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Identification of geographic origin of Norwegian spring-spawning 
herring {Clupea harengus L.) based on measurements of 
scale annuli
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spring-spawning herring (Clupea harengus L.) based on measurements of scale 
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The Norwegian spring-spawning herring stock is characterised by a highly variable 
recruitment. The juveniles are found from, the fjords of west Norway to the north­
eastern Barents Sea. in a nursery area covering both temperate and boreal waters. 
High recruitment to the spawning stock is associated with year-classes that are mostly 
distributed in the Barents Sea as juveniles. The growth, maturation, and recruitment 
patterns of the fish spending their first years of life in the Barents Sea are distinct from 
those of the herring further south along the Norwegian west coast.

For the management of this stock, it is important to identify the fish from the 
different nursery areas as they recruit to the fishery and the spawning stock. A method 
to discriminate the fish from the Barents Sea and the Norwegian west coast nursery 
areas is based on the width of the scale annuli. The success rate of the derived 
classification rule is estimated to be about 90%. The proportion of fish from each area 
in a sample can be estimated with a precision of ± 4%. 
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Introduction
The analysis o f growth patterns or shapes of scales is a 
common method for separating fish stocks and has been 
applied to fish species such as bass, herring, walleye, and 
salmon (e.g., Riley and Carline, 1982; Reddin, 1986; 
Messieh et al., 1989; M argraf and Riley, 1993). The 
identification of subpopulations or components within 
fish stocks has been less frequently reported, although 
Lea (1929) addressed this question in herring. In this 
study we describe a procedure to discriminate between 
individuals of Norwegian spring-spawning herring 
originating from two distinct nursery areas.

Norwegian spring-spawning herring spawn in 
January-M arch along the west coast of Norway from 
approximately 58°N to 69°N, and the larvae drift north- 

. eastward into the fjords and the Barents Sea (Dragesund 
et a l, 1980; Hamre, 1989). The nursery area extends 
from about 60°N to 80°N and includes areas of both 
temperate and arctic water masses (Fig. 1). The large

differences in environmental regimes within the nursery 
area are reflected in the conditions for growth of the 
juvenile herring. The herring spending their juvenile 
period in the areas off Finnmark and in the Barents Sea 
have a markedly slower growth than those found in the 
fjords along the Norwegian west coast (Dragesund et al., 
1980). While the slower-growing Barents Sea juveniles 
spend 3-5 years in the nursery area, the fish from the 
Norwegian west coast leave the nursery areas at an age 
o f 1-2 years.

The Norwegian spring-spawning herring stock is 
characterised by large fluctuations in abundance and 
recruitment (Hjort, 1914; Garrod, 1982) that are often 
accompanied by pronounced changes in the growth and 
maturation patterns (Runnstromm, 1936; Seliverstova, 
1990; Toresen, 1990). This variability amplifies the dif­
ficulties associated with the assessment of this highly 
migratory stock, and an increased understanding of the 
factors associated with the variability is therefore crucial 
for improving the assessment procedures.
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Figure 1. Areas defined for selection of samples. Drift of larvae/O-group (arrow) and nurseries (hatched) of I 
spring-spawning herring indicated (modified from Dragesund et a i, 1980 with kind permission from the authors).

Several authors (e.g. Ottestad, 1934; Runnstromm, 
1936; 0stvedt, 1958; Seliverstova, 1968, 1990;
Dragesund, 1970) have shown that the growth, m atura­
tion, and year-class strength of the different herring 
cohorts are all strongly influenced by the geographical 
distribution of the early life stages, and especially by 
how large a proportion of the year-class is present in 
the Barents Sea. In particular, high recruitment to the 
spawning stock and the fishery seems to occur only 
when a  large proportion of the juveniles is present in 
the Barents Sea (Dragesund, 1970; Seliverstova, 1970, 
1990).

