# THE PRINCIPAL WORKS <br> OF 

## SIMON STEVIN

## EDITED BY

ERNST CRONE, E. J. DIJKSTERHUIS, R. J. FORBES M. G. J. MINNAERT, A. PANNEKOEK

# THE PRINCIPAL WORKS <br> OF 

## SIMON STEVIN

## VOLUME II

## MATHEMATICS

EDITED BY
D. J. STRUIK

PROFESSOR AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE (MASS.)

## AMSTERDAM

C. V. SWETS \& ZEITLINGER

1958

The edition of this volume II of the principal works of

## SIMON STEVIN

devoted to bis mathematical publications, has been rendered possible through the financial aid of the

## Koninklijke.Nederlandse Akademie van Wetenschappen

(Royal Netherlands Academy of Science)

The following edition of the Principal Works of SIMON STEVIN bas been brought about at the initiative of the Pbysics Section of the Koninklijke Nederlandse Akademie van Wetenschappen (Royal Netherlands Academy of Sciences) by a committee consisting of the following members:

ERNST CRONE,
Cbairman of the Netherlands Maritime Museum, Amserdam

## E. J. DIJKSTERHUIS,

Professor of the Hissory of Science at the Universities of Leiden and Utrecht R. J. FORBES,

Professor of the History of Science at the Municipal University of Amsterdam
M. G. J. MINNAERT,

Professor of Astronomy at the University of Uirecht
A. PANNEKOEK,

Former Professor of Astronomy at the Inumicipal University of Amsterdam

The Dutch texts of STEVIN as well as the introductions and notes have been translated into English or revised by Miss C. Dikshoorn.
A

1

# THE MATHEMATICAL WORKS 

 OF
## SIMON STEVIN



## 1. GENERAL INTRODUCTION

When, about 1581, Stevin settled in the Northern Netherlands, he found a country ready to appreciate his talents. The young Republic, at war with Spain and entering a period of great maritime expansion, needed instructors for its navigators, merchants, surveyors, and military engineers. Teachers of mathematics, surveying, navigation and cartography, instrument-makers and engineers found encouragement; their number increased and soon no commercial town was without some of them 1). Before the sixteenth century came to an end textbooks in arithmetic, algebra, geometry, and the applied mathematical sciences were available, many written in the vernacular. The teachers and those who patronized them included a great many immigrants from neighbouring countries, expecially from the Southern Netherlands, long known for its learning - the country in which Stevin himself was born. The Stadtholder, Prince Maurice of Orange (1567-1625), was also greatly interested in the mathematical sciences, and so was the new University of Leyden, founded in 1575.

Several of these early Dutch mathematicians and teachers of mathematics are still remembered. Apart from Stevin, we find among them Adriaen Anthonisz (c. 1543-1620), several times burgomaster of Alkmaar and a military engineer, who made the value $\frac{355}{113}$ for $\pi$ known in Europe ${ }^{2}$ ); Ludolph Van Ceulen (1540-1610), fencing master at Delft, who computed $\pi$ first in 20, then in 33 and finally in 35 decimals by the ancient Archimedean method of inscribed and circumscribed polygons; and Claes Pietersz or Nicolaus Petri, after 1567 schoolmaster at Amsterdam, who wrote a series of Dutch textbooks, which show considerable knowledge of contemporary science. Rudolf Snel, or Snellius (15461612), taught at Leyden University and edited the mathematical works of Petrus Ramus, the Parisian educator. A popular school for navigators at Amsterdam was conducted by the Reverend Petrus Plancius (1552-1622), cartographer and instrument-maker. Among the scientific amateurs we find Jan Cornets De Groot (1554-1640), patrician of Delft, whose attainments have been eclipsed by the fame of his son, known as Hugo Grotius. With several of these men Stevin entered into correspondence or personal contact, in particular with De Groot and Van Ceulen at Delft.

[^0]The intellectual climate of Holland seems to have agreed with Stevin. During the years $1582-86$ several of his books appeared, first his Tables of Interest, then his Problemata Geometrica, then his 'Tentb, his L'Arithmétique, a Pratique d'Aritbmétique, and the three books on mechanics, which also contain creative mathematical thoughts. These are the books that have established Stevin's position in the history of mathematics. It is of some interest to sketch, in somewhat greater detail than in Vol. I, pp. 16-19, the nature of his contributions.

## 2.

In Stevin's formative years the decimal position system, based upon the HinduArabic numerals in their present form $0,1, \ldots, 9$, was already widely accepted in Europe and commonly used by those who professed the mathematical sciences. Elementary arithmetic, using this system, could be learned from many textbooks, available in Latin, French, German, and Flemish. Stevin specially mentions the French Arithmétique of Jean Trenchant, first ,published in 1.558 . From books such as these he could also learn the application of arithmetic to commercial transactions, as well as the computation of single and compound interest. They also often contained operations with radicals such as V2, V3, etc. Some features of these books must have been irksome to him. One of them was their reluctance to recognize 1 as a number and their tendency to designate other numbers as "irrational" or "surd", as if they belonged to a lower class. Other objections were of a more practical nature, such as the reluctance of the authors to illustrate their rules of interest by tables, which still were held as a secret by banking houses, or the clumsy fractional calculus, which used either the numerator-denominator notation or the sexagesimal system, but only rarely the more convenient decimal notation. This decimal notation was almost exclusively confined to trigonometric tables, available in several forms, including those published by Rhaeticus (1551), later expanded into the Opus Palatinum (1596). Stevin, in his first published works, tried to remedy some of these shortcomings, and also to improve on the exposition.
Thus, in the Tables of Interest, he not only gave a lucid presentation of the rules of single and compound interest, but also published a series of tables, together with a rule for computing them. Some years later, in his Tenth (1585), he showed the use of the decimal system in the calculus of fractions. He took this opportunity to suggest the introduction of the decimal system also into the classification of weights and measures, a proposal which had to wait for partial acceptance until the time of the French Revolution. His theoretical ideas he laid down in his book L'Arithmétique and in a geometrical manuscript, of which only a part was published. Since L'Aritbmétique also contained Stevin's algebra, while his books on mechanics included several applications of the calculus of infinitesimals, Stevin's work of these years $1582-1586$ can be considered as a fair and often original exposition of most features of the mathematics of his day.

In his arithmetical and geometrical studies Stevin pointed out that the analogy between numbers and line-segments was closer than was generally recognized. He showed that the principal arithmetical operations, as well as the theory of proportions and the rule of three, had their counterparts in geometry. Incommensurability existed between line-segments as well as numbers, and since the nature
of line-segments was independent of the number that indicated their length, all numbers, including unity, also were of the same nature. All numbers were, squares, all numbers were square roots. Not only was $V 2$ incommensurable with 2 and V 3 , but so was 2 with V 2 and V 3 ; incommensurability was a relative property, and there was no sense in calling numbers "irrational", "irregular" or any other name which connoted inferiority. He went so far as to say, in his Traicté des incommensurables grandeutr, that the geometrical theory of incommensurables in Euclid's Tenth Book had originally been discovered in terms of numbers, and translated the content of this book into the language of numbers. He compared the still incompletely understood arithmetical continuum to the geometrical continuum, already explained by the Greeks, and thus prepared the way for that correspondence of numbers and points on the line that made its entry with Descartes' coordinate geometry.
Stevin recognized several kinds of quantities: arithmetical numbers, which are abstract numbers, and geometrical numbers, connected with lines, squares, cubes, and rectangular blocks (figures in more than three dimensions were beyond the compass of the age), which we now denote by $a, a^{2}, a^{3}, \ldots, a^{\frac{1}{2}}, a^{\frac{1}{3}}$, etc. From this he passed on to linear combinations of geometrical numbers, which he called algebraic numbers. Thus he came to algebra-the theory of equations-, which to him, in his attempt to construe analogies between geometry and arithmetic, hence between geometrical and arithmetical numbers, consisted in the application of the rule of three to algebraic quantities. His algebra thus forms part of his general "arithmetic".

The theory of equations had made considerable progress in the course of the sixteenth century. Cubic equations had been solved, though the "casus irreducibilis" still presented difficulties. The new results were laid down by Jerome Cardan in his Ars magna (1545), which became the sixteenth-century standard text on the theory of equations, eclipsing even the Arithmetica integra (1544) of Michael Stifel. Cardian's book also contained Ferrari's reduction of the fourth-degree equation to one of the third degree. Stevin knew these books intimately, and also studied Bombelli's L'Algebra (1572), which treated the "casus irreducibilis" with complex numbers and introduced an improved notation. Stevin did not have much use for these complex numbers, because he did not see a possibility of finding a numerical approximation for a number like $\sqrt{4+5 i}$, in contrast to such a number as V6, where a numerical approximation can be obtained. However, he liked Bombelli's notation, and availed himself of it in his own, book. Against negative numbers, with which Cardan had played, he had no objection, even if he did not use them as freely as we do now. In the light of our present knowledge we are inclined to wonder why in his speculations on the analogies between the arithmetical and the geometrical continuum he did not assign a geometrical meaning to negative numbers, but even Descartes and his immediate successors did not use negative coordinates: The study of directed quantities belongs to a much later stage of mathematical development.

The main merit of Stevin's L'Aritbmétique is the systematic way in which he discusses operations with rational, irrational, and algebraic numbers, and the theory of equations of the first, second, third, and fourth degrees. To our feeling he went too far in stressing the analogy between arithmetical and algebraic entities, even the theory of equations becoming an application of the rule of three.

However, this latter point of view met with little success, even among his contemporaries and the algebrists who followed him. His particular notation for equations was also soon abandoned 1 ).
Geometry, during the sixteenth century, still followed closely the track of Euclid, whose Elements, from 1482 on, were available in several printed editions and translations. Stevin was especially familiar with the Latin editions prepared by Zamberti (1546) and by Clavius (1574). Christopher Clavius (1537-1612), Stevin's contemporary, who was the Vatican's astronomer, excelled as a writer of textbooks, which embraced well-nigh the whole of the mathematical and astronomical sciences of his day. There is reason to believe that Stevin was quite familiar with these books, and that Clavius equally remained in contact with Stevin's work. To his study of Euclid we owe Stevin's Traicté des incommensurablés grandeurs, already mentioned, and his Problemata geometrica, the former probably, the latter certainly forming Fart of that longer geometrical manuscript which was to do for geometry what L'Aritbmétique had done for arithmetic. Euclid's influence in the Problemata is particularly evident in the sections dealing with proportional division of figures and with regular bodies, enriched with a description of the semi-regular bodies, which had a touch of originality. Stevin knew several of them through Albrecht Dürer, who had described them in his Underweysung of 1525 , but he added some others, while rejecting one of them. He does not seem to have known that all thirteen semi-regular bodies had been described in Antiquity by Pappus, who had mentioned Archimedes as the discoverer, information not readily available in the $1580^{\prime}$ 's, since Pappus' text was only published in 1589. We do not know whether Stevin was aware of other books which appeared in the sixteenth century, with descriptions of semi-regular bodies, sometimes beautifully illustrated: the only source he quotes is Dürer:
The Problemata also show Stevin as a student of Archimedes. The editio prinreps of Archimedes appeared in 1544, when Venatorius published the Greek text of all the works, a Latin translation, and the commentaries of Eutocius. Moreover, a selection of the works in Latin appeared in 1558 through the care of Commandino: The theories of Archimedes, the most advanced mathematician of Antiquity, were not easily understood, and creative work based on them was even more difficult. Stevin was among the first Renaissance men to study Aichimedes with a certain amount of independence. In the Problemata he took some problems he had found in Archimedes' An the Spbere and Cylinder and generalized them somewhat; this gave him an opportounity to apply the methods given by Eutocius for the construction of the two mean proportionals between two lines: $a: x=x: y=y: b$, a problem which cannot be solved by means of compass
${ }^{1}$ ) The criticism of K. Menger on the promiscuous use of the symbol $x$ in modern mathematics, and in particular of its use as a dummy index in expressions like $\int f(x) d x$, which he writes $S f$, or as , indeterminates" in expressions like $\frac{x^{2}-1}{x+1}=$ $x-I$, which he writes $\frac{*_{2}-1}{*-1}=*+1$, lends a touch of modernity to Stevin's notation. The latter expression, in the symbolism of L'Arithmetique, is written in the form $\frac{(2)-1}{(1)-1}=(1)+1$, very much in Professor Menger's spirit. See $K$. Menger, Calculus. A modern approach. Boston 1955, or Math. Gazette 40 (1956), pp. 246-255:
and straightedge alone. But Archimedes' influence is also visible in Stevin's books on mechanics, where Stevin, modifying Archimedes' later so-called exhaustion method, appears as one of the first Renaissance pioneers in the ficld of mathematics afterwards known as the theory of limits and the calculus.

Archimedes' handling of what we now call limit and integration processess was still on the extreme confines of knowledge. Only a few mathematicians as yet were able to emulate Archimedes, among them Commandino, who had applied his methods in the determination of centres of gravity. Stevin's friend Van Ceulen was engaged in improving on Archimedes' computation of $\pi$. One difficulty in Archimedes was his cumbersome method of demonstration in dealing with limit processes (which had already appeared in Euclid and was typical of Antiquity). When Archimedes wanted to demonstrate that a certain quantity $Q$, e.g. the area of a parabolic segment, was equal to $A$, he showed that the two hyfotheses $Q<A$ and $Q>A$ both led to an absurdity, so that $Q=A$ was the only possibility. Stevin replaced this indirect proof by a direct one. Demonstrating that the centre of gravity of a triangle lies on the median, he argues that if the difference between two quantities $B$ and $A$ can be made smaller than any assignable quantity $\varepsilon$, and $|B-A|<\varepsilon$, then $B=A$ (see Vol. I, p. 43). Here Stevin entered upon a course which was to lead to the modern theory of limits.

We can discern a certain impatience with the method of the Ancients in Stevin and his successors; an impatience quite conspicuous in Kepler. These men applied short cuts in what we call the integration process, because they wanted results rather than exact proofs. They used methods of far more dubious rigour than Stevin's, even though they knew that the only rigorous proof was the Archimedean one. Stevin must have experimented with such short cuts, as we can see in his paper on Van de Molens (On the Mills; Work XVI; Vol. V). If we like, we can see a topic related to the calculus in Stevin's determination of the equation of. the loxodrome on a sphere, in his book on Cosmography, by means of the series.
$\tan K\left(\sec 10^{\prime}+\sec 20^{\prime}+\ldots \ldots+\sec \mathrm{n} .10^{\prime}\right) \cdot 10^{\prime}$,
where $K$ is the angle between the loxodrome and the meridian. The expression is an approximation of $\tan K \int_{0}^{\varphi} \sec \varphi d \varphi$, expressed in degrees.

During the latter part of Stevin's life the mathematical sciences continued to flourish in Holland. This was the period in which he wrote, or rewrote, the different books which he assembled in 1605-1608 in the Wisconstighe Gbedachtenissen. The short Appendice algébraique, which contains a method for approximating a real root of an algebraic equation of any degree, dates from 1590. This was also the period in which Stevin acted as a teacher and adviser to Prince Maurice of Orange. He remained in personal contact and correspondence with many of his colleagues, including representatives of the younger generation, outstanding among whom was Rudolf Snel's son Willebrord (1580-1626), a graduate of Leyden University. This younger Snellius, who translated the Wisconstigbe Ghedachtenissen into Latin, later succeeded his father in the chair at Leyden, and is remembered as the discoverer of "Snellius' law" in the theory of optics and the first man on record to perform an extensive triangulation. Another Leyden mathematician was Frans Van Schooten (1581/82-1645), who after Van Ceulen's death in 1610 taught at the engineering school founded by

Prince Maurice. His son and namesake (1615-1660), who became professor of mathematics at Leyden University and was the teacher of Christiaan Huygens, showed in his works Stevin's influence. Older than these men was Philippus Van Lansbergen (1561-1632), a minister in Zeeland and an able mathematician; who shared Stevin's preference for the Copernican system. We also know that Stevin was in personal contact with Samuel Marolois (c. 1572-before 1627), a military engineer who wrote on perspective, and we may safely assume that Stevin was in touch with the surveyors Jan Pietersz. Dou (1572-1635), the first to publish a Dutch edition of some of Euclid's books, and Ezechiel De Decker, whose work shows considerable influence of Stevin. This was also a period in which appeared many elementary mathematical textbooks, of which those of Willem Bartjes were used for more than two centuries and made his name proverbial in Dutch. Dutch cartographers, among them Plancius, Willem Barendtz (of Nova Zembla fame), Jodocus Hondius (son-in-law to Mercator), and William Jansz. Blaeu, were building up an international reputation. It would be interesting to know something about the relationship between Stevin and Isaac Beeckman (1588-1637), the Dordrecht physician and teacher, who through his contact with Descartes forms one of the links connecting the Stevin period of Dutch mathematics with that of Descartes. We do know that after Stevin's death, in 1620, he visited his widow and studied some of her late husband's manuscripts.

The most original of the mathematical books published in the Gbedachtenissen is the Perspective. Its subject was developed by the Italian artists of the fifteenth century and during the sixteenth century several books on it had appeared, some with beautiful pictures. These books were written by and for painters and engineers and contained a rather loose presentation of the mathematical theory involved, which often was not more than a set of prescriptions for foreshortening. The first systematic exposition of the mathematical theory of perspective appeared in 1600, when Guidobaldo Del Monte published his Perspectivae libri sex. It is likely that by the time this book appeared Stevin's mathematical theory of perspective, the result of his reflections on architecture, military engineering, and the technique of drawing in general, was already far advanced. It is also probable that in the final draft of the manuscript Stevin was influenced by Del Monte. In the book Stevin develops the laws, of perspective: in his usual systematic and didactic way (the Prince may well have been no easy pupil!), derives the laws of the vanishing points, discusses the case that picture plane and ground plane are not at right angles, and also investigates what may be called the inverse problem of perspective: to find the eye when a plane figure and its perspective are given. Despite a certain long-windedness the book can' still serve as an introduction to perspective; it is among the writings of Stevin which are least antiquated:
The Meetdaet, another book of the Ghedachtenissen, was based on the manuscript on geometry to which Stevin referred at the time when he was writing L'Arithmétique and of which he published a section in the Problemata. It also shows the influence of Prince Maurice, which may have improved the expo sition and added a practical touch. The name became Meetdaet, French Pratique de Géométrie, a counterpart to the Pratique d'Avithmétique which Stevin had added to his L'Arithmétique in order to give some practical applications of his theory. Most of the subject matter of the Problemata reappears in the Meetdaet, sometimes in a slightly modified form.

The other mathematical sciences represented in the Gbedachtenissen are plane and spherical trigonometry, with tables of sines, tangents, and secants. They contain little that was new at the time, though the spherical trigonometry was somewhat simplified as compared with previous expositions. His understanding of the geometry of the sphere also led Stevin, in his books on navigation, to a careful discrimination between sailing along great circles and along rhumb lines (orthodromes and loxodromes, as Willebrord Snellius called them in his translation of the Ghedachtenissen). This was still an enigma to most sailors and teachers of navigation, although the difference had already in 1546 been clearly stated by Pedro Nunes, mathematician in the University of Coimbra; Mercator, the Duisburg cartographer, had represented the loxodromes by straight lines on his well-known world map of 1569 (they already appear on his terrestrial globe of 1541). The mathematics of the loxodrome was still poorly understood; as a matter of fact, this understanding only matured when the calculus began to take shape, in the latter part of the seventeenth century. Stevin was able to compute tables which for a variable point of each loxodrome, belonging to seven given bearings $11^{\circ} 15^{\prime}, 22^{\circ} 30^{\prime}$...... $78^{\circ} 45^{\prime}$ with the meridian, gives the latitude as a function of the longitudinal difference with the point where the loxodrome intersects the equator. Stevin also caused copper curves to be made, which had the form of rhumb lines, for the seven principal bearings and by means of which on a globe of suitable size the loxodrome could be drawn for any given initial point. Stevin can thus also be considered as a contributor to mathematical cartography.

# TAFELEN VAN INTEREST 

TABLES OF INTEREST

$$
\mid
$$

## INTRODUCTION

## § 1

The Tables of Interest, the first book published by Stevin, represented a kind of challenge to an ancient and established tradition. Money-lending leads to problems concerning the payment of interest, and with the expansion of mercantile activity and of banking in the later Middle Ages such problems had a tendency to become complicated. Many banking houses engaged in large-scale dealings of varied aspects, involving questions of insurance, of annuities and other payments at set intervals, of discounting of sums due at a later date and related transactions. Against their power, objections based on canon law, prohibiting or circumscribing the taking of interest, were of little or no avail. The Baldi and Medici of Florence, the Welsers and Fuggers of Augsburg at one time or another ruled financial empires, respected and feared by king, emperor, and pope.
In a period where even multiplication and division of integers were considered difficult operations, only experts could answer with authority questions involving the computation of interest. The larger and more established houses had found it convenient to have such experts compute tables of interest and to keep them on file as confidential information. Such tables remained, as Stevin expressed it, "hidden as mighty secrets by those who have got them." They could remain hidden as long as the number of skilled computers was small. This period came to an end with the spread of arithmetical instruction in the sixteenth century.

