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Abstract: Various species of algae can produce marine toxins under certain circumstances.
These toxins can then accumulate in shellfish such as mussels, oysters and scallops. When 
these contaminated shellfish species are consumed severe intoxication can occur. The 
different types of syndromes that can occur after consumption of contaminated shellfish, 
the corresponding toxins and relevant legislation are discussed in this review. Amnesic 
Shellfish Poisoning (ASP), Paralytic Shellfish Poisoning (PSP), Diarrheic Shellfish 
Poisoning (DSP) and Azaspiracid Shellfish Poisoning (AZP) occur worldwide, Neurologic 
Shellfish Poisoning (NSP) is mainly limited to the USA and New Zealand while the toxins 
causing DSP and AZP occur most frequently in Europe. The latter two toxin groups are fat- 
soluble and can therefore also be classified as lipophilic marine toxins. A detailed 
overview of the official analytical methods used in the EU (mouse or rat bioassay) and the 
recently developed alternative methods for the lipophilic marine toxins is given. These 
alternative methods are based on functional assays, biochemical assays and chemical
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methods. From the literature it is clear that chemical methods offer the best potential to 
replace the animal tests that are still legislated worldwide. Finally, an overview is given of 
the situation of marine toxins in The Netherlands. The rat bioassay has been used for 
monitoring DSP and AZP toxins in The Netherlands since the 1970s. Nowadays, a 
combination of a chemical method and the rat bioassay is often used. In The Netherlands 
toxic events are mainly caused by DSP toxins, which have been found in Dutch shellfish 
for the first time in 1961, and have reoccurred at irregular intervals and in varying 
concentrations. From this review it is clear that considerable effort is being undertaken by 
various research groups to phase out the animal tests that are still used for the official 
routine monitoring programs.

Keywords: lipophilic marine toxins; DSP toxins; alternative methods

1. Introduction

Of the 5,000 phytoplankton species known to date under specific circumstances about 300 of them 
have a high proliferation rate, resulting in high density algae clouds called blooms. The circumstances 
for bloom development are not fully understood yet, but specific climatic and hydrographic conditions 
seem to play a role in the formation of blooms [1-3], Blooms are sometimes beneficial for aquaculture 
and marine biology [4], However, of the 300 phytoplankton species mentioned above, more than 
40 species belonging to the classes of dinoflagellates and diatoms are known to produce phycotoxins 
(marine toxins) [5], The abundance of these toxic phytoplankton species can vary from thousand until 
a few million cells per liter. The high abundance blooms of these toxic phytoplankton species are 
named harmful algae blooms (HABs). It has been suggested that certain phytoplankton species 
produce toxins to compete for space with other phytoplankton species [6],

Phycotoxins can accumulate in various marine species such as fish, crabs or filter feeding bivalves 
(shellfish) such as mussels, oysters, scallops and clams. In shellfish, toxins mainly accumulate in the 
digestive glands without causing adverse effects on the shellfish itself. However, when substantial 
amounts of contaminated shellfish are consumed by humans this may cause severe intoxication of the 
consumer (Figure 1). Throughout the world, toxins produced by algae (including freshwater cyano 
toxins) are held responsible for approximately 60,000 human intoxications yearly [7], Shellfish toxins 
also cause damage to wildlife [8,9] and have a negative economic impact on recreation, tourism and 
shellfish industry. In Europe an estimated annual loss of 720 M€ for the recreation and tourism 
industry and 166 M€ for the shellfish industry is due to the occurrence of algae blooms [10,11], In 
order to prevent intoxication of the consumer by shellfish toxins, legislation has been developed and 
monitoring programs have been established worldwide [12,13], In this review an overview is given of 
the various types of poisoning syndromes, their corresponding algae and toxins. Furthermore, 
alternative methods are reviewed that have been developed to replace the animal bioassays that are 
currently used for the detection of lipophilic marine toxins.
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Figure 1. Harmful algae blooms in the food chain and their routes of exposure.
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2. Poisoning Syndromes and Corresponding Toxins

Based on their chemical properties marine shellfish toxins can be divided in two different classes: 
hydrophilic and lipophilic toxins. Toxins associated with the syndromes amnesic shellfish poisoning 
(ASP) and paralytic shellfish poisoning (PSP) are hydrophilic and have a molecular weight (MW) 
below 500 Da. Toxins responsible for neurologic shellfish poisoning (NSP), diarrhetic shellfish 
poisoning (DSP), azaspiracid shellfish poisoning (AZP) and other toxins such as pectenotoxins, 
yessotoxins and cyclic imines all have as common denominator a MW above 600 Da (up to 2,000 Da). 
These toxins have strong lipophilic properties. Therefore, these toxins are generally called lipophilic 
marine toxins.