The ability to determine the nursery area of origin of 
individual fish, and particularly the proportion of fish 
from the Barents Sea nursery area, in the population is 
therefore important in improving the assessment of the 
stock and understanding the factors underlying its 
dynamics.

U ntil the collapse o f the stock in  the late 1960s, the 
herring sampled by the Institute o f M arine Research in

Bergen, Norway were routinely classified as “N 
or “Southern” type, using Lea’s (1929) m eth  
on a subtle evaluation of the scale structi 
classification, however, was discontinued in 1 
replaced by the measurement o f the radii of 
annuli.

The Barents Sea component, which disappe 
lowing the late 1960s stock collapse, reappean 
spawning stock with the recruitment of the li 
class in 1987 (Rottingen, 1989; Seliverstova, 1 
substantial recruitment is expected from this 
the near future (Anon., 1994). A technique 
fore needed for separating the individuals f 
Norwegian west coast and Barents Sea nurserie; 
the expertise involved in applying Lea’s method 
been lost.

In this paper we describe a classification p 
that is based only on the measurements of sea 
routinely taken for the assessment o f the age c 
tion of the Norwegian spring-spawning herring
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for the reporting of catch statistics, these statistical areas 
were used to define the nursery areas.

Although several authors (e.g. Seliverstova, 1990) 
distinguished between fish from the open areas of the 
Barents Sea from those spending the first months of life 
in the fjords of the Finnm ark coast, Dragesund (1970) 
showed that these two groups of fish mix in the open sea 
as early as after their first winter, It is therefore not 
possible to separate them after the 0-group stage, and 
for the purposes of this work they were considered as a 
single group. We therefore define the Barents Sea com­
ponent o f the juvenile Norwegian spring-spawning 
herring as all those fish spending the first years of life 
north of 70°N (Fig. 1), while all fish growing up south of 
this line are included in the Norwegian west coast 
component.

Figure 2. Schematic drawing of a herring scale from an 
S-year-old individua! caught in summer. Line used for measur­
ing growth increments with age of corresponding annuli 
indicated.

Materials and methods
The Institute of M arine Research, Bergen, Norway 
(IMR) has collected individual biological measurements 
on herring of the Norwegian spring-spawning herring 
stock (Atlanto-Scandian herring group) since the end of 
the last century. In this study, we used samples dating 
from 1937 to 1994. They were collected from drift-net, 
beach-seine, purse-seine, and trawl catches, taken both 
by commercial and scientific vessels. In general, the 
samples consisted of 100 fish, although a number of 
early samples included 200 individuals. Each fish was 
weighed, the total length measured and standard param­
eters such as sex, maturation stage, and relative fatness 
taken. When available, up to four scales were collected 
from the area just behind the operculum, along the mid 
body line. The scales were mounted on glass plates 
and the yearly rings were identified and the age deter­
mined using a stereomicroscope fitted with an ocular 
micrometer. The total radius of the scale and the radius 
o f each annulus up to the 6th or 9th were measured 
along a line running from the focus of the scale to  the 
edge of the scale or the inner point o f the corresponding 
winter ring, respectively (Fig. 2).

Definition o f the nursery areas

Although juvenile herring are distributed continuously 
along most of the Norwegian west coast and into the 
Barents Sea, for classification purposes it is necessary to 
divide this continuum into separate nursery areas. Since 
the position of many of the earlier herring samples is 
given only in terms of the statistical areas used by IMR