One of these early manuscript tables, composed about 1340, has been preserved in a copy finished in 1472. It was prepared for the Florentine house of the Baldi by their commissary Francesco Balducci Pegolotti as part of his Pratica della Mercatura. This book was published in 1766 (1), an English translation appeared in $1936\left(^{2}\right)$. The tables of interest appear as an insert between other topics ( ${ }^{3}$ ); they record the increase, at compound rate of interest of $1,1 \frac{1}{2}, 2, \ldots, 8$ per cent, of 100 lires. Each of the 15 tables has 20 terms. Here follows, as an example, the table for 2 per cent:

Le 100 lire a 2 . per cents l'anno

1. lire 102.—.-
2. lire 124. 6. 8
3. lire 104.- 10
4. lire 126.16. 4
(1) Della Decima e di varie alire gravezze imposte dal comune di Firenze, Della moneta e della mercatura de Fiorentini fine al secolo XVI, 4 vols., Lisbon and Lucca $176{ }_{5}-1766$. The book was published anonymously, but the author became known as Gian-Francesco Pagnini della Ventura ( $1715-1789$ ), Florentine Chancellor of the Tithe. Sec A. Evans, next ref., pp. IX-X.
(2) A. Evans, Francesco Balducci Pegolotti La pratica della mercatura. The Mediaeval Academy of America, Cambridge, Mass., 1936 , LIV +443 pp . See pp. XV-XXVI on the life of Pegolotti.
$\left({ }^{3}\right)$ A. Evans, l.c. ${ }^{2}$ ) pp. 301-302; Pagnini, l.c. ${ }^{1}$ ) pp. 302-304:

| 3. | lire 106. 2. 5 | 13. | lite 129.7. I |
| :---: | :---: | :---: | :---: |
| 4. | lire 108. 4. 9 | 14. | lire 131.18.10 |
| 5. | lire 110. 8. 1 | 15. | lire 134.11. 7 |
| 6. | lire 112.12. 3 | 16. | lite 137. 5. 3 |
| 7. | lire 114.17. 3 | 17. | lire 140.-. 2 |
| 8. | lire 117.3. 3 | 18. | lire 142.16. 2 |
| 9. | lire 119.10. 1 | 19. | lire 145.13. 3 |
| 10. | lire 121.17.11 | 20. | lire 148.11. 6 |

[ 1 lira $=20$ soldi, 1 soldo $=6$ denari $]$
It is interesting to note that the Baldi computed the accumulation of capital not at simple, but at compound interest. This practice was already old in their days. At any rate, Leonardo of Pisa, whose Liber Abaci dates from 1202, and whose problems reflect early thirteenth-century mercantile practice, also accepts compound interest (4). Its legitimacy was a subject of juridical controversy for many centuries ( 5 ).

It is not unlikely that further search in European libraries will reveal other treatises on interest, with or without tables. An example is a manuscript text on arithmetic by Rucellai, a Florentine citizen, bearing the date April 23, 1440, and found in the Bibliotheca Nazionale in. Florence. It contains tables of interest computed; it says, by Antonio Mazinghi as part of an exposition on simple and compound interest ( ${ }^{6}$ ).

Luca Pacioli, in his widely read Summa of 1494, also mentions tables of interest and sketches the way how to compute them (7). There are no tables in the Summa; only a number of problems on interest, simple and compound. In order to find tables in print we still have to wait for half a century. Then we meet a few in the Aritbmétique of Jean Trenchant (8).

Nothing is known about Trenchant except that he was a teacher of mathematics at Lyons, who in 1558 published a book called L'Arithmétique departie es trois livres, which passed through many editions, occasionally "revue et augmen-
(4) Liber Abaci. Scritti di Leonardo Pisano, ed. B. Boncompagni, vol. 2 (1862) p. 267.
${ }^{(5)}$ Leibniz, in his essay Meditatio iuridico-mathematica de interusurio simplice, Acta Eruditorum 1683, defended the use of compound interest according to the formula $C_{x}=C_{0}(1+i)^{x}$. He was attacked by other jurists with the argument that the taking of interest on non-paid interest is prohibited. See M. Cantor, Politische Arithmetik (Leipzig, $1898, \mathrm{X}+136$ pp.), p. 35.
${ }^{8}$ ) The manuscript is in the Biblioteca Nazionale, Florence, call number Palatino 573 author Girolamo di Piero di Chardinale Rucellai (This informition is due to Dr. R. De Roover, Aurora, NY).
(7) L. Pacioli, Summa de Arithmetica Geometria Proportioni et Proportionalità (Venice, 1494, second ed., Toscolano, 1523 ), first part, $9^{\text {th }}$ distinctio, 5 th tractatus. Pacioli writes "del modo a sapere componere le tavole del merito". The term "merito", French "mérite", stands for what Stevin calls "profitable interest." Compound interest is "a capo d'anno, o altro tempo, o termine". See footnote ${ }^{13}$ ).
($\left.^{( }\right)$On Jean Trenchant. see H. Bosmans, L'Arithmétique de Jean Trenchant, Annales Soc. Sc. Bruxelles 33 (1908-09), ie partie, pp. 184-192; G. Sarton, Jean Trenchant, French Mathematician of the Second Half of the Sixteenth Century, Isis 21 (1934), pp. 207-208; C. M. Waller Zeper, De oudste intresttafels in Italië, Frankrijk en Nederland met sen berdruk van Stevins "Tafelen van Interest"; Diss. Leiden, (Amsterdam, 1937, 9s +92 pp .), esp. Ch. III.
tée" (9). The date of publication is important. Lyons was famous as a money market, where kings and other nobles bargained for huge loans with the most important bankers of Europe. A first attempt was made in 1555 by King Henry II and his financiers to consolidate the many haphazard royal loans of the past and to establish a regular system of amortization. This was the "Grand Parti", famous in its days, and so popular that wide strata of the population hastened to subscribe (10). Trenchant's book, with its extensive chapter on simple and compound interest, reflects the public desire for understanding the intricacies of the money market. The third part of his book contains four interest tables, of which two were specially compiled to illustrate the "Grand Parti". This transaction, to which later also Coignet (11) and Stevin return, is described in the following problem.
"En l'an 1555, le Roi Henri pour ses affaires de guerre, prenait argent des banquiers, à raison de 4 pour 100 par foire (12): c'est meilleure condition pour eux, que 16 pour 100 par an. En ce même an avant la foire de la Toussaint il reçut aussi par les mains de certains banquiers la somme de 3954941 écus et plus, qu'ils appelaient le grand parti, à condition qu'il payerait à raison de 5 pour 100 par foire, jusqu'à la 41 -ième foire; à ce paiement il demeurerait quite de tout; à savoir laquelle de ces conditions est meilleure pour les banquiers? La première à 4 pour 100 par foire est évidente, c'est à dire on voit son profit évidemment. Mais la dernière est difficile: de sorte que les inventeurs de cette condition-là ne l'ont trouvée qu'à tâtons et presque avec un labeur inestimable. Maintenant je veux montrer à faire telles calculations légèrement (facilement) et précisément avec raison démonstrative facile à entendre."
The question raised is therefore the following. The king borrows 3,954,941 écus. Every quarter year he has to pay interest and the total debt must be paid off after 41 payments. What is more advantageous to the bankers: payment of 4 per cent interest each quarter and return of the principal at the 41 st payment, or payment of 5 per cent interest each quarter and no extra payment at the end?

Trenchant, in solving this problem, introduces two tables. The first one is a table which lists the increase in value of $10^{7}(1.04)^{n}, n=0,1, \ldots, 40$ :

$$
\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 4 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 8 & 1 & 6 & 0 & 0 & 0 \\
. & . & . & . & . & . & . \\
4 & 6 & 1 & 6 & 3 & 6 & 5 & 9 \\
4 & 8 & 0 & 1 & 0 & 2 & 0 & 6
\end{array}
$$

$\left(^{\circ}\right)$ The fourth edition has the title: L'arithmétigue de Ian Trencbant departie en trois livres. Ensemble un petit discours des Changes avec l'art de calculer aux Getons. Revue et augmentée pour la quatrième édition, de plusieurs regles et articles, par l'Autheur. A Lyon, par Michel Iove, 1578,375 pp.. Trenchant was therefore alive in 1578 . The edition of 1563 is also „revue et augmentée".
${ }^{10}$ ) R. Doucet, Le grand parti de Lyon au Ibe siècle, Revue historique r 7 r (1933), pp. 473-513; 172 (1933), pp. 1-41; also R. Ehrenberg, Das Zeitalter der Fugger II (Jena, 1896, $18+367 \mathrm{pp}$ ), p. IoI ff.; translated as Capital and Finance in the Age of the Renaissance (New York, 1928, 390 pp .). Information on le grand parti is due to Mrs C. B. Davis, Ann Arbor. Mich.
(11) Livre d'arithmétique. . . composé par Valentin Mennber Allemand: revue, corrigée et augmentée. ... par Michiel Coignet. Anvers, 1573, I4I Pp. Doucet and Ehrenberg l.c. ${ }^{10}$ ) write Coquet instead of Coignet.
${ }^{12}$ ) There were four fairs a year at Lyons; „par foire" therefore means: "every quarter year".

The other table gives the successive partial sums $\sum_{0}^{i}{ }_{k} 10^{7}(1.04)^{k}$, $i=0,1,2, \ldots, 40$ :

$$
\begin{array}{rlllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 4 & 0 & 0 & 0 & 0 & 0 \\
3 & 1 & 2 & 1 & 6 & 0 & 0 & 0 \\
9 & - & . & - & & 3 & & 0
\end{array}
$$

From these tables Trenchant deduces that the one "écu per 100 difference" over 4 per cent in the second alternative (in order to pay off the principal) is worth 48.010206 écus [we use modern decimal notation] after 40 terms, 46.163659 écus atter 39 terms, etc. The total of all these écus paid extra every term is 99.8265338 écus, a little less than 100. The first alternative is therefore a little better for the bankers. Trenchant also remarks that the last table allows us to find out how far the debt is paid after every term.

These two tables are preceded by two others, also placed between the text in order to illustrate certain problems on compound interest (mérites, discontes à chef de terme) ( ${ }^{13}$ ).

The first table of Trenchant lists the increase in value of $10^{7}$ at $8 \frac{1}{3}$ percent yearly (on every twelve pence one penny interest yearly, "van den penninck 12 ", as Stevin wrote) for 28 years, hence $10^{7}\left(1+\frac{1}{12}\right)^{n}, n=0,1,2, \ldots 28$ :

$$
\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 8 & 3 & 3 & 3 & 3 & 3 \\
1 & 1 & 7 & 3 & 6 & 1 & 1 & 1 \\
. & . & 0 & 0 & . & . & . & 0 \\
9 & 3 & 7 & 5 & 7 & 4 & 5 & 8
\end{array}
$$

The second table gives the increase of $10^{7}$ after $1,2, \ldots 11$ months at the same rate of interest, obtained by multiplying $10^{7}$ successively by

$$
\left.\begin{array}{c}
\left(1+\frac{1}{12}\right)^{\frac{1}{12}},\left(1+\frac{1}{12}\right)^{\frac{2}{12}}, \ldots,\left(1+\frac{1}{12}\right)^{\frac{11}{12}}: \\
100000000000 \\
100
\end{array}\right)
$$

Trenchant has also problems on simple interest, for which no tables are necessary. One of these problems must be quoted, since Stevin in Ex. 6 of his

[^1]discussion of simple interest takes issue with Trenchant's conclusions. It is problem 6 of Trenchant's Ch. IX:
"Si quelqu'un devait 600 livres à payer le tout au bout de 4 ans, et son créditeur le priait de les lui payer en 4 termes (à savoir au bout du premier an et chacun des autres le quart en lui discontant simplement à raison de 12 pour cent par an), à savoir combien il lui faudrait chaque année? Considère qu'il faut disconter pour un an, pour 2 et pour 3 ce qu'il avance. Donc pour 4 ans suppose 400; puis avise qu'un cent en principal et intérêt fait en un an 112 livres; en deux 124: et en trois 136; à ces trois sommes il faut ajouter le quatrième terme 100 qui ne mérite rien: elles se monteront à 472 . Puis dis: si 472 viennent de 400, de combien 600. Tu trouveras $508 \frac{28}{59}$, dont le $\frac{1}{4}$ à savoir 127 livres et $\frac{7}{59}$, est ce qu'il devrait payer par chacun des 4 ans. Pour en faire la preuve:
Regarde que $127 \frac{7}{59}$ profitent $15 \frac{15}{59}$ par an; puis que le premier paiement profite par trois ans, il gagne donc 3 fois $15 \frac{15}{59}$ ce qui est $45 \frac{45}{59}$ : par la même raison le second payement gagne $30 \frac{30}{59}$ et le troisième $15 \frac{15}{59}$. Ajoute maintenant tout le profit qui se monte à $91 \frac{31}{59}$ aux 4 paiements $508 \frac{28}{59}$, il viendra 600 comme il fallait. Autrement pour savoir tout le gain, multiplie $15 \frac{15}{59}$ par 6 , car les trois paiements gagnent par 6 termes, proviendra $91 \frac{31}{59}$."
Trenchant's chapter on interest (no. IX) is based on his previous chapter (no. VIII), where he teaches geometrical progressions, and thus the way in which his tables have been computed.

## § 2

The tables of Trenchant and of Pegolotit are the only printed tables written before Stevin. Problems concerning simple and compound interest not accompanied by tables occur much more frequently. There exist cuneiform tablets with compound interest problems; one of these problems is to find how long it takes for a sum of moncy to double itself at 20 per cent interest. This leads to what seems to be the equivalent of the equation $(1.2)^{x}=2$, which is solved by linear interpolation. The answer appears in sexagesimal notation (14). In Medieval Europe we find compound interest problems solved by Leonardo of Pisa (4); among the authors who followed him we find Pacioli (7), Cardan, and Tartaglia (15).
(14) See e.g. R. C. Archibald, Outline of a History of Matbematics, 6th edition, Am. Mathem. Monthly 56 (I949 supplement, 114 pp.) p.: 13.
(is) See C. M. Waller Zeper, l.c. ${ }^{8}$ ), Ch. II. Tartaglia's problems are found in his General Trattato di numeri et misure, Parte I (15s6) fol. 192 v. There were a number of other writers on interest computation, of which we find a list in Wentzel, l.c. $\left({ }^{26}\right)$, also cited by C. M. Waller Zeper, pp. 38-39. Stevin became acquainted with Tartaglia's work after 1583, see Meetdaet, p. 144 .

A matter of some controversy was the problem what to do in the case of fractional terms. The Babylonian formula (1.2) ${ }^{x}=2$ is consistent with the general formula for compound interest

$$
C_{x}=C_{0}(1+i)^{x},
$$

$C_{o}=$ initial capital, $C_{x}=$ capital after $x$ years, the interest is at $100 i$ per cent a year, even if $x$ is fractional. This was not always the point of view of the Renaissance mathematicians (16). For instance, Tartaglia raises the question what 100 lb . will bea after $2 \frac{1}{2}$ years at 20 per cent compound interest.

If 100 lb . accumulates to 120 lb . in one year, he says, it will accumulate to 110 lb . in half a year. Tartaglia now reasons that 100 lb . in two years becomes $100(1.2)^{2}$, and in $2 . \frac{1}{2}$ years therefore $100(1.2)^{2}(1.1)=158.4 \mathrm{lb}$. In this, he takes issue with Pacioli and Cardan, who accumulate up to 3 years, then discount by half a year, and find $100(1.2)^{3} /(1.1)=157 \frac{1}{11} \mathrm{lb}$. The method which the Babylonians seem to have had, which Trenchant certainly had, and which is in accordance with modern practice, would have given:

$$
100(1.2)^{21 / 2}=157.74 \mathrm{lb}
$$

Tartaglia has still another method, which in this case gives the answer $100(1.1)^{5}$ $=161.05 \mathrm{lb}$. These different methods can be expressed in the following way:

1) $C_{x}=C_{0}(1+i)^{x}$ (Trenchant)
2) $\quad C_{x}=C_{0}(1+i)^{p}(1+t i)$,

$$
\begin{aligned}
& x=p+t \\
& p=\text { largest integer }<x
\end{aligned}
$$

(Tartaglia)
3) $\quad C_{x}=\frac{C_{0}(1+i)^{q}}{1+\mu i}$,

$$
\begin{aligned}
& x=q-u \\
& q=\text { largest integer }>x
\end{aligned}
$$

(Cardan, Pacioli)
4) $\quad C_{x}=C_{0}\left(1+\frac{i}{m}\right)^{m x}$,
interest at $100 i$ per cent a year to be paid every $m^{\text {th }}$ part of a year.
(Tartaglia)
Trenchant, solving the problem which led to his second table, used the first method with $x$ a multiple of $\frac{1}{12}$. Stevin preferred the second method. Apart from the fourth method, in which compound interest at $100 i$ per cent a year
${ }^{(18)}$ C. M. Waller Zeper ${ }^{1 . c .}{ }^{8}$ ), p. 14.
is simply replaced by compound interest at $100 \frac{i}{m}$ per cent every $m^{\text {th }}$ part of a year, the other methods only differ in the way they answer the question: shall interest due after a fraction of a year be computed at compound or at simple rates? We shall return to this question, on which even now there exists some difference of opinion, when we discuss Stevin's position.

We further introduce the following notation, which is in common use:

$$
\begin{aligned}
& s_{\bar{n} \mid}=(1+i)^{n}, \quad A_{\bar{n} \mid}=(1+i)^{-n} \\
& s_{\bar{n} \mid}=\sum_{0}^{n-1} k(1+i)^{k}, a_{\bar{n} \mid}=\sum_{1}^{n} k(1+i)^{-k}
\end{aligned}
$$

We can now express the results of Pegolotti and Trenchant as follows:
Pegolotti: $10^{2} S_{\bar{n} \mid}, i=\cdot 01, \cdot 015,02, \ldots, 08$;

$$
n=1,2, \ldots, 20
$$

Trenchant; $10^{7} S_{\bar{n} \mid}, i=\frac{1}{12}, n=0,1, \ldots, 28$;
$10^{7} S_{n \mid}, i=\frac{1}{12}, n=\frac{1}{12}, \frac{2}{12}, \ldots, \frac{11}{12}$
$10^{7} S_{\bar{n} \mid}, i=\cdot 04, n=0,1, \ldots, 40$
$10^{7} S_{\bar{n} 1}, i=\cdot 04, n=1,2, \ldots, 41$

## § 3

The two great money markets of Western Europe in the sixteenth century were Lyons and Antwerp. We have seen that the first published tables of interest came from Lyons. The second publication of such tables occurred at Antwerp. They were the work of Stevin, at that time already settled at Leyden.

These Tables of Interest appeared first in Dutch in 1582. A French version of the book appeared in L'Aritbmétique of 1585 . The Dutch text was republished and corrected in 1590. The French version reappeared in Girard's edition of $L^{\prime}$ Arithmétique of 1625 , and in his edition of the Oeuvres Mathématiques of 1634 . There are therefore two Dutch and three French editions (17). The edition of 1582 was photostatically reproduced, in 1937, by C. M. Waller Zeper( ${ }^{18}$ ).

The different editions show some variations (19). Perhaps the most striking difference is that the references to Trenchant only occur in the Dutch editions. The reason for their omission from the French editions is not at all clear (20).

[^2]Other differences can be found in the prefaces, which are much shorter in the French editions. Some errors (or supposed errors) of the first edition are corrected in the later ones. The Dutch edition of 1590 therefore differs in some details from the edition of 1582 . The text used in this edition is the edition of 1582.
The book, in true Stevin fashion, opens with definitions. Among them we find those of simple and compound interest, of "profitable interest" ("intérest prouffitable" of Stevin, the "mérite" of Trenchant, interest to be added to the principal, hence accumulating interest), and of "detrimental interest" ("intérest dommageable" of Stevin, the "disconte" of Trenchant, interest to be subtracted from the principal, hence discount). Then follow a set of examples on simple interest, first on profitable, then on detrimental interest. Stevin follows the practice, also approved by Trenchant, of taking as the present value $C_{0}$ of a loan $C_{z}$ due after $x$ years at $100 i$ per cent simple interest:

$$
C_{0}=\frac{C_{x}}{1+x i}
$$

Indeed, after $x$ years ( $x$ integer or fractional) $C_{0}$ will have accumulated to $C_{0}(1+i x)=C_{x}$. This is also at present an accepted way of discounting at simple interest. There are other cases in which it is customary to use the rate of discount $100 d$, where $d=\frac{i}{i+1}$ instead of the percentage 100i, and to write $C_{0}=C_{x}(1-x d)\left({ }^{21}\right)$. An ancient Italian method of discounting followed the rule $C_{o:}=C_{x}(1-x i)\left({ }^{22}\right)$. These different methods were a source of controversy, not only between mathematicians, but also between jurists. Apart from these questions, in which custom rather than mathematics plays a role, there were other controversial points. We meet one in Ex. 6 of the problems of discount at simple interest, the problem of Trenchant quoted above. Here Stevin takes issue with his colleague, but the dispute only involves the interpretation of the problem, and we can accept both Stevin's and Trenchant's mathematics. But in the Exs 9 and 10 of the same set we meet a controversial point of deeper mathematical interest, of enough importance to make Stevin emend himself: the cdition of 1590 lias a
${ }^{(21)}$ M. van Haaften, Leerboek der Intrestrekening (Groningen, 1929, 644 pp.), p. 19. ${ }^{(22)}$ Computation of discount $i \times C_{0}$ is easy in this case, since it is taken from the sum $C_{0}$ due. All through the sixteenth and seventeenth centuries there were jurists defending this position. See M. Cantor l.c. ${ }^{5}$ ) p. 29. The difference between $\frac{C_{0}}{\mathrm{i}+\mathrm{C}^{i}}, C_{0}(\mathrm{r}-x i)$, $C_{0}(1-x d)$, and the correct value $C_{0}(\mathrm{I}+i)-x$ is small when $i$ is small:

$$
\begin{gathered}
\frac{1}{1+x i}=1-x i+(x i)^{2}- \\
1-x d=\frac{1+(1-x) i}{1+i}=1-x i+x i^{2}-\ldots \\
\text { Compare also } e^{-i x}=\frac{1}{1+x i+\frac{1}{2}(x i)^{2}+\ldots}=1-x i+\frac{1}{2}(x i)^{2}-\ldots
\end{gathered}
$$

solution which differs from the one presented in the edition of 1582 . The difficulty lies in the computation of the value, after $m$ years, of a sum $C$ to be paid after $n$ years $n>m$, the rate of simple interest being given. Stevin's solution of 1582 can be written in the form

$$
\begin{equation*}
C \frac{1+m i}{1+n i}, \tag{A}
\end{equation*}
$$

the solution of 1590 in the form

$$
\begin{equation*}
\frac{C}{1+(n-m) i} \tag{B}
\end{equation*}
$$

Both solutions would appear admissible at present, though the 1590 solution might be preferred, since this is the amount which after $m$ years will accumulate to $C$ in the next ( $n-m$ ) years. It is not impossible that Stevin's change of attitude between 1582 and 1590 was influenced by a pamphiet written by Ludolf van Ceulen against Simon Van der Eycke, in which Van Ceulen sharply attacked Van der Eycke's use of method (B), and defended method (A) (23). The difference between the two methods is not a question of convention, but lies in the nature of simple interest calculus. If we postulate that when a payment A is equivalent to a payment $B$, and the payment $B$ also equivalent to a payment $C$, the payment ${ }^{-} \mathrm{A}$ is also equivalent to payment C , then we arrive at compound interest, in which case the answer is unique (24):

$$
C(1+i)^{-(n-m)}
$$

After Ex. 14 Stevin passes to problems on compound interest. Here he inserts his tables. They are discount tables, hence tables for $A_{\bar{n} \mid}$. Stevin explains clearly how he computed them. He took as "root" of his system 107, which was a common device of his days for avoiding decimal fractions. Stevin's Thiende was not published until three years after the first publication and Stevin never undertook the rewriting of his tables in his own decimal notation. In order to find the first table, a discount table for one per cent, he multiplies 107 by $\frac{100}{101}$, that is, divides 109 by 101; then he multiplies the result again by 100 and divides by 101, etc. Every answer is written out in seven figures, fractions less than $\frac{1}{2}$ are neglected, those larger than $\frac{1}{2}$ are replaced by the full unit in the way it is still done at present. The tables for $A_{\bar{n}}$ run from $n=1,2, \ldots$, to $n=30$; and are computed first for $i=\frac{1}{100}, \frac{2}{100}, \ldots, \frac{16}{100}$, then for $i=\frac{1}{15}, \frac{1}{16}, \ldots, \frac{1}{19}, \frac{1}{21}, \frac{1}{22}$.
${ }^{\left({ }^{23}\right)}$ Een corte verclaringh aengaende bet onverstant ende misbruyck inde reductie op simpel interest. Den ghemeenen volcke tot nut . . . door Ludolf van Colen. . . Aemstelredam, 1586. The pamphlet was published under the same cover with another attack by Van Colen on Van der Eycke: Proefsteen ende Claerder vederloggingh. . .; it dealt with the quadrature of the circle. Scc M. van Haaften, Ludolf van Ceulen ( $150-1600$ ) en zïn gescloriften over intrestrekening, De Verzekeringsbode, 17 April 1936, pp. 85-90.
${ }^{(21)}$ W. C. Post, De behandeling van de samengestelde intrestrekening op onze middelbare scholen, Nieuw Tijdschrift voor Wiskunde 9 (192 I-'22), pp. 262-271; M. van Haaften, l.c.21), zoı; W. C. Post, Over enkelvoudige en samengestelde intrestrekening, Het Verzekeringsarchief 19 (1938), pp. 12-26

