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ABSTRACT. Deep-sea benthic systems are notoriously difficult to sample. Even m ore than  for other benthic systems, m any 

flows am ong biological groups cannot be directly m easured, and data sets rem ain incom plete and uncertain. In such cases, 

m athem atical m odels are often used to quantify unm easured biological interactions. Here, we show how  to use so-called linear 

inverse models (LIMs) to reconstruct m aterial and energy flows th rough food webs in  which the num ber of m easurem ents 

is a fraction of the total num ber of flows. These models add mass balance, physiological and behavioral constraints, and diet 

inform ation to the scarce m easurem ents. We explain how  these inform ation sources can be included in  LIMs, and how  the 

resulting models can be subsequently solved. This m ethod is dem onstrated by two examples—a very simple three-com partm ent 

food web m odel, and a simplified benthic carbon food web for Porcupine Abyssal Plain. We conclude by elaborating on recent 

developm ents and prospects.

IN T R O D U C T IO N

Deep-water sedim ents are am ong the 

largest and m ost elusive of Earths ecosys

tems. Com pared to other ecosystems, we 

know little about the taxonomy, natural 

history, and trophic linkages am ong the 

organisms that inhabit deep-sea sedi

ments. This lim itation makes it difficult 

to predict the im pact o f hum an activities 

on deep ecosystems, but such predictions 

are greatly needed because hum an pres

sures on this ecosystem are increasing 

rapidly (Glover and Smith, 2003).

The interaction of deep-sea benthic 

ecosystems with and their im pact on 

global-change phenom ena are related to 

two im portan t functions—biogeochem 

ical and biological. O n the one hand, 

sedim ents are sites of organic m atter 

burial, and nu trien t regeneration and 

removal, and thus play an im portant 

role in  the oceans biogeochem ical cycles

(Sarmiento and Gruber, 2006) and long

term  rem oval o f CO, (M iddelburg and 

M eysman, 2007). O n the other hand, 

processing of organic m atter through 

the food web and resulting secondary 

production  ultim ately fuels com m er

cially interesting dem ersal fish com 

m unities (Graf, 1992).

The potential significance of deep- 

sea regions has directed considerable 

scientific and technological effort to 

better understanding of bo th  functions 

of this rem ote environm ent. A lthough 

the inform ation gathered th rough these 

efforts has m arkedly enhanced our 

knowledge of the deep-water benthos, 

m ost o f the research is reductionist in  

nature, investigating isolated parts o f the 

ecosystem. M athem atical m odels can 

merge this fragm entary inform ation into 

a realistic integrative framework.

At least two different theoretical

fram eworks have been applied to analyze 

and understand the processes in  sedi

m entary  systems (Soetaert et ah, 2002). 

Diagenetic m odels focus on the role 

sedim ents play in  the global cycles of 

essential elements (C, N, P...) and con

sider sedim ents to be shaped by physical 

processes and biochem ical reactions. In 

contrast, benthic food web m odels study 

the flows of energy or m atter between 

biological functional groups.

There are several good reviews and 

recent books that deal w ith diagenetic 

m odeling and its applications 

(e.g., Burdige, 2006). In contrast, texts 

on food web m odeling are typically case 

studies with only short introductions 

to the m ethodology employed. In this 

paper, we focus on the latter types of 

m odels and give a practical account of 

their applications and results.
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Figure 1. Scheme of a simplified deep-sea benthic food web.

BENTHIC F O O D  WEBS

W ith the exception of hydrotherm al 

vent and cold seep environm ents, which 

are driven by chem osynthetic energy, 

deep-sea benthic systems ultimately 

depend on an allochtonous food sup

ply in  the form  of detritus derived from  

prim ary  production in  the euphotic 

zone (Figure 1). Before detritus becomes 

incorporated into the sedim ent, part 

of the food is consum ed by suspension 

feeders that filter organic m atter from  

the water m ass overlying the bottom  

(Gage and Tyler, 1991) or by sedim ent- 

dwelling deposit-feeders (Blair et a l, 

1996; D razen et a l , 1998). The rem ain

der of the food is ingested by sedim ent- 

inhabiting detritivores o f various sizes 

(e.g. Grafi 1992) and by bacteria (Lochte 

and Turley, 1988) that respond rapidly to 

the supply of particulate organic matter 

in  term s of increased m etabolic activity 

(W itte et ah, 2003; M oodley et a l ,  2005) 

or growth and reproduction  (Tyler et ah, 

1982; C.R. Smith et a l ,  2008; K.L. Smith 

et ah, 2008). The detritivores are con

sum ed by predators, w hich m ay them 

selves be preyed upon by larger animals 

such as fish. The waste products of all 

consum ers becom e food for detritivores 

and bacteria (detritus) or are exchanged 

w ith the water colum n (CO,, nutrients).

The flows of food to the prim ary 

benthic consum ers and the recycling of 

m atter from  one biotic com ponent to
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another com prise the benthic food web. 

How benthic com m unities process the 

p rim ary  m aterial and convert organic 

m atter as it passes th rough each trophic 

link  has significant consequences for 

ecosystem properties, such as food web 

stability (e.g., Rooney et a l , 2006), and 

for linking benthic secondary produc

tion  with higher trophic levels that 

are eventually harvestable by hum ans 

(Pauly et a l ,  1998). In addition, food 

web structure and functioning affects 

biogeochem ical properties such as 

carbon sequestration (M iddelburg 

and M eysman, 2007), carbon turnover 

(M eysm an and Bruers, 2007), and nu tri

ent regeneration (Vanni, 2002). Thus,

the identification and quantification 

of energy pathways through the major 

ecosystem com ponents is a basic element 

of food web studies. The ultim ate goal is 

to achieve a quantitative understanding 

of the functional interactions between 

biological com ponents in  order to even

tually predict the response of deep-water 

systems to global change phenom ena.