2.1. Hydrophilic toxins

2.1.1. Amnesic shellfish poisoning (ASP)

The diatom Pseudo-nitzschia pungens is one of the most important species of the more than 10 
known producers of domoic acid (Figure 2), the toxin responsible for ASP (Table 1). In addition, a 
number of toxic DA isomers have been described in the literature [14]. The primary action of DA is on 
the hippocampus, which is involved in processing memory and visceral functions [15]. DA is a 
neurotoxin that binds with a high affinity to glutamate receptors. This binding leads to opening of the 
membrane channels (permeable to sodium). This, in turn, leads to an increased sodium influx and 
membrane depolarization. The adverse effects reported are gastrointestinal disorders, nausea, 
vomiting, abdominal cramps and diarrhea. Furthermore, also headache, dizziness and loss of the short
term memory can occur [16,17].

ASP intoxication in humans was first reported in 1987 on Prince Edward Island, Canada [18]. 
During this toxic episode three people died and more than 100 were admitted to the hospital after 
consuming blue mussels {Mytilus edulis) with high levels of DA [17]. DA occurrence in shellfish is a 
global issue. In recent years shellfish containing DA have been reported in the USA, Canada, France, 
United Kingdom (UK), Spain, Ireland and Portugal [18-23]. The European Union (EU) has 
established a permitted level of 20 mg D A/kg shellfish. In 2009, the European Food Safety Authority
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(EFSA) published an opinion on DA [24], In this opinion the panel recommended that it is safe to 
consume shellfish which contain less than 4.5 mg DA /kg shellfish in order to not exceed the acute 
reference dose (ARfD). DG SANCO (responsible for health and consumer protection in the EU) will 
discuss the EFSA opinion with the different EU member states and this may result in new legislation.

Figure 2. Chemical structure of domoic acid (DA).

Table 1. Marine toxin groups and their responsible algae.

Toxin group Syndrome Genus Species Reference

Hydrophilic
toxins

Domoic acid ASP
Pseudo
nitzschia

australis, calliantha, cuspidata, 
delicatissima, fraudulenta, 
galaxiae, multiseries, multistriata, 
pseudodelicatissima, pungens, 
seriata, turgidula

[25]

Saxitoxins PSP Alexandrium

Gymnodinium
Pyrodinium

angustitabulatum, catenella, 
fundyense, lusitanicum, minutum, 
tamarense, tamiyavanichii 

catenatum 
bahamense

[26-28]

[26]
[26]

Lipophilic
toxins

Brevetoxins NSP Karenia

Chatonella

brevis, brevisulcata, mikimotoi, 
selliformis, papilionacea

cf. verruculosa

[8,29]
[30]

[30]

Okadaic acid 
and

dinophysistoxins
and

pectenotoxins 1

DSP

Phalacroma

Prorocentrum

Dinophysis

rotundatum
arenarium, belizeanum, 
concavem, lima 
acuminata, acuta, arenarium, 
caudate, fortii, mitra, norvegica, 
ovum, rotundata, sacculus, tripos

[31]

[32]

[33-38]

Yessotoxins

Protoceratium

Lingulodinium

Gonyaulax

reticulatum

polyedrum

polyhedra

[29,39]

[29]

[29]

Azaspiracids AZP Azadinium spinosum [40]

Spirolides - Alexandrium ostenfeldii, peruvianum [41,42]

Gymnodimines -
Karenia

Gymnodium

selliforme

mikimotoi

[43]

[44]

1 Pectenotoxins do not induce diarrhea but are produced by the same algae as the DSP toxins okadaic acid
and dinophysistoxins.
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2.1.2. Paralytic shellfish poisoning (PSP)

Dinoflagellates of the Alexandrium genus are the producers of saxitoxins (Figure 3), the group of 
toxins responsible for PSP (Table 1). Within the saxitoxin group around 30 different analogues have 
been detected [45]. Not every analogue exhibits the same toxicity and nowadays for the most 
prominent analogues, toxic equivalent factors (TEF) have been established [46]. Saxitoxin causes 
inhibition of the voltage-gated sodium channel resulting in a reduced action potential [47]. Adverse 
effects of intoxication with saxitoxins start with tingling or numbness around the lips. These effects 
spread to the neck and face. In a progressed state, prickly sensation of fingertips, headache, dizziness, 
nausea, vomiting and diarrhea can occur. Even temporary blindness has been reported [46,48]. When 
high levels of saxitoxins are consumed also the motor nerves are affected, resulting in respiratory 
difficulties and other muscular paralytic effects [49]. Eventually, this may lead to death [50].

First reports of PSP intoxication date to 1920 in California, USA when at least six people died [51]. 
Until the 1970s PSP toxins were only detected in European, North American and Japanese waters. 
Nowadays, saxitoxins have been reported in Chile, South-Africa, Australia and other countries as 
well [52-54]. In most countries monitoring programs have been established to protect the consumer. 
The EU has established a permitted level of 800 pg saxitoxin 2-HC1 equivalents/kg shellfish. Recently 
(2009) the EFSA published an opinion on the saxitoxin group [46]. In this opinion it is recommended a 
safe level is as low as 75 pg saxitoxin 2-HC1 equivalents /kg in order to avoid exceeding the ARfD [46].

