivity m odels can be a posteriori scaled by production
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(e.g. relative spaw ning biomass per un it population, or proportion of adult habitat in 
each population). Because connectivity m odels are by their nature spatially explicit, it 
is recom m ended to couple the Lagrangian tracking algorithm  w ith a geographic in­
form ation system  (GIS). The GIS serves to delineate the source populations, as well as 
the recruitm ent habitat, along the path  of an individual particle. It is also im portant to 
incorporate uncertainties into the connectivity m odel (e.g. Lagrangian stochastic 
m odel (LSM), stochastic mortality); otherwise, the analytical value of the transition 
matrices is limited.

5 .2  D ec id e  w hich  q u e s t io n s  th e  m o d e l  sh o u ld  a n s w e r

Connectivity m odels can be used efficiently in several contexts, such as predictive (Ho 
in term s of expected results), explanatory (explain observed patterns), inferential to 
deduct m echanisms (Ho in term s of processes), or as a tool testing hypothesis (ex­
perim ental modelling). Some typical examples are:

• Siting of MPAs. In a m etapopulation, some populations act as sources and 
other as sinks, so the siting of an MPA has a great influence on their suc­
cess. M etapopulation m odels can be used to predict w hich MPA setting 
can be the m ost efficient (Crow der et al, 2000).

• Spread of invasive species. Connectivity models can be used to estimate 
the tails of the DKs or the likelihood of long-distance dispersal, as well as 
the m ost probable direction of spread.

• Explanation of present-day genetic patterns and biogeographic breaks. 
Genetic patterns are the result of gene exchange over m ultiple generations 
or of isolation betw een populations. Therefore, connectivity studies are 
key in determ ining the m echanism  responsible for these patterns (Baums et 
al, 2006). Connectivity matrices com puted using one typical year of clima­
tology can be used as input for genetic models to estim ate gene flow across 
m ultiple generations.

• Selective advantage of life histories. Experimental m odelling m ode can 
be used to estim ate relative m easures of self-recruitment, subsidies, and 
survival w ith various reproductive strategies.

5 .3  Identify  th e  s c a le  of  th e  connectiv ity  m ode l

5 .3 .1  S p a tia l s c a le s

A fundam ental difference betw een recruitm ent and connectivity m odels is the focus 
on tem poral and spatial scales. In recruitm ent studies, em phases are on the tem poral 
patterns (i.e. when?) and the quantitative aspects (i.e. how  much?) of the successful 
dispersal. It is, therefore, im portant to identify the physical-biological interactions 
that drive high recruitm ent vs. low  recruitm ent; i. e. grow th and m ortality are key 
processes. Behaviours related to feeding are also im portant. Alternatively, in connec­
tivity studies, the em phasis is on spatial patterns related to population linkages (i.e. 
where?). Such m odels need to be spatially explicit and  resolve the scales of source 
and sink populations. Initial conditions and  accuracy of the trajectory thus become 
im portant issues in  w hich larval behaviour (i.e. sw im m ing and orientation) plays a 
large role (see Section 5.8 Larval traits: larval behaviour).

The realism  of ocean generalized circulation models (OGCMs) has provided the base 
of an effective tool for the investigation of population connectivity. The OGCM grid 
resolution should be at less than  half the scale of the initial conditions (e.g. spaw ning 
population) and the arrival locations (e.g. suitable settlem ent/recruitm ent habitat,
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nursery grounds), which represent the starting and  endpoints of the trajectories. Al­
ternatively, the population source size (grid or polygon size) should not be smaller 
than  the resolution of the OGCM. This grid-size requirem ent allows the particles to 
be released at each source population and recruited w ithin a particular location at 
each time-step w ithout missing any unit population. In m ost cases, these locations are 
w ithin the coastal realm  in relatively shallow waters. OGCMs should cover larger 
areas than  are significant for connectivity networks, bu t m odels that cover large areas 
usually do not adequately resolve the complexity of coastal dynamics, nor the resolu­
tion of the unit populations. Therefore, nested models are recom m ended, w ith  higher 
resolution both on spaw ning and recruitm ent areas. N ote that, at the scales of local 
retention, DKs could be lim ited by the spatial resolution of the m odel (e.g. smaller 
than  the m odel's m esh size).

5.3.2 Temporal scales

Ecological time-scales are relevant to the dem ographic structure whereby a substan­
tial num ber of individuals are necessary to sustain (i.e. m inim um  of zero growth) a 
population. In this case, it is necessary to estim ate the spatial probability of larval ex­
change or probability density functions (PDFs) over m ultiple years of daily forcing. 
Resulting transition m atrices need to be scaled by spedes-spedfic dem ographic pa­
ram eters (e.g. birth, longevity, mortality). Geologic time-scales are relevant to the 
evolutionary strudure , whereby a few individuals exchanged per generation suffice 
to m aintain genetic connedivity  betw een populations. In this case, providing paths 
and relative percentage of larval exchange using one typical year of dim atology w ith 
m onthly fo rdng  is appropriate.

Finally, connedivity  models m ust explidtly  span the relevant spatial and tem poral 
scales of the target organism s (e.g. decadal variability of taxa w ith  basin-scale distri­
butions).

5.4 Gain knowledge of processes relevant to modelling connectivity

5.4.1 Initial conditions: spawning time and locations

Spawning locations should be m apped into GISs, serving both as initialization of the 
particle-tracking system  and as "source" locations in the connedivity  model. A dis­
tance m atrix Díj is built (where i = source location and j  = arrival location) and is used 
to generate DKs (Figure 5.4.1). For more inform ation on this topic, see Sedion 3.1 Ini­
tial conditions: spaw ning locations.

5.4.2 Suitable settlement locations

The endpoint or targets for the m odel need to be determ ined. For dem ersal spedes, 
this is usually the location and habitat w here the pelagic early life-history stage 
m akes the transition to the dem ersal (bottom -assodated) stage. For pelagic spedes, 
this m ay be a nursery area, even if it is broad and diffuse (e.g. shallow coastal w a­
ters). The key point, however, is that particular habitat requirem ents for m any species 
m ust be m et at a particular stage in the life history. For some spedes, these require­
m ents are well understood, bu t for m any others, particularly in tropical areas, such 
requirem ents are not well known. The term  "nursery area" has taken on a som ewhat 
m ore precise definition recently (Beck et al, 2001; D ahlgren et al, 2006), and w ith ap­
plication of this definition, some reassessm ent of w hat were traditionally thought of 
as nurseries m ay be in order. Furtherm ore, settlem ent and nursery locations m ay not 
coindde for some spedes. Therefore, the m odeller needs to consider carefully w hat
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the m odel is trying to achieve. For example, if the goal is to predict the distribution 
and num bers of a dem ersal species at settlement, the m odeller has a different task 
than  if the goal is to predict the num bers of individuals entering a fishery, or the 
num bers of individuals vulnerable to entrainm ent through the cooling system  of an 
electricity-generating station.

For connectivity models, the m ain goal is to m ap netw orks of larval linkages between 
populations, and although spaw ning and recruitm ent areas m ay be different, each 
paired set (spaw ning-recru itm ent locations) m ust represent a un it population. The 
m odeller m ust obtain inform ation on the settlem ent requirem ents of the species of 
interest, and then the spatial distribution of the appropriate habitat m ust be deter­
m ined. This inform ation m ay be available in the literature, bu t if not, appropriate 
surveys m ust be undertaken. An additional factor to consider is that, even if a par­
ticular location is understood to be suitable settlem ent habitat for species A, this can 
change w ith time by virtue of year-to-year fluctuations, anthropogenic influences 
(e.g. pollution or other habitat alteration), or by long-term  climate or other environ­
m ental change (e.g. coral bleaching or cyclones can kill corals into w hich fish nor­
m ally settle). It is therefore necessary to ensure that such occurrences have not altered 
the nature or distribution of the required  habitat, because the initial studies of the 
habitat, if there are seasonal factors at play, incorporate a seasonal assessm ent of set­
tlem ent habitat quality or distribution. Suitable settlem ent locations should then be 
m apped into GIS layers that are fully integrated into the particle-tracking m odelling 
system, serving as "receiving" locations in the connectivity model.
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Figure 5.4.1. Dispersal kernels or probability of dispersal to a suitable nursery habitat, show ing  
the spatial scales associated w ith a 30-day dispersal of fish larvae for various regions in  the Car­
ibbean. The transition to the shaded area indicates the range of distances over w hich dispersal 
(and perhaps also survival) becomes irrelevant to demographic time-scales. Mean dispersal dis­
tances are reflected in the modes that vary w ith locations, whereas self-recruitment is the value at 
the origin.

5.4.3 Small-scale physics: turbulence

Physical processes occurring on scales sm aller than  the grid  scale used in the m odel 
are often param eterized using a turbulent "diffusion" param eter, often called "eddy 
diffusivity". This param eter should also include a factor to account for physical proc­



ICES C o o p e ra tiv e  R esearch  R eport N o. 2 9 5

esses not included in the circulation model, and it does not represent the true advec- 
tive processes that m ay be taking place.

5 .4 .4  Large-scale physics: grid size and domain

The physical processes discussed in this section refer only to large-scale physical 
processes (i.e. larger than  the grid  resolution of the model).

Physical processes act on the transport/retention of larvae during their pelagic phase 
(e.g. w ind-driven circulation, tides, freshw ater buoyancy, fronts), on settlem ent (e.g. 
bottom  stress, sedim ent type), and on conditions affecting larvae survival (e.g. tem ­
perature, short-term  event enhancing local increase of food). The com bination of 
transport/retention, good conditions for settlement, and larvae survival can lead to 
sustainability or extinction of subpopulations, to exchanges betw een subpopulations, 
and to new  subpopulations (colonization of new  habitats).

The choice of w hich physical processes to explicitly resolve requires careful consid­
eration because it m ay not be necessary to include every process that m ight influence 
the transport path  of larvae and the possibility of retention and settlement, taking 
into account the larval phase (pelagic) duration. According to the situation (e.g. coral 
reefs, shallow continental shelf, proxim ity of river m outh), not all of the physical 
processes, such as ocean currents, tides, w ind, or freshw ater inputs, will have the 
same im portance. We recom m end conducting sensitivity studies in  order to deter­
m ine the degree of im portance of each physical process before choosing those that are 
key to the purpose of the study and the larval behaviour under consideration.

The physical processes to consider depend strongly on the region of interest (ROI) 
and also on the species under investigation. There is a strong link betw een physical 
processes, spaw ning frequency/duration, and larval behaviour (e.g. vertical m igra­
tion). Spawning time/location, larval traits, and  larval behaviour are the subject of 
other sections, and only some examples of situations w here they should be taken into 
account are given in the list of physical processes below. This list, far from  being ex­
haustive, is intended to help the m odeller choose which physical processes to con­
sider as a function of the ROI. The "typical" spatio-tem poral scales of these physical 
processes are given in  Section 1 H ydrodynam ic models.

• Ocean currents. General circulation, coastal currents, m eanders, jets, ed ­
dies, shelf-edge fronts.

• Tides. Tidal currents (can be im portant in  shallow waters, reefs, etc., de­
pending on the topography), residual circulation, tidal fronts, vertical gra­
dients of horizontal currents, relationship w ith "larval behaviour" 
(synchronization of vertical m igration of larvae w ith ebb-flood  tidal cy­
cle), spaw ning tim ing (synchronization w ith spring neap tidal cycle), and 
spaw ning location ("choice" of spaw ning depth).

• Freshwater input. Presence of hydrological fronts in  the proxim ity of river 
m ouths, freshw ater buoyancy circulation, w ater stratification density (may 
act as a barrier to vertical movements), periodic low-salinity w ater in tru­
sions (may affect dep th  of larvae), relationship w ith spaw ning timing (syn­
chronization w ith high/low  river discharges).

• Wind. W ind-driven circulation, internal waves, Langm uir cells, upw el- 
lings/dow nwellings (and associated fronts and convergences).

• Fronts. Fronts (whatever their origin), w hich can act as a barrier that limits 
the larvae transport bu t are also the seat of circulations leading to conver-
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gence/divergence zones; instabilities (e.g. eddies), can transport "isolated" 
w ater masses over long distances.

In addition to the "typical" distribution pattern  resulting from  averaged physical 
processes, the variability of these processes (e.g. extreme events, perturbations, insta­
bilities) can have a strong im pact on larval transport or retention. Colonization of 
new  habitats, for instance, could result from  a particular event, and the spa tia l- 
tem poral variability (e.g. interannual) of physical processes should be considered.

M odel dom ain size and grid  size m ust be chosen in accordance w ith the physical 
processes to be included. Processes sm aller than the grid  size m ust be param eterized, 
and processes acting at scales larger than  the m odel dom ain should be considered 
according to appropriate boundary conditions (e.g. harm onic tides) or nesting. For 
the purpose of connectivity studies, grid size should be significantly sm aller than  the 
"assum ed" distances betw een subpopulations and significantly smaller than a sub­
population. The m odel dom ain should at least encompass the whole region of possi­
ble exchanges betw een subpopulations and should include possible new  habitats. For 
connectivity studies, it m ay be necessary to consider a whole region in order to en­
compass all existing subpopulations and possible new  habitats, and also to consider a 
refined grid  at the subpopulation level (e.g. shallow coastal waters, local retention, 
heterogeneity of sediment, needs of a fine vertical resolution). For this particular case, 
it could be interesting to consider m odel nesting.

Only thoroughly validated hydrodynam ic m odels should be used for connectivity 
studies. The m odeller should at least verify that current velocity (horizontal and ver­
tical) and/or trajectory path  are correctly sim ulated. For m ore details, see Section 5.11 
M odel validation.

5.5 Lagrangian parameterization and online-offline methods

5.5.1 Parameterization of the Lagrangian statistics

In larval dispersal applications, the uncertainties in particle trajectories are usually 
param eterized, adding a stochastic com ponent to the m odel-predicted trajectories,

dx/dt = um + u', (35)

where x is the particle position, w™ is the m odel velocity, and  u ' is a stochastic veloc­
ity, w hich is typically described by a simple LSM (e.g. Griffa, 1996) and param eter­
ized by the horizontal grid-scale diffusion according to Okubo (1971). However, the 
true eddy kinetic energy occurring at the subgrid scale can vary both spatially and 
tem porally. C om parison betw een the kinetic energy content of the Eulerian velocity 
field for various grid  sizes of the OGCM provides us w ith the energy cascade from  
the large-scale to the submesoscale processes absent from  the coarse-grid simulation. 
Therefore, different regions w ith different processes (e.g. tide, shelf waves, eddies, 
currents, topography steering) are characterized by an energy-spectrum  structure 
from  which can be extracted, in term s of percentage of total variance, the contribution 
of the submesoscale processes to the coarse-grid flow. Spatial probability d istribu­
tions of Eulerian decorrelation time-scales and variances can be used to estim ate the 
corresponding Lagrangian scales (Paris et al, 2007).

5.5.2 O nline-offline methods

In connectivity modelling, thousands of particles are typically released sim ultane­
ously and  repeatedly from  hundreds of locations. A lthough com putational speed has 
recently increased w ith the technique of parallel com puting, offline m odelling brings
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a considerable com putational advantage. Indeed, it is im portant to seek economies of 
central processing unit (CPU) resources to allow m ultidecadal studies over large do­
m ains while still resolving mesoscale motion. In addition, the "active" tracking 
scheme (e.g. w ith  larval behaviour) is m odulated  by spedes-specific suitable habitats 
that are also stage-specific (e.g. the larval habitat is different from  that of juvenile and 
adult fish). A lthough the GIS-based habitats are fully coupled to the Lagrangian 
scheme in the offline model, these habitats are not an integrated part of the OGCMs, 
w hich represents a serious lim itation in the use of online tracking models.

The offline m ethod uses tim e-averaged flowfields (e.g. hourly to daily), diffusion co­
efficients (e.g. decorrelation time-scales, variance, spin), and any other fields of inter­
est (e.g. tem perature, salinity, nutrients-phytoplankton-zooplankton-detritus 
(NPZD)) that are stored during prior online runs and reused, leaving only the La­
grangian equation to be integrated. To reproduce online trajedories w ith no signifi­
cant departure, the flowfields used to drive the offline calculation m ust be averaged 
on time-scales close to or below  the inertial period. Consequently, the offline time- 
step is no longer lim ited by dynam ical constraints and can be increased by almost an 
order of m agnitude relative to the online value, whereas calculation tim e is signifi­
cantly decreased (Hill et al, 2004). O ther im portant considerations betw een online-  
offline m ethods are trade-offs betw een com putational efficiency, m odel integrity, and 
storage requirem ent w hen using an offline tracking approach at high resolution, 
w here there is strong spatio-tem poral variability in the flowfield. The fidelity of the 
trajedories can be assessed w ith spatial correlations of the control "online" matrix 
w ith the "offline" probability transition matrices generated at different time-steps 
(Dt-off) and time-averaging frequendes (Tavg). The CPU cost (AT) can be calculated as a 
function of the change in online (Dt-on) to offline partid e  time-step and time-averaging 
frequency:

Nit — log [(Dt-off /Dt-on)Tavg], (36)

The offline m ethod is very useful for perform ing m ultiple integrations for various 
life-history strategies using the same flowfield. A nother advantage of the offline 
m ethod is that daily m ortality rates can be im plem ented w ithout having to m odel 
super-individuals.