Q uantification of biological interac

tions in  term s of carbon or organic 

m atter flows is strongly ham pered by the 

lack o f sufficient high-quality em piri

cal data (Brown, 2003). This is because 

the elucidation of food web flows from  

direct m easurem ent or experim enta

tion  is notoriously difficult, even for
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com paratively well-studied shallow- 

water benthic systems (e.g., van Oevelen 

et al., 2006a,b). The inaccessibility of 

deep-sea ecosystems adds an extra level 

of complexity, rendering deep-water data 

sets archetypical examples of undersam 

pled food webs. M ost deep-water data 

sets consist of biom ass estimates of large 

functional groups and an occasional rate 

m easurem ent only. Given the complexity 

of food webs, the knowledge based on 

field m easurem ents alone is insufficient 

to derive a coherent picture of carbon 

flows in  these systems.

To overcome these data lim itations 

and extract as m uch inform ation from  

them  as possible, so-called linear inverse 

m odels (LIM) have been developed. The 

linear inverse m odeling m ethodology 

allows quantifying biological interac

tions in  a com plex food web from  an 

incom plete and uncertain  data set. In 

what follows, we first explain how  linear 

inverse models are developed and solved, 

and then  we elaborate on recent devel

opm ents and prospects.

DEVELOPM ENT OF 

A F O O D  WEB M ODEL

The various data sources and equations 

that com prise a food web m odel are 

represented in  Figure 2. In short, the 

ingredients include: (1) the biotic and 

abiotic com ponents and possible interac

tions am ong them  (the topological web), 

(2) bounds on certain rates and relation

ships between the flows, (3) in  situ m ea

surem ents, and (4) a solution m ethod. 

Below, we give a general description of 

the setup of a food web m odel in  four 

steps. Box 1 details the setup of a very 

simple example food web model.

S tep  1. E stab lish in g  th e  

T o p o lo g ic a l F ood  W eb

Food web m odeling starts w ith choosing 

relevant abiotic and biotic com ponents 

and specifying the links between them  

(“who eats whom ”). In general, the biota 

are subdivided into size categories, in 

accordance with the observation of 

distinct abundance peaks in  certain  size 

ranges (Schwinghamer, 1981; Duplisea, 

2000), and in  line w ith the existing fields 

of expertise o f separate researchers. If 

appropriate, size categories are subse

quently divided into feeding types.

This stage of the m odeling process 

depends on observational detail (e.g., to 

guide the choice of m ajor com ponents) 

and also on intu ition  and com m on sense. 

Generally, a larger organism  feeds on 

a smaller organism  b u t not vice versa. 

Thus, even if the feeding process has 

never been witnessed, this assum ption is 

used to draw  a feeding link  from  small to 

large organisms.

A universally valid physical constraint 

is that, for each chemical element, mass 

is conserved. Application of this conser

vation principle allows w riting elemental 

mass balances of the general form

d X /d t=  E  ƒ  -  I f  „J in  J o u t J

indicating that the tem poral change 

(d X ld t) o f the mass of a com partm ent 

(X) equals the difference between 

incom ing if.)  and outgoing (foJ  flows. 

Thus, w hen f. is larger than  ƒ , the
J  in °  J  out

mass will increase in  tim e (as its rate of 

change is positive). This mass balance 

principle form s the backbone of a food 

web m odel. To understand how the mass 

balance principle is applied, it is useful 

to have a closer look at how  an organism 

processes its food.

W hen organism s ingest food, 

only part of the food is assimilated 

(i.e., transported  across the gut 

wall), and the rest is expelled as feces 

(Figure 3). Some of the assimilated

Step  1 :
T op olog ica l fo o d  w eb

d "w h o  e a ts  w h o m "  
p r im a r y  fo o d  so u rce s  
e x p o r t  te rm s

Step  2:
P h ysio log ica l co n stra in ts

d •  m a x im u m  ra te s
•  g ro w th  e ffic ien c y
•  a s s im ila t io n  e ffic ien c y

Step  3:
S ite -sp ec ific  m ea su rem en ts

M

IIH• mass conservat ion

• X >  h bound  on and relations
be tween  flows

• M II site-specific data 
equat ions

b io m a ss
flo w  m e a s u r e m e n ts  
in d iv id u a l  re sp ira tio n

Figure 2. Three steps (see Steps 1 -3  in text) for im plem enting data  sources (left) in the  matrix equations 
th a t constitu te a linear inverse food web model (right).
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Box Setting up a Simplified Food Web

C onsider a very sim ple fo o d  w eb m odel com p rised  o f  th re e  c o m p o n e n ts  

(in th e  figure a t  right): Blue boxes rep re sen t (1) de tritu s , (2) bacteria 

grow ing on  detritu s, an d  (3) fauna grazing on  bacteria. The system  is 

driven by an external im p o rt o f  d e tr itu s  (jQ). There are tw o  co n su m p tio n  

flows (ƒ, a n d / 2), o n e  feces p ro d u c tio n  flow (f3), an d  tw o  resp iration  flows 

(f4 a n d /5); dem ersal fish graze on  th e  fauna (f6). N either C 0 2 ( th e  respira

tio n  p ro d u c t)  n o r th e  fish are m o d eled  explicitly as fo o d  w eb c o m p a rt

m ents; rather, th ey  are considered  external co m p artm en ts .