Figure 3. Chemical structure of saxitoxin (STX).
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2.2. Lipophilic toxins

2.2.1. Neurologic shellfish poisoning (NSP)

NSP is caused by brevetoxins (Figure 4). These are produced by the algae species Karenia ssp 
(Table 1) [8,30]. Brevetoxins cause opening of the voltage-gated sodium channels, leading to an influx 
of sodium in the cells and to a complete blockade of the neuronal excitability [55]. Adverse effects 
observed are diarrhea, vomiting, cramps, rapid reduction of the respiratory rate and cardiac conduction 
disturbances which can lead to a coma and eventually to death [30]. In addition to consumption of 
brevetoxin-contaminated shellfish, intoxication can occur due to inhalation of aerosols produced by 
breaking waves at the shoreline [56,57]. Inhalation of brevetoxin aerosols may result in respiratory 
problems and eye and nasal membrane irritation. Until now NSP intoxications have been limited to the 
USA (Gulf of Mexico and Florida) and New Zealand [58,59]. As these toxins have not been found in 
Europe no legislation has been set for these toxins and no monitoring programs have been established. 
In the USA, legislation has been set by the Food and Drug Administration (FDA); the current
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regulatory limit is 800 pg brevetoxin-2 (PbTx-2) equivalents/kg shellfish [60]. At the time of writing, 
the EFSA had not published a scientific opinion on NSP-type toxins.

Figure 4. Chemical structure of brevetoxin (PbTx-2).
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2.2.2. Diarrhetic shellfish poisoning (DSP)

Okadaic acid (Figure 5), dinophysistoxin-1 (DTX1) and -2 (DTX2) as well as the esterified forms 
of OA, DTX1 and DTX2 are produced by the Dinophysis genus (Table 1) [35]. Toxins of the OA 
group inhibit the serine and threonine phosphatases PP1 and PP2A [61]. This inhibition leads to 
hyperphosphorylation of proteins involved in the cytoskeletal junctions that regulate the permeability 
of the cell, resulting in a loss of cellular fluids [62], Consumption of shellfish contaminated with high 
levels of OA-type toxins will result in adverse effects such as gastrointestinal disorder, diarrhea, 
abdominal cramps, nausea and vomiting [63]. Furthermore, OA and DTX1 have been shown to be 
tumor promoting substances in animal tests [64],

The first documented human intoxication caused by DSP toxins was in The Netherlands in 
1961 [65]. Nowadays, high levels of OA group toxins are repeatedly reported in shellfish or algae 
along the coasts of Europe (UK, Ireland, Denmark, Sweden, Norway, France, Spain, Italy, Portugal, 
The Netherlands and Belgium), Canada, South America (Chile), Japan, Australia and Africa 
(Morocco) [63,66,67]. TEF values for OA, DTX1 and DTX2 have been established (Table 2) [68,69]. 
Within Europe the permitted level for the total amount of OA, DTXs and PTXs in shellfish has been 
set at 160 pg OA-equivalents /kg shellfish. In 2008, the EFSA panel concluded in their opinion on OA 
and analogues that OA and DTXs should not exceed 45 pg OA-equivalents/kg shellfish in order to not 
exceed the ARfD. For PTXs, a separate EFSA opinion has been prepared [70].

Figure 5. Chemical structure of okadaic acid (OA).

Pectenotoxins (PTXs) (Figure 6) are produced by the same phytoplankton species as toxins of the 
OA group, the Dinophysis genus [33]. Approximately 15 different PTXs have been described to
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date [71,72], Pectenotoxin-2 (PTX2), pectenotoxin-2 seco acid (PTX2sa) and 7-epi pectenotoxin-2 
seco acid (7-epi PTX2sa) are the predominant analogues in European shellfish [73], The toxicity after
i.p. or oral administration in mice of PTXs is considered to be comparable. After i.p. injection of 
PTX2, liver damage such as the generation of vacuoles and deformation of hepatocytes has been 
observed [74], Oral administration of PTX2 resulted in histopathological changes in the liver and 
stomach of mice but no diarrhea has been observed [75], No human intoxications by PTXs have been 
reported yet. As discussed earlier, PTXs are currently included in the European legislation in the OA 
group but EFSA has recently suggested that the PTXs should be classified individually. The EFSA 
panel proposed a permitted level of 120 pg/kg PTX2 equivalents (Table 2) [70].

Figure 6. Chemical structure of pectenotoxin-2 (PTX2).