By adding successive terms in the tables for $A_{\bar{n}}$ Stevin also obtains tables for $a_{n \mid}$
Stevin has no tables for $S_{\overline{n!}}$ and $s_{\bar{n}}$, with one exception: a table for $S_{\overline{n!}}, n=$ $1, \ldots, 30$ and the corresponding $1+s \frac{}{n-1 \mid}$ for $i=\frac{1}{15}$. Stevin gives two reasons for this omission; one is that too many tables would only confuse the good reader, and the other is that the tables for $A_{\overline{n \mid}}$. can be used if we are in need of $S_{\bar{n} \mid}$, since $A_{\overline{n j}}, S_{\overline{n \mid}}=1$. The $S_{\overline{n j}}, s_{\bar{n} \mid}$ table for $i=\frac{1}{15}$ was just an illustration of what Stevin could have done if he had wanted to.

Since the $a_{n_{1}}$ and $s_{n_{1}}$ are obtained by successive summation of numbers with seven digits, of which the last one is an approximation, the last digits of $a_{\overline{n_{i}^{4}}}$ and $s_{\overline{n i}}$ tend to be unreliable when $n$ increases. A similar cause of error exists in the $S_{\bar{n} \mid}$.

The problems on compound interest are again divided into a number on "profitable", and a number on "detrimental" interest. The latter are reduced to the former by means of the remark that any problem involving $S_{n \mid}$ can be solved with the tables for $A_{n 1}$ (there is one exception, Ex. 6, of the "profitable" interest series where the table for $S_{\bar{n}}$ is used). In some examples we find Stevin's position on interest over a fractional number of years. Ex. 2 of the discount problems gives for the present value of 600 lb . due after $13 \frac{1}{3}$. years at "the penny 14":

$$
600(1+i)^{-13} \frac{1}{1+\left(\frac{1}{2}\right) i}, \quad i=\frac{1}{14}
$$

The same reasoning is followed in Ex. 2 of the problem on profitable compound interest. Here Stevin warns his readers against Trenchant's method, which, as we have seen, requires multiplication by $(1+i)^{p}$ for fractional $p$, and not by $1+p i$, as Stevin suggests. Stevin's objection has two curious foundations: a) compound interest should always give higher interest than simple interest, and $(1+i)^{p}<1+p i$ when $\left.p<1 ; b\right)$ compound interest is the same as simple interest for the period of a whole year, therefore a fortiori it should be the same for a fraction of a year. In discount Stevin is clearly on the side of the debtor.

## § 4

Stevin's initiative seems to have led several others to the publication of books on interest with tables, especially in the Netherlands (25). The first to emulate
${ }^{(25)}$ The reason was, of course, the rapid commercial development of the Netherlands. A contributing factor may have been the dominating influence of Calvinism, which was more tolerant to the taking of interest than either Catholicism or Lutheranism.
him was Marthen Wentzel Van Aken, a schoolteacher, who, when at Rotterdam, was invited to write this book by a merchant who found Stevin's exposition too difficult. Wentzel's tables were published in 1587, and were republished in 1594 (28); they differed considerably from those of Stevin. They were followed by the tables of Ludolf van Ceulen, who published them in his book Van den Circkel (1596) (27), which also contains his celebrated evaluation of $\pi$, though here only in 20 decimals (28). After 1600 the number of books on interest computation with and without tables increases considerably (29). Van Ceulen's and Stevin's works usually served as direct examples (30). Among the more original authors on this subject is Ezechiel De Decker, the Gouda surveyor who did so much to promote Stevin's Thiende and Napier-Briggs' logarithms. De Decker's tables are more

[^3]claborate than all previous ones; they are found in the same Eerste Deel van de Nieuwe Telkonst (1626) in which De Thiende was reproduced(31).

The first compound interest tables in the English language seem to be those of Richard Witt (1613). It probably was also the first English work, after Norton's translation of $D e$ Tbiende, in which decimals were used (32).
(81) Eerste Deel pan de Nieuwe Telkonst, inhoudende verscheyde manieren van rekenen. Mitsgaders Nieuwe Tafels van Interesten, noyt voor desen int licht ghegeven. . . Door Ezechiel De Decker. . . Ter Goude, By Pieter Rammaseyn. . . i626. Sec C. M. Waller Zeper i.c. ${ }^{8}$ ), Ch. VIII.
$\left.{ }^{(32}\right)$ Richard Witt, Aritbmeticall questions, touching the Buying or Exchange of Annuities. London, 1613. See R. C. Archibald, in Mathematical Tables and Other Aids to Computation (MTAOATC) I (1943-48), pp. 401-402.

Den Eersamen voorsienigen Heeren Ian Ianss. Baersdorp, Gheeraerdt Weygherss. van Duyuelandt, Pieter Arentss. van der Werf, Ian Lucass. van Wassenaer, Borghemeesteren, en̂ Ian van Haute Secretaris, midtsgaders Schepenê ende ghemeyne Vroetschap der Stede Leyden, wenscht Simon Steuin gheluck ende voorspoet.
Ghelijckerwijs den iaerlicxschen vloedt des Nilus oorsake was van groote twist die gheduerlick oprees tusschen den inwoonderen van Egypten, omme dieswille zij alle teeckenen daer ieghelicks landt mede af ghepaelt was iaerlicks wtroeyede, welck nochtans by ghevalle een oorsake was van groote eenicheydt die haeren naecomelinghen daer wt ghevolcht is, want heurlieder Koninck beval daer deur den priesteren (ouermidts zij meer ledighen tijdt hadden dan andere) middelen te practiseren datmen door eenighe ghewisse regelen yeghelik zijn landt zoude mogen wederleueren: De welcke dat te weghebrengende, hebben bevonden dat het productum van twee zijden eens vierhoeckichs rectangels, perfectelick bewees t'inhoudt der seluer superficien, al waer men zégt die edele côste van Geometrie, tot grooten voordeele der menschen, haeren oorspronck genomen te hebben: Also oock mijne E. voorsienighe Heeren bevinden wij den Interest een oorsake geweest te hebben, die menighen (deur derseluer gewisse rekeninge onbekentheyt) tot schade ghebrocht heeft, welck nochtans een oorsake gheweest is streckende ten profijte der naercomelingen, want naedien de menschen practiserende sagen dat alle Interest (zoo wel. gecôponeerde als simpele) van veel iaeren oft termijnen, stont in eenige kennelicke reden tot hare Hooft-sôme, so wel als den interest van een termijn tijdts tot haere Hooft somme in zekere reden staet; Nochtans datmen tot de kennisse van dese reden, niet dan door al te verdrietigen grooten aerbeydt ende tijdt verlies en conde comen; Jae grooter voor eenen die grooten handel doet, dan hem zijn tijdt zoude toelaeten, waer toe noch algebra, noch andere regulen niet en hebben connen ghenoech doen: Soo zijnder ten laetsten gheinventeert zekere tafelen, door de welcke iegelicken maer simpelicken ervaren inde reghel der proportien (welcke sommige reghel van dryen noemen) zal ex tempore moghen solueren alle questie van Interest inde practijcke ghemeynclick te voren comende.

Welcke tafelen midtsgaders haere constructien ende ghebruyck, ick in dit tractaet ordentlick naer mijn vermogen vèrclaèren zal. Niet dat ick die wtgeue als voor mijne inventie, maer wel als door my gheamplificeert: want voor my heeft van de zelue geschreuen Jan Trenchant int 3. boeck zijnder Arithmeticquen int 9. cap, art. 14. al waer den zeluen Auctheur ghemaeckt heeft eene deser tafelen van 41. termijnen teghen Interest van 4. ten 100. op elck termijn, geduerende elck termijn dry maenden. Ende hoe wel hy dese tafele niet ghemaeckt en heeft tot alzulck cen generale ghebruyck als wijse hier presenteren (want hy opsicht gehadt heeft op de profijtelickste conditie van tween die de banckiers presenteerden aen Hendrick Koninck van Vranckerijck int iaer 1555. ouer een Hooftsomme van 3954641 goude croonen, welck genoemt wierdt le grâd party, al waer zij den Koninck presenteerden, oft dat hy betaelen zoude 4. ten 100. van simpelen

Simon Stevin wishes the Honourable, provident Gentlemen Jan Janss. Baersdorp, Gheeraerdt Weygherss. van Duyvelandt, Pieter Arentss. van der Werf, Jan Lucass. van Wassenaer, Burgomasters, and Jan van Haute, Secretary, to: gether with the Aldermen and the City Council of the City of Leyden, happiness and prosperity.
Just as the annual inundation of the Nile was the cause of great disputes which continually arose between the inhabitants of Egypt, because every year it destroyed all the marks with which each man's land was staked out, which nevertheless happened to become a cause of great unity that resulted therefrom to their descendants, for their King on this account commanded the priests (since they had more leisure than others) to devise means to make it possible to return to everyone his land according to certain rules, which priests, bringing this about, found that the product of two sides of a quadrangular rectangle perfectly denoted the area thereof, from which it is said that the noble art of Geometry derives, to the great advantage of man; in the same way, Honourable, provident Gentlemen, we find that Interest was a cause which occasioned loss to many people (because the sure computation thereof was unknown), which nevertheless has been a cause that was to the advantage of the descendants, for since people found in practice that all Interest (both compound and simple) of many years or terms was in a knowable ratio to its Principal, just as the interest of one term has a certain ratio to its Principal, but that nevertheless this ratio could only be found by very vexatious, great exertion and loss of time, yea, greater for one doing a large business than his time would permit, for which neither algebra nor other rules were sufficient, finally there were invented certain tables by means of which anyone who has only little experience in the rule of proportions (which some call the rule of three) will be able to solve offhand any question of Interest that may commonly occur in practice.
These tables, together with their construction and use, I will explain in due order to the best of my ability in this treatise. Not that I publish them as my invention, but indeed as amplified by me; for before me Jan Trenchant has written about them in the 3 rd book of his Arithmetic) ${ }^{1}$ ), in the 9 th chapter, section 14, where this Author made one of these tables of 41 terms at an Interest of 4 per cent for every term, every term being of three months. And although he has not made these tables for such general use as we present them here (for he had in view the most profitable of two conditions which the bankers offered to Henry, King of France, in the year 1555, concerning a Principal of $3,954,641$ gold crowns, which was called le grand party, when they gave the King the choice whether he would pay 4 per cent of simple interest every quarter year or whether
${ }^{1}$ ) See the Introduction, p. ${ }^{15}$
interest alle vierendeel iaers, oft dat hy betaelen zoude 5. en 100. ende dat 41. termijnen ofte vierendeelen iaers gheduerende, ende dat hy daer mede verloop ende interest teenemael zoude betaelt hebben) Doch zegghen wy hem tot goeder ende eeuwiger gedachtenis deser tafelen met rechte een inventeur ghenoemt te worden.
Hebbe oock verstaen dat der zeluer tafelen hier in Hollandt by eenighe schriftelick zijn, maer als groote secreten by den ghenen diese hebben, verborghen blijven, ook niet zonder groote cost de selue te crijghen en zijn, ende principalick de compositie die zegt men zeer weynich persoonen ghetoont te worden. Voorwaer tis te bekennen dat de kennisse deser tafelen voor den ghenen diese veel yan doen heeft, is een zaecke van grooter consequentien, maer die secreet te houden schijnt eenichsins een argument te zijne van meerder liefde tot profijt dan tot conste. Want dat hem iemandt laet dyncken dat hyt al ghesien heeft dat door dese tafelen mach gedaen worden, schijnt $z 00$ veel als oft hy hem persuadeerde de terminos infinitae lineae ghevonden te hebben; want ghelijck de verscheyden conditien die traficquerende persoonen malckanderen daghelicks voorstellen oneyndelick zijn, alsoo oock de verscheyden verholen ghebruycken deser tafelen: Daerom een liefhebber der consten meer begheerende wt dese tafelen te leeren dan hy weet, hem en schijnt gheen beter middel te zijne (ouermidts d'ooghen meer sien dan d'ooghe) dan dat hyse divulgere. Twelck ick alsoo verstaende, hebben de zelue mijne E. Heeren onder de protectie van U.E. ende tot nutbaerheyt der ghemeynte laeten wtgaen: Niet twijfelende (waer toe my een argument is d'openbaer experientie van U.E. in de voorderinghe ende bescherminghe der ghemeyne zaecke tegen alle stormen deses onghevalligen tijts) ofte U.E.en zal mijnen wille welcke de ghemeynte gheerne nutbaeren dienst dede voor goet aensien. Vaert wel In Leyden desen 16. Julij, An. 1582.

## ARGUMENT.

Hoewel deses tractaets tijtel spreeckt alleenlick van tafelen van interest/als wesende t'principael tot welcks eynde dese descriptie beghonnen is; Sal nochtans beneuen de tafelen tot meerder verclaeringe een generael discours maken van allen interest (in de practijcke ghemeynlick ghebruyckt) begrepen onder 7. Definitien ende 4. Propositien met haeren explicatien. De definitien zullen zijn verclaeringhen van de eyghene vocabullen deser regulen / als wat dat is Hooft-somme / Interest / interests reden / Simpelen interest / Ghecomponeerden interest / Profijtelicken interest / ende schadelicken interest. Onder de propositien (midtsgaders verclaeringhe des simpelen interests) sal verclaert worden de constructie deser tafelen / ende door diuersche exempelen de ghebruyck der zeluer. Welcker propositien ierst. sal sijn van simpelen profijtelicken interest / De tweede van simpelen schadelicken interest / De derde van ghecomponeerde profijtelicken interest / De vierde van ghecomponeerde schadelicken interest. Tot welckes meerder verclaeringhe begrijpen wy de Hooft-artijckelen des tractaets int volghende tafelken aldus:
Interest is
ofte $\quad\left\{\begin{array}{c}\text { Simpel } \\ \text { Ghecomponeert }\end{array}\left\{\begin{array}{l}\text { Profijtelick } \\ \text { Schadelick } \\ \text { Profijtelick } \\ \text { Schadelick }\end{array}\right.\right.$
he would pay 5 per cent, such during 41 terms or quarter years, so that he would have paid capital and interest at the same time, yet we say, to his good and everlasting memory, that he is rightly called an inventor of these tables.

I have also learned that here in Holland such tables are to be found in writing with some people, but that they remain hidden as great secrets with those who have got them, and that they cannot be obtained without great expense, and principally the composition, which is said to be shown to very few people. Forsooth, it has to be confessed that the knowledge of these tables is a matter of great consequence to those who often need them, but to keep them a secret seems to argue in some sense a greater love of profit than of learning. For that anyone should think that he has seen all that can be done by means of these tables seems as much as if he should be persuaded to have found the ends of an infinite line. For just as the different conditions which businessmen daily propose to each other are infinite in number, so are also the various secret uses of these tables. Therefore, if a lover of learning should desire to learn from these tables more than he knows, there seems to be no better method for him (since the eyes see more than the eye) but to divulge them. Understanding it thus, I have published them, Honourable Gentlemen, under your protection for the benefit of the community, not doubting (an argument for which is furnished to me by the public experience of your promotion and protection of the common cause against all the storms of this unpleasant time) but you will take my wish to pay. the community a useful service in good part. Good speed, in Leyden, this 16th July of the year 1582.

## SUMMARY

Although the title of this treatise speaks only of tables of interest, as being the principal end for which this description has been started, I will nevertheless, in addition to the tables, with a view to a fuller explanation hold a general discourse on all interest (commonly used in practice), consisting in 7 Definitions and 4 Propositions with their explanations. The definitions will be explanations of the:words proper to these rules, e.g. what is Principal, Interest, Rate of interest, Simple Interest, Compound Interest, Profitable interest, and Detrimental interest. Among the propositions (along with the explanation of simple interest) the construction of these tables will be explained, and their use by means of various examples. The first of these propositions is to deal with simple profitable interest, the second with simple detrimental interest, the third with compound profitable interest; the fourth with compound detrimental interest. To explain this more fully we include the Main Sections of the treatise in the following table:


## DEFINITIE 1.

Hooft somme is die/ daer den interest afgherekent wordt.

## VERCLAERINGHE.

Als (by exempel) iemandt wtgheuende 16 . lb op dat hij daér vorê ontfange eê lb t'siaers vầ interest wordt alsdan de 16 lb Hooft-somme ghenoemt. Oft iemandt schuldich wesende 20. lb te betaelen binnen een iaer / ende gheeft ghereedt gheldt $19 . \mathrm{lb}$ aftreckêde eê lb voor interest/wordt alsdâ de 20 . lb Hooftsomme ghenoemt.

## DEFINITIE 2.

Interest is een somme diemê rekent voor t'verloop van de Hooft-somme ouer eenighen tijdt.

## VERCLAERINGHE

Als wanneermen zeght 12. ten 100. t'siaers/dat is soo veel als 12 . interest vâ 100. Hooft-somme ouer een iaer tijdt / alsoo dat Hooft-somme interest ende tijdt / zijn dry onscheydelicke dingen / dat is / Hooftsomme en is niet dan int respect van eenich interest / ende interest niet dan int respect van eenighe Hooft-somme ende tijdt.

## DEFINITIE 3.

Ratio (welcke van sommige proportie genoemt wordt) die der is tusschen den interest ende d'Hooft-somme/noemen wij interests reden.

## VERCLAERINGHE

Als ratio die der is tusschê interest 12. en̂ Hooft-somme 100. Oft. tusschen interest 1 ende Hooft-somme 16. etc. noemen wy in genere interests reden. Ende is te aenmerken datter inde ghebruyck zijn tweederley manieren van interest redenen / welcker eene heeft het ander van haere termijnen altijt zeker. D'ander maniere beyde onseker. D'interests reden die een termijn zeker heeft is tweeder hande / want oft d'Hooft-somme is altijdt en zeker somme / te weten 100. ende den interest cen onzeker somme als 9. oft 10. oft 11. etc. ende wordt dese interests reden dan ghenoemt neghen ten hondert / thien ten hondert / etc. Oft ter contrarien den interest is altijdt een zeker somme te weten 1. ende d'Hooft-somme onzeker als 15. oft 16 . oft 17 / etc. Ende wordt dese interests reden ghenoemt den penninck vijfthien / den penninck zesthien etc. D'interest reden die haere termijnê beyde onzeker heeft / is ghelijck alsmen zeght by exempel 53 . winnen t'siaers 4 . Van alle welcke int volghende ordentlick t'zijnder plaetse verscheyden exempelen zullen ghegheuen worden.

## DEFINITIE 4.

Simpel interest is die / Welck alleenlick van de Hooft somme gerekêt wordt

## VERCLAERINGHE.

Als rekenende $24 . \mathrm{lb}$ voor interest van 100 . lb op 2. iaeren teghen 12. ten 100. t'siaers / worden de zelue $24 . \mathrm{lb}$ dan simpelen interest ghenoemt. Oft iemandt

## DEFINITION 1.

Principal is the sum on which the interest is charged.

## EXPLANATION.

For example, when a man gives 16 lb in order that he may receive for it one lb of interest a year, then the 16 lb is called Principal. Or when a man owes 20 lb , to be paid in a year, and he gives 19 lb present value, subtracting one lb for interest, then the 20 lb is called Principal.

## DEFINITION 2.

Interest is a sum that is charged on the outstanding part of the Principal over a certain time.