The th re e  m ass balance eq u a tio n s relate  th e  ra te  o f  each c o m p a rt

m en t's  change to  th e  seven source a n d  sink flows. If w e assum e th a t  th e  

c o m p a rtm e n ts  are invariant in tim e, th ey  can  be w ritten  as

dDetritus
dt

dBacteria
dt

dFauna
dt

: 0 -  fo / l  f i

■o = U - k - U

■0 = /2- / 3- / s - / 6

These eq u a tio n s can  be w ritten  in a m ore general way as:

0 = 1 ' f o - 1  • / i  + 0 • f 2 + 1 - / 3 + 0 • U  + 0 • / 5 + 0 •/ 6

0 = 0 •ƒ„ + 1 • ƒ, -  1 • f 2 + 0 . / 3 -  1 • u  + 0 • / 5 + 0 ./ 6

o = 0 •ƒ„ + 0 • ƒ, + 1 • / 2 -  1 . /3 + 0 ■/ 4 -  1 ■/s -  1 • ƒ«

to  relate th e  ra te  o f  change (left-hand  side, assu m ed  0) to  a sum  of p ro d 

ucts, w here each p ro d u c t is c o m p o sed  of th e  flow  tim es a coefficient.

It is conven ien t to  co llect th ese  coeffic ients in a m atrix, leading to  th e  

follow ing no ta tion :

' f o

/ i

f 2

f o

h

f s

. ƒ « .

1 -1 0 1 0 0 0

0  = 0 1 -1 0 -1 0 0

0 0 1 -1 0 -1 -1

D etritu s

B acteria F auna

The positivity o f  th e  flows is w ritten  as

X  > 0.

Physiological considera tions (Step 2 in Figure 2) are im p lem en ted  

th ro u g h  th e  inequality  constrain ts . For exam ple, bacterial ca rb o n  is high 

quality  fo o d  for b en th ic  fauna; therefore, a reasonab le assu m p tio n  is th a t  

feces p ro d u c tio n  (f3) is small, b e tw een  10% a n d  30% o f faunal ingestion 

(f2). This gives th e  follow ing tw o  inequalities:

/ 3 * 0-1 • f 2

/ 3 -  0.3 • f 2

G row th  respiration  is assu m ed  to  be betw een  20% an d  40% of assim i

la ted  d e tr itu s  (bacteria ) o r  assim ilated  bacteria  (fauna):

^ ° - 2 ^  an d  / s * ° . 2 . ( / 2 - / 3)-

0 0 - 0.1 1 0 0 0
• X  >

0

0 0 0 .3 - 1  0 0 0 0

/ 4 -  0 .4  • / . j ƒ  < 0 . 4 - ( ƒ - ƒ , )

Site-specific flow m easu rem en ts  can  be d irectly  included. Suppose 

th a t  d e tr itu s  depo sitio n  has been m easu red  w ith  se d im en t trap s a t 

ƒ  = 1 g C m 2 y r 1. This m easu rem en t gives th e  follow ing equation :

1 0 0 0 0 0 ] “ = [ll-

w ritten  w ith  x=[ ƒ„.../ 6] as A • X  = 0.
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(phyto)d editus

T h e  o r g a n i s m  level T h e  f a c t o r y  a n a l o g u e

r e s p ir a t io n

p r o d u c t io nin g e s tio n

d e f e c a t io n

r
^  -  
m eiobenthos

predators

Figure 3. The mass balance of one organism from 
food w eb (left) and the  factory analogue (right).

the

T h e  m a s s  b a l a n c e

= f l  + £2 + £3 - f4 - f5 - f6 - f7

ingestion defection predation basal growth
respiration respiration

fraction of the food is used as building 

blocks for growth and reproduction  (sec

ondary  production), and some of it is 

oxidized to provide the energy required 

to m aintain basal m etabolism , form  new 

biomass, reproduce, and move. For het- 

erotrophic organism s, the energy needed 

for growth and for m aintenance is paid 

by respiration, that is, the oxidation of 

simple organic com pounds, while other, 

so-called chem o-autotrophic organisms 

produce biom ass from  chemical energy 

and inorganic com pounds. From  the 

m odeler s po in t of view, the functioning 

of an organism  is analogous to a chem i

cal “factory” that uses raw m aterials

(food) to produce valuable goods (bio

mass), while consum ing energy (respira

tion) and producing waste (feces) in  the 

production  process (Figure 3).

The principle of mass conservation 

states that, if  the organism  is not p re

dated upon, then  the ingested food is 

either respired, defecated, or will serve 

biom ass increase because of growth 

(Figure 3). We write this as

Growth = d C ld t = ingestion -  predation 

m ortality  -  defecation -  respiration,

where C is the biomass of the organism , 

and dC /d t is its growth (i.e., the rate at 

w hich this biom ass changes in  time).

This so-called m ass-balance equation 

equates biom ass changes to feeding 

flows m inus loss term s (respiration, 

feces production, mortality).

The mass balances of all food web 

com ponents are intim ately linked: if  spe

cies A feeds on species B, no t only will 

there be a flow of biomass from  B to A, 

but also a loss o f sim ilar m agnitude 

from  species B. In addition, feces will 

be produced, inducing a flow from  B to 

detritus. The coupled set o f mass balance 

for several functional groups considered 

together form s the backbone of the 

food web model.

If a flux from  functional group i to

Oceanography M arch 2009 133



cc ALTHOUGH THE INFORMATION GATHERED THROUGH ENVIRONMENTAL STUDIES 
HAS MARKEDLY ENHANCED OUR KNOWLEDGE OF THE DEEP-WATER BENTHOS, MOST 
OF THE RESEARCH IS REDUCTIONIST IN NATURE, INVESTIGATING ISOLATED PARTS OF 
THE ECOSYSTEM. MATHEMATICAL MODELS CAN MERGE THIS FRAGMENTARY INFOR
MATION INTO A REALISTIC INTEGRATIVE FRAMEWORK.

functional group j  is denoted as 

then  the mass balance for a biotic food 

web com ponent (i = l,..n) is given by

dC¡ A, A
- T r  = L  fH í -  L  Fi ^ j  -  Feces; -  Resp;.

j = i j = l

This equation can be m ade m ore com 

pact by denoting detritus as com ponent 

“0” and carbon dioxide as com ponent -1, 

so that we obtain

A  C ' n  n L = y  p. ._ y  p.At A  A C -
u l  j  = 0 j  = - 1

i = 0,..n.