Yessotoxins (YTXs) (Figure 7) are produced by the dinoflagellates Proceratium reticulatum and 
Lingulodinium polyedrum [39,76]. Until now up to 90 YTX analogues have been identified [77]. The 
most abundant toxins found in shellfish are YTX and the metabolites 45-hydroxy-YTX, carboxy-YTX 
and their corresponding la-homologues [78]. Some analogues of YTX have only been found in certain 
regions such as adriatoxin in the Adriatic sea [79]. When injected i.p. the toxicity of YTX is relatively 
high, with a LD50 for mice of 750 pg/kg. In contrast, oral administration of high levels of YTX 
(7.5 and 10 mg/kg) did only result in some swelling of the heart muscle cells of mice [80]. Until now, 
no human intoxications caused by consumption of YTX contaminated shellfish have been reported. 
YTXs levels exceeding the current EU regulatory level (1 mg/kg) have occasionally been found in 
Italy, Norway and Portugal [78,81,82], EFSA has suggested that a consumer is protected when 
shellfish do not exceed a concentration of 3.75 mg YTX-equivalents/kg shellfish [83]. EFSA identified 
YTX, la-homo-YTX, 45-hydroxy-YTX and 45-hydroxy-la-homo-YTX as the most important YTXs 
present in shellfish. For these toxins TEFs have been established (Table 2) [83].

Diarrhetic shellfish poisoning is caused by OA and its DTX analogues. YTXs and PTXs are often 
included in the group of DSP toxins as they often co-occur with OA and DTX analogues although they 
do not cause diarrhea. Therefore, removal of these toxins from the DSP group should be considered. 
To our opinion lipophilic marine toxins is a better term to classify the toxins belonging to 
these groups.
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Figure 7. Chemical structure of yessotoxin (YTX).
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Table 2. Toxic equivalent factors of lipophilic marine toxins.

Toxin TEF Reference
Okadaic acid 1 [68]
Dinophy sistoxin-1 1
Dinophysistoxin-2 0.6

Yessotoxin 1 [83]
la-homo yessotoxin 1
45-OH yessotoxin 1
45-OH la-homo 0.5
yessotoxin

Azaspiracid-1 1 [84]
Azaspiracid-2 1.8
Azaspiracid-3 1.4

2.2.3. Azaspiracid shellfish poisoning (AZP)

For years azaspiracids (Figure 8) were thought to be produced by Protoperidinium crassipes [85], 
although a clear correlation between high algae counts and toxin levels was lacking [86]. Recently, it 
was discovered that the AZAs are actually produced by a minute dinoflagellate [40,86]. This 
dinoflagellate, Azadinium spinosum , is smaller (12-16 pm) than any of the other toxin-producing 
dinoflagellates known so far. Until now, 24 different AZAs have been described, with azaspiracid-1 
(AZA1), -2 (AZA2), -3 (AZA3) as the predominant ones [87]. The mechanism of action is not yet fully 
understood, but in-vitro experiments in mammalian cell lines showed alterations in the cytoskeletal 
structure, and an effect on the E-cadherin system, which is responsible for the cell-cell 
interactions [88-90]. This could explain the toxic effects such as gastrointestinal disorder, diarrhea and 
abdominal cramps that are observed during AZP intoxication [85,91]. In 1995, the first intoxication 
due to AZP was reported when at least eight people got ill in The Netherlands after consumption of 
mussels imported from Ireland. The rat bioassay, normally applied to detect OA type toxins, revealed 
the presence of diarrhetic toxic activity, where the mouse bioassay lacked detection of these toxins. 
Since then several AZP outbreaks have occurred in Ireland and by now AZAs have been detected in 
Ireland, UK, Norway, France, Portugal, Northern Africa (Morocco), South America (Chile) and the 
USA [67,85,92-97]. According to current EU legislation the total amount of AZAs should not exceed
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160 pg/kg AZA 1-equivalents [98]. Recently, EFSA reviewed all available toxicity data and suggested 
that a safe level of AZA toxins in shellfish is below the ARfD of 30 pg AZA-1 equivalents /kg 
shellfish [84]. Furthermore, EFSA suggested TEFs for three most important AZAs (Table 2) [84].

Figure 8. Chemical structure of azaspiracid-1 (AZA1).
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2.2.4. Spirolides and gymnodimines (cyclic imines)

Spirolides (SPXs) (Figure 9) and gymnodimines are toxins belonging to the cyclic imine group. 
SPXs are produced by Alexandrium ostenfeldii (Table 1) [41,99]. Approximately 10-15 different SPXs 
(including esters) have been found in either algae or shellfish [100- 102].

The mechanism of action is not yet completely understood, but i.p. injection of shellfish extracts 
containing SPXs or gymnodimines is causing death of the test animal within minutes [103]. For this 
reason these toxins have been classified as fast-acting toxins. Intoxications of humans with cyclic imines 
have not been reported yet. SPXs have been found, however, in algae and shellfish from Norway, 
Canada, Denmark, Spain and Chile [95,100,104], while gymnodimines thus far has only been detected in 
algae and shellfish from New-Zealand [44], Currently, there is no EU-legislation for the cyclic imines. 
This toxin group is currently being reviewed by the EFSA, who will publish an opinion in 2010.

Figure 9. Chemical structure of 13-desmethyl spirolide C (SPX1).