5 .6  Larval s t a g e  d u ra t io n

This param eter, often referred to as pelagic larval duration (PLD), is one of the more 
basic life-history traits to input into the connectivity m odel because it is used to estab­
lish the transition time k in the connedivity  matrix. For m ore inform ation on this 
topic, see Sedion 3.2 Pelagic larval duration.

5 .7  Larval tra its :  g ro w th  a n d  m orta l i ty

Grow th and m ortality are intim ately coupled through a range of mechanisms, such as 
size-dependent predation patterns, starvation, and grow th-dependent, larval-stage 
duration. These m echanisms have received well-deserved attention from  m odellers 
for quite some time. For m ore information, see Sections 3.3 G row th and 3.4 
Mortality.)

Grow th and m ortality are also intim ately coupled through larval behaviour, because 
behaviour-prom oting grow th m ay also increase the risk of predation. Such processes 
have received less attention in fishery oceanography, both empirically and  in models. 
One example is the trade-off betw een being spotted by visually searching predators 
and the need to find food through visual detection of prey. A nother example is the
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risk of encountering tactile or am bush predators through increased swim m ing activ­
ity, which m ay be necessary to increase the encounter rate w ith potential prey items. 
There are also good reasons to argue that such behaviours are state- and size- 
dependent, and that they interact w ith  larval dispersal and drift trajectories. There is 
a need to adopt approaches from  behavioural and  evolutionary ecology to im prove 
understanding of these processes.

Grow th is often m odelled in  great detail, w ith m uch attention to processes and envi­
ronm ental forcing. However, m ortality is typically either not m odelled at all or taken 
from  statistical size-dependent relationships w ith low  m echanistic content and justi­
fication. However, the predation efficiency of invertebrates and fish typically varies 
predictably w ith  a num ber of environm ental factors, such as light, turbulence, and 
bottom  depth, as well as larval behaviour (diel vertical m igration, activity, and inter­
nal body condition). M ore efforts are required  to include such processes in biophysi­
cal models.

5 .8  Larval traits :  larval b e h a v io u r

Fish larvae are not passive particles, and they have the potential to influence their 
dispersal (see review  by Leis, 2006; Leis, 2007). Heterogeneous vertical positioning 
can result in divergent dispersal trajectories as well as differential survival (Paris and 
Cowen, 2004). Horizontal sw im m ing can have a large influence on dispersal trajecto­
ries and  on the success of settlement, particularly w hen larvae are able to orientate 
and in  ecosystems, such as coral reefs, in w hich m ost fish larvae are very strong 
swim m ers by the time they settle. O rientation can be further enhanced by schooling, 
because a school of larvae can act like a larger organism, w ith m ore precise sensory 
organs (Potter and Chitre, 2006). Schooling also influences feeding and predation 
rate, and  hence has consequences for both grow th and survival. Feeding behaviour 
and predator avoidance also contribute to differing survival rates. Finally, available 
suitable habitat and, at finer scales, habitat preferences during recruitm ent, can affect 
dispersal outcomes. Because larval behaviour influences both the endpoint of indi­
vidual trajectories and survival, it is particularly im portant to include behaviour in 
population connectivity m odels w here these factors are vital. For m ore information, 
see Section 3.5 Behaviour and settlement.

5 .9  S tep s  to w a rd s  th e  s t a t e - o f - th e - a r t  m ode l

Exhaustive, perfect g round-tru th  m odels are usually not produced  on the first at­
tem pt. We suggest here the order in  w hich com ponents should be im plem ented in a 
connectivity model, given its objectives. The m inim um  m odel should have relevant 
starting and ending locations and represent the m ain exchanges betw een them. Sub­
sequent steps should sim ulate active larval trajectories and, hence, produce more ac­
curate connectivity probabilities.

5 .9 .1  S te p  1: m in im u m  m o d e l

Start and end are defined by

• Locations and time of spaw ning (a priori breeding populations);

• Location of potential settlem ent (e.g. GIS-based habitat m ap, d ivided spa­
tially into localities);

• Integration time (e.g. PLD).

Trajectories should be com puted using the Lagrangian approach, w ith  a well- 
param eterized, particle-tracking m odel em bedded in an OGCM (online), or operating
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offline (see Section 5.5 Lagrangian param eterization and online-offline methods). 
Initial dispersal is critical for the trajectories; therefore, the resolution of the model 
should be fine enough to capture features of the initial dispersal. However, connec­
tivity m odels usually represent large areas, and a fine-resolution m odel over very 
large scales is not currently feasible. This calls for nested hydrological models; see 
Section 5.3 Identify the scale of the connectivity model.

5.9.2 Step 2: biological features

These include:

• V ertical d is trib u tio n  behaviour. If the biophysical conditions (i.e. cur­
rents, tem perature, food) are not hom ogeneous vertically.

• M ortality. This m ust be included if the m ortality probability cannot be 
considered hom ogeneous in  space, or if the target species has a plastic lar­
val duration (see Sections 3.3 Growth, 3.4 M ortality, and 5.6 Larval stage 
duration). However, very few estim ates of survival rates are available for 
larval fish, m ost of w hich are from  tem perate coastal species (Houde, 1989; 
Santos et al, 2005). Currently, there is only one published account for tropi­
cal reef fish species, and in this case, m ortality rates and  advective losses 
varied through ontogeny as a result of vertical m igration (see Paris- 
Limouzy, 2001).

In addition, the representation of biological traits should be probabilistic (i.e. repre­
sent variance and not just the mean), because the traits of surviving individuals are 
usually not in the m ode of the population distribution.

5.9.3 Step 3: small-scale features

Previous com ponents of the m odel were aim ed at correctly representing the shape of 
trajectories from  w here they start to w here they end. Along these trajectories, small- 
scale features can induce some variability.

• Horizontal swim m ing and associated orientation obviously affect the tra­
jectories. In systems w here fish larvae have strong swim m ing abilities, 
horizontal sw im m ing should be incorporated at step 2.

• Feeding, small-scale turbulence, and grow th are w orth including w hen 
food appears to be a lim iting factor for the survival of fish larvae. In addi­
tion to possible starvation, lim ited grow th or poor body condition can in­
fluence sw im m ing abilities.

• Schooling has an effect on the functional response of predators (Cosner et 
al, 1999) and therefore m ortality rates, and on the path  of individual larvae 
(Flierl et al, 1999). It is therefore im portant to include this behaviour for 
both pelagic coastal fish and benthic species if presettlem ent schooling is 
known.

5.10 Result analysis and model validation

Population connectivity m odelling results can be visualized and analysed in  tw o ba­
sic forms: (i) PDFs and (ii) connectivity networks.

5.10.1 Dispersal kernel

A dispersal kernel (DK) is a tw o-dim ensional PDF that describes the probability of 
successful dispersal to different distances (Nathan, 2006). In connectivity studies, it is
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used to scale dispersal. The m ode of the DK is relevant to ecological studies, whereas 
the tails (i.e. the frequency and spatial extent of long distance dispersal events) are 
relevant to biogeographical studies (e.g. m ultiple colonizations, disjunctions). D isper­
sal kernels can be represented for single locations or as "total" DKs, w hich incorpo­
rate the contribution of m ultiple dispersal vectors.

5 .10.2 Transition probability matrix

A transition probability m atrix (TPM) is a three-dim ensional PDF representing the 
probabilities of larvae m oving from  one state (e.g. gametes, early larvae) to another 
(e.g. recru i tm ent-stage larvae) in a dynam ic system  (Figure 5.10.1). The likelihood of 
larval exchange from  one population to another, each associated w ith a given area, is 
represented in a TPM w here columns are source locations (population i) and rows are 
destination locations (population j). The content of a given m atrix elem ent describes 
the probability of an individual larva m aking the transition from  its source popula­
tion to the recruitm ent stage in  the destination population. Elements along the diago­
nal of the m atrix represent self-recruitm ent w ithin a local population. These matrices 
are usually sparse w here zeros represent regions of no connectivity. The TPMs are of 
considerable value for m etapopulation studies as well as for spatial m anagem ent be­
cause they are three-dim ensional. TPMs also provide an ideal m eans of conducting 
sensitivity analyses using spatial autocorrelations.

50  100 150 2 00  250 300  350

Settlement Node

Figure 5.10.1. Transition probability matrix. The contents of a given matrix elem ent describe the 
probability of individual larvae making the transition from its source population (¿/-axis) to the 
destination population (.r-axis), computed over several generations. Elements along the diagonal 
represent self-recruitment w ithin a population. The matrix is sparse where the grey area repre­
sents regions of no connectivity; the colour code indicates levels of connectivity from high (red) to 
low  (blue). Higher connectivity on one side of the matrix corresponds to a drift in  the direction of 
main currents.

G raph theory represents an effective m eans of visualizing population connectivity 
netw orks (e.g. Figure 5.10.2; see also Cowen et al, 2006). The relationships betw een 
populations are described by an adjacency matrix, derived from  the probability tran­
sition m atrix ou tpu t by the connectivity model. The adjacency m atrix (or edge) is a 
binary m atrix in w hich each elem ent is defined as A ij = 1, if populations i and j  are 
connected by edges, or A ij = 0 if they are not connected. This matrix is m ostly used to
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analyse connectivity netw orks (Urban and Keitt, 2001) and is extremely pow erful for 
conservation issues such as strategic placem ent of MPAs and identification of source 
and sink populations, as well as key corridors (e.g. populations that are key to m ain­
tain the network).

Figure 5.10.2. Population Connectivity Network. Habitat patches are 
w hich size represents population density. When larvae from a given  
site, a dispersal connection is made. The thickness of the edge reflects 
tion. This theoretical graph approach is useful to identify the spatial structure of the population  
sources, sinks, and corridors. The network is built directly for the transition probability matrix.

5.11 M odel v a l id a t io n

There are tw o types of validation.

• Validation of trajectory path, using a combination of acoustic and hydro- 
logical (e.g. acoustic D oppler current profiler (ADCP) and conductivity, 
tem perature, depth  (CTD)), Lagrangian (e.g. satellite tracked floats, fluo­
rescent wax particles), tagging or mass m arking (e.g. otolith), and  plankton 
(e.g. trawls, optical sampling) sam pling tools. Trajectory validations are 
expensive and labour intensive. These direct m ethods of m easuring con­
nectivity provide snapshots in  time, bu t reveal mechanisms or physical- 
biological interactions that can be modelled.

• Validation of population connectivity results, using genetic tools that 
provide the genetic structure of populations (dem ographic time-scales) or 
m etapopulation (evolutionary time-scales) depending on the gene used 
(review by Planes, 2002). M easurem ents of post-larval supply at m ultiple 
sites can also produce a very consistent validation of the connectivity re­
sults (e.g. relative levels of recruitm ent into spatially explicit population 
units, Figure 5.11.1), w ithout providing explicit know ledge of the source 
locations (i.e. TPM).

represented by nodes, for 
patch reach a downstream  
the strength of the connec-
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Figure 5.11.1. D aily predicted larval supply of Sparisom a viride  for the months February- 
December 2004 south of Sea Park in the Bahamas in  ca. 50 km2 coral reef habitat. Note that the y- 
axis represents simulated larvae and cannot be interpreted as an absolute measure of larval 
supply.

5.11.1 Trajectory path

Trajectory paths need to be validated (i) for their passive com ponent and  (ii) for their 
active component, which includes a series of larval behaviours. Validation should 
proceed as larval behaviours are introduced stepwise into the tracking scheme. See 
Section 5.8 Larval traits: larval behaviour.

Passive com ponent of the trajectories:

• Ocean-observing systems are always very useful. For example, time-series 
of ADCPs m oored in  strategic locations can be used to im prove the cou­
pled OGCM w ith data assimilation.

• To validate the small-scale physical and biological processes operating at 
the starting (initial dispersal) or ending points (settlem ent processes) of the 
trajectories, gliders can be used, affording veiy high-resolution, three- 
dim ensional hydrological data at specific spaw ning and recruitm ent sites.

• A series of floats deployed at various time frequencies and depths from  
distinct locations corresponding to an onshore-offshore gradient and dif­
ferent oceanographic regimes can be used to check the consistency of the 
trajectory predictions w ith the passive particle-tracking code. Float data 
are also useful to com pute diffusion param eterizations for the LSM.

Active com ponent of the trajectories:

• Initial gam ete dispersion can be assessed by conducting intensive Lagran- 
gian field experim ents w ith synoptic three-dim ensional hydrodynam ic ob­
servations. The use of fluorescent wax particles calibrated w ith the egg 
density/size of the target species is recom m ended for the Lagrangian ex­
perim ent.

• To verify the accuracy of sim ulated trajectories of active larvae (e.g. onto­
génie vertical migration), repeated stratified samples of larval fish are nec­
essary. This sam pling can be achieved using traw lnets, such as the Multi 
Opening and Closing N et and Environm ental Sensing System 
(MOCNESS), or w ith well-calibrated optical instrum ents, w hich take veiy 
high-resolution shadow  images.

• Proper validation of trajectory endpoints requires data on larval supply at 
m ultiple sites.
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• O ther behaviours can be added  stepwise to the m odel to perform  sensitiv­
ity analyses, and the m odel outputs can then be com pared w ith  otolith mi- 
crochemistry and  genetic patterns or settled individuals.

5 .11.2 Population connectivity results

Genetic validations can provide non-directional (gene flow over several generations) 
and directional (DNA paternity analyses) connectivity networks, bu t do not reveal 
the mechanisms or physical-biological interactions that lead to connectivity. Genetic 
data based on fast-evolving genes (such as microsatellite DNA) are extremely pow er­
ful in  validating m odels of dem ographic connectivity. Paternity analyses or finger­
printing can provide detailed inform ation on the paren t-o ffsp ring  relationships 
(Jones et al, 2005) and validate the direction and strength of connections. These inno­
vative genetic techniques are the best possible validations for connectivity models 
operating at the dem ographic scales. They provide a directional linkage between 
populations. To address questions at evolutionary time-scales, m itochondrial DNA or 
slower-evolving genes are useful to verify the spatial extent of the m etapopulation 
(or species biogeography). However, caution is required  for non-directional types of 
validation. The TPM (or a pow ered TPM) assum es that m igration is the m ain con­
tributing factor. Thus, the connectivity m odel assesses gene flow for neutral evolution 
(i.e. drift and recombination). O ther processes, such as hom oplasy and selection, even 
operating over relatively short time-scales, can change genetic patterns. In addition, if 
genetic data do not resemble the connectivity model, it m ay not be the result of the 
connectivity m odel being flawed. Rather, it m ay be that dem ographic and post­
settlem ent processes (e.g. density, predation, latitudinal gradient, depth  of settle­
ment) also contribute to the population structure.

5.12 Research needs

One of the limitations w hen m odelling connectivity is the unavailability of nested 
OGCMs (highest resolution in  the order of hundreds of m etres resolving small-scale 
processes at the spaw ning and  recruitm ent areas) that operate at long time-scales (re­
solving interannual variability over decadal time-scales). Two-way nested models are 
needed, w ith  higher resolution both on spaw ning and recruitm ent areas. Inform ation 
on spedes-specific larval behaviour and m ortality rates (including how  both change 
w ith developm ent) is also needed for m ore realistic biological connectivity m odels 
(W erner et al, 2007).

5.12.1 Initial dispersal

Lagrangian in situ m easurem ents are needed to m easure the dispersal statistics at 
spaw ning sites, which are not usually resolved by an OGCM. In particular, very little 
is know n about diffusion in areas of steep slopes (e.g. prom ontories and capes), near 
the shelf break, and in shallow coral reef environm ents. To resolve initial dispersal, 
m easurem ent of egg buoyancy is similarly im portant. Some fish spedes form  tran­
sient spaw ning aggregations during a very narrow  w indow  in time, which usually 
eoinodes w ith  a lunar phase and  changes in w ater tem perature and current intensity. 
For connectivity studies, there is a need to understand  the cues utilized for spaw ning 
and to m easure the assodated  physical features and dispersion param eters.

5 .12.2 Settlement

More research is also needed (i) into the swim m ing and orientation of larval fish and 
their related cues (see Sedion 5.8 Larval traits: larval behaviour); and (ii) on the rates
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of larval m ortality (see Section 3.4 Mortality) through ontogeny. Connectivity results 
are very sensitive to these param eters (Paris et al, unpublished data).
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6 A pplication  3: rec ru i tm e n t p red ic tion

Sarah H inckley, Bernard A. M egrey, and Thom as M iller

6.1 Definition

W hat do we m ean by recruitm ent prediction? The first thing to consider in  defining 
this term  is the time horizon of the prediction. Short-term  predictions m ean the use of 
individual-based, coupled physical-biological m odels (ICPBMs) of fish early life his­
tory to predict annual recruitm ent, m ost usually to aid m anagers of fish stocks. These 
predictions m ay be m ade via indices or other m easures of prerecruitm ent or recruit­
m ent, derived from  ICPBM output, that correlate well w ith  other independent, rea­
sonable predictors of recruitm ent (derived from  stock-assessment models, reasonable 
independent juvenile or prerecruit surveys conducted w ith acoustic or trawl, or other 
net-based survey methods). These m ay be used alone or in conjunction w ith other 
predictors, such as spawning-stock biomass. Actual num erical estimates (of the cor­
rect m agnitude) derived from  ICPBMs m ay be possible, bu t only if certain conditions 
are met (e.g. the super-individual m ethod, proportionality indices, or other m ethods 
of relating m odel indices to real population num bers are used, and  spawning- 
biomass or egg-production estimates as initial conditions are included). A benefit of 
these indices is that they could serve as a replacem ent for expensive juvenile surveys.