## EXPLANATION.

For example, when it is said: 12 per cent a year, that is as much as an interest of 12 on a Principal of 100 over a year, so that Principal, interest, and time are three inseparable things, i.e. Principal does not exist unless in respect of a certain interest, and interest does not exist unless in respect of a certain Principal and time.

## DEFINITION 3.

The ratio (which by some is called proportion) existing between the intėrest and the Principal we call rate of interest.

## EXPLANATION.

For example, the ratio existing between an interest of 12 and a Principal of 100, or between an interest of 1 and a Principal of 16, etc., we call in general rate of interest. And it is to be noted that two kinds of rates of interest are used, one of which always has one of its terms certain, while the second kind has both terms uncertain. The rate of interest that has one term certain is of two kinds. For either the Principal is always a certain sum, to wit 100 , and the interest an uncertain sum, e.g. 9 or 10 or 11, etc., and this rate of interest is then called nine per cent; 10 per cent, etc.; or on the contrary the interest is always a certain sum, to wit 1, and the Principal uncertain, e.g. 15 or 16 or 17, etc., and this rate of interest is called the fifteenth penny, the sixteenth penny, etc. The rate of interest that has both terms uncertain occurs when it is said, for example, that 53 yields 4 a year. Of all these cases several examples will be given below, in their proper places.

## DEFINITION 4.

Simple interest is such as is charged on the Principal alone.

## EXPLANATION.

For example, when 24 lb is charged for interest on 100 lb in 2 years at 12 per cent a year, the 24 lb is then called simple interest. Or when a man owes
schuldich wesende $100 \mathrm{lb} /$ te betaelen ten eyñde van twee iàeren teghen 12. ten 100. t'siaers / ende betaelt ghereedt gheldt / aftreckende voor interest yan de Hooftsomme alleene $21 \frac{3}{7} \mathrm{lb}$ / worden alsdan de zelue $21 \frac{3}{7} \mathrm{lb}$ simpelen interest ghenoemt / ende dat tot een differentic des ghecomponeerden interests / welcks definitie aldus is:

DEFINTITIE 5:
Ghecomponeerden interest is die / welcke gerekent wordt vande Hooft-somme/ midtsgaders van verloope der seluer.

## VERCLAERINGHE

Als rekenende $25 \frac{11}{25} \mathrm{lb}$ voor interest van 100 . lb op twee iaeren teghen 12. ten 100 / worden de zelue $25 \frac{11}{25} \mathrm{lb}$ ghecomponeerden interest ghenoemt /ende dat om dieswille dat op het tweede iaer en wordt niet berekent alleenlick interest van de Hooft-somme 100 lb / maer bouen de zelue wordt noch interest gherekent van den interest van 12. lb verschenen op het ierste iaer bedraeghende $1 \frac{11}{25} \mathrm{lb}$ alsoo dat desen ghecomponeerden interest op twee iaeren meerder is dan haeren simpelen interest van $1 \frac{11}{25} \mathrm{lb}$. Oft wesende iemandt schuldich te betaelen tê cynde van twee iaeren 100 lb / ende betaelt ghereedt ghelt $79 \frac{141}{196} \mathrm{lb} /$ aftreckende $20 \frac{55}{196} \mathrm{lb}$ / voor gecomponeerden interest teghen 12. tê 100. t'siaers / zoo dat desen gecomponeerden interest minder is dan den simpelen $3 \frac{141}{196} \mathrm{lb}$. Whaer deur te aenmerckê is dat wy die ghecomponeerden interest noemen / niet van weghen de quantiteyt waer wt zij beter gedisiungeerde interest zoude ghenoemt worden / maer van weghen de qualiteyt der operatien in de welcke wy op twee interesten opsicht hebben.

## COROLLARIUM.

Daer wt volght noodtsaeckelick op alle ierste termijn daer interest op verschijnt / gheenen ghecomponeerden interest te connen gheschieden / int welcke haer sommighe gheabuseert te hebben zal int volghende t'zijnder plaetsen verclaert worden.

## DEFINITIE 6.

Profijtelicken interest is die welcke d'Hooft somme toegedaen wort.

## VERCLAERINGHE.

Ghelijckerwijs 16. lb ghewonnen hebbende op eê iaer 1 lb zal dê debiteur schuldich zijn met Hooft-somme ende interest t'saemen 17. lb/waer deur wy alzulck 1 lb (wantet interest is die d'Hooft-somme toeghedaen wordt ende die vermeerdert) noemen profijtelicken interest.

## DEFINITIE 7.

Schadelickê interest is die / welcke van de Hooft-somme afghetrockê wordt.

## VERCLAERINGHE.

Als eenen schuldich wesende binnen een iaer 16 . lb veraccordeert te betaelê

100 lb , to be paid at the end of two years at 12 per cent a year, and he pays present value, subtracting for interest on the principal alone $21 \frac{3}{7} \mathrm{lb}$, this $21 \frac{3}{7} \mathrm{lb}$ is then called simple interest, such in contrast with compound interest, the definition of which is as follows:

## DEFINITION 5

Compound interest is such as is charged on the Principal together with what is outstanding.

## EXPLANATION.

For example, when $25 \frac{11}{25} \mathrm{lb}$ is charged for interest on 100 lb in two years at 12 per cent, this $25 \frac{11}{25} \mathrm{lb}$ is called compound interest, such because for the second year interest is not charged on the Principal of 100 lb alone, but over and above this interest is also charged on the interest of 12 lb that has expired after the first year, amounting to $1 \frac{11}{25} \mathrm{lb}$, so that this compound interest is in two years more than the simple interest by $1 \frac{11}{25} \mathrm{lb}$. Or when a man owes 100 lb to be paid at the end of two years, and he pays $79 \frac{141}{196} \mathrm{lb}$ present value, subtracting $20 \frac{55}{196} \mathrm{lb}$ for compound interest at 12 per cent a year, so that this compound interest is less than the simple interest by $3 \frac{141}{196} \mathrm{lb}$. From this it is to be noted that we call it compound interest, not on account of the quantiy, for which it would be better to call it disjunct interest, but on account of the quality of the operations, in which we have two interests in view.

## SEQUEL

From this it follows necessarily that no compound interest can be charged for any first term on which interest is due, and it will be stated below in its place that some people have gone wrong in this.

## DEFINITION 6.

Profitable interest is such as is added to the Principal.

## EXPLANATION.

For example, when 16 lb has yielded in one year 1 lb , the debtor will owe 17 lb for the Principal and the interest together, on account of which we call this 1 lb (because it is interest that is added to the Principal and augments the latter) profitable interest.

## DEFINITION 7.

Detrimental interest is such as is subtracted from the Principal.

## EXPLANATION.

For example, when a man who owes 16 lb to be paid in a year agrees to pay
ghereedt ghelt / midts aftreckende den interest tegen den penninck 16. bedragende $\frac{16}{17} \mathrm{lb} /$ soo dat hy ghereedt gheeft $15 \frac{1}{17} \mathrm{lb}$. Alsoo dan want dese $\frac{16}{17} \mathrm{Ib}$ interest zijn die van de Hooft-somme afghetrocken worden ende die verminderen/noemen wy die schadelicken interest.

## PROPOSITIE I.

Wesende verclaert Hooft-somme tijdt ende interests reden van simpelen eñ profijtelicken interest: Den interest te vinden.

## NOTA.

Het is t'aenmercken dat ghelijck discontinua proportie bestaet onder 4. termijnen / welcker dry bekent zijnde wordt daer wt bekent het vierde: Alsoo ook bestaen dese onse interests propositien onder vier termijnê / te wetê Hooft-somme ! tijdt / interests reden ende interest / welcker termijnen dry bekent zijnde / vinden wy deur de zelve het onbekende vierde: Dat is / wt bekende Hooft-somme / tijt / ende interests reden / vinden wy den interest: Item wt bekende Hooft-somme / tijdt / ende interest / vinden wy interests reden: Item wt bekende Hooft-somme / interests reden / ende interest / vinden wy tijdt: Ende ten laetsten wt bekende tijdt / interests reden / ende interest / vinden wy d'Hooft-somme. Alle welcke veranderinghen notoir ziijn ex alterna $\mathcal{E}$ inuersa proportione der termijnen. Maer want het termijn des onbekendê interests (tot de welcke men oock dickmael d'Hooft-somme geaddeert begeert) in de practijcke meest ghesocht wordt / hebbê t'verclaers der propositien op de zelue ghemaeckt / hoe wel zullen dies niet te min onder de zelue propositien exempelen gheuen dependerende wt de voornoemde alteratie der termijnen.

## EXEMPEL 1.

Men begheert te weten wat den simpelen interest zijn, zal teghen 12. tê 100 . t'siaers vâ 224. lb op een iaer.

## CONSTRUCTIE.

Men zal wt de dry ghegheuen termijnen vinden 't vierde door de reghel der proportie / die disponerende aldus: 100 . gheuen 12. wat $224 . \mathrm{lb}$ ? facit $26 \frac{22}{25} \mathrm{lb}$.

Inder seluer voegen zalmê zegghê dat winnêde $16 . \mathrm{lb}$ t'siaers eê lb / so winnê 224. lb t'siaers 14. lb.

EXEMPEL 2.
27. lb gheuen op 4 . iaer van simpelen interest $14 . \mathrm{lb} /$ wat gheuen 320 lb op 5. iaeren?

## CONSTRUCTIE.

By aldien deze vijf termijnen int gheuen niet ghedisponeert en waeren als bouen / zoudemen die alsoo disponeren / ende zegghen / t'product der twee ierste termijnen gheeft tmiddel termijn / wat gheeft het product der twee laetste termijnen? Dat is 108. lb (wât zoo veel is t'product vande twee ierste termijnen te weten 27. met 4) gheuen 14. lb (dat is tmiddel termijn) wat gheuen 1600? (want sooveel is t'product vande twee lactste termijnê te weten 320 met 5.) Facit $207 \frac{11}{27} \mathrm{lb}$.
present value, subtracting the interest at the sixteenth penny, amounting to $\frac{16}{17} \mathrm{lb}$, so that he gives $15 \frac{1}{17} \mathrm{lb}$ present value. Thus, because this $\frac{16}{17} \mathrm{lb}$ is interest that is subtracted from the Principal and diminishes the latter, we call it detrimental interest.

## PROPOSITION I.

Given the Principal, the time, and the rate of simple and profitable interest: to find the interest.

## NOTE.

It is to be noted that just as discontinuous proportion consists of 4 terms, of which, when three are known, the fourth becomes known therefrom, in the same way these our propositions on interest also consist of four terms, to wit Principal, time, rate of interest, and interest, and when three of these terms are known, we find the unknown fourth term therefrom. That is: from known Principal, time, and rate of interest we find the interest. In the same way, from known Principal, time, and interest we find the rate of interest. In the same way, from known Principal, rate of interest, and interest we find the time. And lastly, from known time, rate of interest, and interest we find the Principal. All these alterations depend on the terms in alternate or inverse proportions. But because the term of the unknown interest (to which the Principal is also frequently desired to be added) is sought most frequently in practice, we have based the explanation of the propositions on this, although we shall nevertheless give examples depending on the aforesaid alteration of the terms at the end of these propositions.

EXAMPLE 1.
It is required to know what will be the simple interest of 224 lb in one year at 12 per cent a year.

## PROCEDURE.

From the three given terms the fourth has to be found by the rule of proportion, putting it as follows: 100 gives 12 , what does 224 lb give? This is $26 \frac{22}{25} \mathrm{lb}$.

In the same way it has to be said that when 16 lb yields one lb a year, 224 lb will yield 14 lb a year.

EXAMPLE 2.
27 lb gives 14 lb of simple interest in 4 years; what does 320 lb give in 5 years?
PROCEDURE.
Since these five given terms have not been arranged in the previous way, they have to be arranged in the following way: the product of the two first terms gives the middle term; what does the product of the two last terms give? That is: 108 lb (for that is the product of the two first terms, to wit 27 and 4) gives 14 lb (that is the middle term); what does 1,600 give (for that is the product of the two last terms, to wit 320 and 5) ? This is $207 \frac{11}{27} \mathrm{lb}$.

Dit voorgaende tweede exempel/met allen anderen dier ghelijcken (welck van weghen de 5 . termijnen reghel van vijven ghenoemt worden) moghen ghesolueert worden door eene operatie in de welcke men ghebruyckt tweemael den reghel der proportien / maar dese maniere is corter ende bequaemer.

## EXEMPEL 3.

Eenen is schuldich contant $224 . \mathrm{lb}$. Oft hy betaelde binnen 4. iaeren alle iaere het vierendeel / te weten 56 . De vraeghe is hoe vele hy ieder iaer betaclen zoude van simpelen interest teghen 12. ten 100. t'siaers.

## CONSTRUCTIE.

Men zal aenmercken wat Hooft-somme datmen op elck iaer in handê houdt diemê naer d'ierste conditie in handen niet en zoude ghehouden hebben / ende vinden alsdan door t'voornoemde ierste exempel dê interest van clcke Hooftsomme op elck iaer. Als tê eynde vât ierste iaer is d'Hooft-somme 224. lb. I diếs interest bedraecht voor eê iaer $26 \frac{22}{25} \mathrm{lb}$. Ten cynde van het tweede iaer (wât opt ierste iaer een vierendeel van 244 . lb . betaelt wordt) en zal d'Hooft-somme maer zijn $168 . \mathrm{lb}$ wiens interest voor een iaer $20 \frac{4}{25} \mathrm{lb}$. Ten eynde vâ het derde iaer is d'hooft-somme 112. $\mathrm{lb} /$ wiens interest voor een iaer $13 \frac{11}{25} \mathrm{lb}$. Tê eynde vầ het vierde iaer is d'Hoft-somme $56 . \mathrm{lb} /$ wiens interest $6 \frac{18}{25} \mathrm{lb}$.

## EXEMPEL 4.

Eenen is schuldich binnen vier iaeren 224. $\mathrm{lb} /$ te weten alle iare het vierendeel bedragêde $56 . \mathrm{Ib}$. De vraeghe is hoe vele hy zoude moeten betaelen van simpelen interest teghen 12. ten 100 . t'siaers / zoo hy de voors. somme teenemael betaelde tê eynde van de vier iaeren.

## CONSTRUCTIE.

Men zal aenmercken wat Hooft-somme datmen op elck iaer in handen houidt $/$ diemen naer d'ierste conditie in handen niet en zoude ghehouden hebben / ende rekenen daer af den interest. Alsoo dan want men ten eynde vâ het ierste iaer zoude hebben moeten betaelê naer die conditie $56 . \mathrm{lb} /$ diemen naer dese conditie niet ghegheuen en heeft / zoudemen ten eynde van het tweede iaer moeten rekenen den interest van de zelue 56 . lb . bedraegende $6 \frac{18}{25} \mathrm{lb}$. Ende om dier gelijcke redenen zoudemen moeten rekenen ten eynde vâ het derde iaer interest van 112. lb bedraeghende $13 \frac{11}{25} \mathrm{Ib}$. Ende ten eynde van het vierde iaer interest van 168 lb bedraeghende $20 \frac{4}{25} \mathrm{lb} /$ welcke dry sommê van interest bedraeghende t'saemen $40 \cdot \frac{8}{25} \mathrm{lb}$ is den simpelen interest diemen ten eynde van de vier iacren zoude moeten betaelen.
Ofte andersins mochtmen soecken proportionale ghetaelen met de ghene daer questie af is ende onbekent zijn / aldus:

## NOTE

The foregoing second example, and all similar ones (which on account of the 5 terms are called the rule of five), can be solved by an operation in which the rule of proportion is used twice, but this method is shorter and more convenient.

## EXAMPLE 3.


#### Abstract

A man owes 224 lb present value. If he paid in 4 years, every year one fourth, to wit 56 lb , how much simple interest would he pay every year at 12 per cent


 a year?
## PROCEDURE.

It has to be found what Principal one keeps each year which according to the first condition one would not have kept, upon which by the aforesaid first example the interest on each Principal in each year has to be found. For example, at the end of the first year the Principal is 224 lb , the interest on which in one year is $26 \frac{22}{25} \mathrm{lb}$. At the end of the second year (because in the first year one fourth of 224 lb is paid) the Principal will be only 168 lb , the interest on which in one year is $20 \frac{4}{25} \mathrm{lb}$. At the end of the third year the principal is 112 lb , the interest on which in one year is $13 \frac{11}{25} \mathrm{lb}$. At the end of the fourth year the Principal is 56 lb , the interest on which is $6 \frac{18}{25} \mathrm{lb}$.

## EXAMPLE 4.

A man owes 224 lb to be paid in four years, to wit every year one fourth, amounting to 56 lb . How much simple interest would he have to pay at 12 per cent a year if he paid the aforesaid sum at once at the end of the four years?

## PROCEDURE.

It has to be found what Principal one keeps each year which according to the first condition one would not have kept, and on this the interest has to be charged. Thus, because at the end of the first year one would have had to pay 56 lb according to that condition, which according to this condition one has not given, at the end of the second year the interest on that 56 lb would have to be charged, amounting to $6_{\frac{2}{25}}^{18} \mathrm{lb}$. And for the same reasons at the end of the third year interest on 112 lb would have to be charged, amounting to $13 \frac{11}{25} \mathrm{lb}$. And at the end of the fourth year interest on 168 lb , amounting to $20 \frac{4}{25} \mathrm{lb}$. These three sums of interest, amounting together to $40 \frac{8}{25} \mathrm{lb}$, are the simple interest that would have to be paid at the end of the four years.
'Or otherwise one might seek numbers proportional to those which are under consideration and unknown, as follows:

| 100 | gheuen op het ierste | iaer | 0. |
| ---: | :--- | ---: | ---: |
| 100 | gheuen op het tweede | iaer | 12. |
| 100 | gheuen op het derde | iaer | 24. |
| 100 | gheuen op het vierde | iaer | 36. |
|  |  |  |  |

Ende segghen daer naer 400 . gheuen 72 , wat gheuen 224. lb? Facit als voren $40 \frac{8}{25} \mathrm{lb}$.

## NOTA.

De dry volghende exempelen dependeren ex alterna vel inuersa proportione propositionis.

EXEMPEL 5.
48. lb gheuen op 3. iaere van simpelen profijtelicken interest $9 . \mathrm{lb}$. De vraeghe is teghen hoe veel ten 100. t'siaers dat betaelt is.

## CONSTRUCTIE.

Laet de termijnen ghedisponeert worden als int voorgaende exempel gheseyt is aldus:
48. gheuen op 3. iaer 9. lb / wat gheuen 100. lb. op iaer? Facit (nae de leeringhe des voorgaenden 2. exempels) $6 \frac{1}{4}$ ten 100 .

## EXEMPEL 6.

"
Men begheert te weten hoe langhe 260 . lb loopen zullen teghen 12 . ten 100 . t'siaers om te winnen 187. Ib. 4. B.

## CONSTRUCTIE.

Men sal ziê wat $260 . \mathrm{lb}$. t'siaers winnê / wordt bevonden door d'ierste exempel $31 \frac{1}{5} \mathrm{lb}$; daer naer salmen diuideren 187. lb 4. B door $31 \frac{1}{5} \mathrm{lb} /$ gheeft quotum ende solutie ${ }^{-6}$. iaeren.

## EXEMPEL 7.

Eeenen ontfanght 187. lb 4. 3. voor simpelen interest teghen 12. ten 100 . voor 6. iaerê. De vraeghe is wat d'Hooft-somme was.

## CONSTRUCTIE.

Men sal zien wat 100 . Ib teghen 12. ten hondert winnen op 6 . iaer / wordt bevondê 72 lb . daer naer salmen segghen 72 . comen van $100 /$ waer van zullen comen $187 . \mathrm{lb} .4$. $B$ ? Facit voor solutie $260 . \mathrm{lb}$.

DEMONSTRATIE.
Ghelijck int ierste exempel hem heeft 100 . tot 12 /alsoo heeft hem 224. lb. tot $26 \frac{22}{25} \mathrm{lb}$ deur de constructie. Ergo $26 \frac{22}{25} \mathrm{lb}$ zijn met die ander termijnen proportionaal naer de begheerte.

| 100 gives in the first year | 0 |
| :--- | ---: |
| 100 gives in the second year | 12 |
| 100 gives in the third year | 24 |
| 100 gives in the fourth year | 36 |
| 400 |  |

Sum total 400
and say thereafter: 400 gives 72 ; what does 224 lb give? This is, as above, $40 \frac{8}{25} \mathrm{lb}$.

## NOTE.

The three following examples depend on the propositions of the alternate or inverse proportion 1 ).

EXAMPLE 5.
48 lb gives in 3 years 9 lb of simple profitable interest. How many per cent a year does this payment amount to?

## PROCEDURE.

Let the terms be disposed as has been said in the foregoing second example, as follows:

48 gives in 3 years 9 lb ; what does 100 lb give in a year? This is (according to the foregoing 2 nd example) $61 / 4$ per cent.

## EXAMPLE 6.

. It is required to know how long 260 lb has to be put out at interest at 12 per cent a year to yield 187 lb 4 sh. ${ }^{2}$ )

## PROCEDURE.

Find what 260 lb yields in a year. By the first example this is found to be $31 \frac{1}{5} \mathrm{lb}$. Thereafter divide 187 lb 4 sh . by $31 \frac{1}{5} \mathrm{lb}$. This gives the quotient and solution: 6 years.

## EXAMPLE 7.

A man receives 186 lb 4 sh . of simple interest at 12 per cent in 6 years. What: was the Principal?

PROCEDURE.
Find what 100 lb yields at 12 per cent in 6 years. This is found to be 72 lb . Thereafter say: 72 comes from 100 ; what will 187 lb 4 sh . come from? The solution is: 260 lb .

## PROOF

As in the first example 100 is to 12 , thus 224 lb is to $26 \frac{22}{25} \mathrm{lb}$ by the procedure. Therefore $26 \frac{22}{25} \mathrm{lb}$ is proportional to those other terms, as required.
${ }^{1}$ ) If $a: b=c: d$, then $b: a=d: c$ is the inverse, $a: c=b: d$ the alternate proportion. 2), 1 pound ( lb ) $=20$ shillings (sh).