In food web models, the flows F ¡^ j and 

F j^ i  are the unknow ns (x) to be quanti

fied. The m ass-balance equations are just 

sum s and subtractions of these unknow n 

quantities. These linear equations are 

conveniently cast into m atrix  no tation  as

A • x = b (D

in  which x is a vector with the unknow n 

flows, and b is a vector with the rates of 

change of the com ponents.

Because flows have a direction (i.e., 

they are non-negative quantities), the 

following inequalities also hold:

x >  0. (2)

S tep  2. P h y sio lo g ica l and  

B ehavioral C o n stra in ts

The physiology and behavior o f organ

isms im poses lower and upper limits on 

their feeding and growth rates. W hen 

organism s search for food, the encounter

rate and external handling tim e deter

m ines m axim al foraging capacity 

(Holling, 1966). The ingested food is 

hydrolyzed and assimilated, but these 

processes are lim ited by physiologi

cal and digestive constraints (Jumars, 

2000). Consequently, animals can only 

process a finite am ount of food per unit 

of tim e (i.e., there are upper bounds on 

weight-specific ingestion rates). Often, 

these m axim al weight-specific rates scale 

inversely with organism  size (Peters, 

1983). W hen com bined w ith biomass 

estimates (see below), these m axim um  

rates im pose an upper bound  on grazing 

flows, providing im portan t constraints 

on the m agnitudes of the ingestion flows 

in  the food web model.

Similar allom etric rules (allom etry is 

the study of the relative growth of a part 

of an organism  in relation to the growth 

of the whole) apply for respiration flows 

(e.g., M ahaut et a l , 1995), although it is 

custom ary here to im pose respiration 

rates as lower bounds (i.e., a m inim al 

basal respiration required to ensure basic 

m etabolic integrity of the organism ).

O ther physiological considerations 

im pose relationships between flows. The 

production  of biom ass and/or reproduc

tive tissue costs energy. As a simplifica

tion, it can be assum ed that these costs 

are paid by respiring part o f the ingested 

food, and hence the feeding and respi

ration flows are directly related. This

relationship is determ ined by the am ount 

of energy required to build  a specific 

am ount of biom ass (recall the factory 

analogue in  Figure 3, where respiration 

delivers the energy to produce a certain 

am ount of goods). Classically, this is rep

resented by growth efficiency—the ratio 

of secondary production  (growth) to 

assimilated food, which is generally on 

the order o f 60-70%  (Calow, 1977) and 

at m ost 80% (Schroeder, 1981).

In addition, there is a sim ilar relation

ship between feeding and defecation: 

organism s cannot produce m ore feces 

than  the am ount o f food they ingest, but 

they have to assimilate a certain  fraction 

to balance the loss term s. D epending on 

the quality o f the food, a small or large 

fraction of it will be expelled as feces 

(Calow, 1977; Schroeder, 1981). Most 

often, this dependency is expressed by 

the so-called assim ilation efficiency— 

the ratio of assimilated food (the food 

that is not defecated) to ingested food 

(Conover, 1966), which is roughly on 

the order o f 20%, 60%, and 80% for 

detritivores, herbivores, and carnivores, 

respectively (Hendriks, 1999). Rather 

than  assum ing that growth and assimila

tion  efficiencies are exactly known, it is 

m ore realistic to im pose upper and lower 

bounds on these efficiencies.

The constraints on ingestion rates 

m entioned above as well as growth 

and assimilation efficiency put bounds

134 Oceanography Vol. 22, No.1



on various flows and on relationships 

between flows. These constraints can also 

be cast in  a m atrix  equation, com prising 

inequality conditions:

G - x > h .  (3)

S tep  3. In Situ M e a su re m e n ts

The data types m entioned above make 

use of general biological principles that 

apply to m ost ecosystems. To tailor the 

m odel to a food web of a specific loca

tion, in  situ m easurem ents are indis

pensable. These specific data are o f great 

im portance: w ithout them , the m odel 

would make the fairly unrealistic predic

tion  that the food web is exactly the same 

at every place on Earth! Fortunately, 

m any different data types that are col

lected by deep-sea ecologists can be 

directly used.

For instance, biomasses o f organism s 

w hen m ultiplied with estim ated m inim al 

or m axim al weight-specific rates (see 

above) provide im portan t bounds on 

respiration and feeding flows.

Some food web flows can be m easured 

directly, such as the respiration rate of 

a single biotic com ponent, food con

sum ption rates (e.g., o f deep-sea fishes; 

Bulman and Koslow, 1992), and bacterial 

m ortality  (e.g., induced by viral lysis;

Mei and Danovaro, 2004; Danovaro et 

ah, 2008). Such flow m easurem ents can 

be directly added to the food web model.

O ther in  situ rate m easurem ents may 

represent simple com binations of m ul

tiple flows in  the food web. For instance, 

bacterial production  is the net effect of 

bacterial uptake of dissolved organic car

bon  (DOC) m inus bacterial respiration; 

the influx of oxygen across the sedim ent- 

water interface is the sum m ed respira

tion  of all the food web com ponents.

Finally, the diet com position of a

grazer im poses relationships am ong the 

different ingestion flows of the grazer.

To quantify these relationships requires 

inform ation on the im portance of 

certain diet constituents with respect 

to one another. Diet inform ation can 

come from  gut analysis o f large animals 

(e.g., for deep-sea fishes), or from  the use 

of biom arkers, such as stable isotopes 

of nitrogen (515N) and carbon (513C) 

(Vander Z anden and Rasmussen, 1999; 

Iken et a l ,  2001; Polunin et al., 2001) or 

fatty acids (Howell et a l , 2003). Stable 

isotope values from  different food 

sources m ix proportionally  in  the con

sumer, and such a m ixing form ulation 

fits seamlessly in  food web linear inverse 

m odels (Van Oevelen et a l ,  2006b,c; 

Eldridge et a l , 2005). Similarly, deriving 

diet inform ation from  fatty acid com 

positions relies on the same assum ption 

(Iverson et a l , 2004).