U nder this definition, the forecast w indow  for recruitm ent predictions w ould  be lim­
ited to the num ber of years from  spaw ning to recruitm ent for each species of interest. 
This is because of the fundam ental lack of predictability of regional and small-scale 
ocean physics. These prediction w indow s will be different for each species owing to 
differences in the unique aspects of a species' life history.

Longer-term  recruitm ent predictions that are likely under different future scenarios 
(e.g. of climate, fishing, or ocean variability) m ay also be derived from  ICPBMs 
through the use of the m odels to gain a m echanistic understanding of the im portant 
biophysical processes underlying recruitm ent variability. This know ledge may, for 
example, help us to understand  simple correlations betw een biophysical factors and 
recruitm ent, and  w hen such correlations m ay or m ay not hold up.

The developm ent of recruitm ent predictors from  ICPBMs requires careful considera­
tion of w hat w e m ean by recruitm ent. There are m any ways of defining recruitm ent. 
The operational definition depends on the purpose or goal of the prediction. Are we 
predicting recruitm ent for m anagem ent purposes? If so, then recruitm ent is often 
defined as the num ber of fish entering the exploited segm ent of the population, 
w here the m eaning of "exploited segment" depends on the distinctive attributes of 
each fisheiy (i.e. gear type, tim e and space scales). If examining life-history character­
istics or gaining ecological understanding is the goal, recruitm ent could be defined as 
the num ber of fish reaching a juvenile nursery area, the num ber reaching m aturity, or 
the num ber reaching a particular age, size, or stage.

6 .2  O b jec tiv e s  of  re c ru i tm e n t  p red ic t ion

There can be several different objectives for recruitm ent prediction, and these will 
affect not only how  we select a predictive index from  the model, bu t how  the ICPBM 
itself is constructed and its relevant physical and biological details. Recruitm ent p re­
diction m ay be undertaken to test our understanding of the processes that affect re­
cruitm ent. ICPBMs m ay be developed to clarify m echanistic processes underlying 
correlations betw een physical or biological factors and recruitm ent. Recruitm ent p re­
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diction m ay be applied or pragmatic, for example, to aid in the reduction of the num ­
ber of recruitm ent scenarios that m ust be perform ed in  the stock-assessment m odel­
ling process.

Who are the clients/consumers of the forecasts? To maximize the usefulness of re­
cruitm ent forecasts, they need to be tailored to the user. The needs of scientific re­
searchers, resource managers, and commercial fishery concerns m ay be different. For 
example, a forecast prepared  for a scientist m ight be used as a null hypothesis to 
dem onstrate w hether or not the forecast em bodies a sufficient understanding of the 
processes and mechanisms that cause good and  bad  year classes. In contrast, deci­
sion-makers in commercial fisheries m ay require a forecast only as a basis for future 
buying decisions regarding capital expenditures for equipm ent or ship im prove­
ments. In this case, the em phasis is not so m uch on perfect understanding. For exam ­
ple, if a forecast tells them  to expect several years of good recruitm ent, they may 
decide to purchase autom atic fish-filleting equipm ent optim ized for smaller fish. If 
recruitm ent is expected to be poor, they m ay conclude that they will be exploiting 
older individuals from  the population and should purchase filleting machines opti­
m ized for larger fish. In both cases, their goal is to maximize product recovery, and 
having the right equipm ent for the circumstances plays a large role in  attaining their 
goal.

6 .3  Ind ices of re c ru i tm e n t  from  ICPBMs

W hen using ICPBMs to aid in the prediction of recruitm ent, an index that appears to 
correlate well w ith  recruitm ent can be used. Often, these indices relate to some u n ­
derlying theory about recruitm ent success. Some examples of recruitm ent or prere­
cruitm ent indices that have been, or could be, derived from  ICPBMs are (i) the 
num ber of larvae or juveniles that reach a specified nursery area, w eighted by their 
residence time there (Parada et al, in review); (ii) the num ber that reach a nursery 
area by a particular date, size, or age (Bartsch et al, 2004; Baum ann et al, 2006); (iii) 
indices of larval drift or retention, such as the num ber going in a predefined direction 
(W espestad et al, 2000; W ilderbuer et al, 2002; Stockhausen, pers. comm.) that ex­
perience different levels of bottom  depth  anomalies (Baumann et al, 2006), or a sur­
vival rate after a certain num ber of days of drift (Allain et al, 2007); (iv) indices of 
overlap of larvae w ith  their prey (Hinrichsen et al, 2005); or (v) indices of juvenile 
particle density at the end of a sim ulation to look for density-dependent processes 
related to recruitm ent (Baumann et al, 2006).

Indices m ay be com pared w ith  data, for example, surveys of prerecruits or recruits. 
Indices m ay also be com pared w ith stock-assessment m odel estimates of recruitm ent. 
In this case, caution is needed. The same data m ay be used in the ICPBM and the 
stock-assessment m odel (e.g. spawning-stock biomass); therefore, the indices p ro ­
duced by the tw o m odels m ay not be independent.

The proper choice of recruitm ent indices will depend on the objectives of the work, 
the life history of the species, and theories (conceptual models) of w hat processes are 
critical to recruitm ent variability. The developm ent of a conceptual m odel (see Sec­
tion 6.4) can aid in the choice of indices.

6 .4  T he n e e d  fo r  a  co n c e p tu a l  m ode l

Developm ent of a conceptual m odel of the processes controlling recruitm ent for each 
species and  area is key to the use of ICPBMs in recruitm ent prediction, and also to the 
choice of the proper indices derived from  the models. D evelopm ent of a conceptual
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m odel is a way of organizing w hat is im portant, the im portance of the roles played 
by particular processes, and w hat life stages are affected. If this is neglected, im por­
tant factors or processes m ay be m issed in the ICBPM.

• Life stages and their duration

• Variation in  m ortality at each stage

• Biological and physical factors affecting each stage and the "intensity" of 
the effect

• Processes im portant w ithin each stage

If different processes at different life stages are thought to be im portant, it m ay be 
necessary to develop different conceptual m odels for the same species in different 
areas. For example, the walleye pollock conceptual m odels for the Gulf of Alaska 
(http ://w w w .pm el.noaa.gov/fod/forecast/m gt.htm l; Figure 6.4.1) and Bering Sea 
(http ://www .pm el.noaa.gov/fod/sebscc/results/m egrey/bs_concept.htm l; Figure 6.4.2) 
contain the same life stages and  duration, bu t they differ w ith respect to w hich life 
stages experience the m ost variability in m ortality and the fadors that influence m or­
tality and  survival. Therefore, som ewhat different ICPBMs have been developed, and 
different indices m ay be necessary to p re d id  recruitm ent.

' o o- o-One-year
olds

RecruitsJuvenilesFeeding
larvae

Eggs Yolk sac 
larvae

-------------- l it t le -----------------li t t le ..........—  som e...................m ost-------------- s o m e -----------------l i t t le -------------l it t levariability

Mortality/survival process Rajn
(eddies)

Wind mixing
(turbulence)

Circulation
vigorous sluggish
(enhanced (retain larvae on shelf)
prey field)

Climate

Figure 6.4.1. G ulf of Alaska w alleye pollock conceptual model (from Megrey and Wespestad, 
1997).

http://www.pmel.noaa.gov/fod/forecast/mgt.html
http://www.pmel.noaa.gov/fod/sebscc/results/megrey/bs_concept.html
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Figure 6.4.2. Southeast Bering Sea w alleye pollock conceptual m odel (from Megrey e t a l ,  1996).

Conceptual m odels are not stagnant. They evolve as new  inform ation and under­
standing become available. For example, the original Gulf of A laska pollock concep­
tual m odel (Figure 6.4.1) has recently been m odified to include the effects of regirne- 
scale climate impacts, as well as predation and com petition effects (spedes-to-species 
interactions) know n to be im portant at the ecosystem level (Bailey, 2000; Bailey et al, 
2005; M egrey and Macklin, unpublished report).

6.5 Forecasting accuracy

H ow  accurate do recruitm ent forecasts have to be before they become useful? This is 
a difficult yet relevant question that needs im m ediate research attention. A recent 
paper by De Oliveira and Butterw orth (2005) offers a concrete example of a possible 
approach. The prem ise in  this paper was that environm ental indices that provide 
short-term  p red id ions of recruitm ent have the potential to im prove the average yield 
from  highly p ro d u d iv e  resources that sustain recruit fisheries w ithout an assodated  
increase in risk (of resource "collapse"). This paper's authors asked the question, how  
accurate does an environm ent-dependent, spaw ner-recru it relationship have to be 
before it affeds m anagem ent dedsions? Spedfically, w hat are the benefits of using 
environm ental indices to set appropriate total allowable catches? Through a con­
trolled sim ulation experiment, they concluded that an environm ental index needs to 
explain roughly 50% or m ore of the total variation in recruitm ent (r2 >0.5) before the 
m anagem ent procedure starts revealing benefits in term s of the sum m ary perform ­
ance statistics for risk and average catch. Having similar quantitative inform ation on 
recruitm ent forecasts from  ICPBM m odels w ould  help fram e the circumstances in 
w hich it could prove to be of benefit.

If an index derived from  an ICPBM is to be used for recruitm ent forecasting, it is 
critical to assess its accuracy and to build  trust in  its ability to forecast.

6.6 Techniques for forecasting

Forecasts can take m any different forms. They can take the form  of quantitative an­
nual estim ates of absolute abundance (e.g. there will be 5.5 billion recruits next year). 
We do not believe these are very useful, and they are difficult to produce w ith any
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accuracy and precision. They can also be qualitative. For example, the forecast could 
be given in term s of recruitm ent being in a particular state — below  average, average, 
and above average (low, m edium , and high) — w ith appropriate m ethods used to de­
fine, in operational terms, states such as long-term  averages or quantiles (33%, 50%, 
or 66%) based on observed recruitm ent trends. Rothschild and  M ullen (1985) give a 
good example of how  recruitm ent inform ation (from data or models) can be usefully 
described by non-param etric classification based on M arkov chains. Finally, a re­
cruitm ent forecast could be the result of an ensemble estim ate from  num erous sto­
chastic-forecast im plem entations. The forecast can be delivered as a probability 
statement; for example, the probability of achieving a given recruitm ent level or state 
based on x conditions and  y  assum ptions is 10%. The m ost appropriate form  depends 
on m any factors including m any that have been discussed above, such as for w hom  
the forecast is being prepared, how  it will be used, the required accuracy, and the 
required forecast horizon.

A caution should be offered regarding the use of recruitm ent estimates from  stock- 
assessm ent m odels to calculate metrics as described above. Changes/updates in an­
nual stock-assessment/cohort-analysis m odels and resulting recruitm ent estimates 
m ake the m ost recent estimates of "recruitm ent" som ewhat of a moving target. Stock- 
assessm ent m odels estim ate recruitm ent by sum m ing all fish from a cohort (all indi­
viduals w ith the same birth  year) that have died as a result of the fishery (i.e. the 
catches) and then including the fish that have died from  natural causes (also esti­
m ated by assum ing a particular rate of natural mortality). In other w ords, the re­
cruitm ent estim ate is the population that w ould  have existed in order to generate the 
observed catches. The data point of most interest is usually the current year. If a co­
hort is still contributing to the catch, then in next year's assessment, an additional 
year of catches and losses from  natural m ortality will increase the recruitm ent esti­
m ate relative to the current year. The recruitm ent estim ate will gradually increase 
over time and finally stabilize once the cohort is completely fished out (i.e. no more 
individuals of the cohort survive to add  to the catches).

6 .7  Ph ilo sophy  of m o d e l l in g

Approaches to understanding mechanisms that regulate recruitm ent in fish have in­
creasingly taken an individual-based approach. This approach can be justified on two 
general grounds. First, field research into recruitm ent processes in fish has dem on­
strated that the individuals that survive early life often possess a unique suite of 
genotypic or phenotype traits that are not sim ply a random  draw  from  the d istribu­
tion present at spawning. For example, num erous studies involving otolith m icro­
structure have dem onstrated that survivors are selected from  a narrow  w indow  of 
the original distribution of birthdates. O ther research has revealed selection based on 
grow th rate, size at settlement, spaw ning location, and m aternal influence. Together, 
these studies have highlighted the fact that we w ould  probably not understand 
m echanisms regulating recruitm ent by m easuring m ean rates; instead, we needed to 
characterize the sources, patterns, and  consequences of variation am ong individuals 
in early life traits and understand  why the unique subset of traits possessed by re­
cruits conferred a survival advantage.

The second justification for individual-based approaches invokes the im portance of 
spatial processes in regulating recruitm ent. Sinclair and lies (1988) proposed a m em ­
ber-vagrant hypothesis in w hich population persistence relied upon  the existence of 
closed trajectories that allowed surviving larvae to complete their life cycle. Those 
larvae that "followed" appropriate trajectories became m em bers of the reproductive
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population; individuals that "followed" inappropriate trajectories w ere lost to the 
reproductive population. This hypothesis, built on the existing understanding of the 
im portance of population structure w ithin a species, em phasizes the im portance of 
the spatial location of larvae at different points in  developm ent on their subsequent 
survival.

C oupled physical-biological models addressing questions involving fish early life 
histories have typically adopted  an individual-based approach. The majority of such 
m odels have used a grid-based hydrodynam ic m odel to predict currents at nodes on 
the grid, which are then used in a Lagrangian particle-tracking algorithm  to move 
particles that represent the early life stages around the m odel domain. For example, 
in one of the earliest applications of such models, Bartsch and colleagues (Bartsch, 
1988, 1993; Bartsch et al, 1989) considered the trajectories of herring larvae in the 
N orth Sea. The m odel results indicated the im portance of a retentive area off the east 
coast of Scotland. Subsequently, ICPBMs have become m ore sophisticated in both the 
representation of the current fields and the biological representation of individual 
fish. Such m odels have been used to quantify the contribution of different spawning 
locations to recruitm ent, the role of physical processes in regulating feeding, and the 
influence of m ortality on spatial distributions.

However, it is vital to assess and separate the biological m otivations for individual- 
based approaches to the study of fish populations from  the com putational m otiva­
tion. Com putationally, individual-based approaches are attractive because they ele­
gantly combine the grid-based, spatially specific predictions of hydrodynam ic 
m odels w ith biological processes. In so doing, such m odels portray individuals that 
differ w ith respect to their trajectories and thus their exposures to environm ental 
forcing. To ease com putational dem ands, population-level predictions are derived by 
expanding the predictions for a single particle by a m ultiplier to represent the contri­
bution to the population. This approach implicitly assum es that all variability in early 
life history is spatially determ ined. Simply stated, this approach assum es that all 
variability is caused by differences am ong the trajectories followed by individuals, 
and not by inherent biological interindividual variability. The approach emphasizes 
the im portance of m em ber-vagran t-type ideas at the expense of phenotypic variabil­
ity am ong individuals. N ot all models m ake this assum ption. A few do include and 
sam ple from  distributions of traits. For example, in their detailed m odel of feeding, 
Fiksen and M ackenzie (2002) sam pled from  distributions of reactive distances to es­
tim ate feeding incidence. However, ICPBMs of the entire early life history that incor­
porate inherent interindividual variability have yet to be developed. W hether or not 
the developm ent of such m odels is im portant depends entirely on how  total pheno­
typic variability is partitioned betw een spatially derived sources and  inherent inter­
individual differences. This partitioning is, as yet, unexplored and unquantified.
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7 Looking to  th e  fu tu re :  r e c o m m e n d a t io n s  a n d  re se a rc h  n e e d s

Elizabeth W. North, Alejandro G allego, and Pierre Petitgas

The goal of this section is to sum m arize the major recom m endations and research 
needs that were identified during the WKAMF w orkshop and in the process of de­
veloping this M anual of Recom m ended Practices. We address and elaborate on the 
six major them es necessary to advance the field of m odelling physical-biological in­
teractions in the early life stages of fish that were identified by WKAMF participants.

1 ) Validation and sensitivity m ethods

2 ) M odel complexity

3 ) Physics

4 ) Energetics

5 ) M ortality

6 ) Behaviour and cues

High-quality data and im proved and w idely im plem ented m ethods for m odel valida­
tion are fundam ental needs that limit the ultim ate utility of fish early-life m odels and 
the advancem ent of the field. Consistency of m odel w ith observations is im portant, 
and data quality is param ount. M ethods of m o d e l-d a ta  com parison need to be ap­
plied and developed. In addition, the validity of quantitative metrics should be ad­
dressed. Central to the issue of validation is the availability of good-quality data at 
the appropriate resolution. All too often, m odelling is seen as a cheap(er) alternative 
to em pirical work, particularly in the m arine field, w here data acquisition is challeng­
ing and expensive. M odellers are expected to w ork w ith  data that are sometimes old 
or of questionable quality, and w ith coarse spatial and/or tem poral resolution.