Selection o f  the observations

To estimate and test the classification rule, it is necessary 
to use fish of known geographic origin. The majority of 
the herring growing up in the Barents Sea start m igrat­
ing into the Norwegian Sea in the spring of the year that 
they reach 3 years of age, but some may stay m the area 
for up to  6-7 years {Dragesund et al., 1980). Immigra­
tion of juveniles or adult herring northwards into the 
Barents Sea has not been observed, and is assumed to 
be negligible. Accordingly, all fish sampled inside the 
Barents Sea (area 1, Fig. 1) were assumed to have grown 
up in this area, irrespective of the age at which they were 
sampled. For selecting the fish from the Norwegian west 
coast component, however, it is necessary to achieve a 
compromise between minimising the risk of mixing fish 
from the different nurseries and securing enough infor­
mation on the individual growth history of the fish. 
Given that fish from the Barents Sea are not expected to 
be found on the west coast area before they reached 3 
years of age, it was decided to use only fish aged 3 years. 
It is still necessary to take into consideration that in 
some years an important part o f the Barents Sea com­
ponent may migrate into the Norwegian west coast area 
as early as May (Rottingen, 1989). Accordingly, the 
Norwegian west coast area was subdivided in three 
sub-areas (Fig. 1), and the following criteria were used 
to assign fish to the Norwegian west coast component;
3-year old fish sampled m area 2 during the whole year, 
in area 3 during January-M ay, or in area 4 during 
January-A pril, were assumed to have spent the juvenile 
stage in the west coast area; fish sampled in any other 
area/time combination were considered of questionable 
origin, and were not included in the study.

Using these criteria, the data-set used in the analy­
sis included 1676 individuals from the Barents Sea 
component, and 5019 from the Norwegian west coast 
component.
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C alcu la tion  o f  classification variab les

The basic variables used for the analysis were the radii 
of the annuli on the herring scales (Fig. 2). The annuii 
radii were standardised to compensate for not always 
using a corresponding scale from all individuals and 
for individual variability in the scale radius/fish length 
ratio. A plot of scale radius vs. fish length for the data in 
the IMR database showed evidence of a non-linear 
relationship, so we used an exponential model:

SR =aebL

where SR is the total scale radius (in mm), L is total fish 
length (in cm) and a and b are constants.

This model was fitted to the over 50 000 pairs of scale 
radius-fish length measurements available in the IM R 
database. The fitted model was then used to compute the 
expected scale radius for each scale as:

SR;,=2.056eOW2L

and the standardised annuli radii R v were calculated by 
multiplying the observed radii R  by the ratio between 
the expected and the observed scale radii as

R = R -SRx
SR

It was shown by Runnstrom  (1936) that adolescent 
herring migrating into the Norwegian Sea from the 
Barents Sea increase their growth rate, which is reflected 
in the radius of the corresponding annulus. Barents Sea 
herring are not expected to start migrating into the 
Norwegian Sea before the age of 3, so this growth 
difference will only be apparent in the scales of herring 
originating from the Norwegian west coast area. Since 
these fish also tend to have an overall higher growth rate 
(Runnstrom, 1936), both the actual growth increments 
and the ratios between consecutive growth increments 
may be used to discriminate between fish of the two 
components. The following variables were therefore 
computed:

Rl
R2
R3
12

13

I2R1

13R2

I3I2

Radius of first ring;
Radius of second ring;
Radius of third ring;
Growth increment corresponding to second 
growth season (I2=R 2 — R l);
Growth increment corresponding to third 
growth season (I3 = R3 — R2);
Ratio between growth increment during the 
second growth season and the radius of 
the first ring (I2R 1 =12/R1);
Ratio between growth increment during 
the third growth season and the radius of the 
second ring (I3R2=I3/R2);
Ratio between growth increments during 
the third and the second growth seasons 
(1312=

13/12);
RM AX Largest ratio between two consecutive growth

increments (Largest of I3I2 and 12RÎ);
LI Position of the largest ratio between two

consecutive growth increments (1 or 2); 
NG1L1 Num ber of times a growth increment is larger

than the previous one;
LII Position of the last increment increase (3 if

I3I2>1, 2 if  1 3 1 2 ^ 1 ,12R1>1);
IIL1 Indicator variable: 1 if either I2R1 or I3I2 are

larger than 1, otherwise 0.