3. Methods of Analysis

For the determination of marine toxins various biological (in-vivo and in-vitro), biochemical and 
chemical methods have been described in the literature. However, for lipophilic marine toxins 
chemical methods for long were not available. In this paragraph, an outline will be given on the 
official methods stated in European legislation and alternative methods developed in recent years.
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The last decade has seen a strong increase in peer-reviewed papers on lipophilic marine toxins 
(Figure 10). In general, method development and method validation for lipophilic marine toxins was 
hampered for many years, by the lack of (certified) standards and (certified) reference materials. As 
shown in Figures 4-9 the chemical structures of the toxins are complex and, consequently, it is too 
difficult and expensive to synthesize them [105], Therefore, standards need to be isolated from either 
contaminated shellfish or algae [106,107], In recent years considerable efforts have been made to 
expand the number of available toxins. In 2005, only small amounts of reliable reference standards 
were available for OA and PTX2. In 2007 YTX, AZA1 and SPX1 became available. Since then, of all 
important lipophilic marine toxin groups at least one certified standard is available (OA, PTX2, YTX, 
AZA1 and SPX1). It is expected that other important reference standards such as DTX1, DTX2, AZA2 
and AZA3 will become available in the course of 2010.

Figure 10. Number of peer reviewed publications on lipophilic marine toxins in the last decade.
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3.1. Current official methods described in legislation and their limitations

EU legislation prescribes a biological test for the determination of OA, DTXs, YTXs, PTXs and 
AZAs in shellfish. This biological test can be a mouse (MBA) or a rat bioassay (RBA). The MBA was 
developed in Japan and the RBA in The Netherlands in the 1970s [65,108], Various laboratories have 
adjusted the MBA which has resulted in different protocols [109,110], In Europe a detailed procedure 
has been described by the Community Reference Laboratory on marine toxins (CRL-MB, Vigo, Spain) 
in order to standardize the protocol for the MBA [111], Shellfish extracts are prepared by acetone 
extraction followed by liquid-liquid partitioning with dichloromethane or diethylether. After 
evaporation the extract is reconstituted in 1% polysorbate 20 solution. These extracts are injected i.p. 
into three male mice with a body weight of 20 g. Preferably the hepatopancreas of the shellfish should 
be used, as most toxins tend to concentrate in that part, only about AZAs there can be a discussion if 
these toxins diffuse into the shellfish flesh [91,112], If at least two out of the three mice die within 
24 hours after injection, the sample is considered positive for lipophilic marine toxins [13], 
Unfortunately, low levels of SPXs can also cause mouse death, even within minutes [103], This
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indicates that the MBA lacks specificity. A strong point of the assay is that it can signal the presence 
of possible new emerging marine toxins. The RBA, an official EU method that is only applied in The 
Netherlands, is based on consumption of shellfish (see also section “Occurrence of toxic events in The 
Netherlands”). Starved (24 h) female rats are fed with 10 g of hepatopancreas of the shellfish. After 16 h 
the consistency (softening) of the faeces is investigated. Severe diarrhea corresponds with toxin levels 
around the current EU legislation (160 pg/kg OA-equivalents or 160 pg/kg AZA Í-equivalents) [68], A 
major drawback of the RBA is that YTXs and PTXs are not detected at the regulatory limit because 
they do not induce diarrhea. Furthermore, the analyst needs to build up experience for a precise 
interpretation of the test results (texture of faeces). More in general, the limitations of the MBA and 
RBA are lack of specificity and sensitivity, no elucidation of the toxin profile is possible, and the 
frequent generation of false positive results. For these reasons, within Europe many countries now use 
a combination of an animal test and a chemical test (Table 3). Furthermore, the MBA in particular is 
becoming increasingly unacceptable for ethical reasons and this provides a strong impetus to out phase 
and replace the MBA.

Table 3. Methods used for the official control of lipophilic marine toxins.

Country OA and DTXs AZAs PTXs YTXs Reference

Norway MBA
Chemical Chemical Chemical MBA

Chemical [113]

Sweden 1 MBA MBA MBA MBA [113]Chemical Chemical Chemical Chemical
Finland 2 [113]

Denmark MBA
Chemical Chemical Chemical Chemical [113]

Ireland MBA MBA MBA MBA [113]Chemical Chemical Chemical Chemical
United
Kingdom MBA MBA MBA MBA [113]

Germany Chemical Chemical Chemical Chemical [113]
The
Netherlands

RBA
Chemical RBA [113]

Belgium MBA MBA MBA MBA [113]
France MBA MBA MBA MBA [113]

Austria MBA MBA MBA MBA [113]Chemical Chemical Chemical Chemical
MBA

Portugal Chemical
Biochemical

Chemical Chemical MBA [113]

Spain MBA MBA MBA MBA [113]

Italy MBA
Chemical MBA MBA MBA

Chemical [113]
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Table 3. C ont.