These problem s affect not only m odel validation, bu t also initialization (boundary 
and initial conditions) and operation (forcing data). It is vital to com municate to the 
non-m odelling com m unity that the quality of the biophysical m odelling output de­
pends strongly on a basic know ledge of physical and biological processes, and on the 
quality of em pirical data used for m odel initialization and validation. Fortunately, 
technical advances in  field-, laboratory-, and data-processing tools are likely to result 
in considerable progress in the near future, although they m ay not completely replace 
the m ore traditional, labour-intensive and  know ledge-rich methodologies. A nother 
challenge is the developm ent of data-assim ilation m ethodology to incorporate obser­
vations of physical and biological param eters (especially those from  autom ated data- 
acquisition systems) into biophysical models (see Section 4 Application 1: adaptive 
sampling). This is a critical requirem ent if we are to m ake biophysical models opera­
tional.

The m odel is a platform  that coherently integrates m ultidisciplinary knowledge. A p­
propriate m odel complexity is a research need. M odels should be as simple as possi­
ble bu t as complex as necessary. Additional layers of complexity should only be 
added  after (i) assessment of need, based on the objectives of the modelling endeav­
our; and (ii) analysis of the sensitivity of the m odel to the process(es) under consid­
eration. The GLOBEC "rhom boid approach" (w ith complexity greatest at the level of 
the target organism  and  decreasing tow ards higher and lower trophic levels; De 
Young et al, 2004) was suggested as a conceptual fram ew ork for addressing m odel 
complexity. A lthough m odel complexity m ay be constrained by lack of know ledge of 
physical and/or biological processes and/or operational limitations (e.g. com puting
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hardw are or software), these limitations should be seen as a challenge to overcome, 
not as reasons for m aking do w ith the status quo. The m odelling process should ex­
plicitly docum ent know ledge gaps, thus providing the direction for advancing the 
field.

After choosing the appropriate complexity, the next step is to docum ent m odel sensi­
tivity. Sensitivity analysis of m odel outputs to variations in m odel complexity or pa­
ram eter values should be considered thoroughly. M ethods for sensitivity analysis of 
complex m odels have been developed in industry, including group screening, sim u­
lation designs, partial regressions, and benchmarking. Their applicability and useful­
ness for biophysical IBMs is a challenging research need. A n introduction on the topic 
can be found in Kleijnen (2005).

H ydrodynam ic m odel predictions critically influence biological predictions. Basic 
im provem ents in  understanding of turbulence and in predicting mixing and  circula­
tion patterns will advance the field of larval fish modelling. Ensemble m ethods (com­
bining a suite of sim ulations that have slightly different starting conditions or m odel 
assum ptions; Gneiting and Raftery, 2005) and  probabilistic approaches (e.g. Brickman 
et al, 2007) offer prom ising techniques that should be im plem ented w hen possible. 
We need to (i) develop m easurem ents of turbulence and any other relevant physical 
and biological param eters at scales that are appropriate to p redato r-p rey  interac­
tions; and (ii) param eterize encounter, capture, and feeding processes at scales from  
1 m m  to 1 m  (see below). It is im portant, therefore, to develop sam pling devices or 
approaches that allow increased resolution in space or time, in addition to data proc­
essing and visualization tools, that allow researchers to interpret large volum es of 
complex m ultidim ensional and m ultidisciplinary data.

The choices of Lagrangian m odel type and im plem entation techniques are not consis­
tent, despite the fact that these m odels provide the basic structure for individual- 
based, coupled physical-biological m odels (ICPBMs). For Lagrangian particle track­
ing, a standard  set of test cases should be established and published (see Section 2 
Particle tracking), both in  the literature and  on a dedicated website, for advection and 
subgrid-scale turbulence models in the horizontal and  vertical directions. The tests 
should be easy to im plement, cover the practical issues, and  become standard  proce­
dure. From a technical standpoint, theory developm ent/elucidation is needed to de­
term ine w hether or not num erical m ethods satisfy theoretical requirem ents (e.g. 
w hen subgrid-scale turbulence and directed swim m ing are com bined in particle- 
tracking models). The need for a system atic assessment of Lagrangian m odel types 
and im plem entation techniques is elucidated by the differences in recom m endations 
betw een sections of this m anual. The authors of Section 2 recom m end using a ran­
dom  displacem ent m odel (RDM), whereas those of Section 5 recom m end the use of a 
Lagrangian stochastic m odel (LSM). These apparent contradictions m ay stem  from 
dissim ilarity in the time- and space-scale of the hydrodynam ic models used by the 
authors. The choice of appropriate m odel remains an active area of research; clarifica­
tion is needed if the field is to evolve.

Fundam ental inform ation is needed on the biological processes of mortality, behav­
iour, and energetics to advance models of the early life of fish. These stage- 
dependent, and often spedes-spedfic, processes pose challenges for investigation, but 
recent advances in  field and laboratory techniques will m ost probably revolutionize 
the field of larval fish modelling. The need for im proved understanding of basic 
processes is exemplified by the discrepancy in the assum ption that fish larvae are 
food-lim ited (Sedion 3.5 Behaviour and settlement) or are not food-lim ited (Section
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3.3 Growth). This and other differences in perception betw een sections could simply 
be based on the ecosystem in w hich the authors are m ost experienced (e.g. tem perate 
vs. tropical) and point to the need to assess and  unify our understanding of biological 
processes across taxa and ecosystems. Despite these differences, it is becoming 
broadly recognized that it m ay not be sufficient just to incorporate "m eans" into our 
models. Instead, the effect of individual variability (including "extreme" values) 
needs to be assessed, because the survivors m ay not just be the "lucky few", bu t m ay 
be draw n from  the extremes of a given distribution (e.g. fastest growers). In m any 
current biophysical models, individual variability is purely the result of spatial (envi­
ronm ental history) variability.

The following are some specific recom m endations relevant to biological processes.

• Better inform ation on the underlying m echanisms that drive spatial and 
tem poral patterns in spawning, including adult characteristics (e.g. behav­
iour, m aternal effects), is critical for defining appropriate initial conditions 
for biophysical m odelling of early life stages of fish (e.g. the form ulation 
and validation of egg-production models).

• We need to understand  the mechanisms of internal (physiology) and ex­
ternal (environm ental signals, prey, predators) drivers. The influence of 
the light environm ent, as affected by geography, seasonality, prim ary pro­
duction, suspended sediment, and associated sources of freshwater, needs 
to be evaluated.

• There is a clear need for field/laboratory studies of behaviour, especially 
related to horizontal orientation/directed swim m ing and the physi­
cal/biological factors that cue larval behaviour. We should challenge estab­
lished param eter values (e.g. sw im m ing speeds) in experim ental and more 
realistic settings, and com pare them  (at least for some species). In addition, 
some generally accepted assum ptions should be assessed, such as the ab­
sence of directed sw im m ing am ong tem perate fish species or the param e­
terization of behaviour based on similarity in  phylogeny (when data are 
lacking for the species of interest).

• Techniques for validation of larval transport predictions and connectivity 
patterns are needed. A lthough m ethods for validating hydrodynam ic and 
particle-tracking m odels are either well established (for hydrodynam ics) or 
in developm ent (for particle tracking), a systematic set of m ethods is 
needed for validation of biological trajectories (i.e. ones that include behav­
iour). H igh-frequency sam pling perm itted by underw ay identification sys­
tems or genetic-based approaches m ay provide the m eans of 
accomplishing this.

• A variety of grow th m odels have proven to be very sensitive to assimila­
tion efficiency as well as to changes in size spectrum  of prey; a better un ­
derstanding of the causal m echanisms is required. Mechanistic 
(bioenergetic) m odelling of grow th is attracting considerable interest, 
probably as a result of the proliferation of ecosystem m odels that provide 
prey fields for the larvae. The sensitivity of these m odels to assum ptions 
and uncertainties in param eter values/functional relationships should be 
carefully assessed.

• Predictions of p redator feeding rates (i.e. m ortality on larvae) from  labora­
tory, field, and simple models differ significantly (by tenfold in some 
cases). Consequently, m odelling predator feeding requires im proved ob-
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servations and greater effort to validate any m odel developm ents. M ortal­
ity is often not incorporated in biophysical m odels of fish early life stages 
or is m odelled as a size-dependent function w ith low  (or no) mechanistic 
content. The developm ent of m echanistic m odels of predation  is fraught 
w ith difficulties: predation efficiency of invertebrates and fish is typically 
influenced by a suite of environm ental factors (light, turbulence, the prey 
environm ent, prey "behaviour" in general), and the dynam ic representa­
tion of predator fields is a m om entous task. However, it is clear that, for an 
adequate representation of m ortality in the models, m ore effort is required 
to include such processes.

• The role of density-dependence in nature needs to be further investigated 
and, w here appropriate, incorporated into models. This is also related to 
the requirem ent to increase our understanding of the ecology of the early 
juvenile stage. The arrival at (and survival w ithin) suitable nursery areas 
has been identified as cri tico I to year-class strength in num erous species, 
bu t our knowledge of the m ain ecological processes during that period is 
still largely inadequate.

The use of ICPBMs has increased our understanding of the interacting factors that 
influence fish early life. A lthough research needs are many, the field holds great 
prom ise for advancing our understanding of fish-population variability and the in­
fluence of changing climate on fish stocks and the hum ans w ho depend on them. Fur­
ther advances in the field of larval fish m odelling and prediction will probably arise 
from  dynam ic team s of scientists w ho can unite laboratory, field, and m odelling ex­
pertise. Im portantly, for the utility and im pact of these models, the translation of re­
sults to managers, stakeholders, and the general public is desirable. Scientists should 
collaborate in the com m unication process to ensure correct interpretation and use of 
m odel results.

A ck n o w led g em en ts

We thank Emory A nderson, Katharine Smith, and W illiam Anthony and the ICES 
Publications departm ent for assistance w ith  editing, and the US National Science 
Foundation (NSF) for providing support for the production of this m anual (OISE- 
0527221). Support for Elizabeth N orth  was provided by the University of M aryland 
Center for Environm ental Science (UMCES). Support for Alejandro Gallego was pro­
vided by the Fisheries Research Services (FRS), an agency of the Scottish Governm ent 
M arine Directorate.

This M anual is a p roduct of the "W orkshop on advancem ents in m odelling physical- 
biological interactions in fish early life history: recom m ended practices and future 
directions" (WKAMF), w hich was held under the auspices of the International Coun­
cil for the Exploration of the Sea (ICES) W orking G roup on Physical-Biological Inter­
actions and the ICES W orking G roup on Recruitm ent Processes. It was hosted by the 
French Research Institute for Exploitation of the Sea (IFREMER), w ith support from  
the IFREMER, US NSF, US National M arine Fisheries Service, FRS (UK), and  UMCES. 
It was endorsed by GLOBEC and Eur-Oceans.



ICES C o o p e ra tiv e  R esearch  R eport N o. 2 9 5

8 R eferences

Ädlandsvik, B. 2000. VertEgg -  a toolbox for sim ulation of vertical distributions of fish eggs, 
version 1.0. Available online at http://w w w .im r.no/ bjom /VertEgg/vertegg.pdf.

Aksnes, D. L., and Giske, J. 1993. A theoretical m odel of aquatic visual feeding. Ecological 
M odelling, 67: 233-250.

Alexandre, D., and Ghysen, A. 1999. Som atotopy of the lateral line projection in larval zebraf- 
ish. Proceedings of the National A cadem y of Sciences of the USA, 96(13): 7558-7562.

Allain, G., Petitgas, P., Lazure, P., and Grellier, P. 2007. Biophysical m odelling of larval drift, 
growth, and survival for the prediction of anchovy recruitm ent in the Bay of Biscay (NE 
Atlantic). Fisheries O ceanography, 16: 489-505.

Almany, G. R. 2003. Priority  effects in coral reef fish communities. Ecology, 94:1920-1935.

Anderson, J. T. 1988. A review  of size dependent survival during  pre-recruit stages of fishes in 
relation to recruitm ent. Journal of N orthw est A tlantic Fishery Science, 8: 55-66.

Arakawa, A. 1966. Com putational design for long-term  num erical integration of the equations 
of fluid motion: tw o-dim ensional incom pressible flow. Part I. Journal of Com putational 
Physics, 135:103-114.

Arm sw orth, P. R., James, M. K., and Bode, L. 2001. W hen to press on or tu rn  back: dispersal 
strategies for reef fish larvae. The American N aturalist, 157: 434-450.

A rvedlund, M., McCormick, M. I., Fautin, D. G., and Bildsoe, M. 1999. Eiost recognition and 
possible im printing in the anem onefish Amphiprion melanopus. M arine Ecology Progress 
Series, 188: 207-218.

Aterna, J., Kingsford, M. J., and Gerlach, G. 2002. Larval reef fish could use odour for detection, 
retention, and orientation to reefs. M arine Ecology Progress Series, 241:151-160.

Bailey, K. M. 2000. Shifting control of recruitm ent of walleye pollock Theragra chalcogramma 
after a m ajor climatic and ecosystem change. M arine Ecology Progress Series, 198: 215- 
224.

Bailey, K. M., and Eioude, E. D. 1989. P redation on eggs and larvae of m arine fishes and the 
recruitm ent problem . Advances in M arine Biology, 25:1-83.

Bailey, K. M., Ciannelli, L., Bond, N., Belgrano, A., and Stenseth, N. C. 2005. Recruitm ent of 
walleye pollock in a physically and biologically complex ecosystem: a new  perspective. 
Progress in Oceanography, 67: 24-42.

Bartsch, J. 1988. N um erical sim ulation of the advection of vertically m igrating herring larvae in 
the N orth Sea. M eeresforschung, 32: 30-45.

Bartsch, J. 1993. Application of a circulation and transport m odel system  to the dispersal of 
herring  larvae in the N orth Sea. Continental Shelf Research, 13:1335-1361.

Bartsch, J. 2002. M odelling the tem perature m ediation of grow th in larval fish. Fisheries 
O ceanography, 11: 310-314.

Bartsch, J. 2005. The influence of spatio-tem poral egg production variability on the m odelled 
survival of the early life history stages of m ackerel (Scomber scombrus) in the eastern N orth 
Atlantic. ICES Journal of M arine Science, 62:1049-1060.

Bartsch, J., and Coombs, S. 2004. A n individual-based m odel of the early life history of m ack­
erel (Scomber scombrus) in the eastern N orth Atlantic, sim ulating transport, growth, and 
m ortality. Fisheries Oceanography, 13: 365-379.

Bartsch, J., Brander, K., Heath, M., M unk, P., Richardson, K., and Svendsen, E. 1989. M odeling 
the advection of herring  larvae in the N orth Sea. N ature, 340: 632-636.

http://www.imr.no/


M odelling  p h y sica l-b io lo g ica l in te rac tio n s  d u rin g  fish e a rly  life

Bartsch, J., Reid, D., and Coombs, S. 2004. Sim ulation of m ackerel (Scomber scombrus) recruit­
m ent w ith an individual-based m odel and com parison w ith field data. Fisheries Oceanog­
raphy, 13: 380-391.

Batcheider, H. P. 2006. Forward-in-tim e-/backward-in-tim e-trajectory (FITT/BITT) m odeling of 
particles and organism s in the coastal ocean. Journal of A tm ospheric and Oceanic Tech­
nology, 23: 727-741.

Baumann, H., Flinrichsen, Fl-FL, M öllm ann, C., Köster, F. W., M alzahn, A. M., and Temming, 
A. 2006. Recruitm ent variability in Baltic Sea sprat (Sprattus sprattus) is tightly coupled to 
tem perature and transport patterns affecting the larval and early juvenile stages. C anadian 
Journal of Fisheries and Aquatic Sciences, 63: 2191-2201.

Baums, I., Paris, C. B., and Chérubin, T. M. 2006. A bio-oceanographic filter to larval dispersal 
in a reef-building coral. Timnology and O ceanography, 51:1969-1981.

Beaugrand, G., Brander, K. M., Findley, J. A., Souissi, S., and Reid, P. C. 2003. P lankton effect 
on cod recruitm ent in the N orth  Sea. N ature, 426: 661-664.

Beck, M. W., Fleck, K. T., Able, K. W., Childers, D. T., Eggleston, D. B., Gillanders, B. M., 
Flalpern, B., etal. 2001. Tow ards better identification, conservation and m anagem ent of es- 
tuarine and m arine nurseries. BioScience, 51: 633-641.

Bellwood, D. R., and Fisher, R. 2001. Relative sw im m ing speeds in fish larvae. M arine Ecology 
Progress Series, 211: 299-303.

Bennett, A. 2006. Tagrangian Fluid Dynamics. Cam bridge M onographs on Mechanics. Cam ­
bridge U niversity Press, Cambridge, UK. 286 pp.

Berloff, P., and McWilliams, J. 2002. M aterial transport in oceanic gyres. Part II: H ierarchy of 
stochastic models. Journal of Physical Oceanography, 32: 797-830.

Beyer, J. E. 1989. Recruitm ent stability and survival -  sim ple size-specific theory w ith examples 
from  the early life dynam ics of m arine fish. Dana, 7: 45-147.