S'gelijcks sal oock zijn de demôstratie vâ de andere exempelen / welcke om de. cortheydt wy achterlaeten.
Alsoo dan wesende verclaert Hooft-somme tijt ende interest reden van simpelen ende profijtelicken interest is den interest ghevonden. T'welck geproponeert was alsoo ghedaen te worden.

## PROPOSITIE II.

Wesende verclaert Hooft-somme tijdt ende interests reden van simpelen ende schadelicken interest: Te vinden wat die gheereet ghelt weerdich is.

## EXEMPEL 1

Het zijn $300 . \mathrm{lb}$. te betaelen binnen een iaer. De vraeghe is wat die gereedt ghelt weerdich zijn aftreckende simpelen interest teghen 12 . ten hondert $t$ 'siaers.

## CONSTRUCTIE.

Men sal adderen tot 100 . zijnen interest 12. maecken t'saemen 112, ende segghen:
112. worden $100 /$ wat 300 . lb? Facit $267 \frac{6}{7} \mathrm{lb}$.

EXEMPEL 2.
Het zijn 32. lb te betaelen binnen dry iaeren, De vraeghe is wat die ghereedt weerdich zijn aftreckende den interest teghen den penninck 16.

## CONSTRUCTIE

Men sal adderen tot 16 . zijnen interest van dry iaeren / te weten 3 . maecken $t$ 'saemen 19. ende segghen
19. comen van 16. waer af 32 lb ? Facit $26 \frac{18}{19} \mathrm{lb}$.

EXEMPEL 3.
Het zijn 250. 1b. te betaelen binnen 6. maenden. De vraeghe is wat die weerdich zijn ghereedt ghelt aftreckende teghen den penninck 16. t'siaers.

NOTA.
De solutie van dese ende derghelijcke questien (welck ick ook gheappliceert hebbe totten ghecomponeerden interest daer t'zijnder plaetsen af zal geseyt worden) want ick die ghevonden hebbe ende by niemandt anders en vinde / achte die nu ierstmael wtghegaen te zijne.

## CONSTRUCTIE.

Men sal zien wat deel de 6 . maenden zijn van een iaer/wordt bevonden $\frac{1}{2}$ daerom salmen adderen 16. met $\frac{1}{2}$ en̂ zegghen; $16 \frac{1}{2}$ worden 16. wat 250. 1b? Facit $242 \frac{14}{33} \mathrm{lb}$.

Item hadden de voor noemde 250 lb te betaelen gheweest binnen 3. maenden / zoo zoudemen zegghen (want 3 . maendê een vierendeel iaers is) $16 \frac{1}{4}$ worden 16. wat 250 lb ? Facit $246 \frac{2}{13} \mathrm{lb}$.

The same will also be the demonstration of the other examples, which we omit for brevity's sake.

Hence, given the Principal, the time, and the rate of simple and profitable interest, the interest has been found; which had been proposed to be done.

## PROPOSITION II.

Given the Principal, the time, and the rate of simple and detrimental interest: to find what is the present value.

## EXAMPLE 1.

A sum of 300 lb is to be paid in a year. What is the present value of this sum, subtracting simple interest at 12 per cent a year?

## PROCEDURE.

Add to 100 its interest of 12 , which makes together 112 , and say: 112 becomes 100 ; what does 300 lb become? This is $267 \frac{6}{7} \mathrm{lb}$.

## EXAMPLE 2.

A sum of 32 lb is to be paid in three years. What is the present value, subtracting the interest at the 16 th penny?

## PROCEDURE.

Add to 16 its interest of three years, to wit 3 , which makes together 19 , and say: 19 comes from 16 , what does 32 lb come from? This is $26 \frac{18}{19} \mathrm{lb}$.

## EXAMPLE 3.

A sum of 250 lb is to be paid in 6 months. What is the present value, subtracting at the 16 th penny a year?

NOTE.
The solution of this and similar questions (which I have also applied to compound interest, which will be discussed in its proper place), because I have found it and find it in no one else's work, I deem now to have been published for the first time.

## PROCEDURE.

It has to be found what part 6 months is of one year. This is found to be $\frac{1}{2}$. Therefore add up 16 and $\frac{1}{2}$, and say: $16 \frac{1}{2}$ becomes 16 ; what does 250 lb become? This is $242 \frac{14}{33} \mathrm{lb}$.

Similarly, if the aforesaid 250 lb had had to be paid in 3 months, it would have to be said (because 3 months is one fourth of a year): $16 \frac{1}{4}$ becomes 16; what does 250 lb become? This is $246 \frac{2}{13} \mathrm{lb}$.

Ofte hadden de voor noemde 250. lb. te betaelen gheweest op 1. maendt / zoo zoudemen zegghen (want 1 . mandt is $1 \frac{1}{12}$ t'siaers) $16 \frac{1}{12}$ worden $16 /$ wat $250 . \mathrm{lb}$ ?
Ofte hadden de voor noemde 250. 1b. te betaelen gheweest op 7. weken / zoo zoudemen zegghen (want 7 . weken is $\frac{7}{52}$ t'siaers) $16 \frac{7}{52}$ worden 16 . wat $250 . \mathrm{lb}$ ?
Ofte hadden de voornoemde 250 . lb. te betaelen gheweest op 134 daghen / zoo zoudemen zegghen (want 134. daghen zijn $\frac{134}{365}$ t'siaers) $16 \frac{134}{365}$ worden 16 . wat 250. lb?

Alsoo dat men in zulcke questien altijt moet zien wat deel den gheproponeerdê tijdt is van het iaer ende voort als bouen.

## EXEMPEL 4.

Het zijn 320. lb. te betaelen binnen 3. iaeren en 3. maenden. De vraeghe is wat die weerdich zijn ghereedt ghelt aftreckende teghen dè penninck 16 . t'siaers simpelen interest.

## CONSTRUCTIE

Men sal tot 16. adderen zijnen interest van $3 \frac{1}{4} \mathrm{lb}$. $\left(3 \frac{1}{4} \mathrm{lb}\right.$, van weghen $3 \frac{1}{4}$ iaeren) maeckê t'saemen $19 \frac{1}{4}$ / ende segghen / $19 \frac{1}{4}$ comen van 16 . waer af 320 lb ? facit $265 \frac{75}{77} \mathrm{lb}$.

## NOTA.

S'ghelijcks zal oock zijn d'operatie in alle andere deelen des iaers bouen eenighe gheheele iaeren / als lichtelick te mercken is wt t'voorgaende exempel.

## EXEMPEL 5.

Het zyn 230: lb. te betaelen ten eynde van 5. iaeren. De vraeghe is wat die ghereedt weerdich zijn aftreckende in zulcken reden als hen heeft 23 . Hooftsomme tot simpelen interest 6 . en̂ dat van 3. iaeren.

## CONSTRUCTIE.

Men sal ten iersten sien wat 6. lb. interest van 3. iaeren bedraeghen op 1. iaer / ende wordt bevonden 2. lb. Alsoo dan desen interest is van 2. ten 23. t'siaers / waer deur de werckinghe ghelijck zal zijn de voorgaende des 2. exempels deser propositien aldus: Men sal adderen tot 23 . sijnen interest van 5 . iaeren / te weten 10. lb . maecken t'sacmen 33 . lb . ende segghen 33 . worden 23. wat 230 lb ? Facit voor solutic $160 \frac{10}{33} \mathrm{lb}$.

## EXEMPEL 6.

Eenen is schuldich 600 lb . te betaelen al t'saemen ten eynde van vier iaeren / ende veraccordeert met ziin crediteur die te betaclen in 4. payementen / te weten ten eynde van het ierste iaer een vierê deel / het tweede iaer noch cen vieréndeel / het derde iaer noch een vierendeel / ende t'vierde iaer t'laetste vierendeel / midts aftreckende simpelen interest teghen 12. ten 100. t'siaers.

If the aforesaid 250 lb had had to be paid in 1 month, it would have to be said (because I month is one twelfth of a year): $16 \frac{1}{12}$ becomes 16 ; what does 250 lb become?

If the aforesaid 250 lb had had to be paid in 7 weeks, it would have to be said (because 7 weeks is $\frac{7}{52}$ of a year); $16 \frac{7}{52}$ becomes 16 ; what does 250 lb become?

If the aforesaid 250 lb had had to be paid in 134 days, it would have to be said (because 134 days is $\frac{134}{365}$ of a year): $16 \frac{134}{365}$ becomes 16 ; what does 250 lb become?

So that in such questions it has always to be found what part of a year is the proposed time, and further as above.

## EXAMPLE 4.

A sum of 320 lb is to be paid in 3 years and 3 months. What is the present value, substracting simple interest at the 16 th penny a year?

PROCEDURE.
Add to 16 its interest of $3 \frac{1}{4} \cdot \mathrm{lb}$ ( $3 \frac{1}{4} \mathrm{lb}$ on account of $3 \frac{1}{4}$ years), which makes together $19 \frac{1}{4}$, and say: $19 \frac{1}{4}$ comes from 16 ; what does 3201 lb come from? This is $265 \frac{75}{77} \mathrm{lb}$.

> NOTE.

The tlame will also be the operation for all other parts of a year over and above tile whole years, as is easily perceived from the foregoing example.

## EXAMPLE 5

A sum of 230 lb is to be paid at the end of 5 years. What is the present value of is sum, subtracting in the ratio of 23 (Principal) to 6 (simple interest), such for Years?

PROCEDURE.
First it 1 as to be found what 6 lb of interest for 3 years amounts to in 11 year; thi is found to be 2 lb . This interest is therefore 2 per 23 a yeat, so that the of tation will be similar to the foregoing one of the 2nd example of the present pry position, as follows: Add to 23 its interest for 5 years, to wit 10 lb , which ma es together 33 lb , and say: 33 becomes 23 , what does 230 lb become? The soly ion is $160 \frac{10}{33} \mathrm{lb}$.

## EXAMPLE 6.

A nan owes 600 lb , the whole to be paid at the end of four years, and he agref; with his creditor to pay them in 4 payments, to wit at the end of the first year one fourth, the second year again one fourth, the third year again onf fourth, and the fourth year the last one fourth, subtracting simple interest at, 12 per cent a year.

NOTA.
Ick hebbe in dit exempel ghenomen de zelfde somme ende questie die Jan Trenchant heeft int 3. boeck zijnder Arith. cap. 9. art. 6. op dat ick te claerder zoude toonen de differentie ouer zulcken questie van zijne solutie ende de mijne. Is dan te weten dat Trenchandt ondersoeckt wat dese 600. 1b. ghereedt weerdich ziin / wordt bevondê $508 \frac{28}{59} \mathrm{lb}$. welcks vierendeel als $127 \frac{7}{59} \mathrm{lb}$. Hy zeght te wesen dat men op elck der vier iaeren zoude moeten betaelen.

Maer ick zegghe ter contrarien gheen questie te wesen van vicr betaelinghen van het ghene de $600 . \mathrm{lb}$. ghereedt weerdich ziin / maer van vier betaelinghen der 600 lb . zeluer. Dit is soo vecl als oft den debitcur totten crediteur zeyde: De 600 . lb . die ick v schuldich ben teenemael ten eynde vâ vier iaeren / de zelfde zal ick v betaclen in vier payementen / te weten alle iaere het vierendeel der zeluer /als 150. 1b. midts aftreckende op elcke betaelinge simpelen interest teghen 12. ten 100. t'siaers. Twelck wesende den sin deser questien volght daer wt een constructic als volght.

## CONSTRUCTIE.

Men zal aenmercken wat penningen dat men naer dese conditie verschict diemê naer d'ierste conditie niet en soude verschotê hebbê. Nu dan wantmen naer dese conditie binnê eê iaer betaelt t'vierêdeel der sommen bedraeghende $150 . \mathrm{lb}$. midts aftreckende / etc. diemen naer d'ierste conditie binnen 3. iaeren daer naer ierst zoude moeten betaelen / volgt daer wt dat men zien zal wat 105 lb . te betaelen in 3. iaeren weerdich zijn ghereet / wordt bevonden door het 2. exempel deser propositien $110 \frac{5}{17} \mathrm{lb}$. voor d'ierste paye. Ende om der ghelijcke redenen salmen bevinden 150. lb. op 2. iaerê weerdich te zijne ghereet $120 \frac{30}{31} \mathrm{lb}$. voor de tweede paye.

Ende om der ghelijcke redenen zalmen bevindê 150 . lb. op 1. iaer weerdich te ziine. $133 \frac{13}{14} \mathrm{lb}$. voor de derde paye.

Ende want de laetste paye op zulcken conditie betaelt wordt als d'ierste conditie was / en zal die winnen noch verliesen / maer zal zijn van $150 . \mathrm{lb}$.

EXEMPEL 7.
Het zijn 324. lb. te betaelen binnen 6 . iaeren / te wetê 54 . lb. t'siaers. Vraeghe is wat de zelue weerdich zijn ghereedt ghelt / aftreckende simpelen interest teghen 12. ten 100.

## NOTE 1).

In this example I have taken the same sum and question that Jan Trenchant has in the 3 rd book of his Arithmetic, chapter 9, section 6 , in order that I might show all the more clearly the difference concerning this question between his solution and mine. It is to be noted that Trenchant finds what is the present value of this 600 lb . This is found to be $508 \frac{28}{59} \mathrm{lb}$, the fourth part of which, viz. $127 \frac{7}{59} \mathrm{lb}$, he says is the amount that would have to be paid in each of the four years.

But I say on the contrary that there is no question of four payments of the present value of the 600 lb , but of four payments of the 600 lb itself. This is as much as if the debtor said to the creditor: I will pay to you the whole of the 600 lb I owe you at the end of four years in four payments, to wit every year one fourth of it, i.e. 150 lb , subtracting from each payment simple interest at 12 per cent a year. This being the meaning of this question, the following procedure follows therefrom.

## PROCEDURE.

It has to be found what money one disburses on this condition that one would not have disbursed on the first condition. Thus because on this condition in a year one fourth of the sum is paid, amounting to 150 lb , subtracting etc., which on the first condition would not have to be paid until 3 years thereafter, it follows that it has to be found what is the present value of 105 lb to be paid in 3 years. This is found by the 2nd example of the present proposition to be $110 \frac{5}{17} \mathrm{lb}$ for the first payment. And for the same reasons the present value of 150 lb to be paid in 2 years will be found to be $120 \frac{30}{31} \mathrm{lb}$, for the second payment.

And for the same reasons the present value of 150 lb to be paid in 1 year will be found to be $133 \frac{13}{14} \mathrm{lb}$, for the third payment.

And because the last payment is made on the same condition as the first, this will neither gain nor lose, but will be 150 lb .

## EXAMPLE 7.

A sum of 324 lb is to be paid in 6 years, to wit 54 lb a year. What is the present value of this sum, subtracting simple interest at 12 per cent?

[^4]
## CONSTRUCTIE.

Men zal soecken proportionale ghetalen met de ghene daer questie af is aldus.

| 100 comen voor 1 iaer van |
| :--- |
| 100 comen voor 2 iaeren van |
| 100 comen voor 3 iaeren van |
| 100 comen voor 4 iaeren van |
| 100 comen voor 5 iaeren van |
| 100 comen voor 6 iaeren van |
|  |
| 600 |

Daer naer segt men 852. zijn ghereedt weerdich 600 . wat zullen ghereedt weerdich zijn 324 lb ? Facit $228 \frac{12}{71} \mathrm{lb}$. ende soo veel is de voornoemde somme ghereedt weerdich.

## EXEMPEL 8

Eenen is schuldich te betaelen binnen 3.iaeren 260 . lb. en binnê 6 . iaeren daer naer noch 420 lb . De vraeghe is wat die t'saemen ghereedt weerdich zijn. Aftreckende simpelen interest teghen 12 . ten $100 . \mathrm{t}$ 'siaers.

## CONSTRUCTIE.

De 260 . ib. zullen ghereedt weerdich zijn naer het tweede exêpel deser prop. $191 \frac{3}{17} \mathrm{lb}$. en de 420 lb zullen ghereedt weerdich zijn $201 \frac{12}{31} \mathrm{lb}$. nu dan gheaddeert $191 \frac{3}{17} \mathrm{lb}$. met $201 \frac{12}{13} \mathrm{lb}$. maecken t'saemen $393 \frac{22}{221}$; ende soo veel is alle de schuldt ghereedt weerdich.

## EXEMPEL: 9:

Eenen is schuldich 200. lb . te betaelen binnen 5 ., iaeren. De vraeghe is wat die weerdich zijn binnen 2. iaerê rekenende; simpelen interest teghen 10: ten 1,00 . t'siaers.

## CONSTRUCTIE

Men zal zien wat ide 200 . lb: weerdich zijn gereedt door het 2 : exempel deser prop. wordt bevondê $133 \frac{1}{3} \mathrm{lb}$. Daer naer salmen sien wat $133 \frac{1}{3} \mathrm{lb}$. gereedt weerdich zijn binnen 2. iaeren naer de lecringhe der ierster prop. wordt bevonden 160 . lb. ende zoo veel zijn die 200 lb . weerdich binnen 2 . iaeren.

## ANDERE MANIERE.

Ofte andersins ende lichter machmê doen aidus: men sal zien wat 100 lb . weerdich zijn op 5 . iaeren / wordt bevonden 150. 1b. Insghelijcks wat 100 . weert zijn op 2. iaeren wordt bevonden 120. Daer nae zalmen segghen 150. gheuen 120. wat 200 lb ? Facit als voren 160 lb .

## PROCEDURE1).

Find numbers proportional to those under consideration, as follows...,


Thereafter say: the present value of 852 is 600 ; what will be the present value of 324 lb ? This is $228 \frac{12}{71} \mathrm{lb}$, and this is the present value of the aforesaid sum.

## EXAMPLE 8.

A man owes 260 lb , to be paid in 3 years, and 6 years later 420 lb more. What is the present value of these two sums together, subtracting simple interest at 12 per cent a year?

## PROCEDURE

The present value of the 260 lb , according to the second example of the present proposition, will be $191 \frac{3}{17} \mathrm{lb}$, and the present value of the 420 lb will be $201 \frac{12}{13} \mathrm{lb}$. Now when $191 \frac{3}{17} \mathrm{lb}$ a and $201 \frac{12}{13} \mathrm{lb}$ are added together, this makes $393 \frac{22}{221}$, and this is the present value of the whole debt.

## EXAMPLE 9.

A man owes 200 lb , to be paid in 5 years. What is their value in 2 years, charging simple interest at 10 per cent a year?

## PROCEDURE ${ }^{2}$ ).

Find what is the present value of the 200 lb ; by the 2nd example of the present proposition, this is found to be $133 \frac{1}{3} \mathrm{lb}$. Thereafter find what the present value of $133 \frac{1}{3} \mathrm{lb}$ will be worth in 2 years; according to the first proposition this is found to be 160 lb , and this is the value of that 200 lb in 2 years.

## OTHER METHOD.

Or in another and easier way one can proceed as follows: Find what 100 lb is

[^5]
## EXEMPEL 10.

Eenen is schuldich te betaelen binnen 3. iaeren 420. lb. en̂ binnen 6. iaere daer naer noch $560 . \mathrm{lb}$. De vraeghe is wat dese partijen weert zijn te betaelen t'saemen op 2. iaeren rekenende simpelê interest teghen 10. ten 100. t'siaers.

CONSTRUCTIE.
Men sal zien wat deze partijen t'saemen weerdich zijn ghereedt door het 8 . exempel deser prop. wordt bevonden $617 \frac{201}{247} \mathrm{lb}$. Daer naer salmen sien wat de zelue ghereedt / weert zijn binnen 2. iaeren / wordt bevonden door d'ierste propositie voor solutie $741 \frac{93}{247} \mathrm{lb}$.

## ANDERE MANIERE.

Ofte andersins machmen zien wat 420. lb. op 3. iaeren weerdich zijn op 2. iaeren / wordt bevonden door het 9 . exempel deser propositien $387 \frac{9}{13} \mathrm{lb}$.
Ende inder seluer voeghen worden de $560 . \mathrm{lb}$ : op twee iaeren weerdich bevonden $353 \frac{13}{19} \mathrm{lb}$. welcke twee sommen als. $387 \frac{9}{13}$ met $353 \frac{13}{19}$ maecken t'sacmen voor solutie als voren $741 \frac{93}{247} \mathrm{lb}$.

NOTA.
De volghende exempelen dependeren ex alterna vel inversa proportione der propositien

## EXEMPEL 11.

Voor $500 . \mathrm{lb}$. te betaelen ten eynde van 5 . iaeren ontfangtmen ghereedt $333 \frac{1}{3} \mathrm{lb}$. De vraeghe is teghen hoe vele ten 100 . simpelen interest dat afghetrocken is.

## CONSTRUCTIE

Men sal segghen $333 \frac{1}{2} \mathrm{lb}$. comen van 500 . Ib . waer van 100 ? Facit 150. van de zelue zalmê trecken 100 . rest 50 . welcke ghediuideert door 5 . iaeren gheeft quotum 10. Ergo teghen 10. ten 100. wasser afghetrocken.
worth in 5 years; this is found to be 150 lb . In the same way 100 lb is found to be worth 120 in 2 years. Thereafter say: 150 gives 120 ; what does 200 Ib give? This, as above, is 160 lb .

## EXAMPLE 10.

A man owes 420 lb to be paid in 3 years, and 6 years later 560 lb more. What will these sums be worth, if paid together afier 2 years, charging simple interest at 10 per cent a year?

## PROCEDURE 1).

Find what is the present value of these sums together; by the 8th example of this proposition this is found to be $617 \frac{201}{247} \mathrm{lb}$. Thereafter find what the present value of these sums will be worth in 2 years. The solution, by the first proposition, is found to be $741 \frac{93}{247} \mathrm{lb}$.

## OTHER METHOD.

Or in another way one can see what 420 lb to be paid in 3 years will be worth in 2 years; by the 9th example of the present proposition, this is found to be $387 \frac{9}{13} \mathrm{lb}$.