Im portan t data can also come from  

ecological stoichiometry, in  which food 

web interactions are constrained because 

em pirical data in  one currency (e.g., C) 

are coupled to data in  another currency 

(e.g., N, P, or O ) (e.g., Vézina and 

Platt, 1988; Jackson and Eldridge, 1992; 

Gaedke et a l , 2002).

Because of the valuable inform ation 

contained in  site-specific m easurem ents, 

the available in  situ m easurem ents are 

generally adopted as they are (i.e., w ith

out uncertainty) and im plem ented as 

equality equations, which can be w ritten 

in  a m atrix  form  that is identical to the 

mass balance equation

E • x = f. (4)

S tep  4. M od el S o lu tio n

The m easurem ent and com pilation of 

the data in  Steps 1-3 depends on the 

expertise of the field and experim ental

biologist. It is only in  the last step that 

the m athem atically inclined personality, 

the modeler, comes in. This person puts 

all o f the acquired inform ation into a 

m athem atical fram ew ork to find a solu

tion  to the m athem atical model.

The entire model, consisting of 

mass balance equations and positivity 

constraints (Step 1), physiological con

straints (Step 2), and in  situ data (Step 3), 

is com bined in  Step 4 using appallingly 

simple, linear equations (equations 1-4). 

In Box 1, we show how  to com pose these 

equations for a very simple food web.

The solution to this m odel is a set of 

flow values (x) that is consistent with 

the four sets o f equations. D epending 

on the num ber of equations relative 

to the num ber of unknow ns, different 

m ethods of solution are used. These 

m odel solution m ethods bear a strong 

resemblance to linear regression and 

are intim ately linked to the determi- 

nacy state of the m odel (this concept is 

explained in  Box 2).

Ideally, the equations lead to only one 

solution that perfectly fits the data, called 

the even-determinacy state (Box 2).

This state is achieved when the num ber 

of equations is equal to the num ber of 

unknow n flows (and the equations are 

internally consistent). Alas, it is very 

unlikely that, by m ere coincidence, the 

num ber of equations and unknow ns 

will match; in  general, there are too few 

equations, and there is no unique solu

tion  to the model. Thus, some m odelers 

add data from  the literature to the site- 

specific observations to reach the state 

of even-determ inacy. This practice is 

com m on in  m any ECOPATH applica

tions, one of the m ost-used frameworks 

for linear inverse m odeling (Christensen 

and Pauly, 1992). However, it is doubtful
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whether such artificial inflation of the 

site-specific data set w ith data from  other 

locations can be justified.

The m ost com m only encountered 

situation is the under-determinacy 

state—the num ber of equations is less 

than  the num ber of unknow ns (Box 2), 

and there is no unique solution that 

perfectly fits the data. There are two pos

sible outcom es when trying to solve such 

under-determ ined models.

First, if  some data are “in  conflict” 

with other data, the m odel is unsolvable 

and no solution exists that fits all data 

simultaneously. This situation would be 

the case w hen the m easured total input 

of organic m atter is insufficient to m eet 

the m in im um  respiration requirem ents

(e.g., estim ated from  physiological con

siderations) of the benthic com m unity 

(e.g., Smith et a l ,  2001). This result 

(albeit undesirable) is im portant, as it 

shows that data that seem plausible when 

evaluated individually m ay be incon

sistent when viewed in  the perspective 

of the entire food web. Therefore, this 

outcom e m ay prom pt reconsideration 

of the reliability of the data and/or the 

food web model.

In contrast, w hen the data in  the 

under-determ ined m odel are internally 

consistent, there exists an infinite n u m 

ber of valid solutions. In this case, the 

linear equations define an “ensemble” 

of plausible webs—a m ultidim ensional 

solution space containing food web

configurations that do not violate the 

equations (Figure 4). From this solution 

space, m odelers either extract one set 

of food web flows, or try  to quantify the 

uncertainty, for example, via the ranges 

or probability density functions of all 

flows (see below).

Early m odeling studies usually 

selected one food web from  the infinite 

num ber of solutions. The principle of 

parsim ony has often been applied as 

selection criterion (Vézina and Platt, 

1988), w hich implies that the solution 

for which the sum  of squared flows is 

m inim al is selected (Figure 4a). W hereas 

the parsim ony principle provides fairly 

robust estimates o f the food web struc

ture (Vézina and Pahlow, 2003; Vézina

X

Box 2. Determ ining the Determ inacy State o f  a M odel

Solving a linear fo o d  w eb m odel requires finding values for flows (x) th a t  are consisten t w ith th e  four m atrix  

e q u a tio n s com prising  th e  m odel (see Box 1). D epending  on  th e  determ inacy sta te  o f th e  m odel, it is solved using 

differen t m eth o d s. The d e term inacy  s ta te  is eva lu a ted  using th e  d im ensions o f th e  m atrices Ax = b an d  Ex = f. 

These d im ensions are th e  n u m b e r  o f  in d ep en d en t eq u a tio n s (row s in A + row s in E) a n d  th e  n u m b er o f  unknow n 

flows (e lem en ts in v ec to r x). The de te rm in acy  sta te  can  be u n d e r-d e te rm in ed  if th e re  are few er eq u a tio n s th an  

unknow ns, ev en -d e te rm in ed  if th e  n u m b er o f  eq u a tio n s a n d  unknow ns is equal, o r  ov er-d e te rm in ed  if th e re  

are m ore eq u a tio n s th a n  unknow ns. The so lu tion  p ro ced u re  is very similar to  fitting  a s traigh t line th ro u g h  d a ta  

po in ts, a n d  it is instructive to  discuss th is fam iliar analogy.