Blumberg, A. F., and Melior, G. T. 1987. A description of a three-dim ensional coastal ocean 
circulation m odel. In Three-Dimensional Coastal Ocean Models, Volume 4, pp. 1-16. Ed. 
by  N. Heaps. American Geophysical Union, W ashington, DC. 208 pp.

Boehlert, G. W., W atson, W., and Sun, T. C. 1992. H orizontal and vertical distributions of larval 
fishes around an isolated oceanic island in the Tropical Pacific. Deep Sea Research I, 39: 
436-466.

Botello, G., and Krug, P. J. 2006. "D esperate larvae" revisited: age, energy and experience affect 
sensitivity to settlem ent cure in larvae of the gastropod Alderia sp. M arine Ecology Pro­
gress Series, 312:149-159.

Bowen, A. J., Griffin, D. A., Hazen, D. G., M atheson, S. A., and Thompson, K. R. 1995. Ship­
board  now casting of shelf circulation. Continental Shelf Research, 15:115-128.

Boyra, G., Rueda, T., Coombs, S., Sundby, S., Ä dlandsvik, B., and Uriarte, A. 2003. M odelling 
the vertical distribution of eggs of anchovy (Engraulis encrasicolus) and sardine (Sardina pil­
chardus). Fisheries O ceanography, 12: 381-395.

Bradbury, I. R., Snelgrove, R. V. R., and Pepin, P. 2003. Passive and active behavioural contri­
butions to patchiness and spatial pattern  during  the early life history  of m arine fishes. M a­
rine Ecology Progress Series, 257: 233-245.

Breitburg, D. 1989. Demersal schooling prior to settlem ent by  larvae of the naked goby. Envi­
ronm ental Biology of Fishes, 26: 97-103.

Brickman, D., and Frank, K. T. 2000. M odelling the dispersal and m ortality  of Browns Bank egg 
and larval haddock (Melanogrammus aeglefinus). Canadian Journal of Fisheries and Aquatic 
Sciences, 57: 2519-2535.



ICES C o o p e ra tiv e  R esearch  R eport N o. 2 9 5

Brickman, D., and Smith, P. 2002. Lagrangian stochastic m odeling in coastal oceanography. 
Journal of A tm ospheric and Oceanic Technology, 19: 83-99.

Brickman, D., Shackell, N. L., and Frank, K. T. 2001. M odelling the retention and survival of 
Browns Bank haddock larvae using an early life stage m odel. Fisheries Oceanography, 10: 
284-296.

Brickman, D., M arteinsdottir, G., and Taylor, L. 2007. Form ulation and application of an effi­
cient optim ized biophysical model. M arine Ecology Progress Series, 347: 275-284.

Browman, H. I., and Skiftesvik, A. B. 1996. The effects of turbulence on the predation  cycle of 
fish larvae: com ments on some of the issues. M arine Ecology Progress Series, 139: 309-312.

Browman, H. I., St-Pierre, J-F., Skiftesvik, A. B., and Racca, R. G. 2003. Behaviour of Atlantic 
cod (Gadus morhua) larvae: an attem pt to link m aternal condition w ith  larval quality. In 
The Big Fish Bang. Proceedings of the 26th A nnual Larval Fish Conference, pp. 71-95. Ed. 
by  H. I. Browman and A. B. Skiftesvik. Institute of M arine Research, Bergen, Norw ay. 476
pp .

Browman, H. I., Yen, J., St-Pierre, J-F., and Kuhn, P. In prep. P redatory  behaviour of the car­
nivorous copepod Euchaeta norvegica, and escape responses of their prey  (larval Atlantic 
cod, Gadus morhua). M arine Ecology Progress Series.

Chen, C., Beardsley, R. C., and Cowles, G. 2006. An unstructured-grid, finite-volume coastal 
ocean m odel (FVCOM) system. Advances in Com putational Oceanography, 19: 78-89.

Cam pana, S. E., and Hurley, P. C. F. 1989. An age- and tem perature-m ediated grow th m odel 
for cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae in the Gulf of 
Maine. C anadian Journal of Fisheries and Aquatic Sciences, 46: 603-613.

Christensen, A., Daewel, U., Jensen, H., M osegaard, H., St John, M., and Schmm, C. 2007. H y­
drodynam ic backtracking of fish larvae by  individual-based modelling. M arine Ecology 
Progress Series, 347: 221-232.

Codling, E. A., Hill, N. A., Pitchford, J. W., and Simpson, S. D. 2004. R andom  w alk m odels for 
the m ovem ent and recruitm ent of reef fish larvae. M arine Ecology Progress Series, 279: 
215-224.

Conway, D. V. P., Coombs, S. H., Lindley, J. A., and Llewellyn, C. A. 1999. Diet of mackerel 
(Scomber scombrus) larvae at the shelf edge to the southw est of the British Isles and the in­
cidence of piscivory and coprophagy. Vie Milieu, 49: 213-220.

Cosner, C., DeAngelis, D. L., Ault, J. S., and Olson, D. B. 1999. Effects of spatial grouping on the 
functional response of predators. Theoretical Population Biology, 56: 65-75.

Cowan, J. H., Rose, K. A., Rutherford, E. S., and H oude, E. D. 1993. Individual-based m odel of 
young-of-the-year striped bass population dynamics. II. Factors affecting recruitm ent in 
the Potom ac River, M aryland. Transactions of the American Fisheries Society, 122: 439- 
458.

Cowan, J. H., H oude, E. D., and Rose, K. A. 1996. S ize-dependent vulnerability of m arine fish 
larvae to predation: an individual-based num erical experiment. ICES Journal of M arine 
Science, 53: 23-37.

Cowen, R. K., Paris, C. B., Fortuna, J. L., and Olson, D. B. 2003. The role of long distance d isper­
sal in replenishing m arine populations. Gulf and Caribbean Research, 14:129-137.

Cowen, R. K., Paris, C. B., and Srinivasan, A. 2006. Scaling of connectivity in m arine popula­
tions. Science, 311: 522-527.

Crowder, L. B., Lym an, S. J., Figueira, W. F., and Priddy, J. 2000. Source-sink population dy­
nam ics and the problem  of siting m arine reserves. Bulletin of M arine Science, 66: 799-820.

Cum m ings, J. A. 2005. O perational m ultivariate ocean data assimilation. Q uarterly  Journal of 
the Royal M eteorological Society, 131: 2583-3604.



M odelling  p h y sica l-b io lo g ica l in te rac tio n s  d u rin g  fish e a rly  life

Dahlgren, C. P., Kellison, G. T., Adams, A. J., Gillanders, B. M., Kendall, M. S., Layman, C. A., 
Ley, J. A., et al. 2006. M arine nurseries and effective juvenile habitats: concepts and appli­
cations. M arine Ecology Progress Series, 312: 291-295.

DeAngelis, D. L., and Rose, K. A. 1992. W hich individual-based approach is m ost appropriate 
for a given problem ? In Individual-Based M odels and A pproaches in Ecology: Popula­
tions, Com m unities and Ecosystems, pp. 66-87. Ed. by  D. L. DeAngelis and L. J. Gross. 
Chapm an and Haii, N ew  York, USA. 525 pp.

Delhez, E. J. M., Damm, P., de Goede, E., de Kok, J. M., Dumas, F., Gerritsen, H., Jones, J. E., et 
al. 2004. Variability of shelf-seas hydrodynam ic models: lessons from  the NOMADS2 Pro­
ject. Journal of M arine Systems, 45: 39-53.

De Oliveira, J. A. A., and Butterworth, D. S. 2005. Limits to the use of environm ental indices to 
reduce risk and/or increase yield in the South African anchovy fishery. African Journal of 
M arine Science, 27:191-203.

DeYoung, B., H eath, M., W erner, F., Chai, F., Megrey, B., and M onfray, P. 2004. Challenges of 
m odelling decadal variability in ocean basin ecosystems. Science, 304:1463-1466.

Doherty, P. J. 1983. Diel, lunar and seasonal rhythm s in the reproduction of two tropical 
damselfishes: Pomacentrus flavicauda and P. wardi. M arine Biology, 75: 215-224.

Doherty, P. J., and M cllwain, J. 1996. M onitoring larval fluxes th rough the surf zones of A ustra­
lian coral reefs. M arine and Freshw ater Research, 47: 383-390.

Doherty, P. J., Dufour, V., Galzin, R., Hixon, M. A., M eekan, M. G., and Planes, S. 2004. H igh 
m ortality  during  settlem ent is a population  bottleneck for a tropical surgeonfish. Ecology, 
85: 2422-2428.

Dower, J. F., Miller, T. J., and Leggett, W. C. 1997. The role of microscale turbulence in the feed­
ing ecology of larval fish. A dvances in M arine Biology, 31:169-220.

Edw ards, A., and Brindley, J. 1996. Oscillatory behaviour in a three-com ponent p lankton popu ­
lation m odel. Dynam ics and Stability of Systems, 11: 347-370.

Edw ards, A., and Yooi, A. 2000. The role of higher predation  in p lankton population  models. 
Journal of Plankton Research, 22:1085-1112.

Edw ards, C., Powell, T., and Batcheider, H. 2000. The stability of an NPZ m odel subject to real­
istic levels of vertical mixing. Journal of M arine Research, 58: 37-60.

Ellien, C., Thibaut, E., Dumas, F., Salomon, J-C., and Nival, P. 2004. A m odelling study  of the 
respective role of hydrodynam ic processes and larval m ortality  on larval dispersal and re­
cruitm ent on benthic invertebrates: example of Pectinaria koreni (Annelida: Polycheta) in 
the Bay of Seine (English Channel). Journal of P lankton Research, 26:117-132.

Elliott, J. K., Elliott, J. M., and Mariscal, R. N. 1995. H ost selection, location, and association 
behaviours of anem onefishes in field selection experim ents. M arine Biology, 122: 377-389.

Fiksen, 0 .,  and Folkvord, A. 1999. M odelling grow th and ingestion processes in herring  Clupea 
harengus larvae. M arine Ecology Progress Series, 184: 273-289.

Fiksen, 0 .,  and MacKenzie, B. R. 2002. Process-based m odels of feeding and prey  selection in 
larval fish. M arine Ecology Progress Series, 243:151-164.

Fiksen, 0 .,  Utne, A. C. W., Aksnes, D. L., Eiane, K., Helvik, J. V., and Sundby, S. 1998. M odel­
ling the influence of light, turbulence and ontogeny on ingestion rates in larval cod and 
herring. Fisheries Oceanography, 7: 355-363.

Fiksen, 0 ., Jorgensen, C., Kristiansen, T., Vikebo, F., and Huse, G. 2007. L inking behavioural 
ecology and oceanography: larval behaviour determ ines growth, m ortality  and dispersal. 
M arine Ecology Progress Series, 347:195-205.

Fisher, R., and Bellwood, D. R. 2002. The influence of sw im m ing speed on sustained sw im m ing 
perform ance of late-stage reef fish larvae. M arine Biology, 140: 801-807.



ICES C o o p e ra tiv e  R esearch  R eport N o. 2 9 5

Fisher, R., and Beilwood, D. R. 2003. U ndisturbed sw im m ing behaviour and nocturnal activity 
of coral reef fish larvae. M arine Ecology Progress Series, 263:177-188.

Fisher, R., and Flogan, D. 2007. M orphological predictors of sw im m ing speed: a case study  of 
pre-settlem ent juvenile coral reef fishes. Journal of Experim ental M arine Biology and Ecol­
ogy, 210: 2436-2443.

Fisher, R., and W ilson, S. K. 2004. M axim um  sustainable sw im m ing speeds of late-stage larvae 
of nine species of reef fishes. Journal of Experim ental M arine Biology and Ecology, 312: 
171-186.

Fisher, R., Bellwood, D. R., and Job, S. D. 2000. D evelopm ent of sw im m ing abilities in reef fish 
larvae. M arine Ecology Progress Series, 202:163-173.

Flesch, T. K., W ilson, J. D., and Yee, E. 1995. Backward-time Lagrangian stochastic dispersion 
m odels and their application to estim ate gaseous emissions. Journal of A pplied M eteorol­
ogy, 34:1320-1332.

Flierl, G., G m nbaum , D., Levin, S., and Olson, D. 1999. From  individuals to aggregations: the 
in terplay betw een behaviour and physics. Journal of Theoretical Biology, 196: 397-454.

Folkvord, A. 2005. Com parison of size-at-age of larval A tlantic cod (Gadus morhua) from  differ­
ent populations based on size- and tem perature-dependent grow th m odels. Canadian 
Journal of Fisheries and Aquatic Sciences, 62:1037-1052.

Fuiman, L. A., and Cowan, J. H . 2003. Behaviour and recruitm ent success in fish larvae: repeat­
ability and covariation of survival skills. Ecology, 84: 56-73.

Fuiman, L. A., and Fliggs, D. M. 1997. Ontogeny, grow th and the recruitm ent process. In Early 
Life Flistory and Recruitm ent in Fish Populations, pp. 225-249. Ed by R. C. Cham ber and
E. A. Trippel. C hapm an and Flail, London, UK.

Fuiman, L. A., and M agurran, A. E. 1994. Developm ent of p redator defences in fishes. Reviews 
in Fish Biology and Fisheries, 4:145-185.

Galbraith, P., Browman, H. I., Racca, R. G., Skiftesvik, A. B., and St-Pierre, J-F. 2004. The effect 
of turbulence on the energetics of foraging in Atlantic cod (Gadus morhua) larvae. M arine 
Ecology Progress Series, 281: 241-257.

Gallager, S. M., Yamazaki, H., and Davis, C. S. 2004. Contribution of fine-scale vertical struc­
ture and sw im m ing behaviour to form ation of plankton layers on Georges Bank. M arine 
Ecology Progress Series, 267: 27-43.

Gallego, A., and Fleath, M. R. 1994. The developm ent of schooling behavior in Atlantic Flerring 
Clupea harengus. Journal of Fish Biology, 45(4): 569-588.

Gallego, A., Fleath, M. R., W right, P., and M arteinsdóttir, G. 1999. An em pirical m odel of 
g row th in the pelagic early life history stages of N orth  Sea haddock. ICES Docum ent CM 
1999/Y:13. 9 pp.

Gibson, G., M usgrave, D., and Flinckley, S. 2005. N on-linear dynam ics of a pelagic ecosystem 
m odel w ith m ultiple p redator and prey  types. Journal of P lankton Research, 27: 427-447.

Gneiting, T., and Raftery, A. E. 2005. W eather forecasting w ith  ensemble m ethods. Science, 310: 
248-249.

Gray, C. A. 1996. Do therm oclines explain the vertical distributions of larval fishes in the dy­
nam ic coastal w aters of south-eastern Australia? A ustralian Journal of M arine and Fresh­
w ater Research, 47:183-190.

Gray, C. A., and Kingsford, M. J. 2003. Variability in therm ocline dep th  and strength, and the 
relationships w ith  vertical distributions of fish larvae and m esozooplankton in dynam ic 
coastal waters. M arine Ecology Progress Series, 247: 221-224.

Griffa, A. 1996. Stochastic m odeling in physical oceanography: applications of stochastic parti­
cle m odels to oceanographic problem s. In Stochastic M odelling in Physical Oceanography,



M odelling  p h y sica l-b io lo g ica l in te rac tio n s  d u rin g  fish e a rly  life

pp. 114-140. Ed. by  R. J. Adler, P. M üller, and B. Rozovoskii. Birkháuser, Boston, MA, 
USA. 468 pp.

Grimm, V., and Railsback, S. F. 2005. Individual-Based M odeling and Ecology. Princeton U ni­
versity Press, Princeton, NJ, USA. 428 pp.

H adfield, M. G. 1998. The D. P. W ilson Lecture. Research on settlem ent and m etam orphosis of 
m arine invertebrate larvae past, present and future. Biofouling, 12: 9-29.

Hanski, I. 1989. M etapopulation dynamics: Does it help to have m ore of the same? Trends in 
Ecology and Evolution, 4:113-114.

H aw ryshyn, C. W. 2000. U ltraviolet polarization vision in fishes: possible m echanism s for cod­
ing e-vector. Philosophical Transactions of the Royal Society of London, Series B, Biologi­
cal Sciences, 355:1187-1190.

H eath, M. R., and Gallego, A. 1997. From  the biology of the individual to the dynam ics of the 
population: bridging the gap in fish early life studies. Journal of Fish Biology, 51:1-29.

H eath, M. R., and Gallego, A. 1998. Biophysical m odelling of the early life stages of haddock, 
Melanogrammus aeglefinus, in the N orth  Sea. Fisheries Oceanography, 7:110-125.

Helbig, J. A., and Pepin, P. 1998a. Partitioning the influence of physical processes on the esti­
m ation of ichthyoplankton m ortality  rates. I. Theory. Canadian Journal of Fisheries and 
Aquatic Sciences, 55: 2189-2205.

Helbig, J. A., and Pepin, P. 1998b. Partitioning the influence of physical processes on the esti­
m ation of ichthyoplankton m ortality  rates. R. Application to sim ulated and field data. Ca­
nadian  Journal of Fisheries and Aquatic Sciences, 55: 2206-2220.

H erm ann, A. J., H inckley, S., Megrey, B. A., and Stabeno, P. J. 1996. Interannual variability of 
the early life history of walleye pollock near Shelikof Strait as inferred from  a spatially ex­
plicit, individual-based m odel. Fisheries Oceanography, 5: 39-57.