And in the same way the 560 lb is found to be worth $353 \frac{13}{19} \mathrm{lb}$ in two years, and these two sums, viz. $387 \frac{9}{13}$ and $353 \frac{13}{19}$, make together for the solution, as above, $741 \frac{93}{247} \mathrm{lb}$.

## NOTE.

The following examples depend on the propositions of the alternate or inverse proportion.

## EXAMPLE 11.

For 500 lb to be paid at the end of 5 years, the present value of $333 \frac{1}{3} \mathrm{lb}$ is received. How many per cent of simple interest has been subtracted?

## PROCEDURE.

This has to be said as follows: $333 \frac{1}{3} \mathrm{lb}$ comes from 500 lb ; what does 100 come from? This is 150 . From this, subtract 100 . The remainder is 50 . When this is divided by 5 years, this gives the quotient 10 . Therefore the interest subtracted had been charged at 10 per cent.

[^6]EXEMPEL 12.
Voor 400 . lb . ontfangtmen ghereedt 250 lb . aftreckende simpelen interest teghen 10. ten 100. t'siaers. De vraeghe is voor hoe langhe tijdt afgetrocken is.

CONSTRUCTIE.
Men sal segghen 250 lb . comen van 400 lb . waer van 100 ? Facit 160 lb . van de zelue zalmen trecken 100. rest 60 . welck ghediuideert door 10. (10. van weghen 10. ten 100.) gheeft quotum 6. Ergo voor 6. iaeren wasser afghetrocken,

## EXEMPEL 13.

Eenen is schuldich binnen 3. iaeren 420. lb. ende binnen 6. iaeren daer naer noch $560 . \mathrm{lb}$. De vraeghe is wat tijdt dese partijen t'saemen verschijnen zullen / rekenende den simpelen interest teghen 10 . ten 100 . t'siaers.

## CONSTRUCTIE

Men sal zien wat dese twee sommen t'saemen ghereedt weerdich zijn / wordt bevonden door het 8 . exempel deser prop: $617 \frac{201}{247} \mathrm{lb}$. Daer naer salmen sien door het 6 . exempel der ierster prop. Hoe langhe $617 \frac{201}{247} \mathrm{lb}$. loopen zuilen tegê 10 . tê 100. t'siaers tot zy weerdich zijn 980 lb . (welck de somme zijn van 420 . lb. ende 5601 lb .) ofte (dat tzelfde is) tot zij ghewonnen hebben $362 \frac{46}{247} \mathrm{lb}$. Facit voor solutie $6 \frac{1059}{1066}$ iaeren.

## EXEMPEL 14.

Eenen ontfangt $666 \frac{2}{3} \mathrm{lb}$. ende hem hadde afgetrocken gheweest simpelen interest teghen 8. ten 100 . t'siaers voor ${ }^{-1} 10$. iaeren. De vraeghe is wat d'Hooftsomme was.

## CONSTRUCTIE

Men zal adderen tot 100. zijnen interest van 10 . iaeren comt t'saemen 180 . segghende 100 . comen van 180 . waer van $666 \frac{2}{3} \mathrm{lb}$ ? Facit d'Hooft-somme 1200. lb.

## DEMONSTRATIE.

Aenghesien int ierste exempel deser propositien gheseyt is 300 lb . te betaelen op een iaer / weerdich te zijne ghereedt ghelt $267 \frac{6}{7} \mathrm{lb}$. Aftreckende simpelen interest teghen 12. ten 100. t'siaers / volght daer wt dat in dien men die $267 \frac{6}{7} \mathrm{lb}$ terstont op interest leyde te weten alsvoren teghen simpelen interest van 12. ten hondert t'siaers / dat de zelue Hooft-somme met haeren interest (zoo d'operatie goedt is) sullen moeten t'saemen bedraeghen ten eynde van den iaere $300 . \mathrm{lb}$. Alsoo dan die rekenende naer de leeringhe des iersten exempels der ierster propositien sal bedraeghen $32 \frac{1}{7} \mathrm{lb}$. welck geaddeert tot de $267 \frac{6}{7} \mathrm{lb}$. maecken t 'saemen de voornoemde $300 . \mathrm{lb}$. wacr wt besloten wordt de constructie'goedt te zijne. Sghelijcks zal oock zijn de demonstratie van d'ander exempelen deser propositien/ welck wij om de cortheydt achter lacten. Alsoo dan wesende verclaert Hooft-

## EXAMPLE 12.

For 400 lb the present value of 250 lb is receved, subtracting simple interest at 10 per cent a year. For what time has interest been subtracted?

PROCEDURE: $:$
This has to be said as follows: 250 lb comes from 400 lb ; what does 100 come from? This is 160 lb . From this, subtract 100 . The remainder is 60 , When this is divided by 10 ( 10 on account of 10 per cent), the quotient is 6 . Therefore interest for 6 years has been subtracted.

## EXAMPLE 13.

$\therefore$ A man owes 420 lb to be paid in 3 years, and 6 years'later 560 lb more At what time will these sums together appear, charging simple interest at 10 "per cent a year?:
PRocedupe.

Find what is the present value of these two sums together By the 8 th example of the present proposition this is found to be $617 \frac{201}{247} \mathrm{lb}$ Thereafter find by the 6th example of the first proposition how long $617 \frac{201}{247} \mathrm{lb}$ has to be put out at interest at 10 per cent a year untilitsi value is 980 lb (which is the sum of 420 lb and 560 lb ) or (which is the same) until it has yielded $362 \frac{46}{247} \mathrm{lb}$. The solution is $6 \frac{1059}{1066}$ years.

## EXAMPLE 14.

A man receives $666 \frac{2}{3}$, lb, and the simple interest at 8 per cent a year had been subtracted for 10 years. What was the Principal?

## PROCEDURE.

Add to 100 its interest of 10 years, which makes together 180, and say: 100 comes from 180 ; what does $666 \frac{2}{3}$ Ib come from? The Principal is $1,200 \mathrm{lb}$.

PROOF.
Since it has been said in the first example of the present proposition that the present value of 300 lb , to be paid in one year, is $267 \frac{6}{7} \mathrm{lb}$, subtracting simple interest at 12 per cent a year, it follows that if this $267 \frac{6}{7} \mathrm{lb}$ were at once put out at interest, to wit as above at simple interest of 12 per cent a year, the said Principal with its interest (if the operation is correct) will have to amount together, at the end of the year, to 300 lb . This then being charged according to the first example of the first proposition, it will amount to $32 \frac{1}{7} \mathrm{lb}$, and when this is added to the $267 \frac{6}{7} \cdot \mathrm{lb}$, it makes together the aforesaid 300 lb , from which it is concluded that the procedure is correct. The same will also be the demonstration of the other examples of the present: proposition, which we omit for
somme tijdt ende interests reden van simpelen ende schadelicken interest / hebben wy ghevonden wat die ghereedt weerdich is / t'welck gheproponeert was alsoo ghedaen te worden.

## PROPOSITION III.

Wesende verclaert Hooft-somme tijdt ende interests reden van ghecomponeerden profijtelicken interest: Te vindê wat d'Hooft-somme met haren interest bedraecht.

## NOTA.

Tot de solutie van de exempelen deser propositien zijn ons van noode de tafelen daer voren af gheseyt is / waer deur zullen hier beschrijuen verscheyden tafelen zoo vele als inde practijcke ghemeynlick noodich vallen | te weten 16. tafelen / al waer altijdt comparatie gheschiet van den interest teghen thondert / welcker tafelen ierst zijn zal van een ten 100 . de tweede van twee ten 100 . ende zoo voort tot de 16 . tafel/welcke zijn zal vâ 16 , ten 100 . Bouen dien sullen wy beschrijuen acht tafelen / al waer comparatie geschiet van verscheyden Hooftsommen tot interest altijdt 1. weicker tafelen ierste zijn zal van den penninck 15. de tweede van den penninck 16. ende soo voorts tot den penninck 22. ende zullen dese tafelen altemael dienê tot 30 . iaeren ofte termijnen.

## CONSTRUCTIE DER TAFELEN.

Alsoo dan om te comen tot de constructie deser tafelen / zegghe ick in de zelue niet anders ghesocht te worden dan proportionale ghetaelen met de gene daer questic af is. Om de welcke te vinden soo salmen ten iersten nemen eenich groot getal (welck wy noemen den wortel der tafelen) waer af d'ierste cijffer-letter sy 1. ende de resterende altemael 0 . ick hebbe tot dese tafelen ghenomen (hoe wel mê meer ofte min nemen mach) 10000000 . Nu dan willende maecken een tafel teghen een ten 100. ghelijck de volghende ierste is / salmen den voornoemden wortel 10000000. multiplicerê met d'Hooft-somme 100. t'productum is 1000000000 . de zelfde zalmen diuiderê deur d'Hooft-somme met haeren interest daer toeghedaen / te weten door 101. (want 100. is gheproponeerde Hooft-somme ende 1 den interest) quotus zal zijn 9900990 . dienende voor d'ierste iaer ofte termijn.

Aengaende de reste dieder naer de diuisie blijft als $\frac{1}{10 i}$ die laetmê verloren om datse minder is dan een half / Maer als zulcken reste meerder is dan een half | soo salmen (ghelijck in tabula sinuum en̂ andere meer de ghebruyck is) die verlaeten ende daer voren de gheheele ghetaelen van de quotus van een vermeerderen / want alsoo blijft men alltijdt naerder bij het begheerde. Nu dan om te vinden t'ghetal des tweeden iaers / salmen de 9900990 . wederom multipliceren met 100. gheeft productum 990099000 . welck men wederom zal diuideren door 101. quotus zal zijn 9802960 . voor het tweede iaer.

Alsoo oock om te vinden t'ghetal van het derde iaer salmê de 9802960 . wederom multiplicerê met 100. geeft productû 980296000 . welck mê wederô sal diuideren door 101. quotus sal zijn 9705900 . Maer ouermidts de reste van $\frac{100}{101}$ hier meerder is dan een half / zoo salmen om redenen alsvorê de laetste letter des quotus van 1. vermeerderen / stellende aldus 9705901 . voor het derde termijn /
brevity's sake. Hence, given the Principal, the time, and the rate of simple and detrimental interest, we have found what is the present value of this, which it had been proposed to do.

PROPOSITION III.
Given the Principal, time, and rate of compound profitable interest: to find what the Principal with its interest amounts to.

## NOTE.

For the solution of the examples of this proposition we require the tables that have been referred to above. Therefore we will here describe different tables, as many as are usually necessary in practice, to wit 16 tables, where the interest is always referred to one hundred, the first of which tables will be of one per cent, the second of two per cent, and so on to the 16 th table, which will be of 16 per cent. In addition we will describe eight tables where different Principals are always referred to an interest of 1 , the first of which tables will be of the 15th penny, the second of the 16 th penny, and so on to the 22 nd penny, and all these tables will serve for 30 years or terms.

## CONSTRUCTION OF THE TABLES

To come therefore to the construction of these tables, I say that nothing else is sought in them but numbers proportional to those under consideration. In order to find these, first take some large number (which we call the root of the tables), of which let the first digit be 1 and the remaining all 0 . For the present tables I have taken (though one can take more or less) $10,000,000$. If it is now required to make a table at one per cent, as is the following-first-table, multiply the aforesaid root $10,000,000$ by the Principal of 100 . The product is $1,000,000,000$. Divide this by the Principal plus its. interest, to wit by 101 (for 100 is the proposed Principal and 1.the interest). The quotient will be $9,900,990$, serving for the first year or term.
As regards the remainder that is left after the division, viz. $\frac{10}{101}$, this is neglectted, because it is less than one half. But if this remainder is more than one half, omit it (as is the custom in sine tables and others) and instead add one to the whole numbers of the quotient, for thus we always keep closer to the required value. In order to find the number for the second year, multiply the $9,900,990$ again by 100 . This gives the product $990,099,000$, which divide by 101 . The quotient will be $9,802,960$ for the second year.
Thus also, in order to find the number of the third year, multiply the $9,802,960$ again by 100 . This gives the product $980,296,000$, which divide again by 101 . The quotient will be $9,705,900$. But since the remainder, viz. $\frac{100}{101}$, is here more than one half, for the reasons given above add one to the last digit of the quotient, thus taking $9,705,901$ for the third term, and so on with the other terms, which have been continued to 30 in our tables.
ende alsoo voort met d'andere termijnen / welckê in onse tafelen tot 30 . ghecontinueert zijn.
S'ghelijcks zal oock zijn de constructie van alle die aridere tafelê / want daer wy in de ierste tafel altijdt multipliceren met 100. ende diuideren door 101. alsoo sullê wy in de tweede tafel (welcke is van 2. ten 100.) altijdt multipliceren met 100. ende diuideren door 102. ende in de derde tafel altijt multipliceren met 100. ende diuideren door 103. ende soo voort in d'andere. Item de constructie der tafele van den penninck 15 . is de voorseyde oock gelijck / want men multipliceert hier altijdt met 15. en̂ men diuideert door 16. (te weten door 15. gheproponeerde Hooft-somme ende daer toe haeren interest 1.) Alsoo oock in de tafel van den penninck 16. multipliceert men altijdt met 16. ende men diuideert door 17. ende zoo voorts met d'andere.
Deze tafelen alsoo ghemaeckt voor eenighe iaeren worter by elcke tafel noch een columne gestelt / welcke dienen zal tot ghecomponeerdê interest van partijen die in vervolghende iaeren te betaelen zijn elck iaer cuen veel / ghelijck d'exempelen daer af t'haerder plaetsen zullen ghegheuen worden / welcker. columnen constructie aldus is:

Men zal (tot de constructie deser colummen der tafel van 1. ten 100.) de 9900990. staende neuen d'ierste iaer ofte termijn noch eenmael stellen neuen t'voornoemde ierste termijn / daer naer salmen adderen de twee sommen responderêde op de twee ierste iaeren als 9900990 . met 9802960 . bedraeghen t'saemen 19703950. die salmen stellen neuen het tweede iaer. Daer naer salmen adderê de dry sommen responderende op de dry ierste iaeren / bedraeghen t'saemê 29409851. ende soo voorts totten eynde. Soo dat t'laetste ghetal deser laetster columnen 258077051. sal sijin de somme van alde ghetaelen der voorgaende columne.

In der seluer voeghen salmê oock tot alle d'andere tafelen / elck zoodaenighe laetste columne maken. Soo dat elck deser tafelen zal hebben dry columnen: D'ierste columne beteeckenêdé iaeren / ende d'ander twee dienende tot solutien van questien / als int volghende blijcken zal.

TAFELEN VAN INTEREST.

The same will also be the construction of all the other tables, for while in the first table we always multiply by 100 and divide by 101, thus in the second table (which is of 2 per cent) we will always multiply by 100 and divide by 102, and in the third table we will always multiply by 100 and divide by 103 , and so on in the others. In the same way the construction of the table of the 15th penny is also similar to the aforesaid one, for here we always multiply by 15 and divide by 16 (to wit by 15 -the proposed Principal-plus its interest of 1 ). Thus also in the table of the 16 th penny we always multiply by 16 and divide by 17 , and so on with the others.

After these tables have thus been made for a number of years, to each table is added another column, which is to serve for compound interest on sums that are to be paid in successive years, every year the same amount, as the examples thereof will be given in due place, the construction of which column is as follows:

Put the $9,900,990$ opposite the first year or term (for the construction of this - column of the table of 1 per cent) once more opposite the aforesaid first term; thereafter add up the two sums corresponding to the two first years, viz. 9,900,990 and 9,802,960, which together amount to $19,703,950$. Put this number opposite the second year. Thereafter add up the three sums corresponding to the three first years; these amount together to $29,409,851$. And so on to the end, so that the last number of this last column, $258,077,051$, will be the sum of all the numbers of the preceding column.
In the same way such a last column also has to be added to each of the other tables, so that each of these tables shall have three columns, the first column designating the years: and the other two serving for the solution of certain questions, as will appear in the sequel.

## TABLES OF INTEREST.

Tafel van Interest van

1. ten 100.

| 1. | 9900990. | 9900990. |
| ---: | ---: | ---: |
| 2. | 9802960. | 19703950. |
| 3. | 9705901. | 29409851. |
| 4. | 9609803. | 39019654. |
| 5. | 9514656. | 48534310. |
| 6. | 9420451. | 57954761. |
| 7. | 9327179. | 67281940. |
| 8. | 9234831. | 76516771. |
| 9. | 9143397. | 85660168. |
| 10. | 9052868. | 94713036. |
| 11. | 8963236. | 103676272. |
| 12. | 8874491. | 112550763. |
| 13. | 8786625. | 12133738. |
| 14. | 8699629. | 130037017. |
| 15. | 8613494. | 138650511. |
| 16. | 8528212. | 147178723. |
| 17. | 8443774. | 155622497. |
| 18. | 8360172. | 16398266. |
| 1. | 8277398. | 172260067. |
| 20. | 8195444. | 180455511. |
| 21. | 8114301. | 188569812. |
| 22. | 8033961. | 196603773. |
| 23. | 7954417. | 204558190. |
| 24. | 787560. | 21243380. |
| 25. | 7797683. | 220231533. |
| 26. | 7720478. | 227952011. |
| 27. | 7644038. | 235596049. |
| 28. | 7568354. | 243164403. |
| 29. | 7493420. | 250657823. |
| 30. | 7419228. | 258077051. |

## Tafel van interest van

 2. ten 100 .| 1. | 9803922. | 9803922. |
| ---: | ---: | ---: |
| 2. | 9611688. | 19415610. |
| 3. | 9423244. | 28838834. |
| 4. | 9238455. | 38077289. |
| 5. | 9057309. | 47134598. |
| 6. | 8879715. | 56014313. |
| 7. | 8705603. | 64719916. |
| 8. | 8534905. | 73254821. |
| 9. | 8367554. | 81622375. |
| 10. | 8203484. | 89825859. |
| 11. | 8042631. | 97868490. |
| 12. | 7884932. | 105753422. |
| 13. | 7730325. | 113483747. |
| 14. | 7578750. | 121062497. |
| 15. | 7430147. | 128492644. |
| 16. | 7284458. | 135777102. |
| 17. | 7141625. | 142918727. |
| 18. | 7001593. | 149920320. |
| 19. | 6864307. | 156784627. |
| 20. | 6729713. | 163514340. |
| 21. | 6597758. | 170112098. |
| 22. | 6468390. | 176580488. |
| 23. | 6341559. | 182922074. |
| 24. | 6217215. | 189139262. |
| 25. | 6095309. | 195234571. |
| 26. | 5975793. | 201210364. |
| 27. | 5858621. | 207068985. |
| 28. | 5743746. | 212812731. |
| 29. | 5631124. | 218443855. |
| 30. | 5520710. | 223964565. |

Tafel van interest van 3. ten 100.

| 1. | 9708738. | 9708738. |
| :---: | :---: | :---: |
| 2. | 9425959. | 19134697. |
| 3. | 9151417. | 28286114. |
| 4. | 8884871. | 37170985. |
| 5. | 8626088. | 45797073. |
| 6. | 8374843. | S4171916. |
| 7. | 8130916. | 62302832. |
| 8. | 7894093. | 70196925. |
| 9. | 7664168. | 77861093. |
| 10. | 7440940. | 85302033. |
| 11.' | 7224214. | 92526247. |
| 12. | 7013800. | 99540047. |
| 13. | 6809515. | 106349562. |
| 14. | 6611180. | 112960742. |
| 15. | 6418621. | 119379363. |
| 16. | 6231671. | 125611034. |
| 17.: | 6050166. | 131661200. |
| 18. | 5873948. | 137535148. |
| 19. | : 55702862. | 143238010. |
| 20. | - 5536759. | $\cdots \cdot 148774769$. |
| 21.: | - 5375494. | 154150263. |
| 22. | 5218926. | 159369189. |
| 23. | 5066918. | 164436107. |
| 24. | $\therefore 4919338$ | 169355445. |
| 25. | 4776056. | 174131501. |
|  | $\therefore 4636948$. | 178768449. |
| 27. | $\therefore 4501891$. | 183270340. |
| 28. | $\therefore 4370768$. | $\therefore \quad 187641108$. |
| 29. | $\because 4243464$. | 191884572. |
|  | $\because \cdot 4119868$. | $\therefore 196004440$. |

Tafel van interest van
4. ten 100 .

| 1. | 9615385. | 9615385. |
| :---: | :---: | :---: |
| 2. | 9245562. | 18860947. |
| 3. | 8889963. | 27750910. |
| 4. | 8548041. | 36298951. |
| 5. | 8219270. | 44518221. |
| 6. | 7903144. | 52421365. |
| 7. | 7599177. | 60020542. |
| 8. | 7306901. | 67327443. |
| 9. | 7025866. | 74353309. |
| 10. | 6755640. | 81108949. |
| 11. | 6495808. | 87604757. |
| 12. | 6245969. | 93850726. |
| 13. | 6005739. | 99856465. |
| 14. | 5774749. | 105631214. |
| 15. | 5552643. | 111183857. |
| 16. | 5339080. | 116522937. |
| 17. | 5133731. | 121656668. |
| 18. | 4936280. | 126592948. |
| 19. | 4746423. | 131339371. |
| 20. | 4563868. | 135903239. |
| 21. | 4388335. | 140291574. |
| 22. | 4219553. | 144511127. |
| 23. | 4057262. | 148568389. |
| 24. | 3901213. | 152469602. |
| 25. | 3751166. | 156220768. |
| 26. | 3606890. | 159827658. |
| 27. | 3468163. | 163295821. |
| 28. | 3334772. | 166630593. |
| 29. | 3206512. | 169837105. |
| 30. | 3083185. | 172920290. |

Tafel van interest van
S. ten 100.