A straigh t line is ch aracterized  by tw o  unknow n param eters: th e  slope an d  in tercep t. These p aram eters  are 

q uan tified  by fitting  to  a d a ta  se t so th a t  th e  d a ta  are optim ally  reproduced .

W ith  o n e  o b se rvation  an d  tw o  unknow n p aram eters, th e  m odel is under-determ ined, a n d  th e re  are infinite 

n u m b ers o f  d ifferen t stra igh t lines th a t  all exactly pass th ro u g h  th a t  single d a ta  p o in t (A in th e  figure a t  left). 

Similarly, u n d e r-d e te rm in ed  fo o d  w eb m odels will have an infinite n u m b e r  o f  solutions.

W ith  tw o  d a ta  po in ts, th e  m odel is even-determ ined, as th e re  are also tw o  p a ram e te r  values to  derive. Only one  

straigh t line passes exactly th ro u g h  tw o  po in ts. Similarly, ev en -d e te rm in e d  fo o d  w ebs will have o n e  un ique  solu

tio n  (B in th e  figure a t  left).

The over-determ ined  s ta te  is en c o u n te re d  w hen  th e re  are m o re  d a ta  p o in ts  th a n  unknow ns. N o t all d a ta  p o in ts 

can  be exactly rep ro d u c ed  d u e  to  unavoidable m easu rem en t error, b u t a un ique  p a ram e te r  co m b in a tio n  rep ro 

duces th e  d a ta  op tim ally  (C in th e  figure a t left).
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et al., 2004), it has often been criticized 

because it lacks a sound ecological 

justification (Niquil et al., 1998; Kones 

et al., 2006). Moreover, the parsim oni

ous web often takes extreme values 

(i.e., it lies at the boundaries o f the solu

tion  space) (DifFendorfer et a l , 2001; 

Kones et al., 2006).

Alternatively, the uncertainty o f flow 

values can be explored, for example, by 

estim ating the range (m in-m ax) of all 

flow values (Figure 4b; see Klepper and 

Van de Kamer, 1987; Van Oevelen et a l, 

2006c). More recently, a m ethod has 

been developed in  which m ean values 

and standard  deviations of the flow 

values are calculated from  a representa

tive set of solutions that were sampled

via M onte Carlo m ethods (Figure 4; see 

Kones et ah, 2006).

As there is no t m uch to be gained by 

investing in  additional data on flows 

that are already well constrained, the 

estim ation of flow uncertain ty  provides 

essential in form ation about which flows 

need to be m easured preferentially.

Note tha t it m ay be difficult to ascertain 

the m ost critical knowledge gaps in  

the data w ithout the use of a model. 

Thus, m easurem ents and m odeling are 

com plem entary: field data act as input 

for reducing m odel uncertainty, while 

m odels m aybe  used to improve the 

cost-effectiveness of field cam paigns by 

p inpointing  the essential m easurem ents 

that should be acquired.

Ensemble of solutions

BENTHI C F O O D  WEBS  

IN HERMES

W ithin  the HERMES project, food 

web reconstructions are prepared or 

have been created for Nazaré Canyon, 

a Rockall Bank cold-water coral com 

munity, an A rctic food web in  Fram  

Strait (Hausgarten observatory of the 

Alfred W egener Institute for Polar and 

M arine Research), and several open 

slope food webs in  the w estern and 

central M editerranean. In addition, a 

m odeling study on the com plete food 

web of the Porcupine Abyssal Plain is in 

p reparation  and will include data from  

the isotope labeling experim ent using 

an addition  of fresh algal carbon to the 

sedim ent from  W itte et al. (2003). A 

sim plified benth ic carbon food web for 

this system is presented in  Box 3 and 

Figures 5 and 6.

Figure 4. Solution m ethods for an under-determ ined 
food w eb model. There exists an ensem ble o f food webs 
th a t are all equally likely (upper). Either one food web is 
taken from this ensem ble (lower left), o r the  ranges of 
food webs are estim ated (lower middle), o r a representa
tive sam ple o f the  ensem ble is taken (lower right).

Parsim onious solution Range estim ation

s e le c t s  o n e  so lu t io n e s t im a te  o f  f lo w  ra n g e

Bayesian sam pling

f lo w  d istr ib u tio n  in 
e n s e m b le
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Box 3. The Benthic Food Web at Porcupine Abyssal Plain

The Porcupine Abyssal Plain (N o rth ea st A tlantic), located  a t  ~ 4850 m 

d ep th , is o n e  o f  th e  b es t-s tud ied  d eep -sea  sites. Here w e give a sim pli

fied m odel o f  th is ecosystem  (Figures 5 a n d  6). A m ore e lab o ra te  m odel 

is u n d er con stru c tio n . D etritus from  th e  w ate r co lum n  (det_w ) adds 

to  th e  sed im en ta ry  d e tr itu s  c o m p a rtm e n t (det), w here it is tak en  up 

d irectly  by n em ato d es  (nem ) an d  m a c ro b en th o s  (m ac), an d  dissolves 

to  b ecom e dissolved organic carbon  (doc). Part o f  th e  dissolved organic 

c a rb o n  is taken  up  by bacteria  (bac), an d  th e  o th e r  p a r t effluxes to  th e  

w ate r co lum n  (doc_w ). Bacteria in tu rn  are grazed  up o n  by n em a to d es 

a n d  m acro b en th o s  o r m ay lyse (e.g., by viruses). Respiration by th e  biotic 

c o m p a rtm e n ts  induces a flux to  th e  dissolved inorganic ca rb o n  pool in 

th e  w ater co lum n  (dic_w ). N em ato d es a n d  m acro b en th o s  p ro d u ce  feces 

th a t  a d d  to  th e  d e tr itu s  co m p a rtm e n t. N em ato d es are p reyed  upon  

by m acro b en th o s. Finally, n em a to d es  a n d  m acro b en th o s  are p reyed 

up o n  by m eg aben th ic  p redato rs , b u t because th ey  are n o t considered

in th is m odel, th e se  grazing fluxes are d escrib ed  as e x p o rt fluxes from  

th e  food  web. Site-specific d a ta  on  stock  sizes o f th e  biotic an d  abio tic 

c o m p a rtm e n ts  an d  process rates from  th e  litera tu re  (Tables 1 a n d  2) 

are co m b in ed  w ith  generic physiological co n s tra in ts  (Van O evelen e t  al., 