H erm ann, A., Hinckley, S., Megrey, B., and N app, J. 2001. A pplied and theoretical considera­
tions for constructing spatially explicit individual-based m odels of m arine larval fish that 
include m ultiple trophic levels. ICES Journal of M arine Science, 58:1030-1041.

Hill, A. E. 1994. H orizontal Zooplankton dispersal by  diel vertical m igration in S2 tidal currents 
on the northw est European continental shelf. Continental Shelf Research, 14: 491-506.

Hill, H., Hill, C., Follows, M., and Dutkiewicz, S. 2004. Is there a com putational advantage to 
offline tracer m odeling at very h igh resolution? Geophysical Research Abstracts, 6, 
EGU04-A-06348, 2004.1017.

H illgruber, N., and K loppm ann, M. 2001. Small-scale patterns in distribution and feeding of 
Atlantic m ackerel (Scomber scombrus L.) larvae in the Celtic sea w ith  special regard to inter- 
cohort cannibalism. H elgoland M arine Research, 55:135-149.

H illgruber, N., K loppm ann, M., W ahl, E., and von W esternhagen, H. 1997. Feeding of larval 
blue w hiting and A tlantic mackerel: a com parison of foraging strategies. Journal of Fish 
Biology, 51(Suppl. A): 230-249.

Hinckley, S., H erm ann, A. J., and Megrey, B. A. 1996. D evelopm ent of a spatially explicit, indi­
vidual-based m odel of m arine fish early life history. M arine Ecology Progress Series, 139: 
47-68.

Hinckley, S., H erm ann, A. J., Mier, K. L., and Megrey, B. A. 2001. Im portance of spaw ning loca­
tion and tim ing to successful transport to nursery  areas: a sim ulation study  of Gulf of 
Alaska walleye pollock. ICES Journal of M arine Science, 58:1042-1052.

Hinckley, S., N app, J., H erm ann, A., and Parada, C. In press. Sim ulation of physically m ediated 
variability in prey  resources for a larval drift fish: a three-dim ensional NPZ m odel. Fisher­
ies Oceanography.



ICES C o o p e ra tiv e  R esearch  R eport N o. 2 9 5

Hindell, J. S., Jenkins, G. P., M oran, S. M., and Keough, M. J. 2003. Swim m ing ability and be­
haviour of post-larvae of a tem perate m arine fish re-entrained in the pelagic environm ent. 
Oecologia, 135:158-166.

H inrichsen, H-H., Schmidt, J. O., Petereit, C., and M öllmann, C. 2005. Survival probability of 
Baltic larval cod in relation to spatial overlap patterns w ith  their p rey  obtained from  drift 
m odel studies. ICES Journal of M arine Science, 62: 878-885.

Hofm ann, E. E., and Friedrichs, M. A. M. 2002. Predictive m odeling for m arine ecosystems. In 
The Sea, Volume 12: Biological-Physical Interactions in the Ocean, pp. 537-565. Ed. by A. 
R. Robinson, J. J. M cCarthy, and B. J. Rothschild. H arvard  U niversity Press, Cambridge, 
MA, USA. 662 pp.

Holbrook, S. J., and Schmitt, R. J. 1999. In situ nocturnal observations of reef fishes using infra­
red  video. In Proceedings of the 5th Indo-Pacific Fish Conference, N oum ea, pp. 805-812. 
Ed. by B. Seret and J-Y. Sire. Societie Française Ichtyologie, Paris, France. 866 pp.

H oude, E. D. 1989. Com parative growth, mortality, and energetics of m arine fish larvae: tem ­
perature and im plied latitudinal effects. Fishery Bulletin US, 87: 471-495.

H oude, E. D. 1994. Difference betw een m arine and freshw ater fish larvae: im plications for re­
cruitment. ICES Journal of M arine Science, 51: 91-97.

H oude, E. D. 1997. Patterns and trends in larval-stage grow th and m ortality  of teleost fish. 
Journal of Fish Biology, 51(Suppl. A): 52-83.

H oude, E. D. 2002. M ortality. In Fishery Science: The U nique Contributions of Early Life 
Stages, pp. 64-87. Ed. by  L. A. Fuim an and R. G. W erner. Blackwell Publishing, Oxford, 
UK. 326 pp.

H oude, E. D., and Secor, D. H. 1996. Episodic w ater quality events and striped bass recruit­
ment: larval m ark-recapture experim ents in the Nanticoke River. Final Report to M aryland 
D epartm ent of N atural Resources, Contract N um ber CB93-006-002. U niversity of M ary­
land System, Center for Environm ental and Estuarine Studies, Chesapeake Biological 
Laboratory, Solomons, MD, USA. (UMCEES) CBL 96-083.

H oude, E. D., and Zastrow, C. E. 1993. Ecosystem- and taxon-specific dynam ic and energetics 
properties of larval fish assemblages. Bulletin of M arine Science, 53: 290-335.

H um ston, R., Olson, D., and Ault, J. 2004. Behavioural assum ptions in m odels of fish m ove­
m ent and their influence on population dynamics. Transactions of the American Fisheries 
Society, 133:1304-1328.

H unter, J., Craig, P., and Phillips, H. 1993. On the use of random -w alk m odels w ith spatially 
variable diffusivity. Journal of C om putational Physics, 106: 366-376.

H uth, A., and Wissel, C. 1992. The sim ulation of the m ovem ent of fish schools. Journal of Theo­
retical Biology, 156: 365-385.

Irisson, J-O., Levan, A., De Lara, M., and Planes, S. 2004. Strategies and trajectories of coral reef 
fish larvae optim izing self-recruitment. Journal of Theoretical Biology, 227: 205-218.

Job, S. D., and Bellwood, D. R. 2000. Light sensitivity in larval fishes: im plications for vertical 
zonation in the pelagic zone. Limnology and O ceanography, 45: 362-371.

Jones, G. P., Planes, S., and Thorrold, S. R. 2005. Coral reef fish larvae settle close to home. C ur­
rent Biology, 15:1314-1318.

Jones, J. E. 2002. Coastal and shelf-sea m odelling in the European context. O ceanography and 
M arine Biology: A n A nnual Review, 40: 37-141.

Jorgensen, C., Dunlop, E. S., Opdal, A. F., and Fiksen, 0 .  2008. The evolution of spaw ning m i­
grations: the role of individual state, population  structure, and fishing-induced changes. 
Ecology, 89(12): 3436-3448.



M odelling  p h y sica l-b io lo g ica l in te rac tio n s  d u rin g  fish e a rly  life

Kendall, A. W., Ahlstrom, E. H., and M oder, H. G. 1984. Introduction: the early life history 
stages of fishes and their characters. In O ntogeny and Systematics of Fishes, pp. 11-22. Ed. 
by  H. G. M oder, J. W. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, and S. L. 
Richardson. Allen Press, Lawrence, KS. 760 pp.

Kingsford, M. J., Leis, J. M., Shanks, A., Lindem an, K., M organ, S., and Pineda, J. 2002. Sensory 
environm ents, larval abilities and local self-recruitment. Bulletin of M arine Science, 70: 
309-340.

Kitchell, J. F., Stewart, D. J., and W eininger, D. 1977. Applications of a bioenergetics m odel to 
yellow perch (Perca flavescens) and walleye (Stizostedion vitreum vitreum). Journal of the 
Fisheries Research Board of Canada, 34:1922-1935.

Kleijnen, J. 2005. An overview  of the design and analysis of sim ulation experim ents for sensi­
tivity analysis. European Journal of O perational Research, 164: 287-300.

Klimley, A., Anderson, S., Pyle, P., and H enderson, R. 1992. Spatio-tem poral patterns of white 
shark (Carcharodon carcharias) predation at the south Farallón islands, California, USA. 
Copeia, 1992: 680-690.

Kloeden, P., and Platen, E. 1995. N um erical Solution of Stochastic Differential Equations. 
Springer, N ew  York, USA. 632 pp.

Kristiansen, T., Fiksen, 0 .,  and Folkvord, A. 2007. M odelling feeding, grow th and habitat selec­
tion in larval cod: observations and m odel predictions in a m acrocosm  environm ent. Ca­
nadian  Journal of Fisheries and Aquatic Sciences, 64:136-151.

Lara, M. R. 2001. M orphology of the eye and visual acuities in the settlem ent-intervals of some 
coral reef fishes (Labridae, Scaridae). Environm ental Biology of Fishes, 62: 365-378.

Lefebvre, A., Ellien, C., Davoult, D., Thiébaut, E., and Salomon, J-C. 2003. Pelagic dispersal of 
the brittle-star Ophiothrix fragilis larvae in a m egatidal area (English Channel, France) ex­
am ined using an advection/diffusion m odel. Estuarine, Coastal, and Shelf Science, 57: 421- 
433.

Legg, B. J., and Raupach, M. R. 1982. M arkov-chain sim ulation of particle dispersion in inho- 
m ogeneous flows: the m ean drift velocity induced by a gradient in Eulerian velocity vari­
ance. B oundary Layer M eteorology, 66: 3-13.

Leis, J. M. 1986. Epibenthic schooling by larvae of the clupeid fish Spratelloides gracilis. Japanese 
Journal of Ichthyology, 33: 67-69.

Leis, J. M. 2004. Vertical distribution behaviour and its spatial variation in late-stage larvae of 
coral-reef fishes during  the day. M arine and Freshw ater Behaviour and Physiology, 37: 
65-88.

Leis, J. M. 2006. Are larvae of dem ersal fishes p lankton or nekton? Advances in M arine Biol­
ogy, 51: 57-141.

Leis, J. M. 2007. Behaviour as inpu t for m odelling dispersal of fish larvae: behaviour, biogeog­
raphy, hydrodynam ics, ontogeny, physiology and phylogeny m eet hydrography. M arine 
Ecology Progress Series, 347:185-193.

Leis, J. M., and Carson-Ewart, B. M. 1998. Com plex behaviour by  coral-reef fish larvae in open- 
w ater and near-reef pelagic environm ents. Environm ental Biology of Fishes, 53: 259-266.

Leis, J. M., and Carson-Ewart, B. M. 1999. In situ  sw im m ing and settlem ent behaviour of larvae 
of an Indo-Pacific coral-reef fish, the coral trou t (Pisces, Serranidae, Plectropomus leopardus). 
M arine Biology, 134: 51-64.

Leis, J. M., and Carson-Ewart, B. M. 2000. Behaviour of pelagic larvae of four coral-reef fish 
species in the ocean and an atoll lagoon. Coral Reefs, 19: 247-257.

Leis, J. M., and Carson-Ewart, B. M. 2002. In situ settlem ent behaviour of dam selfish larvae 
(Pisces: Pom acentridae). Journal of Fish Biology, 61: 325-346.



ICES C o o p e ra tiv e  R esearch  R eport N o. 2 9 5

Leis, J. M., and Carson-Ewart, B. M. 2003. O rientation of pelagic larvae of coral-reef fishes in 
the ocean. M arine Ecology Progress Series, 252: 239-253.

Leis, J. M., and Lockett, M. M. 2005. Localization of reef sounds by settlem ent-stage larvae of 
coral-reef fishes (Pomacentridae). Bulletin of M arine Science, 76: 715-724.

Leis, J. M., and McCormick, M. I. 2002. The biology, behaviour and ecology of the pelagic, lar­
val stage of coral-reef fishes. In Coral Reef Lishes: N ew  Insights into Their Ecology, pp. 
171-199. Ed. by P. P. Sale. Academic Press, San Diego, CA, USA. 549 pp.

Leis, J. M., Sweatm an, H. P. A., and Reader, S. E. 1996. W hat the pelagic stages of coral reef 
fishes are doing out in blue water: daytim e field observations of larval behavioural capa­
bilities. A ustralian Journal of M arine and Preshw ater Research, 47: 401-411.

Leising, A., and Pranks, P. 1999. Larval A tlantic cod (Gadus morhua) and haddock 
(.Melanogrammus aeglefinus) grow th on Georges Bank: a m odel w ith tem perature, prey  size, 
and turbulent forcing. Canadian Journal of Fisheries and Aquatic Sciences, 56: 25-36.

Letcher, B. H., Rice, J. A., Crowder, L. B., and Rose, K. A. 1996. Variability in survival of larval 
fish: disentangling com ponents w ith a generalized individual-based m odel. C anadian 
Journal of Fisheries and Aquatic Sciences, 53: 787-801.

Levins, R. 1969. Some dem ographic and genetic consequences of environm ental heterogeneity 
for biological control. Bulletin of the Entom ology Society of America, 71: 237-240.

Lewis, D. M. 2003. Planktonic encounter rates in hom ogeneous isotropic turbulence: the case of 
predators w ith lim ited fields of sensory perception. Journal of Theoretical Biology, 222: 
73-97.

Li, M., Zhong, L., and Boicourt, W. C. 2005. Simulations of Chesapeake Bay estuary: sensitivity 
to turbulence m ixing param eterizations and com parison w ith  observations. Journal of 
Geophysical Research, 110: C12004.

Lima, S. L., and Dill, L. M. 1990. Behavioral decisions m ade under the risk of predation  -  a re­
view  and prospectus. C anadian Journal of Zoology, 68: 619-640.

Lough, R. G., Buckley, L. J., W erner, F. E., Q uinlan, J. A., and Edwards, K. P. 2005. A general 
biophysical m odel of larval cod (Gadus morhua) grow th applied to populations on Georges 
Bank. Fisheries O ceanography, 14: 241-262.

Lynch, D. R., Ip, J. T. C., Naimie, C. E., and W erner, F. E. 1996. Com prehensive coastal circula­
tion m odel w ith application to the Gulf of Maine. Continental Shelf Research, 16: 875-906.

MacKenzie, B. R., and Kiorboe, T. 2000. Larval fish feeding and turbulence: a case for the 
downside. Limnology and O ceanography, 45:1-10.

MacKenzie, B. R., Miller, T. J., Cyr, S., and Leggett, W. C. 1994. Evidence for a dom e-shaped 
relationship betw een turbulence and larval fish ingestion rates. Limnology and Oceanog­
raphy, 39:1790-1799.

Maes, J., Limburg, K. E., Van de Putte, A., and Ollevier, F. 2005. A spatially explicit, individual- 
based m odel to assess the role of estuarine nurseries in the early life h istory of N orth  Sea 
herring, Clupea harengus. Fisheries O ceanography, 14:17-31.

M asuda, R., Shoji, J., Nakayam a, S., and Tanaka, M. 2003. D evelopm ent of schooling behavior 
in Spanish m ackerel Scomberomorus niphonius during  early ontogeny. Fisheries Science, 69: 
772-776.

McBride, R. S., and Able, K. W. 1998. Ecology and fate of butterflyfishes, Chaetodon spp., in the 
tem perate, w estern N orth Atlantic. Bulletin of M arine Science, 63: 401-416.

McCormick, M. I., and Mackey, L. J. 1997. Post-settlem ent transition in coral reef fishes: over­
looked com plexity in niche shifts. M arine Ecology Progress Series, 153: 247-257.

McGurk, M. D. 1986. N atural m ortality  of m arine pelagic fish eggs and larvae: role of spatial 
patchiness. M arine Ecology Progress Series, 34: 227-242.



M odelling  p h y sica l-b io lo g ica l in te rac tio n s  d u rin g  fish e a rly  life

M eekan, M., and Fortier, L. 1996. Selection for fast grow th during  the larval life of A tlantic cod 
Gadus morhua on the Scotian Shelf. M arine Ecology Progress Series, 137: 25-37.

Megrey, B. A., and Flinckley, S. 2001. Effect of turbulence on feeding of larval fishes: a sensitiv­
ity analysis using an individual-based model. ICES Journal of M arine Science, 58: 1015- 
1029.

Megrey, B. A., and Macklin, S. A. 2007. Critical analysis of FOCI recruitm ent predictions for the 
Gulf of Alaska, 1992-2007. U npublished report. B. Megrey, AFSC, Seattle, WA, USA.

Megrey, B. A., and W espestad, V. G. 1997. Conceptual m odel of relationships betw een pollock 
recruitm ent and biophysical correlates in the Southeast Bering Sea. SEBSCC (Southeast 
Bering Sea Carrying Capacity) A nnual Reports, Fiscal Year 1997.

Megrey, B. A., H ollow ed, A. B., Hare, S. R., Macklin, S. A., and Stabeno, P. J. 1996. C ontribu­
tions of FOCI research to forecasts of year-class strength of walleye pollock in Shelikof 
Strait, Alaska. Fisheries O ceanography, 5(Suppl. 1): 189-203.

Miller, T. J., Crowder, L. B., Rice, J. A., and Marschall, E. A. 1988. Larval size and recruitm ent 
m echanism s in fishes: tow ards a conceptual framework. C anadian Journal of Fisheries and 
Aquatic Sciences, 45:1657-1670.

M ontgom ery, J. C., Jeffs, A., Simpson, S. D., M eekan, M. G., and Tindle, C. 2006. Sound as an 
orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. A dvances in 
M arine Biology, 51:143-239.

Morse, W. W. 1989. Catchability, grow th and m ortality  of larval fishes. Fishery Bulletin US, 87: 
417-446.