E stim ato rs

Linear or quadratic discriminant analyses (Johnson 
and Wiehern, 1988) are the two methods generally 
used for classification of mixed groups of fish (e.g. 
Cook, 1982; Pontual and Prouzet, 1988; Barlow and 
Gregg, 1991). Given multinormally distributed data, 
these methods are optimal in the sense that no other 
method will give better results (Johnson and Wiehern, 
1988). Logistic regression (Cox and Snell, 1989) is an 
alternative and preferable method when the explana­
tory variables are not multivariate normal (Press and 
Wilson, 1978). In a comparative study of logistic regres­
sion vs. discriminant analysis, Prager and Fabrizio 
(1990) concluded that logistic regression provided 
slightly better results on their test data-sets, In our case, 
it was difficult to justify the multinormality assumption 
for the predictor variables, and logistic regression was 
thus used to derive the classification rule. Component 
(B or W, where B = Barents Sea, W =W est coast) is 
considered as the dependent variable, and is assumed 
to be binomially distributed. The covariates are the 
different quantities computed from the scale radius 
measurements.

Representing the dependent or classification variable 
by Y (taking the values 0 or 1 according to whether it is 
W or B) and the different k covariates by X0, X ;, . , 
Xk, the probability o f observation i coming from the 
Barents Sea is given by

exp(Z¡) ^
P(Yi=1l)= —

l+ ex p (Z j i=o

where the ßj are the parameters (coefficients) of the 
model and XQ= 1, so that ß0 represents the constant term 
in the model.

The predicted probability o f this observation coming 
from the Norwegian west coast area is P(Y¡ = 0)= 
1 - P ( Y ;=1). Observation i is assigned to the Barents 
Sea area if P(Y¡=1) ÿ0 .5 , and to the Norwegian west 
coast component otherwise.

The parameters of the model were estimated by fitting 
it to observations of known origin using SAS PROC 
LOGISTIC (SÁS, 1990). The classification rule was 
implemented in a simple SAS program.
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The classification matrix C={c¡j}, where cit denotes 
the probability that an observation from class i will be 
classified into class

was used to represent the properties of this classification 
rule (Johnson and Wiehern, 1989). The error rate of the 
rule, E, defined as the probability o f wrongly classifying 
an observation, and given by

was used to get an overall measure of the performance of 
the classification scheme.

To estimate C and E, we used the bootstrap method 
proposed by Efron (1982), as modified by Chatergee and 
Chatergee (1983). To obtain a good fit of the model, it is 
convenient that the data be at least approximately 
balanced, that is, comprising approximately equal num ­
bers of observations from both components. Since the 
data-set used here includes fewer observations from the 
Barents Sea component than from the Norwegian west 
coast one, the construction of the learning and test sets 
had to be adjusted to the number of observations from 
the Barents Sea component. Denoting by N B the total 
number of observations from the Barents Sea compo­
nent, the learning set was constructed by randomly 
drawing, with replacement, N B observations from each 
of the components. The test set then comprised all 
observations from the Barents Sea component not 
included in the learning set, plus an equal number of 
observations from the Norwegian west coast compo­
nent, randomly drawn, without replacement, from those 
not included in the learning set. The classification rule 
was estimated by fitting the logistic regression model to 
the learning set, and it was applied to classify the 
observations in the test set. The elements of the classifi­
cation matrix were estimated as c— ny/nj, where n ; is the 
number of observations in the test set which belong to 
component i, and n¡| is the number of these which are 
classified into component j. Having the cy, E is estimated 
by

Ê -  X  w ¡ 0  ~  e ii)’ w , = - - kn '~ -

X  *i=i

The procedure was repeated B times, and the final 
estimate of the classification matrix was computed as the 
weighted average of the B classification matrices derived 
from this procedure,

C  { C ÿ } , c ij X  B C 'J ]1- 1 V*X «iti=i

where n;l is the number of observations actually 
belonging to class i in the bootstrap test sample 1.