Country OA and DTXs AZAs PTXs YTXs Reference

Greece MBA
Chemical MBA [113]

Turkey MBA MBA MBA MBA [114]
Canada MBA MBA MBA MBA [114]
United States3 [114]
Venezuela MBA MBA MBA MBA [114]
Brazil3 [114]
Chili MBA MBA MBA MBA [114]
Uruguay MBA MBA MBA MBA [114]
Republic of 
Korea

MBA
Chemical

MBA
Chemical

MBA
Chemical

MBA
Chemical [114]

Japan MBA MBA MBA MBA [114]
Thailand MBA MBA MBA MBA [114]
New Zealand Chemical Chemical Chemical Chemical [113]

MBA = mouse bioassay, RBA = rat bioassay. Chemical = high performance liquid chromatography 
(HPLC), LC fluometric detection (LC-FLD), LC mass spectrometry (LC-MS), LC tandem MS 
(LC-MS/MS). Biochemical = enzyme-linked immunosorbent assay (ELISA). 1 Samples for the MBA 
are analysed in Norway. 2 MBA test for DSP toxins is prohibited.3 No monitoring established.

From a worldwide perspective, the regulation of the lipophilic marine toxins differs widely. These 
differences are related to the presence or absence of the toxins in specific regions and on the 
methodology applied. In the USA the FDA has only installed OA and DTX1 legislation, while no 
routine monitoring programs for these toxins have been established yet (Table 4) [60,114], Canadian 
guidelines only mention maximum levels for OA and DTX1 in digestive glands (Table 4) [115], In 
Japan, the level has been expressed in mouse units (MU) which is a common way to express the 
regulatory limit when the MBA is applied (Table 4) [114], In Australia and New Zealand a regulatory 
limit has been established for OA and DTX1, DTX2 and DTX3 (Table 4) [116], In Europe most types 
of lipophilic marine toxins can be found in shellfish and as a result EU legislation covers OA, DTXs, 
PTXs, YTXs and AZAs (Table 4).

Table 4. Permitted levels for lipophilic marine toxins.

Country or OA, DTXs PTXs AZAs YTXs MBA ReferenceContinent (PS/kg) (Pg/kg) (Pg/kg) (Pg/kg) (MU/kg)

EU 160 WF Included 
in OA 160 1000 [12]

United States 200 NR NR NR [60]
Canada 1000 DG NR NR NR [115]

Japan 50 (-200 pg/kg 
OA-eq) [114]

Australia and 
New Zealand 200 WF NR NR NR [116]

WF = Whole shellfish flesh, DG = digestive glands, NR = not regulated, MU = mouse unit.
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3.2. Development o f alternative methods

3.2.1. In-vitro assays

Functional assays are currently being developed as alternatives to the bioassays. Functional assays 
are based on the toxicological mode of action of a group of toxins in a biological process. Advantages 
of functional assays are their potential for high-throughput screening, detection of new toxins, while 
there is no need for applying TEF values. Still, false positives or negatives can occur due to matrix 
substances present in the extract or due to metabolic activation. It is extremely difficult to develop a 
functional assay that will comprise all lipophilic marine toxins in a single assay. Until now, functional 
assays have been developed for the OA group toxins, YTXs, PTXs and SPXs. Toxins of the OA group 
can be determined by protein phosphatase 2A (PP2A) inhibitor assays using fluorometric detection. 
Several of these assays have been published in recent years [117-119], A good correlation between the 
MBA and the PP2A fluorometric assay has been obtained in several laboratories [117,120], 
Furthermore, for the OA group toxins and PTXs a cytotoxicity assay based on actin fillament 
depolymerization in a BE(2)-M17 neuroblastoma cell line has been developed [121], For the OA 
group toxins and YTXs an assay was developed based on the reduction of cell-cell adhesion in MCF-7 
and Caco-2 cells leading to an accumulation of E-cadherin [122,123], Also AZA1 showed an effect on 
the cell-cell adhesion and E-cadherin influx, but these results have not resulted in a functional assay 
format yet [88], Unfortunately, with respect to OA and YTX the reproducibility of the assay was rather 
poor. Therefore the assay should be made more robust prior to routine application. Recently, a 
fluorescence polarization inhibition assay has been developed for SPXs. The assay uses nicotinic 
acetylcholine receptor-enriched membranes of the marbled electric ray (Torpedo marmorata) and is 
capable to analyse contaminated mussels with SPX concentrations in the range of 70-700 pg/kg [124], 
Of the functional assays developed thus far, most promising results have been obtained with the PP2A 
assay for the OA group toxins and the nicotinic acetylcholine receptor assay for SPXs. However, 
successful validation (single- and inter-lab) of these methods is still lacking.