Mullon, C., Cury, P., and Penven, P. 2002. Evolutionary individual-based m odel for the re­
cruitm ent of anchovy (Engraulis capensis) in the southern Benguella. C anadian Journal of 
Fisheries and Aquatic Sciences, 59: 910-922.

Mullon, C., Freon, P., Parada, C., Van Der Lingen, C., and H uggett, J. 2003. From  particles to 
individuals: m odelling the early stages of anchovy (Engraulis capensis/encrasicolus) in the 
southern Benguella. Fisheries O ceanography, 12: 396-406.

Myers, R. A., and Cadigan, N. G. 1993. D ensity-dependent juvenile m ortality  in m arine dem er­
sal fish. C anadian Journal of Fisheries and Aquatic Sciences, 50:1576-1590.

Nagelkerken, I., and van der Velde, G. 2003. Connectivity betw een coastal habitats of two oce­
anic Caribbean Islands as inferred from  ontogenetic shifts by coral reef fishes. Gulf and 
Caribbean Research, 14: 43-59.

Nathan, R. 2006. Long-distance dispersal of plants. Science, 313: 786-788.

Nelson, J. S. 2006. Fishes of the W orld, 4th edition. John Wiley, H oboken, NJ, USA. 601 pp.

Nelson, L., Reynal, L., Rambally, J., Punnet, S., Oxenford, H., and Fanning, P. 2006. Fish and 
invertebrates identified during  the Lesser Antilles Pelagic Ecosystem (LAPE) project, 26 
A pril-9  M ay 2004. 59th A nnual Gulf and Caribbean Fisheries Institute Meeting, Belize 
City, N ovem ber 2006. Abstract, p. 120.

Nishi, T., Kaw am ura, G., and M atsum oto, K. 2004. M agnetic sense in the Japanese eel, Anguilla 
japonica, as determ ined by conditioning and electrocardiography. Journal of Experim ental 
Biology, 207: 2965-2970.

North, E. W., H ood, R. R., Chao, S-Y., and Sanford, L. P. 2006. U sing a random  displacem ent 
m odel to sim ulate turbulent particle m otion in a baroclinie frontal zone: a new  im plem en­
tation scheme and m odel perform ance tests. Journal of M arine Systems, 60: 365-380.

O 'Connor, M. I., Bmno, J. F., Gaines, S. D., H alpem , B. S., Lester, S. E., Kinlan, B. P., and Weiss, 
J. M. 2007. Tem perature control of larval dispersal and the im plications for m arine ecol­
ogy, evolution, and conservation. Proceedings of the National Academ y of Sciences of the 
USA, 104:1266-1271.



ICES C o o p e ra tiv e  R esearch  R eport N o. 2 9 5

Okubo, A. 1971. Oceanic diffusion diagram s. Deep Sea Research, 18: 789-802.

Olia, P. 2002. T ransport properties of heavy particles in high Reynolds num ber turbulence. 
Physics of Fluids, 14: 4266-4277.

Otterlei, E., N yham m er, G., Folkvord, A., and Stefansson, S. O. 1999. Tem perature- and size- 
dependent grow th of larval and early juvenile A tlantic cod (Gadus morhua): a com parative 
study  of N orw egian coastal cod and northeast Arctic cod. Canadian Journal of Fisheries 
and Aquatic Sciences, 56: 2099-2111.

Parada, C., Flinckley, S., Dorn, M., Flermann, A., and Megrey, B. In review. Estim ating walleye 
pollock recruitm ent in the Gulf of Alaska using a biophysical model: analysis of physical 
processes and com parison w ith  stock assessm ent m odels and data. M arine Ecology Pro­
gress Series.

Paradis, A. R., Pepin, P., and Brown, J. A. 1996. V ulnerability of fish eggs and larvae to preda­
tion: review  of the influence of the relative size of p rey  and predator. C anadian Journal of 
Fisheries and Aquatic Sciences, 53:1226-1235.

Paris, C. B., and Cowen, R. K. 2004. Direct evidence of a biophysical retention m echanism  for 
coral reef fish larvae. Timnology and O ceanography, 49:1964-1979.

Paris, C. B., Chérubin, T. M., and Cowen, R. K. 2007. Surfing, spinning, or diving from  reef to 
reef: effects on population connectivity. M arine Ecology Progress Series, 347: 285-300.

Paris-Limouzy, C. B. 2001. T ransport Dynam ics and Survival of the Pelagic Tarval Stages in a 
Coral Reef Fish, the Bicolor Damselfish, Stegastes partitus (Poey). State University of N ew  
York at Stony Brook, USA. 246 pp.

Pauly, D., Christensen, V., and W alters, C. 2000. Ecopath, Ecosim, and Ecospace as tools for 
evaluating ecosystem  im pact of fisheries. ICES Journal of M arine Science, 57: 697-706.

Pearre, S. 1979. Problem s of detection and in terpretation of vertical migration. Journal of P lank­
ton Research, 1: 29-44.

Pepin, P. 1991. Effect of tem perature and size on developm ent, mortality, and survival rates of 
the pelagic early life h istory stages of m arine fish. Canadian Journal of Fisheries and 
A quatic Sciences, 48: 503-518.

Pepin, P. 1993. An appraisal of the size-dependent m ortality  hypothesis for larval fish: com­
parison of a m ultispecies study  w ith an em pirical review. Canadian Journal of Fisheries 
and Aquatic Sciences, 50: 2166-2176.

Pepin, P. 2004. Early life history studies of p rey -p re d a to r interactions: quantifying the stochas­
tic individual responses to environm ental variability. Canadian Journal of Fisheries and 
A quatic Sciences, 61: 659-671.

Pepin, P., and Helbig, J. 1997. D istribution and drift of A tlantic Cod (Gadus morhua) eggs and 
larvae on the northeast N ew foundland Shelf. Canadian Journal of Fisheries and Aquatic 
Sciences, 54: 670-685.

Peterson, I., and W roblewski, J. S. 1984. M ortality rate of fishes in the pelagic ecosystem. Cana­
dian Journal of Fisheries and Aquatic Sciences, 41:1117-1120.

Petitgas, P., Magri, S., and Tazure, P. 2006. One-dim ensional biophysical m odelling of fish egg 
vertical distributions in shelf seas. Fisheries O ceanography, 15: 413-428.

Planes, S. 2002. Biogeography and larval dispersal inferred from  population genetic analysis. In 
Coral Reef Fishes: Dynamic and Diversity in a Com plex Ecosystem, pp. 201-220. Ed. by  P.
F. Sale. Academic Press, San Diego, CA, USA. 549 pp.

Plaut, I. 2001. Critical sw im m ing speed: its ecological relevance. Com parative Biochemistry 
and Physiology, P art A, 131: 41-50.

Porch, C. E. 1998. A num erical study  of larval fish retention along the southeast Florida coast. 
Ecological M odelling, 109: 35-59.



M odelling  p h y sica l-b io lo g ica l in te rac tio n s  d u rin g  fish e a rly  life

Potter, J. R., and Chitre, M. 2006. Do fish fry use em ergent behaviour in schools to find coral 
reefs by sound? Eos Transactions, AGU, 87(36), Ocean Science M eeting Supplem ent, Ab­
stract OS54E-02.

Prestidge, M. C., Diarris, R. P., and Taylor, A. H. 1995. A m odelling investigation of copepod 
egg production in the Irish Sea. ICES Journal of M arine Science, 52: 693-703.

Puvanendran, V., and Brown, J. A. 1998. Effect of light intensity on the foraging and grow th of 
Atlantic cod larvae: in terpopulation difference? M arine Ecology Progress Series, 167: 207- 
214.

Radach, G., and Moll, A. 2006. Review of three-dim ensional ecological m odelling related to the 
N orth  Sea shelf system. Part 2: M odel validation and data needs. O ceanography and M a­
rine Biology: An A nnual Review, 44:1-60.

Rice, J. A., Miller, T. J., Rose, K. A., Crowder, L. B., Marschall, E. A., Trebitz, A. S., and DeAn- 
gelis, D. L. 1993. G row th rate variation and larval survival: inferences from  an individual- 
based size-dependent population m odel. C anadian Journal of Fisheries and Aquatic Sci­
ences, 50:133-142.

Rissik, D., and Suthers, I. M. 2000. Enhanced feeding by pelagic juvenile m yctophid fishes 
w ithin a region of island-induced flow disturbance in the Coral Sea. M arine Ecology Pro­
gress Series, 203: 263-273.

Rodean, H. C. 1996. Stochastic Lagrangian M odels of Turbulent Diffusion. American M eteoro­
logical Society, Boston, MA, USA. 84 pp.

Rose, K. A., and Cowan, J. H. 1993. Individual-based m odel of young-of-the-year striped bass 
population  dynamics. I. M odel description and baseline simulations. Transactions of the 
American Fisheries Society, 122: 415-438.

Rose, K. A., Tyler, J., Chambers, R., Klein-MacPhee, G., and Danila, D. 1996. Sim ulating w inter 
flounder population dynam ics using coupled individual-based young-of-the-year and 
age-structured adu lt models. Canadian Journal of Fisheries and Aquatic Sciences, 53: 
1071-1091.

Rose, K. A., Rutherford, E. S., M cDermot, D. S., Forney, J. L., and Mills, E. L. 1999. Individual- 
based m odel of yellow perch and walleye populations in O neida Lake. Ecological M ono­
graphs, 69:127-154.

Ross, S. 2001. Simulation, 3rd edn. Academic Press, San Diego, CA, USA. 274 pp.

Rothschild, B. J., and M ullen, A. J. 1985. The inform ation content of stock-and-recruitm ent data 
and its non-param etric classification. Journal du  Conseil International pour l'Exploration 
de la Mer, 42:116-124.

Rothschild, B. Y., and Osborn, T. R. 1988. Small-scale turbulence and plankton contact rates. 
Journal of Plankton Research, 10: 465-474.

Runge, J., Franks, P., Gentleman, W., Megrey, B., Rose, K., W erner, F., and Zkardijan, B. 2005. 
Diagnostic and prediction of variability in secondary production and fish recruitm ent 
processes developm ents in physical-biological modeling. In The Sea, Volume 13, The 
Global Coastal Ocean: M ultiscale Interdisciplinary Processes, pp. 413-473. Ed. by A. R. 
Robinson, and K. Brink. H arvard  University Press, Cambridge, MA, USA. 1050 pp.

Santos, A. J. P., Nogueira, N., and M artins, H. 2005. Survival of sardine larvae off the Atlantic 
Portuguese coast: a prelim inary num erical study. ICES Journal of M arine Science, 62: 634- 
644.

Savoy, T. F., and Crecco, V. A. 1988. The tim ing and significance of density-dependent and 
density-independent m ortality  of American Shad, Alosa sapidissima. Fishery Bulletin US, 
86: 467-482.

Sawford, B. L., and Guest, F. M. 1991. Lagrangian statistical sim ulation of the tu rbulen t m otion 
of heavy particles. B oundary Layer M eteorology, 54:147-166.



ICES C o o p e ra tiv e  R esearch  R eport N o. 2 9 5

Scheffer, M., Baveco, J. M., DeAngelis, D. L., Rose, K. A., and van Nes, E. H. 1995. Super­
individuals: a sim ple solution for m odelling large populations on an individual basis. Eco­
logical M odelling, 80:161-170.

Schmitt, R. J., and Elolbrook, S. J. 1999. M ortality of juvenile damselfish: im plications for assess­
ing processes that determ ine abundance. Ecology, 80: 35-50.

Scott, B. E., M arteinsdottir, G., Begg, G. A., W right, P. J., and Kjesbu, O. S. 2006. Effects of 
population size/age structure, condition and tem poral dynam ics of spaw ning on repro­
ductive ou tpu t in A tlantic cod (Gadus morhua). Ecological M odelling, 191: 383-415.

SEAMAR. 2002. Shelf Edge Advection, M ortality and Recruitm ent. Contract No. CT98-3695, 
Final Report, M ay 2002. European Commission, DG XIV, Brussels, Belgium.

Searcy, S., and Sponaugle, S. 2001. Variable larval grow th in a coral reef fish. M arine Ecology 
Progress Series, 206: 213-226.

Sentchev, A., and Korotenko, K. 2004. Stratification and tidal current effects on larval transport 
in the eastern English Channel: observations and 3D m odeling. Environm ental F luid M e­
chanics, 4: 305-331.

Shepherd, J. G., and Cushing, D. H. 1980. A m echanism  for density-dependent survival of lar­
val fish as the basis of a stock-recru itm ent relationship. Journal du  Conseil International 
pour l'Exploration de la Mer, 39:160-167.

Simons, A. M. 2004. M any wrongs: the advantage of group navigation. T rends in Ecology and 
Evolution, 19: 453-455.

Sinclair, M., and Iles, T. 1988. Population richness of m arine fish species. Aquatic Living Re­
sources, 1: 71-83.

Skajaa, K., Femö, A., and Folkvord, A. 2004. Ontogenetic- and condition-related effects of star­
vation on responsiveness in herring  larvae (Clupea harengus L.) during  repeated  attacks by 
a m odel predator. Journal of Experimental M arine Biology and Ecology, 312: 253-269.

Skiftesvik, A. B. 1992. Changes in behaviour at onset of exogenous feeding in m arine fish lar­
vae. C anadian Journal of Fisheries and Aquatic Sciences, 49:1570-1572.

Smith, N. P., and Stoner, A. W. 1993. C om puter sim ulation of larval transport through tidal 
channels: role of vertical m igration. Estuarine, Coastal, and Shelf Science, 37: 43-58.

Song, Y. H., and H aidvogel, D. 1994. A semi-implicit ocean circulation m odel using  a general­
ized topography-follow ing coordinate system. Journal of Com putational Physics, 115: 
228-244.

Sponaugle, S., and Cowen, R. K. 1994. Larval duration  and recruitm ent patterns of two Carib­
bean gobies (Gobiidae): contrasting life histories in dem ersal spawners. M arine Biology, 
120:133-143.

Stobutzki, I. C., and Bellwood, D. R. 1994. An analysis of the sustained sw im m ing abilities of 
pre- and post-settlem ent coral reef fishes. Journal of Experim ental M arine Biology and 
Ecology, 175: 275-286.

Stobutzki, I. C., and Bellwood, D. R. 1998. N octurnal orientation to reefs by  late pelagic stage 
coral reef fishes. Coral Reefs, 17:103-110.

Suda, M., and Kishida, T. 2003. A spatial m odel of population  dynam ics of early life stages of 
Japanese sardine, Sardinops melanostictus, off the Pacific coast of Japan. Fisheries Oceanog­
raphy, 12: 85-99.

Sugden, A., and Pennisi, E. 2006. W hen to go, w here to stop. Science, 313: 775.

Sundby, S. 1983. A one-dim ensional m odel for the vertical distribution of pelagic fish eggs in 
the m ixed layer. Deep Sea Research, 30: 645-661.



1 0 0  I M odelling  p h y sica l-b io lo g ica l in te rac tio n s  d u rin g  fish e a rly  life

Sundby, S. 1997. Turbulence and ichthyoplankton: influence on vertical distributions and en­
counter rates. Scientia M arina, 61:159-176.

Sweatman, H. P. A. 1988. Field evidence that settling coral reef fish larvae detect resident fishes 
using dissolved chemical cues. Journal of Experim ental M arine Biology and Ecology, 124: 
163-174.

Taggart, C. T., and Leggett, W. C. 1987. Short-term  m ortality  of post-em ergent larval capelin 
Mallotus villosus. I. Analysis of m ultiple in situ estimates. M arine Ecology Progress Series, 
41:205-217.

Taylor, K. E. 2001. Sum m arizing m ultiple aspects of m odel perform ance in a single diagram. 
Journal of Geophysical Research, 106: 7183-7192.

Thomson, D. 1987. Criteria for the selection of stochastic m odels of particle trajectories in tu r­
bulent flows. Journal of F luid M echanics, 180: 529-556.

Thygesen, U. In prep. Stochastic backtracking of fish larvae: a likelihood approach.

Thygesen, U., and Adlandsvik, B. 2007. Sim ulating vertical turbulent dispersal w ith finite vol­
um es and binned random  walks. M arine Ecology Progress Series, 347:145-153.

Thygesen, U., and Visser, A. In prep. Random  flight vs. random  w alk m odels of turbulent dis­
persal: com parison of sam ple paths.

Tolimieri, N., Haine, O., M ontgom ery, J. C., and Jeffs, A. 2002. A m bient sound as a naviga­
tional cue for larval reef fish. Bioacoustics, 12: 214-217.

Tolimieri, N., Haine, O., Jeffs, A., McCauley, R., and M ontgom ery, J. 2004. Directional orienta­
tion of pom acentrid larvae to am bient reef sound. Coral Reefs, 23:184-194.

Trnski, T. 2002. Behaviour of settlem ent-stage larvae of fishes w ith an estuarine juvenile phase: 
in situ observations in a w arm -tem perate estuary. M arine Ecology Progress Series, 242: 
205-214.

Tyler, J., and Rose, K. 1994. Individual variability and spatial heterogeneity in fish population 
models. Reviews in Fish Biology and Fisheries, 4: 91-123.

Urban, D., and Keitt, T. 2001. Landscape connectivity: a graph-theoretic perspective. Ecology, 
82(5): 1205-1218.