The_final estimate for E, E, was then computed 
from C in the standard way.

To estimate the proportions of the observations from 
the two components in a mixed sample, we used Cook’s 
(1983) constrained corrected classification estimator. 
This estimator is based on C ook’s and Lord’s (1978) 
corrected classification estimator,

Û = RC~ ‘,

where U={u¡} is the vector o f estimated proportions,

nÆniJ
(n¡ = number of observations classified into component 
i), and C ~  1 is the inverse of the estimated classification 
matrix.

If all elements of Û are non-negative, the final esti­
mate is just U. Otherwise, a constrained estimate U is 
recomputed as shown by Cook (1983)

( 2 A . Û A - 1
U - A Â - A ,   ---------- ,

X  A ii
1, Û,>G 

0, Ú¡ <  0

and this correction is applied iteratively, until all 
estimated proportions are non-negative.

Estim ation of the classification rule and the 
associated errors

The first step in the estimation of the classification rule 
was to select the subset of the variables to include in the 
model. A two-step procedure was used. In the first step, 
100 bootstrap samples were taken, with replacement, 
from the original data-set. Given the requirement that 
the data should be balanced, the bootstrap samples were 
constructed in such a way that each sample had 1676 
observations from each o f the two components.

Logistic regression with forward variable selection 
procedure (PROC LOGISTIC from SAS) was then 
applied to each of the samples. The significance level 
for inclusion of the variables was set to 0.25. For each 
new variable included in the model, the reduction in 
the Akaike Information Criterion (AIC) and in the 
Schwartz Criterion (SC) (Kotz et al., 1988) were calcu­
lated. When the inclusion of a new variable caused an 
increase in these criteria, the procedure was stopped, and 
the variable was not included in the model.

After this procedure had been applied to all 100 
samples, the frequency with which each variable was 
included in the model was computed. To take account of

R = { R ¡} -j
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the association between variables, the frequencies were 
taken pairwise (that is, the frequencies computed were 
the frequencies of different pairs o f variables). Those 
variables that occurred in pairs with a frequency of 
occurrence of at least 10% were kept for further analysis, 
the others were eliminated from the procedure.

In the second step, all models consisting of the vari­
ables selected previously were evaluated separately. A 
set of 50 bootstrap training and test samples was gener­
ated. Each learning sample included 1676 observations 
from each component. The test sets included all obser­
vations from the Barents Sea component not included 
in the corresponding learning sample, and the same 
number of observations from the Norwegian west coast 
area, drawn randomly without replacement from the set 
of all the observations from this nursery which had not 
been included in the learning sample. The expected error 
rate of each model and its standard error were estimated 
using the procedures above and the same 50 bootstrap 
samples for all models.

The model with the lowest and least variable overall 
classification error was selected as the “best” model. If 
several models resulted in very similar average overall 
error rates (differing by less than twice their standard 
errors) and similar standard errors, the simplest one 
(with fewest variables) was selected as the “best” model.

Having selected the “best” model, it was necessary to 
estimate its parameters. A balanced data-set was created, 
including all available observations from the Barents Sea 
area and the same number of observations from the 
Norwegian west coast area, drawn randomly, without re­
placement, from the original data-set. The model selected in 
the previous step was then fitted to  these data, using the 
methods described above, and the estimated parameters 
were taken as the best possible estimates for this model.

The classification matrix associated with this model 
was estimated by using the bootstrap procedure on 100 
bootstrap learning and test sets with the same properties 
as those taken earlier.

To obtain estimates of the errors associated with the 
estimates o f stock composition a M onte Carlo approach 
was used. To take account of the possibility that these 
estimates may depend on the true proportions of the 
different classes in the population, 21 simulated popula­
tions, of known composition and with 3352 observations 
each, were constructed by resampling with replacement 
and unequal probabilities from the original data-set. The 
proportion of Barents Sea fish in these populations 
varied from 0-100%, by steps of 5%.