2006c) (Table 3) an d  a d d e d  to  th e  m odel. The im p lem en ted  d a ta  are 

internally consisten t, a n d  th e  m odel is solved (Figure 6) by estim ating  

th e  parsim on ious (sim plest) so lution, th e  M o n te  Carlo so lution, an d  

th e  associa ted  flow  ranges (Figure 6A) (see Figure 4 for concep tual 

visualization). Overall, th e  flow ranges are relatively small, indicating 

th a t, n o tw ith s tan d in g  th e  lim ited  a m o u n t o f  da ta , th e  flows in th e  food  

w eb are well constra ined . However, som e flows (e.g., d e t  —> nem  an d  

nem  —> d e t)  are highly uncerta in  (Figure 5), an d  strongly positively cor

re la ted  (Figure 6). This result ind icates th a t  it is possible to  quan tify  th e  

n e t flux from  d e tr itu s  to  n em atodes , b u t n o t  th e  separa te  flows.

Table 1. Data on carbon stocks used for the 
Porcupine Abyssal Plain case study. Data are for the upper 

5 cm of the sediment and expressed in mgC m l

Compartment Stock Reference

Detritus 28654* Danovaro et al., 2001

Dissolved organic carbon 234 Stâhl et al., 2004

Bacteria 1695 Pfannkuche and Soltwedel, 1998

Nematodes 5 Witte et al., 2003

Macrobenthos 157 Flach et al., 2002

* Sum of biopolymeric (i.e., fatty  acids, am ino acids, and carbohydrates) carbon equivalents.

Table 2. Data on fluxes used for the Porcupine Abyssal Plain case study. Process rates are in mgC m 2 d '. 
The expression in flows indicates which flow (or sum of flows) should equate to the measured process rate.

Efflux of dissolved organic carbon doc —> doc_w 0.83 Lahajnar et al., 2005

Sediment community respiration bac —> dic + nem —> dic + mac —> dic 5.43 Witbaard et al., 2000
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Table 3. Generic physiological constraints used in the Porcupine Abyssal Plain case study.
A flow is designated as (source —> sink) and standings stocks (Table 1) are designated with com partm ent .

Bacterial growth 
efficiency ( - ) 1

(doc —> bac) -  (bac —> dic) 
(doc —> bac)

0.06 0.32

Detritus degradation 
rate (d'1) 2

(det —> doc) + (det —> nem) + (det —> mac)
detss 0.00025 0.016

Assimilation efficiency: 
nematodes ( - ) 3

(det —> nem) + (bac —> nem) -  (nem —> det) 
(det —> nem) + (bac —> nem) 0.06 0.30

Net growth efficiency: 
nematodes ( - ) 3

[(det —> nem) + (bac —> nem)] -  (nem —> det) -  [(nem —> dic) -  nemMR] 
(det —> nem) + (bac —> nem) -  (nem —> det)

with:
nemGR = (nem —> dic) -  nemMR 
nemMR = Tlim • 0.01 • nemss
Tlim = Q10 • exp((T-20)/10) = 0.35, with Q10 = 2 andT = 2.5

0.60 0.90

Growth rate: 
nematodes (d'1) 3

[(det —> nem) + (bac —> nem)] -  (nem —> det) -  nemGR 
nemss Tlim -0.05 Tlim • 0.40

Assimilation efficiency: 
macrobenthos ( - ) 3

[(det —> mac) + (bac —> mac) + (nem —> mac)] -  (mac —> det) 
(det —> mac) + (bac —> mac) + (nem —> mac)

0.40 0.75

Net growth efficiency: 
macrobenthos ( - ) 3

[(det —> mac) + (bac —> mac) + (nem —> mac)] -  mac —> det -  [mac —> dic -  macMR]

0.50 0.70

[(det —> mac) + (bac —> mac) + (nem —> mac)] -  mac —> det

with:
macGR = mac —> dic -  macMR 
macMR = Tlim • 0.01 • macss

Growth rate: 
macrobenthos (d'1)

[(det —> mac) + (bac —> mac) + (nem —> mac)] -  (mac —> det) -  macGR
macss Tlim -0.01 Tlim -0.05

Mel Giorgio and Cole, 1998; 2Henrichs and Doyle, 1986; and 3Van Oevelen et al., 2006c

Oceanography M arch 2009 139



det->nem

det->mac

bac->nem

bac->mac

nem->det

nem

mac

Figure 5. (U pper right) Schematic food web of the  (simplified) Porcupine 
Abyssal Plain model. det_w  is detritus in the w ater column, d e t is 

detritus in the  sedim ent, doc is dissolved organic carbon, bac is 
bacteria, nem is nem atodes, mac is m acrobenthos, dic_w is 

dissolved inorganic carbon in the w ater column, doc_w  is 
dissolved organic carbon in the  w ater column, and exp 

is export (e.g., predation by m egabenthos). Internal 
flows are black; exchange with external is grey. 