| 1. | 9523810. | 9523810. |
| ---: | ---: | ---: |
| 2. | 9070295. | 18594105. |
| 3. | 8638376. | 27232481. |
| 4. | 8227025. | 3545950. |
| 5. | 7835262. | 43294768. |
| 6. | 7462154. | 50756922. |
| 7. | 7106813. | 57863735. |
| 8. | 6768393. | 64632128. |
| 9. | 6446089. | 71078217. |
| 10. | 6139132. | 77217349. |
| 11. | 5846792. | 83064141. |
| 12. | 5568373. | 88632514. |
| 13. | 5303212. | 93935726. |
| 14. | 5050678. | 98986404. |
| 15. | 4810170. | 103796574. |
| 16. | 4581114. | 108377688. |
| 17. | 4362966. | 112740654. |
| 18. | 4155206. | 116895860. |
| 19. | 3957339. | 120853199. |
| 20. | 3768894. | 124622093. |
| 21. | 3589423. | 128211516. |
| 22. | 3418498. | 131630014. |
| 23. | 3255712. | 134885726. |
| 24. | 3100678. | 137986404. |
| 25. | 2953027. | 140939431. |
| 26. | 2812407. | 143751838. |
| 27. | 2678483. | 146430321. |
| 28. | 2550936. | 148981257. |
| 29. | 2429463. | 151410720. |
| 30. | 2313774. | 153724494. |

Tafel van interest van 6. ten 100.

| 1. | 9433962. | 9433962. |
| :---: | :---: | :---: |
| 2. | 8899964. | 18333926. |
| 3. | 8396192. | 26730118. |
| 4. | 7920936. | 34651054. |
| 5. | 7472581. | 42123635. |
| 6. | 7049605. | 49173240. |
| 7. | 6650571. | 55823811. |
| 8. | 6274124. | 62097935. |
| 9. | 5918985. | 68016920. |
| 10. | 5583948. | 73600868. |
| 11. | 5267875. | 78868743. |
| 12. | 4969693. | 83838436. |
| 13. | 4688390. | 88526826. |
| 14. | 4423009. | 92949835. |
| 15. | 4172650. | 97122485. |
| 16. | 3936462. | 101058947. |
| 17. | 3713643. | 104772590. |
| 18. | 3503437. | 108276027. |
| 19. | 3305129. | 111581156. |
| 20. | 3118046. | 114699202. |
| 21. | 2941553. | 117640755. |
| 22. | 2775050: | 120415805. |
| 23. | 2617972. | 123033777. |
| 24. | 2469785. | 125503562. |
| 25. | 2329986. | 127833548. |
| 26. | 2198100. | 130031648. |
| 27. | 2073679. | 132105327. |
| 28. | 1956301. | 134061628. |
| 29. | 1845567. | 135907195. |
| 30. | 1741101. | 137648296. |

Tafel van interest van
7. ten 100.

|  |  |  |
| ---: | ---: | ---: |
| 1. | 9345794. | 9345794. |
| 2. | 8734387. | 18080181. |
| 3. | 8162979. | 26243160. |
| 4. | 7628952. | 33872112. |
| 5. | 712962. | 4100197. |
| 6. | 6663422. | 47665396. |
| 7. | 6227497. | 53892893. |
| 8. | 5820091. | 59712984. |
| 9. | 5439337. | 65152321. |
| 10. | 5083493. | 7023581. |
| 11. | 4750928. | 7498674. |
| 12. | 4440120. | 79426862. |
| 13. | 4149645. | 83576507. |
| 14. | 3878173. | 87454680. |
| 15. | 3624461. | 9107914. |
| 16. | 3387347. | 94466488. |
| 17. | 3165745. | 97632233. |
| 18. | 2958640. | 100590873. |
| 19. | 2765084. | 103355957. |
| 20. | 2584191. | 10594014. |
| 21. | 241532. | 108355280. |
| 22. | 2257133. | 110612413. |
| 23. | 2109470. | 112721883. |
| 24. | 1971467. | 114693350. |
| 25. | 1842493. | 116535843. |
| 26. | 1721956. | 11825799. |
| 27. | 1609305. | 119867104. |
| 28. | 1504023. | 121371127. |
| 29. | 1405629. | 122776756. |
| 30. | 1313672. | 124090428. |

Tafel van interest van
8. ten 100.

| 1. | 9259259. | 9259259. |
| :---: | :---: | :---: |
| 2. | 8573388. | 17832647. |
| 3. | 7938322. | 25770969. |
| 4. | 7350298. | 33121267 |
| 5. | 6805831. | 39927098. |
| 6. | 6301695. | 46228793. |
| 7. | 5834903. | 52063696. |
| 8. | 5402688. | 57466384. |
| 9. | 5002489. | 62468873. |
| 10. | 4631934. | 67100807. |
| 11. | 4288828. | 71389635. |
| 12. | 3971137. | 75360772. |
| 13. | 3676979. | 79037751. |
| 14. | 3404610. | 82442361. |
| 15. | 3152417. | 85594778. |
| 16. | 2918905. | 88513683. |
| 17. | 2702690. | 91216373. |
| 18. | 2502491. | 93718864. |
| 19. | 2317121. | 96035985. |
| 20. | 2145482. | 98181467. |
| 21. | 1986557. | 100168024. |
| 22. | 1839405. | 102007429. |
| 23. | 1703153. | 103710582. |
| 24. | 1576994. | 105287576. |
| 25. | 1460180. | 106747756. |
| 26. | 1352019. | 108099775. |
| 27. | 1251869. | 109351644. |
| 28. | 1159138. | 110510782. |
| 29. | 1073276. | 111584058. |
| 30. | 993774. | 112577832. |

Tafel van interest van 9. ten 100.

| 1. | 9174312. | 9174312. |
| ---: | ---: | ---: |
| 2. | 8416800. | 17591112. |
| 3. | 7721835. | 25312947. |
| 4. | 7084252. | 32397199. |
| 5. | 6499314. | 38896513. |
| 6. | 5962673. | 44859186. |
| 7. | 5470342. | 50329528. |
| 8. | 5018662. | 55348190. |
| 9. | 4604277. | 59952467. |
| 10. | 4224107. | 64176574. |
| 11. | 3875328. | 68051902. |
| 12. | 3555347. | 71607249. |
| 13. | 3261786. | 74869035. |
| 14. | 2992464. | 77861499. |
| 15. | 2745380. | 80606879. |
| 16. | 2518697. | 83125576. |
| 17. | 2310731. | 85436307. |
| 18. | 2119937. | 87556244. |
| 19. | 1944896. | 89501140. |
| 20. | 1784308. | 91285448. |
| 21. | 1636980. | 92922428. |
| 22. | 1501817. | 94424245. |
| 23. | 1377814. | 95802059. |
| 24. | 1264050. | 97066109. |
| 25. | 1159679. | 98225788. |
| 26. | 1063926. | 99289714. |
| 27. | 976079. | 100265793. |
| 28. | 895485. | 101161278. |
| 29. | 821546. | 101982824. |
| 30. | 753712. | 102736536. |

Tafel van interest van 10. ten 100.

| 1. | 9090909. | 9090909. |
| ---: | ---: | ---: |
| 2. | 8264463. | 17355372. |
| 3. | 7513148. | 24868520. |
| 4. | 6830135. | 31698655. |
| 5. | 6209214. | 37907869. |
| 6. | 5644740. | 43552609. |
| 7. | 5131582. | 48684191. |
| 8. | 4665075. | 53349266. |
| 9. | 4240977. | 57590243. |
| 10. | 3855434. | 61445677. |
| 11. | 3504940. | 64950617. |
| 12. | 3186309. | 68136926. |
| 13. | 2896645. | 71033571. |
| 14. | 2633314. | 73666885. |
| 15. | 2393922. | 76060807. |
| 16. | 2176293. | 78237100. |
| 17. | 1978448. | 80215548. |
| 18. | 1798589. | 82014137. |
| 19. | 1635081. | 83649218. |
| 20. | 1486437. | 85135655. |
| 21. | 1351306. | 86486961. |
| 22. | 1228460. | 87715421. |
| 23. | 1116782. | 88832203. |
| 24. | 1015256. | 89847459. |
| 25. | 922960. | 90770419. |
| 26. | 839055. | 91609474. |
| 27. | 762777. | 92372251. |
| 28. | 693434. | 93065685. |
| 29. | 630395. | 93696080. |
| 30. | 573086. | 94269166. |

Tafel van interest van 11. ten 100.

| 1. | 9009009. | 9009009. |
| :---: | :---: | :---: |
| 2. | 8116224. | 17125233. |
| 3. | 7311914. | 24437147. |
| 4. | 6587310. | 31024457. |
| 5. | 5934514. | 36958971. |
| 6. | 5346409. | 42305380. |
| 7. | 4816585. | 47121965. |
| 8. | 4339266. | 51461231. |
| 9. | 3909249. | 55370480. |
| 10. | 3521846. | 58892326. |
| 11. | 3172834. | 62065160. |
| 12. | 2858409. | 64923569. |
| 13. | 2575143. | 67498712. |
| 14. | 2319949. | 69818661. |
| 15. | 2090044. | 71908705. |
| 16. | 1882923. | 73791628. |
| 17. | 1696327. | 75487955. |
| 18. | 1528223. | 77016178. |
| 19. | 1376777. | 78392955. |
| 20. | 1240340. | 79633295. |
| 21. | 1117423. | 80750718. |
| 22. | 1006687. | 81757405. |
| 23. | 906925. | 82664330. |
| 24. | 817050. | 83481380. |
| 25. | 736081. | 84217461. |
| 26. | 663136. | 84880597. |
| 27. | 597420. | 85478017. |
| 28. | 538216. | 86016233. |
| 29. | 484879. | 86501112. |
| 30. | 436828. | 86937940 |

Tafel van interest van 12. ten 100.

| 8928571. | 8928571. |
| ---: | ---: |
| 7971938. | 16900509. |
| 7117802. | 24018311. |
| 6355180. | 30373491. |
| 5674268. | 36047759. |
| 5066311. | 41114070. |
| 4523492. | 45637562. |
| 4038832. | 49676394. |
| 3606100. | 53282494. |
| 3219732. | 56502226. |
| 2874761. | 59376987. |
| 2566751. | 61943738. |
| 2291742. | 64235480. |
| 2046198. | 66281678. |
| 1826962. | 68108640. |
| 1631216. | 69739856. |
| 1456443. | 71196299. |
| 1300396. | 72496695. |
| 1161068. | 73657763. |
| 1036668. | 74694431. |
| 925596. | 75620027. |
| 826425. | 76446452. |
| 737879. | 77184331. |
| 658821. | 77843152. |
| 588233. | 78431385. |
| 525208. | 78956593. |
| 468936. | 79425529. |
| 418693. | 79844222. |
| 373833. | 80218055. |
| 333779. | 80551834. |
|  |  |

Tafel van interest van 13. ten 100.

|  |  |  |
| ---: | ---: | ---: |
| 1. | 8849558. | 8849558. |
| 2. | 7831467. | 16681025. |
| 3. | 6930502. | 23611527. |
| 4. | 6133188. | 29744715. |
| 5. | 5427600. | 35172315. |
| 6. | 4803186. | 39975501. |
| 7. | 4250607. | 44226108. |
| 8. | 3761599. | 47987707. |
| 9. | 3328849. | 51316556. |
| 10. | 2945884. | 54262440. |
| 11. | 2606977. | 56869417. |
| 12. | 2307059. | 59176476. |
| 13. | 2041645. | 61218121. |
| 14. | 1806765. | 63024886. |
| 15. | 1598907. | 64623793. |
| 16. | 1414962. | 66038755. |
| 17. | 1252179. | 67290934. |
| 18. | 1108123. | 68399057. |
| 19. | 980640. | 69379697. |
| 20. | 867823. | 70247520. |
| 21. | 767985. | 71015505. |
| 22. | 679633. | 71695138. |
| 23. | 601445. | 72296583. |
| 24. | 532252. | 72828835. |
| 25. | 471019. | 73299854. |
| 26. | 416831. | 73716685. |
| 27. | 368877. | 74085562. |
| 28. | 326440. | 74412002. |
| 29. | 288885. | 74700887. |
| 30. | 255650. | 74956537. |
|  |  |  |

Tafel van interest van 14. ten 100.

| 1. | 8771930. | 8771930. |
| ---: | ---: | ---: |
| 2. | 7694675. | 16466605. |
| 3. | 6749715. | 23216320. |
| 4. | 5920803. | 29137123. |
| 5. | 5193687. | 34330810. |
| 6. | 4555866. | 38886676. |
| 7. | 3996374. | 42883050. |
| 8. | 3505591. | 49463721. |
| 9. | 3075080. | 52161160. |
| 10. | 2697439. | 54527335. |
| 11. | 2366175. | 56602927. |
| 12. | 2075592. | 58423622. |
| 13. | 1820695. | 60020723. |
| 14. | 1597101. | 61421689. |
| 15. | 1400966. | 62650607. |
| 16. | 1228918. | 63728605. |
| 17. | 1077998. | 64674217. |
| 18. | 945612. | 65503701. |
| 19. | 829484. | 66231319. |
| 20. | 727618. | 66869580. |
| 21. | 638261. | 67429458. |
| 22. | 559878. | 67920579. |
| 23. | 491121. | 68351387. |
| 24. | 430808. | 68729289. |
| 25. | 377902. | 69060782. |
| 26. | 331493. | 69351565. |
| 27. | 290783. | 69606638. |
| 28. | 255073. | 69830386. |
| 29. | 223748. | 70026656. |
| 30. | 196270. |  |

Tafel van interest van 15. ten 100.

| 8695652. | 8695652. |
| ---: | ---: |
| 7561437. | 16257089. |
| 6575163. | 22832252. |
| 5717533. | 28549785. |
| 4971768. | 33521553. |
| 4323277. | 37844830. |
| 3759371. | 41604201. |
| 3269018. | 44873219. |
| 2842624. | 47715843. |
| 2471847. | 50187690. |
| 2149432. | 52337122. |
| 1869071. | 54206193. |
| 1625279. | 58331472. |
| 141328. | 57244758. |
| 1228944. | 58473702. |
| 1068647. | 59542349. |
| 929258. | 60471607. |
| 808050. | 61279657. |
| 702652. | 61982309. |
| 611002. | 62593311. |
| 531306. | 63124617. |
| 462005. | 63586622. |
| 401743. | 6388365. |
| 349342. | 64337707. |
| 303776. | 64641483. |
| 264153. | 64905636. |
| 229698. | 65135334. |
| 199737. | 6535071. |
| 17368. | 65508755. |
| 151030. | 65659785. |

Tafel van interest van 16. ten 100.

| 1. | 8620690. | 8620690. |
| ---: | ---: | ---: |
| 2. | 7431629. | 16052319. |
| 3. | 6406577. | 22458896. |
| 4. | 5522911. | 27981807. |
| 5. | 4761130. | 32742937. |
| 6. | 4104422. | 36847359. |
| 7. | 3538295. | 40385654. |
| 8. | 3050254. | 43435908. |
| 9. | 2629529. | 46065437. |
| 10. | 2266835. | 48332272. |
| 11. | 1954168. | 50286440. |
| 12. | 1684628. | 51971068. |
| 13. | 1452266. | 53423334. |
| 14. | 1251953. | 54675287. |
| 15. | 1079270. | 55754557. |
| 16. | 930405. | 56684962. |
| 17. | 802073. | 57487035. |
| 18. | 691442. | 58178477. |
| 19. | 596071. | 58774548. |
| 20. | 513854. | 59288402. |
| 21. | 442978. | 59731380. |
| 22. | 381878. | 60113258. |
| 23. | 329205. | 60442463. |
| 24. | 283797. | 60726260. |
| 25. | 244653. | 60970913. |
| 26. | 210908. | 6181821. |
| 27. | 181817. | 61363638. |
| 28. | 156739. | 61520377. |
| 29. | 135120. | 61655497. |
| 30. | 116483. | 61771980. |
|  |  |  |

Tafel van Interest van den penninck 15 .

| 1. | 9375000. | 9375000. |
| ---: | ---: | ---: |
| 2. | 8789062. | 18164062. |
| 3. | 8239746. | 26403808. |
| 4. | 7724762. | 34128570. |
| 5. | 7241964. | 41370534. |
| 6. | 6789341. | 58159875. |
| 7. | 6365007. | 54524882. |
| 8. | 5967194. | 60492076. |
| 9. | 5594244. | 66086320. |
| 10. | 5244604. | 71330924. |
| 11. | 4916816. | 76247740. |
| 12. | 4609515. | 80857255. |
| 13. | 4321420. | 85178675. |
| 14. | 4051331. | 89230006. |
| 15. | 3798123. | 93028129. |
| 16. | 3560740. | 96588869. |
| 17. | 3338194. | 99927063. |
| 18. | 3129557. | 103056620. |
| 19. | 2933960. | 105990580. |
| 20. | 2750587. | 11131987. |
| 21. | 2578675. | 113737350. |
| 22. | 2417508. | 116003764. |
| 23. | 2266414. | 118128527. |
| 24. | 2124763. | 120120492. |
| 25. | 1991965. | 121987959. |
| 26. | 1867467. | 123738709. |
| 27. | 1750750. | 125380037. |
| 28. | 1641328. | 126918782. |
| 29. | 1538745. | 128361355. |
| 30. | 1442573. |  |

Tafel van Interest van den penninck 16.

| 1. | 9411765. | 9411765. |
| ---: | ---: | ---: |
| 2. | 8858132. | 18269897. |
| 3. | 8337065. | 26606962. |
| 4. | 7846649. | 34453611. |
| 5. | 7385081. | 41838692. |
| 6. | 6950664. | 48789356. |
| 7. | 6541801. | 55331157. |
| 8. | 6156989. | 61488146. |
| 9. | 5794813. | 67282959. |
| 10. | 5453942. | 72736901. |
| 11. | 5133122. | 77870023. |
| 12. | 4831174. | 82701197. |
| 13. | 4546987. | 87248184. |
| 14. | 4279517. | 91527701. |
| 15. | 4027781. | 95555482. |
| 16. | 3790853. | 99346335. |
| 17. | 3567862. | 102914197. |
| 18. | 3357988. | 106272185. |
| 19. | 3160459. | 109432644. |
| 20. | 2974550. | 112407194. |
| 21. | 2799576. | 115206770. |
| 22. | 2634895. | 117841665. |
| 23. | 2479901. | 120321566. |
| 24. | 2334024. | 122655590. |
| 25. | 2196728. | 124852318. |
| 26. | 2067509. | 126919827. |
| 27. | 1945891. | 128865718. |
| 28. | 1831427. | 130697145. |
| 29. | 1723696. | - |
| 30. | 1622302. | 132420841. |
|  |  | 134043143. |

Tafel van Interest van den penninck 17.

| 1. | 9444444. | 9444444. |
| ---: | ---: | ---: |
| 2. | 8919753. | 18364197. |
| 3. | 8424211. | 26788408. |
| 4. | 7956199. | 34744607. |
| 5. | 7514188. | 42258795. |
| 6. | 7096733. | 49355528. |
| 7. | 6702470. | 56057998. |
| 8. | 6330111. | 62388109. |
| 9. | 5978438. | 68366547. |
| 10. | 5646303. | 74012850. |
| 11. | 5332619. | 79345469. |
| 12. | 5036362. | 84381831. |
| 13. | 4756564. | 89138395. |
| 14. | 4492310. | 93630705. |
| 15. | 4242737. | 97873442. |
| 16. | 4007029. | 101880471. |
| 17. | 3784416. | 105664887. |
| 18. | 3574171. | 109239058. |
| 19. | 3375606. | 112614664. |
| 20. | 3188072. | 115802736. |
| 21. | 3010957. | 118813693. |
| 22. | 2843682. | 121657375. |
| 23. | 2685700. | 124343075. |
| 24. | 2536494. | 126879569. |
| 25. | 2395578. | 129275147. |
| 26. | 2262490. | 131537637. |
| 27. | 2136796. | 133674433. |
| 28. | 2018085. | 135692518. |
| 29. | 1905969. | 137598487. |
| 30. | 1800082. | 139398569. |

Tafel van Interest van den penninck 18.

| 1. | 9473684. | 9473684 |
| :---: | :---: | :---: |
| 2. | 8975069. | 18448753 |
| 3. | 8502697. | 26951450 |
| 4. | 8055186. | 35006636 |
| 5. | 7631229. | 42637865 |
| 6. | . 7229585. | 49867450. |
| 7. | 6849081. | 56716531. |
| 8. | 6488603. | 63205134. |
| 9. | 6147098. | 69352232. |
| 10. | 5823567. | 75175799. |
| 11. | 5517063. | 80692862. |
| 12. | 5226691. | 85919553. |
| 13. | 4951602. | 90871155. |
| 14. | 4690991. | 95562146. |
| 15. | 4444097. | 100006243. |
| 16. | 4210197. | 104216440. |
| 17. | 3988608. | 108205048. |
| 18. | 3778681. | 111983729. |
| 19. | 3579803. | 115563532. |
| 20. | 3391392. | 118954924. |
| 21. | 3212898. | 122167822. |
| 22. | 3043798. | 125211620. |
| 23. | 2883598. | 128095218. |
| 24. | 2731830. | 130827048. |
| 25. | 2588049. | 133415097. |
| 26. | 2451836. | 135866933. |
| 27. | 2322792. | 138189725. |
| 28. | 2200540. | 140390265. |
| 29. | 2084722. | 142474987. |
| 30. | 1975000. | 144449987 |

## Tafel van Interest van $\cdot$ den

 penninck 19.| 1. | 9500000. | 9500000. |
| ---: | ---: | ---: |
| 2. | 9025000. | 18525000. |
| 3. | 8573750. | 27098750. |
| 4. | 8145062. | 35243812. |
| 5. | 7737809. | 42981621. |
| 6. | 7350919. | 50332540. |
| 7. | 6983373. | 57315913. |
| 8. | 663424. | 6395011. |
| 9. | 6302494. | 70252611. |
| 10. | 5987369. | 76239980. |
| 11. | 5688001. | 81927981. |
| 12. | 5403601. | 87331582. |
| 13. | 513341. | 99265003. |
| 14. | 4876750. | 97341753. |
| 15. | 4632912. | 101974665. |
| 16. | 4401266. | 106375931. |
| 17. | 4181203. | 110557134. |
| 18. | 397214. | 1152927. |
| 19. | 3773536. | 18302813. |
| 20. | 3584859. | 121887672. |
| 21. | 3405616. | 125293288. |
| 22. | 3235335. | 128528623. |
| 23. | 3073568. | 131602191. |
| 24. | 291980. | 134522081. |
| 25. | 2773895. | 137295976. |
| 26. | 2635200. | 139931176. |
| 27. | 2503440. | 142434616. |
| 28. | 2378268. | 144812884. |
| 29. | 225935. | 147072239. |
| 30. | 2146387. | 149218626. |

Tafel van Interest van den penninck 20.