From  each of these artificial populations 50 simple 
random  samples, o fl500  observations each, were drawn 
with replacement. For each sample j taken from popu­
lation i, the proportion of Barents Sea observations B^ 
was estimated, and the absolute error en = B,j -  B¡, where 
B. is the true percentage of Barents Sea observations in 
population i, was computed.

These errors were then plotted against the true per­
centages, to evaluate whether a pattern was apparent. If 
no pattern could be identified, then all the error esti­
mates were pooled, to provide a single estimate of the 
distribution of these errors. If  a pattern was apparent, 
on the other hand , the errors were kept separate, and 
their distributions were estimated separately for each 
value of the true proportions.

Results
Selection o f  th e  ex p lan a to ry  variab les 
The first phase o f  the variable selection procedure indi­
cated that only 7 of the 14 variables considered initially 
were included in pairs of variables selected more than 
10% of the time (Table 1). Of these 7 variables, R3 and 
I3I2 were always selected, LI was selected together with 
the two first in 98% of the cases, and IIL1, I3R2, LII, 
and NGIL1 appeared in, respectively, 37%, 27%, 18%, 
and 14% of the cases. R3 was always the first variable to 
be included in the model, I3I2 was always the second, 
and LI showed up in either the third (79% of the trials) 
or fourth (19% of the trials) position. The other 
variables did not have such stable positions.

Since R3 and I3I2 were included in the mode! in all 
trials, all subsequent analyses considered these two 
variables as a necessary component o f the models to be 
tried. In addition, the inclusion of LÍ in 98% of the trials 
was taken as an indication that the only 3-variables 
model worth considering would be the one including R3, 
I3I2, and LI.

The comparison of the error rates o f the different 
models, including these variables estimated by the boot­
strap procedure (Table 2), showed that the 3-variables 
model gave a significantly lower error rate than the 
two-variables model. None of the 4-variables models 
gave a clear improvement over the 3-variables model, 
since the difference in the average error rates between the
4-variables models and the simpler model was smaller 
than twice the asymptotic standard error o f the esti­
mates, The model including R3, I3I2, and LÍ was 
therefore selected as the best mode! for the classification 
rule.

The final model was therefore 

P(Barents Sea) = P(Y¡ = l)=
exp(ßo + ß |R 3 , + p213I2+ ß3LIi)

1 +exp(ß0+ ßjR3; + ß213I2 + ß3LI,)

The estimated values for the coefficients ß0 to ß3 are 
given in Table 3, together with the corresponding 
asymptotic 95% confidence intervals. The confidence 
intervals for all parameters were quite narrow, indicat­
ing good precision in their determination. The final 
average estimate of the classification matrix is presented 
in Table 4.

The m atrix is reasonably symmetrical, since the esti­
mated probability of correctly classifying a fish from the
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Table 1. Frequency of occurrence of the different pairs of variables, in 100 applications of PROC LOGISTIC, with the forward 
variable selection procedure.

Rl R2 R3 12 13 I2R1 I3R1 I3R2 I3I2 RMAX LI NGIL1 LII IIL1

Rl 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 4 4 0 0 0 0 1 4 0 4 0 0 2
R3 100 0 2 0 1 27 100 0 98 14 18 37
12 0 0 0 0 0 0 0 0 0 0 0
13 2 0 0 4 2 0 2 0 0 2
I2R1 0 0 0 0 0 0 0 0 0
I3R1 1 1 1 0 0 0 0 0
I3R2 27 27 0 27 1 1 9
1312 100 0 98 14 18 37
RMAX 0 0 0 0 0
LI 98 14 18 36
NGIL1 14 0 0
LII 18 0
IIL1 37

Barents Sea area (89.47%) is almost the same as that 
of correctly classifying a Norwegian west coast fish 
(91.05%). The overall classification error rate of 9.74% 
is therefore a good summary of the classification 
matrix. The narrow distribution of the estimates o f this 
error rate (Table 5) indicate that the estimated classifi­
cation rule produced relatively stable and uniform 
results.