(Lower left) The pair-wise se t of solutions 
ob tained by the  M onte Carlo sampling 

m ethod  (for internal flows only); each 
d o t is a valid flow value. The histo

gram on the  diagonal represents 
the  distribution o f flow 

values in the  sam pled set 
of solutions.

nem->mac

mac->det

RECENT DEVELOPM ENTS  

A N D  PROSPECTS

Recent developm ents in  solving linear 

inverse models tend towards quantifica

tion  of residual uncertainty rather than 

selecting one solution (Kones et a l , 2006; 

Kones et al., 2009). Some research is also 

directed toward finding a stronger selec

tion  criterion rooted in  ecological theory, 

for example, m axim izing ascendancy, or 

m axim izing growth (Vézina and Pahlow, 

2003; Vézina et a l , 2004).

The m ost im portan t progress will, 

however, be achieved by the inclusion 

of better, novel, and different data into

the food web m odel. As m ore and dif

ferent types of in  situ inform ation are 

acquired and im plem ented, the m odel’s 

solution space narrows until the flow 

uncertainties are deem ed to be w ithin 

acceptable ranges.

Currently, m ost data in  inverse food 

web m odels are either biomasses or m ea

sures of total carbon cycling (e.g., total 

com m unity respiration or carbon 

deposition). Inform ation on cycling 

rates am ong com ponents in  the food 

web is m uch m ore difficult to obtain and 

therefore m uch scarcer. Stable isotopic 

data have provided valuable inform ation

on deep-sea food webs (e.g., Iken et ah, 

2001; Van Gaever et ah, 2006), and for 

intertidal areas these have proven to be 

ideal data sources to further constrain 

the m agnitude of carbon flows (Van 

Oevelen et a l ,  2006c). However, to be 

applicable, different food sources should 

have different signatures and—more 

im portantly—the signatures o f food 

sources should be measurable. The m ost 

im portan t challenge will be to increase 

our ability to distinguish am ong the dif

ferent sources on w hich animals actually 

feed. The (phyto)detritus deposited on 

the seafloor mixes w ith the sedim entary
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Porcupine Abyssal Plain food web

mac exp

detmac

dicmac

nem exp

nem mac

detnem

dicnem

bac mac

bac nem

bac —> doc

bac —> dic

doc —> bac

doc —> doc_w

det —> mac

det —> nem

det —> doc •  Parsimonious 
O  Monte Carlo average 
—  Range

det_w —> det

0 5 10 15 20
Flow value (mg C/m2/d)

Figure 6. Plot with the  parsim onious (simplest)-averaged and M onte Carlo- 
averaged solutions encom passed by the  range for each flow.

pool, such that sedim ent detritus con

stitutes a com plex m ixture of organic 

m atter w ith different origins, com posi

tion, age, and reactivity (M iddelburg, 

1989; M iddelburg and M eysman, 2007). 

C ertain organism s select only specific 

fractions of this detritus, so that the 

stable isotope signature or fatty acid 

com position of their food m ay not 

be simply quantified.

A way around this problem  is to 

m anipulate the isotope signature of a 

food source. For example, w hen iso- 

topically labeled algae are am ended to 

in  situ or onboard incubation cores,

the organism s that feed on this food 

will incorporate the elevated isotope 

signal. The tim ing and m agnitude of 

isotope enrichm ent in  the consum er 

provides inform ation on the im portance 

of this food in  the consum ers diet. 

N otw ithstanding the difficulty o f car

rying out such replicated experim ents 

in  the deep sea, an increasing am ount 

of w ork that focuses on the transfer of 

fresh phytodetritus into benthic deep- 

sea food webs is perform ed in  these 

environm ents (e.g., Blair et al., 1996; 

M oodley et a l , 2002; Aberle and Witte, 

2003; W itte et a l ,  2003; M oodley et a l,

2005; N om aki et a l ,  2005). In principle, 

it is also possible to trace the bacterial 

pathway by isotope enrichm ent of the 

dissolved organic carbon pool in  the 

sedim ent or am ending enriched cultured 

bacteria into sedim ent cores. A lthough 

this m ethod has so far only been applied 

in  intertidal mudflats (Carm an, 1990; 

Van Oevelen et a l , 2006a,b; Pascal et a l , 

2008), only technical difficulties ham 

per application of this m ethodology to 

deep-sea sediments.

Because the transient data o f such 

isotope tracer experim ents cannot be 

directly entered into the linear equations 

of the food web model, the solution of 

the food web m odel (i.e., the quantified 

food web flows) needs to be translated 

into rate constants for each flow. These 

rates govern dynam ic equations that 

allow sim ulation of the transfer o f the 

isotope tracer th rough the food web. 

C om paring the m odel sim ulation results 

to the data then allows us to select the 

m ost likely food web (e.g., Van Oevelen 

et al., 2006c). A m odel that couples a lin

ear inverse m odel with the enrichm ent 

experim ents perform ed by W itte et al. 

(2003) at the Porcupine Abyssal Plain is 

under construction.

C O N C L U S I O N

Inverse m odeling is a tool that in te

grates scattered inform ation on carbon 

cycling, diet, stable isotope signatures, 

and organic m atter processing. Such 

integration will lead to better insight into 

the structure and functioning of deep- 

sea food webs, which is m uch needed 

because em pirical data on deep-sea eco

systems is expensive to gather. A lthough 

inverse m odeling quantifies a snapshot 

of the m agnitude of food web flows, it is 

also possible to analyze tem poral and/or
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spatial dynam ics of the food web struc

ture. For example, Donali et al. (1999) 

reconstructed pelagic food web struc

tures in  spring, summ er, and au tum n to 

identify tem poral dynamics. However, 

the inverse m odeling form alism  is not 

easily used for prediction, because the 

m odel does no t include the m echanism s 

that shape food web flows. Nevertheless, 

if  food web quantification is repeated 

frequently enough and for different sites, 

certain patterns m ay emerge that provide 

clues to the factors that shape the deep- 

sea food webs. Based on these results, it 

m ay then  becom e possible to quantify 

tru ly  kinetic param eters of m echanisti

cally inspired m odels that are better 

suited for prediction (Gaedke, 1995).
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