Veneziani, M., Griffa, A., Reynolds, A. M., and M ariano, A. J. 2004. Oceanic turbulence and 
stochastic m odels from  subsurface Lagrangian data for the N orthw est A tlantic Ocean. 
Journal of Physical O ceanography, 34:1884-1906.

Victor, B. C. 1986. Growth, dispersal, and identification of planktonic labrid and pom acentri­
dae reef fish larvae in the Eastern Pacific Ocean. M arine Biology, 95:145-152.

Vikebo, F., Jorgensen, C., Kristiansen, T., and Fiksen, 0 .  2007. Drift, growth, and survival of 
larval N ortheast Arctic cod w ith  sim ple rules of behaviour. M arine Ecology Progress Se­
ries, 347: 207-219.

Visser, A. W. 1997. U sing random  w alk m odels to sim ulate the vertical distribution of particles 
in a tu rbu len t w ater column. M arine Ecology Progress Series, 158: 275-281.

Visser, A. W., and Kiorboe, T. 2006. P lankton m otility patterns and encounter rates. Oecologia, 
148: 538-546.

Visser, A. W., and MacKenzie, B. R. 1998. Turbulence-induced contact rates of plankton: the 
question of scale. M arine Ecology Progress Series, 166: 307-310.

W alters, C. J., and Juanes, F. 1993. Recruitm ent lim itation as a consequence of natural selection 
for use of restricted feeding habitats and predation risk-taking by juvenile fishes. Cana­
dian Journal of Fisheries and Aquatic Sciences, 50: 2058-2070.



ICES C o o p e ra tiv e  R esearch  R eport N o. 2 9 5 I 101

W arner, J. C., Geyer, W. R., and Lerczak, J. A. 2005. N um erical m odeling of an estuary: a com­
prehensive skill assessment. Journal of Geophysical Research, 110, C05001, doi: 
10.1029/2004JC002691.

W erner, F. E., Page, F. H., Lynch, D. R., Loder, J. W., Lough, R. G., Perry, R. L, Greenberg, D. 
A., et al. 1993. Influences of m ean advection and sim ple behavior on the distribution of cod 
and haddock early life stages on Georges Bank. Fisheries Oceanography, 2: 43-64.

W erner, F. E., Perry, R. I., Lough, R. G., and Lynch, D. R. 1994. A coupled individual-based 
trophodynam ics and circulation m odel for studies of larval cod and haddock on Georges 
Bank. US Globec News, 7 :1 -8 .

W erner, F. E., Perry, R. I., MacKenzie, B. R., Lough, R. G., and Naimie, C. E. 1995. Larval tro­
phodynam ics, turbulence, and drift on Georges Bank: a sensitivity analysis of cod and 
haddock. ICES D ocum ent CM  1995/Q:26.15 pp.

W erner, F. E., Perry, R. I., Lough, R. G., and Naimie, C. E. 1996. Trophodynam ic and advective 
influences on Georges Bank larval cod and haddock. Deep Sea Research n, 43:1793-1822.

W erner, F. E., MacKenzie, B. R., Perry, R. I., Lough, R. G., Naimie, C. E., Blanton, B. O., and 
Quinlan, J. A. 2001. Larval trophodynam ics, turbulence, and drift on Georges Bank: a sen­
sitivity analysis of cod and haddock. Scientia M arina, 65: 99-115.

W erner, F. E., Cowen, R. K., and Paris, C. B. 2007. C oupled biophysical models: present capa­
bilities and necessary developm ents for future studies of population connectivity. Ocean­
ography, 20: 54-69.

W espestad, V. G., Fritz, L., Ingraham , J., and Megrey, B. A. 2000. O n relationships betw een 
cannibalism, climate variability, physical transport, and recruitm ent success of Bering Sea 
walleye pollock. ICES Journal of M arine Science, 57: 272-278.

W ilderbuer, T. K., Hollowed, A. B., Ingraham , W. J., Spencer, P. D., Conners, M. E., Bond, N. 
A., and W alters, G. E. 2002. Flatfish recruitm ent response to decadal climatic variability 
and ocean conditions in the eastern Bering Sea. Progress in O ceanography, 55: 235-247.

Wilkin, J. L., Arango, H. G., Haidvogel, D. B., Litchenwalner, C. S., Glenn, S. M., and H ed- 
ström, K. S. 2005. A regional ocean m odeling system  for the Long-term  Ecosystem Obser­
vatory. Journal of Geophysical Research, 110, C06S91, doi: 10.1029/2003JC002218.

W ilson, J., and Flesch, T. 1993. Flow boundaries in random  flight dispersion models: enforcing 
the well-m ixed condition. Journal of A pplied M eteorology, 32:1695-1707.

W ilson, J. D., Thurtell, G. W., and Kidd, G. E. 1981. N um erical sim ulation of particle trajectories 
in inhom ogeneous turbulence. R. Systems w ith  variable turbulent velocity scale. Boundary 
Layer M eteorology, 21: 443-463.

W olanski, E., and Sarenski, J. 1997. Larvae dispersion in coral reefs and m angroves. American 
Scientist, 85: 236-243.

W right, K. J., Higgs, D. M., Belanger, A. J., and Leis, J. M. 2005. A uditory and olfactory abilities 
of pre-settlem ent larvae and post-settlem ent juveniles of a coral reef dam selfish (Pisces: 
Pom acentridae). M arine Biology, 147:1425-1434.

Yen, J., and Okubo, A. 2002. Particle and prey detection by  m echanoreceptive copepods: a 
m athem atical analysis. Hydrobiologia, 480:165-173.



102 I M odelling  physica l-b io lo g ica l in te ra c tio n s  d u rin g  fish e a rly  life

A nnex  1 : Particle track ing : Euler vs. R u n g e - Kutta s te p p in g  sch em e s

Experiments were performed to compare the performance of the Euler (EU) and 
Runge-Kutta (RK) time-stepping routines in the presence of turbulence. For each 
stepping routine, particles were released repeatedly at the same location in a steady- 
state, analytic flowfield with a spatially uniform, random drift component. Two flow- 
fields were used, characterized by closed streamlines: (i) a simple circular vortex 
( V  = Cr, r = radius), and (ii) the Stommel solution to wind-driven ocean circulation. 
In both cases, circulation and turbulent parameters were chosen to yield realistic 
oceanographic flows.

Runge-Kutta minus Euler (Wind driven Circ -  5000 experiments)
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Figure A.1.1. Comparison of EU w ith RK tim e-stepping routines.

Particles were tracked for about 1.5 circuits of the flowfield. The time-step was chosen 
to yield noticeable errors in the closed streamlines for the E U  routine, in  the absence 
of turbulence, relative to the R K  routine. The same time-step was used for each of the 
stepping routines. For each of the flowfields, 5000 particles w ere tracked, and  a histo­
gram  was created of the pairw ise difference in distance of the endpoint positions 
from  a common origin (R K  m inus E U ). That is, a histogram  of RKi -  E U i was com­
puted, w here RKi = I (xi — xo, y¡ -  yo)R K  I is the distance of the z'th R K  endpoint from  the 
origin (xo, yo). For the w ind-driven circulation, we find (Figure A.1.1) that the distri­
bution resembles a zero m ean Gaussian. In other w ords, the difference betw een the 
tw o routines looks random . A similar result was found for the circular vortex ex­
perim ent.
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A nnex  2: Partic le  track ing : t h e  effect of t im e -s te p s

I 103

To examine the effect of time-steps, it is possible to m ake a ru n  w ith a m oderate 
num ber of particles, then repeat the same stochastic realization w ith larger time- 
steps. For example, consider the Euler scheme in one dimension:

Z\»  = Z;A) + D'(Zlh>)h + j2 D ( Z lh>) (Bl+h -  B ,) f (A2.1)

which is the standard  way of sim ulating vertical dispersal. Here, denotes the 
num erical approxim ation, using the time-step h to the vertical position Zt of a tracer 
at time f, D is diffusivity, and D' = dD/dz.

First, fix the time-step h and generate random  num bers £i, £2, £ 3. . . . for Bh -  Bo, ITh -  

Bh, B 3h -  Boh . . . .  These £¡ should all be Gaussian distributed w ith  m ean 0 and variance 
h. Next, double the time-step to obtain a recursion for Z <2in :

Z ™  = z ; 2/l) + D ' { Z ^ ) 2 h  + J 2 D { Z ^ )  {Bt+2h - B t).  (A2.2)

Here, we re-use the sam e sequence of random  num bers, so that ITh -  Bo = £ +£,2, Brh -  

B2h = £3 + £4, etc. In this way, w e can com pare the individual trajectory obtained w ith a 
tim e-step of h w ith  w hat w ould  be obtained w ith a tim e-step of 2h; that is, we com­
pare Z,(/,) w ith  z r  ■ This gives a m uch better resolution of the effect of the time-step 
than  com paring the statistics of m any runs obtained w ith new  random  num bers for 
each run. See Kloeden and Platen (1995) for background m aterial and for systematic 
error analysis.

Example. We consider the one-dim ensional case of Couette flow. We m odel the 
height of a particle over the seabed. We non-dim ensionalize space w ith  the depth H 
and time w ith the characteristic time H 2/4 D  , w here D  is the m axim um  eddy diffu­
sivity, so that the height Z ranges betw een 0 and 1, and the diffusivity profile is 
D(z) = z(l -  z).

For this case, the time-scale 1/D"(z) is constant over the w ater colum n and is equal to 
0.5. The time-scale D/(D ')2 varies over the w ater column, vanishing at the boundaries 
and increasing tow ards the m iddle of the column. It exceeds 0.1 in 80% of the col­
um n. These time-scales are at least five times greater than  the Lagrangian time-scale. 
Finally, the time-scale of vertical mixing, as defined above, is 0.35. This suggests that 
the tim e-step in the integration should be sm aller than 0.1.
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Figure A.2.1. The simulated vertical position of a particle, w ith three different time-steps and the 
same stochastic realization.

We sim ulate the m otion of a single particle using the Euler scheme Equation (A2.1) 
over the time-interval [0,1] using time-steps of 0.001, 0.01, and 0.1, and  the same sto­
chastic realization. The result is given in Figure A.2.1. Notice that the trajectories for 
the tw o sm aller time-steps are nearly indistinguishable at the scale of the plot, but 
that some differences are visible w ith the larger time-step. It is also possible to sim u­
late a random  flight m odel (i.e. Lagrangian stochastic m odel (LSM)) of the sam e tra­
jectory, using the same stochastic realization (i.e. the same random  num bers) and the 
technique in Thygesen and Visser (in prep.). The result is show n in the figure 
(sm ooth solid blue curve). Notice that the error betw een the random  flight m odel and 
the high-resolution, random  w alk m odel (or RDM) is of similar m agnitude as the er­
ror betw een the high-resolution and the low-resolution random  w alk model. In this 
sense, a time-step of 0.1 is at the limit of being acceptable.
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A nnex  3: NPZ p a ra m e te r s ,  functions , a n d  d a ta  a ss im ila t ion
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Several functional forms describing Zooplankton grazing and predation closure terms 
have been used in nu trien t-phy top lank ton -zoop lank ton  (NPZ) models. The choice 
of w hich to use, and the specific values assigned to param eters, can strongly influ­
ence the dynam ics of the NPZ m odel (Edw ards and Brindley, 1996; Edw ards and 
Yooi, 2000; Edw ards et al, 2000). For example, the use of the quadratic term  for p re­
dation m ortality can increase the short-term  oscillations of predicted Zooplankton 
concentrations (Edwards and Yooi, 2000; Gibson et al, 2005). Even the selection of 
different param eter values, w ithin the same formulation, can affect NPZ predictions.

Effective linkage of particles to the fields ou tpu t by the NPZ m odel is predicated on 
the assum ption that the ou tput fields are realistic. It is necessary to check that the in­
puts to the NPZ (e.g. grazing and closure terms, and  param eter values) are reason­
able, and to confirm that the NPZ m odel has been satisfactorily evaluated against 
field data by examining goodness-of-fit and diagnostics from  data assimilation and 
validation analyses.

Data-assim ilation techniques have been proposed as a way of systematically using 
data to constrain m athem atical models, thereby ensuring m ore accurate m odel p re­
dictions (Hofm ann and Friedrichs, 2002). In situations of lim ited data, some effort 
should be devoted to exam ining NPZ ou tpu t and behaviour in order to ensure an 
adequate degree of realism  before the fields are coupled to a particle-tracking model.
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A nnex  4: C oup ling  NPZ to  physical m ode ls :  types  of coup ling ,  sca ling , 
a n d  reso lu tion

The quality of nu trien t-phy top lank ton -zoop lank ton  (NPZ) generated fields also 
depends on how  the NPZ subm odel is coupled to the physics model. NPZ models 
m ay be coupled online or offline w ith  physical models. Online coupling involves the 
sim ultaneous execution of the physical and  NPZ models. Offline coupling involves 
the use of prestored fields of velocities, tem perature, and salinity from  the physical 
model, which are then used as inputs to the NPZ model. In general, w ith online cou­
pling, the NPZ and the physics m odels usually use the same spatial grid  and num eri­
cal time-steps so that interpolation of the physics is not needed. However, although 
the characteristic time-scales of the NPZ dynam ics strongly correspond to the scales 
im portant in  the physics, they are not identical (H erm ann et al, 2001). Ideally, the 
spatial and tem poral scales should be resolved to the finest level needed to include all 
relevant scales to the physics and biology, bu t this is not possible, ow ing to high com­
puting costs and our lack of knowledge.

We do know  that m uch of the plankton dynam ics in the NPZ is very sensitive to the 
dynam ics of the m ixed layer, and that the ideal vertical resolution for the biology is 
often finer than  that represented in physical models (H erm ann et al, 2001). In an off­
line situation, filtering can be used to obtain inform ation on a higher vertical resolu­
tion grid for the NPZ than that represented in  the physical m odel (e.g. 100 layers vs. 9 
layers; H erm ann et al, 2001; Hinckley et al, in press). Some caution is needed because 
subsam pling of the physical m odel ou tpu t in time w ithout filtering could lead to 
aliasing errors, especially w hen considerable high-frequency energy (e.g. near-inertial 
waves or tides) is present. Lowpass filtering can solve this aliasing problem, bu t can 
result in the loss of inform ation on tide-related effects on advection.
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A nnex  5: C oup ling  NPZ a n d  par t ic le - track in g  m ode ls :  p a tch in ess ,  t roph ic  
fe e d b a c k ,  a n d  b e h av io u ra l  re s p o n se s

Issues related to coupling of Eulerian prey (nu trien t-phy top lank ton-zoop lank ton  
(NPZ)) and Lagrangian particle-tracking models include (i) the representation of par­
ticle interactions w ith prey patchiness, (ii) limitations im posed by one-way coupling, 
and (iii) the degree to which m ovem ent of particles is purely physics-driven or in­
volves active behaviour. A large num ber of particles (individual larval fish) m ay be 
required in order to obtain an accurate representation of the encounters of ind iv idu­
als w ith  Zooplankton, especially w hen the Zooplankton is patchily d istributed in time 
and space. If too few particles are followed, grow th rates of the particles can be un ­
derestim ated and, therefore, m ortality overestim ated. Two possible solutions are to 
increase the num ber of particles followed or, if biological considerations permit, to 
broaden the sam pling radius w ith w hich the particles experience the prey field.

Particle tracking is m ost often done in  the offline mode, which imposes constraints on 
the feedback betw een the particles and their prey. Offline use of the NPZ fields pre­
vents any trophic feedback betw een the particles (e.g. larval fish) and their Zooplank­
ton prey. Runge et al. (2005) discuss how  this lack of feedback can be im portant w hen 
the species represented by the particles exerts significant m ortality on its prey. Lack 
of feedback prevents density-dependent grow th responses of the particles. From a 
fish-population perspective, this feedback is fundam ental to using larval fish particle- 
tracking predictions to infer longer term  population responses. Including this feed­
back is difficult in  m ost situations because of the com putational complexity and ex­
pense of solving the NPZ and particle-tracking m odels sim ultaneously, and because 
of the complexity of properly im posing consum ption from  Lagrangian particles w ith 
prey dynam ics in  Eulerian space. For example, if an insufficient num ber of particles is 
followed, and only the prey im m ediately surrounding these individuals is consumed, 
a "Swiss cheese" topology can be generated in the continuous prey fields. Offline use 
of NPZ fields also prevents including prey responses to predation pressure. C ontinu­
ous prey fields do not allow avoidance behaviour per se, bu t the effects of avoidance 
can be mimicked w hen the NPZ and particle-tracking models are solved together by 
the addition of term s to the Zooplankton equations that account for changes in den­
sity as a result of the presence of predators.

Organisms such as fish larvae are affected by advective processes, bu t can also ex­
hibit active swim m ing behaviour in  response to environm ental and prey conditions 
(Runge et al, 2005). Small contributions from  active behaviour can alter the trajecto­
ries of particles, especially w hen the environm ental and prey cues dem onstrate gra­
dients and patchiness that are superim posed on strongly sheared circulation fields. 
Some progress has been m ade in sim ulating active behaviour (e.g. H um ston et al, 
2004), bu t it remains an open-ended question, and it is unclear how  optim ally to com­
bine the physics-related and behaviour-related com ponents of m ovem ent (Tyler and 
Rose, 1994).
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