3.2.2. Biochemical methods

In immunochemical methods antibodies are used that show affinity with specific structural parts of 
a toxin. Analogues of these toxins can often also be detected by cross-reactivity, but no information is 
gained about differences in toxicity. Therefore, methods such as enzyme-linked immunosorbent assay 
(ELISA) can only be used for screening of shellfish samples. For some of the lipophilic marine toxin 
groups immunochemical methods have been developed. For the OA group an ELISA has been 
converted to a lateral flow immunochromatographic (LFI) format. The test strips allow the analysis of 
toxins on site without the use of lab facilities [125], In principle, this would enable shellfish industry to 
carry out these tests themselves. A recent study on these test trips showed that a relative high number 
of samples (45%) were misidentified as positive [126], Further research is needed to make this LFI 
suitable for routine monitoring purposes. Other biochemical methods that are currently under 
development for the OA group make use of amperometric immunosensors and immunobiosensors 
using surface plasmon resonance (SPR) [127,128], A sensitive ELISA for YTX has been developed 
with good correlation to a chemical method based on liquid chromatography/mass spectrometric
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detection. Its working range would make this ELISA suitable for routine monitoring [129,130], The 
advantage of this YTX ELISA is the cross-reactivity towards many YTX analogues [129], although it 
is unclear whether these analogues are toxic. Other promising biochemical methods for YTXs are SPR 
based biosensors, a resonance mirror bioassay and fluorescence polarization [131-133], For the PTXs, 
AZAs and SPXs no biochemical methods are available yet. Most promising results have been obtained 
with the OA and the YTX group ELISA. Provided proper validation is carried out, these rapid 
screening biochemical methods can be used for high sample throughput analysis of shellfish toxins.

3.2.3. Chemical methods

In the 1980s, the first chemical detection methods developed for the OA group toxins were based on 
liquid chromatography (LC) coupled to fluorometric detection (LC-FLD). As most lipophilic marine 
toxins lack chromophores, a derivatisation step was required. For toxins of the OA group 
9-anthryldiazomethane (ADAM) [134] and for PTXs and YTXs 4-[2-(6,7-dimethoxy-4-methyl-3-oxo- 
3,4-dihydroquinoxalinyl)ethyl]-l,2,4-triazoline-3,5-dione (DMEQ-TAD) have been used as derivatisation 
reagents [135,136], A major drawback of LC-FLD is its limited selectivity for the OA group toxins as 
well as for the PTXs and YTXs. The derivatisation step is rather laborious and can be critical. For 
AZAs and SPXs no LC-FLD methods have been developed. This is probably due to the fact that these 
toxins were only discovered in the mid 1990s when LC (tandem) mass spectrometry [LC-(MS)/MS] 
became increasingly popular.

In recent years much effort has been put in the development of LC-MS/MS methods that are 
dedicated to either detecting the specific classes of lipophilic marine toxins or detecting as many as 
possible different lipophilic marine toxins in a multi-toxin method. Many of the methods developed for 
specific classes of lipophilic marine toxins focused on either structure elucidation or on discovery of 
new lipophilic marine toxins. For example for the OA group toxins LC-MS/MS techniques have been 
used to identify new DTXs [137-140], By now up to 40 different toxins belonging to the OA toxin 
group have been identified using LC-MS/MS [140,141], Several LC-MS/MS methods have been 
developed to detect new toxins (YTXs and PTXs) in either algae or shellfish [71,77,142-145], 
Furthermore, LC-MS/MS has been used to investigate the transformation of toxins into metabolites. 
The conversion of YTX to 45-OH-YTX and 45-COOH-YTX and the conversion of PTX2 to PTX2sa 
have been studied by LC-MS/MS [75,78,146], Another LC-MS/MS method was developed to 
determine up to 24 different AZAs in a single analysis [87], Some dedicated methods were used to 
study the metabolic processes taking place when AZA contaminated mussels are heat-treated [147], 
Also, with the help of LC-MS/MS new SPX analogues have been identified that are either produced in 
algae or in shellfish [101,102],

Most of the methods described above were used for research purposes and were not intended for the 
monitoring programs. Nowadays, several LC-MS/MS methods are available to determine most or all 
toxin classes belonging to the lipophilic marine toxins. The first two multi-toxin LC-MS/MS methods 
for lipophilic marine toxins were developed in 2001 [148,149], Unfortunately, one method did not 
include the YTXs [148] while the other one used a laborious sample clean up procedure based on 
liquid-liquid extraction and various solid phase extraction procedures [149], Therefore, these methods 
were not suitable for routine monitoring programs. In 2005 two new multi-toxin methods were
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developed that included toxins from all regulated lipophilic marine toxin classes in the EU [150,151], 
These methods were in-house validated and good performance characteristics were obtained. Drawbacks 
were the exclusion of spirolides in one method [151] and poor chromatography for some compounds in 
the other one [150], In 2007 a very high pressure liquid chromatography (VHPLC)-MS/MS method was 
developed. With this method it was possible to analyse 21 marine lipophilic toxins in only 
6.6 minutes [152], It should be mentioned that the separation and detection could only be 
accomplished by the newest generation LC and MS equipment. This VHPLC-MS/MS method has not 
been validated yet. The latest developed multi-toxin method was published in 2009. By a different 
choice of chromatographic conditions, all chromatography problems have been solved and the method 
has been in-house validated [153], All prominent lipophilic marine toxins were included in this 
method. Currently, for this method a full collaborative validation study according to international 
guidelines is in preparation.