The errors in the estimates o f stock composition 
derived from this classification rule do not show any 
trend with the true composition of the populations from 
which they are derived (Fig. 3). A single composite 
distribution for these errors was therefore computed 
(Fig, 4), 95% of this distribution being between — 3.91% 
and 2.56%. This indicates that there is a probability of at 
least 95% that the true composition of the stock will be

within ±  4% of the composition estimated from apply­
ing this classification rule to a random  sample taken 
from the stock.

Discussion
The procedure described in this paper eliminates the 
main problems associated with stock separation tech­
niques used by earlier workers. All trained scale readers 
at IM R can identify and measure the first three scale 
annuli. Since the classification rule was developed on the 
basis o f fish whose nursery area was known, the rule 
now corresponds directly to the areas of interest and its 
statistical properties can be evaluated.

The procedure is based on a number of explicit and 
implicit assumptions, of which the most important are:

Table 2. Classification error rates obtained under the different models considered.

Standard error 
of the average error

Variables in mode) Average error rate (%) rate (%)

R3 + I3I2
R3+ 1312+LI
R3 + I3I2 + LI + IIL1
R3 + I3R2+ LI + I3R2
R3 + I3R2+LI + LII
R3 + I3R2 + LI + NGIL1
R3 + I3I2 + LI + IIL1+ I3R2
R3+I3I2+LI + IIL1 + LII
R3 + I3I2 + LI + IIL1+NGIL1
R3 + I3R2 + LI + I3R2 + LII
R3 + Ï3R2 + LI + 13R2+NGIL1
R3 + I3R2 + LI + LII + UL 1
R3 + I3I2+LI + IIL1+I3R2 + LII
R3 + I3I2 + LI + IIL1 +I3R2 + IIL1
R3 + I3I2 + LI + I1L1 + I3R2 + LII + NGIL1

10.06 0.090
9.65 0.097
9.47 0.103
9.53 0.094
9.48 0.105
9.48 0.107
9.49 0.104
9.51 0.106
9.50 0.108
9.48 0.109
9.49 0,106
9.49 0.106
9.46 0.107
9.47 0.106
9.45 0.106
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Table 3. Point estimates and asymptotic (normal approxima­
tion) confidence interval for the parameters in the logistic 
classification model.

Coefficient
95% confidence interval 

Estimate (asymptotic)

(Intercept)
Pi
Pi
Pi

33.42 33.12-33.72
-  6,79 -  6.85 to -  6.73
-  2.62 -2 .7 4  to -2 .5 0  
-0 .5 4  -  0.57 to -0 .51

Table 4. Estimate of classification matrix for the classification 
of herring by geographic origin.

Percent classified as

“True” origin Barents Sea Coastal

Barents Sea 
Coastal

89.47 10.53 
8.95 91.05

Table 5. Summary statistics for the distribution of the estimates 
of the classification error rate derived from 100 bootstrap 
samples.

Weighted
average
(%)

Extreme 95% confidence 
values interval (asymptotic)

I'M,) (%)

9.74 8.22-11.17 9.60-9.86

(1) the samples used are pure samples, i.e. all fish 
considered as coming from one o f the areas do indeed 
come front that area; (2) the samples used for developing 
the procedure are representative of the underlying popu­
lation^); and (3) the methodology used to develop the 
classification rule from the chosen predictor variables 
has adequate discriminating power. These assumptions 
are not completely fulfilled in all cases, and it is impor­
tant to consider what might be the extent and relevance 
of the deviations from the assumed patterns.

Non-pure (contaminated) samples may arise from 
including in a sample from one of the components fish 
from the other component or from another stock. In this 
particular study, the arbitrary way used for defining the 
components adds an extra dimension to this question 
(since the components are not naturally isolated). We do 
not consider this to be a major source of error, however, 
since the location of the separation line was chosen such 
as to enclose the main distribution areas for young 
herring in the Barents Sea (Dragesund et a l,  1980; 
Toresen and Barros, 1995) and to be as close as possible 
to  the border o f the Barents Sea ecosystem (Dragesund 
and Gjosaeter, 1988) Contamination of the samples due

to movements o f  fish between the two areas before age 3 
or inclusion o f  herring from other stocks may still have 
occurred, but it is not likely that it will have been large 
enough to change our results appreciably. Although 
there are indications that some fast-growing fish may 
leave the Barents Sea at the age of 2 + (Dragesund et al., 
1980; Seliverstova, 1990), we found no reports of large- 
scale movements of herring younger than 3 years from 
the Norwegian west coast into the Barents Sea or vice 
versa, and the criteria used for selecting the samples 
were defined in such a way as to minimise the risk 
of obtaining very contaminated samples. The inclusion 
of significant numbers of herring from the N orth Sea 
or from local stocks is also unlikely. The patterns of 
occurrence of these fish are relatively well-known to 
IMR personnel, and they are also easy to detect by 
their markedly different growth pattern (Aasen, 1952; 
Hognestad, 1994), being routinely removed from the 
Norwegian spring-spawning herring samples once the 
age-length relationship has been determined.

The problem of the representativeness of the samples 
from each population/component, another recurring 
concern in this kind of study, is also unlikely to have 
flawed our results appreciably. Even if it is not possible 
to guarantee tha t all possible groups of fish are 
included in the samples used, the samples used were 
spread over most areas and a long period, and it is 
thus reasonable to assume that no m ajor group will 
have been absent from the samples.

The choice of analytical procedure is another impor­
tan t aspect for the success of the classification. Even if 
the type of data available made logistic regression seem 
a more appropriate technique than linear or quadratic 
discriminant analysis, it could not be concluded a priori 
that the latter would still give better results. To investi­
gate this, we performed a comparative study of the 
performance of the two procedures on our data. Logistic 
regression performed (marginally) better, with fewer 
variables, and we concluded that this latter method was 
to be preferred.

The classification success of 90% must be considered 
promising, taking into account that we are dealing with 
groups within a single stock. Typical classification suc­
cess in comparable inter-stock separation studies in 
herring are typically in the range from 42°/^96% (e.g. 
Côté et a l,  1980; Schweigert, 1981; Messieh et ul. , 1989). 
Nevertheless, significant improvements in classification 
success could still be obtained by altering the procedures 
presented here. The most influential variable in the 
classification rule, R3, actually corresponds to the back- 
calculated length of the fish at age 3, and the high 
contribution of this variable clearly demonstrates the 
differences in growth between the two nursery areas. 
Since average growth may vary significantly among 
cohorts, and simultaneously in the two nursery areas, 
this also means that combining data  for cohorts with
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Figure 3. Distribution of errors in estimated proportion of Barents Sea fish related to true proportion in population. Derived from 
50 bootstrap samples for each true proportion.
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Figure 4. Composite distribution of errors. Derived from 1050 
bootstrap simulations.

low and high growth reduces the power of the discrimi­
nating procedure. To explore this effect we split the 
data-set in two by extracting the 1973 cohort, which is 
known to have exhibited an unusually high growth and 
to have contributed a significant portion of the Barents 
Sea data-set (43%). We then repeated the analysis sep­
arately for each of the two data-sets arising from this 
splitting. The error rate was reduced from 10% in the 
combined data-set to 6.5% in the data-set without the 
1973 cohort and to 5% on that containing only fish from 
this year-class. By separating the high-growth from the 
low-growth cohorts and estimating a distinct classifica­
tion rule for each of these groups, the success of the 
classification procedure could therefore be significantly 
improved. Unfortunately, this can not easily be done on 
the data currently available in the IM R database, and 
thus the main procedure was not modified.
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