4. Occurrence of Toxic Events in the Netherlands (1960-2009)

In The Netherlands until now only DSP has occurred and the other toxic syndromes (ASP and PSP) 
have not been reported. Only in 2002 one shellfish sample has been tested positive for domoic acid 
(unpublished data provided by M. Poelman). Therefore, this historic overview only deals with the DSP 
syndrome. The first incidences outside The Netherlands were reported in Japan (1976 and 1977) [109], 
Japanese researchers found Dinophysis fortii the algae producing this toxin. Therefore, the toxin was 
named Dinophysistoxin and the poisoning syndrome was named Diarrhetic Shellfish Poisoning 
(DSP) [154], In 1982 the structure of the causative toxin, dinophysistoxin-1, was finally elucidated [155],

In The Netherlands the first incidences of poisoning associated with consumption of mussels were 
reported in July and August 1961 [65], People that had consumed mussels experienced abdominal 
cramps, vomiting and severe diarrhea. At the same time, in the Eastern Scheldt and the Wadden Sea 
high concentrations of the dinoflagellates Prorocentrum micans , P. triestinum , P. minimum and 
Dinophysis acuminata were reported. In the following years, these algae were isolated from the 
gastrointestinal tract (hepatopancreas) of the mussels. Following this episode, human intoxications 
re-occurred in The Netherlands in 1971 (mussels from the Eastern Scheldt), 1976, 1979 (mussels from 
Wadden Sea) and 1981 (mussels from the Eastern Scheldt and Wadden Sea) [156-158], In 1979 a rat 
bioassay was developed for the detection of these toxins and to prevent human intoxication [65] and 
this RBA was adopted as the official method of control for the detection of diarrhea causing toxins in 
The Netherlands. The monitoring program for DSP toxins in the Netherlands includes an early 
warning system and the pre-market analysis of shellfish on the presence of ASP, PSP and DSP toxins. 
The early warning system monitors the various potential toxic algae in sea water. The RBA was used 
to test if P. micans and P. minimum were responsible for the adverse effects observed in 1961. 
However, mussels contaminated with cultivated algae were fed to rats, no adverse effects were 
observed [65], Therefore, it remained doubtful if these algae were responsible for the toxin production. 
In 1981 it was demonstrated that in the Netherlands the responsible algae for the toxin production in 
the Eastern Scheldt and Wadden Sea was D. acuminata [159], In 1986 and 1987 DSP toxins were 
again detected in the Wadden Sea, but due to the established monitoring program shellfish areas were 
closed and no human intoxications were reported [160,161], In October 1989, a minor episode of DSP
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toxicity occurred in the Wadden Sea; no incidences of human illness were reported. The production 
area was closed during the presence of DSP-toxins. In 2002 D. acuminata caused the presence of 
DSP-toxins in mussels from the Wadden Sea. This was followed by a closure of the production area 
for several weeks (unpublished data provided by M Poelman). By means of an LC-MS method low 
levels of toxins could be detected in mussels several weeks before the RBA picked up levels above the 
EU regulatory limit. In this case intoxication of local fishermen was observed, while the RBA detected 
levels of DSP toxins after closure of the fishing area (unpublished data provided by M. Poelman). 
In 2005 and 2007 the presence of D. acuminata in the Wadden Sea triggered the application of a 
(delayed) monitoring program using LC-MS/MS. These analyses showed the presence of OA in 
mussels at levels well below the current regulatory limit, ranging from 18 till 68 pg OA equivalents/kg 
shellfish. The presence of high numbers of D. acuminata triggered analysis of shellfish by LC-MS/MS 
again in 2009. No detectable amounts of any DSP toxins were found. These results and also those 
obtained on earlier occasions indicate that there is no clear correlation between the counts of potential 
toxic algae and toxic events (Figure 11). With respect to the EFSA opinion there are some 
concentrations found in 2005 and 2007 that are above the ARfD of 45 pg OA equivalents /kg shellfish. 
Therefore, in case legislation is changed towards the EFSA opinion more positive samples will be 
found in The Netherlands. Overall, in the last decade in shellfish of Dutch waters only low levels of 
OA equivalents have been found.

Figure 11. Number of Dinophysis acuminata cells per liter of sea waters on the corresponding 
years of toxin detection. The line indicates an action limit, above 100 cells per liter 
corrective measures are taken.
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5. Conclusions

Blooms of algae responsible for production of lipophilic toxins occur quite frequently within 
European waters. Finally, almost 50 years after the first occurrence of DSP in The Netherlands 
chemical methods are now available for the detection of all relevant lipophilic marine toxins in 
shellfish. These methods can help to decide upon closure of shellfish harvesting areas and to prevent 
intoxication. Due to changes in climate and algae transport through ballast water future blooms and
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toxic episodes cannot be excluded. Therefore, method development should continue and monitoring 
programs should be maintained. Furthermore, considerable effort is undertaken by various European 
research groups and the European Union to out phase the animal tests that are still used for the official 
routine monitoring programs.
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