## Nota.

Dese tafel is de voorgaende tafel van 5. ten 100. ghelijck.

Tafel van Interest van den penninck 21.

| 1. | 9545455. | 9545455. |
| ---: | ---: | ---: |
| 1. | 9111571. | 18657026. |
| 3. | 8697409. | 27354435. |
| 4. | 8302072. | 35656507. |
| 5. | 7924705. | 53581212. |
| 6. | 7564491. | 58366353. |
| 7. | 7220650. | 65258792. |
| 8. | 6892439. | 71837938. |
| 9. | 6579146. | 78118032. |
| 10. | 6280094. | 84112667. |
| 11. | 5994635. | 89834819. |
| 12. | 5722152. | 95296873. |
| 13. | 5462054. | 100510652. |
| 14. | 5213779. | 105487441. |
| 15. | 4976789. | 110238012. |
| 16. | 4750571. | 114772648. |
| 17. | 4534636. | 119101164. |
| 18. | 4328516. | 123232929. |
| 19. | 4131765. | 127176887. |
| 20. | 3943958. | 130941574. |
| 21. | 3764687. | 134535139. |
| 22. | 3593565. | 137965360. |
| 23. | 3430221. | 141239662. |
| 24. | 3274302. | 144365132. |
| 25. | 3125470. | 147348535. |
| 26. | 2983403. | 150196329. |
| 27. | 2847794. | 152914678. |
| 28. | 2718349. | 155509466. |
| 29. | 2594788. | 157986309. |
| 30. | 2476843. |  |
|  |  |  |

Tafel van Interest van den penninck 22.

| 1. | 9565217. | 9565217. |
| ---: | ---: | ---: |
| 2. | 9149338. | 18714555. |
| 3. | 8751541. | 27466096. |
| 4. | 8371039. | 35837135. |
| 5. | 8007081. | 43844216. |
| 6. | 7658947. | 51503163. |
| 7. | 7325949. | 58829112. |
| 8. | 7007429. | 65836541. |
| 9. | 6702758. | 72539299. |
| 10. | 6411334. | 78950633. |
| 11. | 6132586. | 85083213. |
| 12. | 5865946. | 90949159. |
| 13. | 5610905. | 96560064. |
| 14. | 5366953. | 101927017. |
| 15. | 5133607. | 107060624. |
| 16. | 4910407. | 111971031. |
| 17. | 4696911. | 116667942. |
| 18. | 4492697. | 121160639. |
| 19. | 4297362. | 125458001. |
| 20. | 4110520. | 129568521. |
| 21. | 3931802. | 133500323. |
| 22. | 3760854. | 137261177. |
| 23. | 3597339. | 140858516. |
| 24. | 3440933. | 144299449. |
| 25. | 3291327. | 147590776. |
| 26. | 3148226. | 150739002. |
| 27. | 3011347. | 153750349. |
| 28. | 2880419. | 156630768. |
| 29. | 2755183. | 159385951. |
| 30. | 2635392. | 162021343. |

Eynde der Tafelen.

NOTA．
Ouermidts alle interst reden die metten hondert wtghesproken wordt／is altijdt oock eenighe interests reden die metten penninck can wtghesproken worden／ende ter contrarien（als by exempel 5 ．ten 100．mach oock gheseyt worden dê penninck 20．）zullen wy alles tot meerderen gherieue haere comparatien（zoo verre onse tafelen strecken）verclacren aldus

| 1 |  | 100 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  | 50 |  | 16 |  | $6 \frac{1}{4}$ |
| 3 |  | $33 \frac{1}{3}$ | $\stackrel{\sim}{4}$ | 17 | $\square$ | $5 \frac{15}{17}$ |
| 4 | 9 | 25 | 旨 | 18 | $\stackrel{\square}{\circ}$ | $5 \frac{5}{9}$ |
| 5 | $\stackrel{\square}{8}$ | 20 | 吕 | 19 | 亮 | $5 \frac{5}{19}$ |
| 6 | 5 | $16 \frac{2}{3}$ | ロّ | 20 | 㐌 | 5 |
| 7 | 8 | $14 \frac{3}{7}$ |  | 21 |  | $4 \frac{16}{21}$ |
| 8 | 鹿 | 12，$\frac{1}{2}$ |  | 22 |  | $4 \frac{6}{11}$ |
| 9 | $\stackrel{\square}{2}$ | $11 \frac{1}{9}$ |  |  |  |  |
| 10 | 0 | 10 |  |  |  |  |
| 11 | $\stackrel{\square}{\square}$ | $9 \frac{1}{11}$ |  |  |  |  |
| 12 | 号 | $8 \frac{1}{3}$ |  |  |  |  |
| 13 | 2． | $7 \frac{9}{13}$ |  |  |  |  |
| 14 |  | $7 \frac{1}{7}$ |  |  |  |  |
| 15 |  | $6 \frac{2}{3}$ |  |  |  |  |
| 16 |  | $6 \frac{1}{4}$ |  |  |  |  |

De tafelen dan alsoo bereydt zijnde／zullen nu volghen de exempelen dienende tot de voorschreuen 3．propositiê／welcker exempelen ierste aldus is：

EXEMPEL 1.
Men begheert te weten wat Hooft－somme 380．lb．met haeren ghecomponeer－ den profijtelijcken interest teghen 11．ten 100．t＇siaers op 8 ．iaeren bedraeghen zal．

## CONSTRUCTIE．

Men sal sien in de tafel van 11．ten 100．wat ghetal datter respondeert op het achtste iaer／wordt bevonden 4339266．waer deur men zegghen zal 4339266．gheuê 10000000．（welcke 10000000 ．den wortel van de tafel zijn）wat 380 ．lb？facit $875 \frac{3142250}{4339266} \mathrm{lb}$ ．

NOTA．
Wy sullen in de volghende exempelen ghemeynelick achter de gheheele pon－ den het ghebroken stellen sonder tzelfde ghebroken in radicem fractionis te conuerteren／dat is／ad numeros inter se primos，oft oock sonder $\mathfrak{B}$ ende gr．daer wt te trecken／op dat de solutien alsoo te claerder blijuen／wantet ghenoegh is dat－ men sulcks in praxi doet．

## NOTE.

Since every rate of interest that is expressed in per cent is always equivalent to some rate of interest that can be expressed as the penny of something, and conversely (for example: 5 per cent may also be called the 20th penny), we will, for greater convenience, compare them (in as far as our tables go), as follows:

1 per cent is equivalent to the 100th penny
2 per cent is equivalent to the 50th penny [and so on; see the original text]

The 15 th penny is equivalent to $6 \frac{2}{3}$ per cent

| 16th | " |  | " |  | $6 \frac{1}{4}$ | , | " |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17th | " | " | " |  |  |  | " |
| " 18th | " | " | " |  |  |  | " |
| " 19th | " | " | " |  |  |  | " |
| " 20th | " | " | " |  | 5 |  | " |
| " 21st | " | " | " |  |  |  | " |
| 22nd | " | " | " |  | $4 \frac{6}{11}$ |  |  |

After the tables have thus been made, we will now describe the examples serving for the aforesaid 3rd proposition, the first of which examples is as follows:

## EXAMPLE 1.

It is required to know what a Principal of 380 lb with its compound profitable interest at 11 per cent a year will amount to in 8 years.

## PROCEDURE.

Look up in the table of 11 per cent what number corresponds to the eighth year. This is found to be 4,339,266, so that it has to be said: 4,339,266 gives $10,000,000$ (which $10,000,000$ is the root of the table); what does 380 lb give? This is $875 \frac{3142250}{4339266} \mathrm{lb}$.

## NOTE.

In the subsequent examples we will generally put the fraction behind the whole pounds without converting this fraction to its lowest terms, i.e. to relative prime numbers, or also without reducing them to sh. and d., in order that the solution may thus be clearer, for it is enough that this is done in practice.

NOTA.
Soomen wilde weten wat den interest van dit exempel bedraecht / soo salmen de 380 lb . aftrecken: van de $875 \frac{3142250}{4339266} \mathrm{lb}$. rest $495 \frac{3142250}{4339266} \mathrm{lb}$. voor den interest van acht iaeren / 'sghelijcks zalmen oock moghen doen in alle de volghende exempelen.

## EXEMPEL 2.

Men begheert te weten wat Hooft-somme 800. 1b. met haeren ghecomponeerden profijtelijcken interest teghen den penninck 15 . t'siaers op $16 \frac{1}{2}$ iaeren bedraeghen zal.

## CONSTRUCTIE.

Men zal van wegê een half iaer / eê half adderê tot 15. (dese 15. is van weghen den penninck 15.) maeckt $15 \frac{1}{2}$ ende multiplicerê daer naer 3560740 . (welck t'ghetal is responderende op het 16 . iaer inde tafel van den penninck 15.) met de 15. gheeft productum 53411100 . t'zelfde zalmen diuideren door de $15 \frac{1}{2} /$ gheeft quoturn 3445877. t'welck een ghetal is responderende op het $16 \frac{1}{2}$ iaer / ende staen zoude tusschen het 16. ende 17. iaer in de tafel van den penninck 15. by aldien de tafel van halue iaere tot halue iaere ghemaeckt waere.

Daer naer zalmen zegghen 3445877. gheuen 10000000. wat 800 lb ? facit $2321 \frac{2149483}{3445877} \mathrm{lb}$.

S'ghelijcks zal oock zijn d'operatie in alle andere deelen des iaers / want, waerender tot eenighe iaerê dry maendê / so zoudemen / (om dat dry maenden een' vierendeel iaers is) dan opereren met een vierendeel / ghelijckmen bouen ghedaen heeft met een half / ende soo voort met alle ander deel des iaers / ghelijck van deser ghelijcke breeder ghetracteert is int 3. exempel der 2. prop.

## NOTA.

Onder de ghene die in de Arithmeticque van interest gheschreuen hebben / en is my gheen ter handt ghecomen die van den interest subtijlder getracteerd heeft / dan Jan Trenchant / is oock een Arithmeticque die by velen niet weynich gheacht en is: want de derde druck der zeluer wtghegaen is. In de zelue Arithmeticque hebbe ick zeker erreur van den interest bemerckt / t'welck (aenghesien om des zelfden authoriteyt zulck erreur te schadelicker mocht zijn) niet onbillich en schijnt al hier verclaert te worden aldus. Int 3. boeck cap. 9. art. 10. zeght Trenchant op een deel des termijns zonder gheheele verschenen termijnen ofte termijn gecomponeerden profijtelicken interest te connen geschieden zegghende den ghecomponeerden profijtelicken interest van 100 lb . op 6 . maenden teghen 10 . ten 100. t'siaers te wesen $4 . \mathrm{lb} .17$ B. $7 \frac{2}{5}$ gr. ende van dry maenden 2. lb. 8 B $2 \frac{7}{10} \mathrm{gr}$. etc.
T'welck wy door het Corollarium der 5. definitien ontkennen / ende breeder redene daer af gheuen aldus.

## NOTE.

If it is required to know what is the interest of this example, subtract the 380 lb from the $875 \frac{3142250}{4339266} \mathrm{lb}$; the remainder is $495 \frac{3142250}{4339266} \mathrm{lb}$, which is the interest of eight years. The same method can also be followed in all the following examples.

## EXAMPLE 2.

It is required to know what a Principal of 800 lb with its compound profitable interest at the 15 th penny a year will amount to in $16 \frac{1}{2}$ years.

## PROCEDURE

On account of the half year, add one half to 15 (this 15 is on account of the 1 tht penny), which makes $15 \frac{1}{2}$, and thereafter multiply $3,560,740$ (which is the number corresponding to the 16 th year in the table of the 15 th penny) by 15. This gives the product $53,411,100$, which has to be divided by $15 \frac{1}{2}$. This gives the quotient $3,445,877$, which is a number corresponding to the $16 \frac{1}{2}$ th year and would be found between the 16 th and the 17 th year in the table of the 15 th penny, if the table had been made from one half year to the next. Thereafter say: $3,445,877$ gives $10,000,000$; what does 800 lb give? This is $2,321 \frac{2119483}{3445877} \mathrm{lb}$.

The same will also be the operation for all other parts of a year, for if over and above a number of years there are three months, then (because three months are one fourth of a year) it would be necessary to operate with one fourth, as it has been done above with one half, and so on with any other part of a year, as has been dealt with more fully in the 3 rd example of the 2 nd proposition.

## NOTE.

Among those who in Arithmetic have written about interest none has come to my notice who has dealt with interest in a subtler manner than Jan Trenchant. This is an Arithmetic which is not a little esteemed by many people, for its third edition has already been published. In this Arithmetic I have discovered a certain error in the interest computation, which (since in view of the authority of the book this error might be all the more detrimental) it does not seem inopportune to set forth here, as follows. In the 3rd book, chapter 9, section 10 Trenchant says that in a part of the term, without any expired whole terms or term, compound profitable interest may be charged, saying that the compound profitable interest on 100 lb in 6 months at 10 per cent a year is $4 \mathrm{lb} 17 \mathrm{sh} .7 \frac{2}{5} \mathrm{~d}$., and in 3 months 2 lb 8 sh. $2 \frac{7}{10} \mathrm{~d}$.,etc.
We deny this by the Sequel to the 5th definition, and we give our reasons for this more fully as follows.

## TEN IERSTEN/

Alle ghecomponeerden interest bestact wt twee interestê / d'eene van de Hooftsomme / d'ander van interest van verschenen termijn.

Hier en is gheenen verschenen termijn / waer deur oock gheenen interest van verschenen termijn.

Ergo ten is gheenen ghecomponeerden interest.

## ITEM/

Alle ghecomponeerden profijtelicken interest is voor den crediteur profijtelicker dan simpelen interest.

Desen interest en is voor den crediteur niet profijtelicker dan simpelen interest / maer ter contrarien schadelicker.

Ergo hier en is gheenen ghecomponeerden interest.
Schadelicker te zijn / blijckt daer wt / dat Trenchant zeght ter plaetsen als bouen desen ghecomponeerdê interest op een half iaer te zijne 4. lb. 17. B. $7 \frac{2}{5}$ gr. wiens simpelê interest bedraecht $5 . \mathrm{lb}$.

ITEM/
Op een heel iaer ofte termijn canmen gheen ghecomponeerden interest rekenê / als Trenchant zeluer niet en doet. Ergo veel min canmen ghecomponeerden interest op een dele des termijns rekenen. Concluderen dan van alle deel vâ termijn (wel verstaende deel van termijn dat alleene staet / dat is zonder eenich gheheel termijn ofte termijnen tot hem) niet dan simpelen interest te connen gherekent worden.

Wt dit erreur is ghevolght das Trenchant int 11. art. des voornoemden capittels gheseyt hefft $100 . \mathrm{lb}$. ghereet ten eynde van $7 \frac{1}{2}$ iaeren rekenende ghecomponeerden interest teghen 10. ten 100. t'siaers weerdich te zijne 204. lb. 7 B. $7 \frac{1}{8} \mathrm{gr}$. welcke nochtans weerdich ziin (naer de leeringhe des voornoêden 2. exempels) 204. lb. 12 B $3 \frac{2238353}{488721}$ gr. waer af de demonstratie ten eynde deser propositien sal ghedaen worden.

## EXEMPEL 3.

Eenen is schuldich 1200 . lb. te betaelen ten eynde van 7. iaeren. De vraeghe is wat die weerdich zijn te betaelen ten eynde van 23. iaeren rekenende ghecomponeerden interest tegen 8. ten 100 . t'siaers.

## CONSTRUCTIE.

Men sal sien in de tafel van 8. ten 100. wat ghetal datter respondeert op het 23. iaer / wordt bevonden 1703153. oock mede wat ghetal datter respondeert op het 7. iaer / wordt bevonden 5834903. daer naer zalmen zegghen 1703153. gheuen 5834903. wat gheuen 1200. lb ? facit $4111 \frac{221617}{1703153} \mathrm{lb}$.

Ofte andersins (ende lichter ouermidts de multiplicatie door den wortel der tafelen lichter is dan de voorgaende / want die gheschiet door aensettinghe alleene-

FIRSTLY.
All compound interest consists of two interests, one on the Principal and the other on the interest of the expired term.
Here there is no expired term, so that there is no interest on an expired term either.

Therefore there is no compound interest here.

## ITEM.

All compound profitable interest is more profitable to the creditor than simple interest.
This interest is not more profitable to the creditor than simple interest, but on the contrary more detrimental.
Therefore this is no compound interest.
That it is more detrimental appears from the fact that Trenchant says in the above-mentioned passage that this compound interest is in half a year 4 lb 17 sh . $7 \frac{2}{5}$ d., whilst the simple interest is 5 lb .

## ITEM.

In a whole year or term one cannot charge compound interest, as Trenchant himself does not do.
Therefore, even less can one charge compound interest in a part of the term.
We therefore conclude that for any part of a term (i.e. part of a term that stands by itself, to wit without any whole term or terms added thereto) nothing but simple interest can be charged.

From this error it has followed that in the 11th section of the aforesaid chapter Trenchant has said that 100 lb present value at the end of $7 \frac{1}{2}$ years, charging compound interest at 10 per cent a year, will be worth 204 lb 7 sh. $7 \frac{1}{8} \mathrm{~d}$., whereas they are worth (according to the aforesaid 2nd example) 204 lb 12 sh. $3 \frac{2238353}{4887221}$ d., the proof of which will be given at the end of the present proposition.

## EXAMPLE 3.

A man owes $1,200 \mathrm{lb}$, to be paid at the end of 7 years. What will they be worth at the end of 23 years, charging compound interest at 8 per cent a year?

## PROCEDURE.

Look up in the table of 8 per cent what number corresponds to the 23 rd year. which is found to be $1,703,153$; also what number corresponds to the 7 th year, which is found to be $5,834,903$. Thereafter say: $1,703,153$ gives $5,834,903$; what does $1,200 \mathrm{lb}$ give? This is $4,111 \frac{221617}{\frac{2703153}{l b}} \mathrm{lb}$.
Or otherwise (and more easily, since multiplication by the root of the table is easier than the preceding, for this is done simply by adding seven 0's) the
lick van zeuen 0.) machmen rekeninghe maecken op 16 . iaeren / te weten van het 7. iaer tot het 23. sal bedraeghen door het 1. exempel deser prop. $4111 \frac{381545}{2918905}$ lb. als. voren.

EXEMPEL 4.
Eenen is schuldich $800 . \mathrm{lb}$. te betaelen ten eynde van 3 . iaeren / ende noch 300 lb . binnen 2. iaeren daer nae. De vraege is wat beyde dese sommen t'saemen weerdich zullen zijn/ten eynde van 15 . iaeren rekenende ghecomponeerden interest teghen 13. ten 100. t'siaers.

CONSTRUCTIE.
Men sal bevinden door het voorgaende 3. exempel dat de 800 . lb. zullen weerdich zijn $3467 \frac{991031}{1598907} \mathrm{lb}$. ende de 300 . lb. $1018 \frac{592674}{1598907}$ welcke 2 . sommen bedragende t'saemen $4485 \frac{1583705}{1598907}^{\circ} \mathrm{lb}$. is t'ghene de 800 lb . ende de $300 . \mathrm{lb}$. t'saemen binnen 15 , iaeren weerdich zijn.

## EXEMPEL 5.

Eenen is schuldich ghereet $224 . \mathrm{lb}$. Oft hy betaelde binnen 4. iaeren alle iaere het vierendeel / te weten 56. lb. midts iaerlicks betaelende den ghecomponeerden interest teghen 12. ten 100. t'siaers. De vraeghe is wat hy iaerlicks zoude moeten betaelen?

## CONSTRUCTIE.

Men zal aenmercken wat Hooft-somme datmen op elck iaer in handen houdt diemen naer d'ierste conditie in handen niet en zoude ghehouden hebben / ende vinden als dan den interest van elcke Hooft-somme op elck iaer.

Maer wanter op elck iaer maer betaelinghe te doen en is van Hooft-somme die alleenelick een iaer gheloopen heeft / volght daer wt door het corollarium der 5. definitien in dese ende derghelijcke conditien (hoe wel nochtans van ghecomponeerden interest veraccordeert is) onmeughelick te zijne ghecomponeerden interest te rekenen / zoo dat dese questie moct ghesolueert worden door de maniere des derden exempels der ierster propositien. Ende hebben dit exempel hier alleenelick ghestelt als wesende een accident des interests weerdich ghenoteert.

EXEMPEL 6.
Eenen is schuldich binnen 12. iaeren 5000 lb . te weten alle iaere het $\frac{1}{12}$ dat is 416. lb. 13. B. 4. gr. De vraeghe is wat die weerdich zijn teenemael ten eynde van de 12. iaeren rekenende ghecomponcerden interest den penninck 15. t'siaers.

## NOTA.

De solutie van dese ende derghelijcke questien in ghecomponeerden profijtelicken interest en can door de laetste columne der voorgaende tafelê niet ghesolueert worden / ghelijck der ghelijcke questien in schadelicken interest der volghender 4. propositien daer mede ghesolueert worden /ende dat ouermidts de ghetaelen der seluer columnen voor beyde als schadelicken ende profijtelicken interest niet proportionael en zijn. Soo hebbe ick tot dier oorsaecke oock ghecalculeert tafelen als de voorgaende /dienende tot ghecomponeerden profijtelicken interest / Maer eer
computation can be made for 16 years, to wit from the 7 th year to the 23 rd. According to the 1st example of the present proposition this will be $4,111 \frac{381545}{2918905} \mathrm{lb}$, as above.

## EXAMPLE 4.

A man owes 800 lb , to be paid at the end of 3 years, and another 300 lb 2 years later. What will these two sums be worth together at the end of 15 years, charging compound interest at 13 per cent a year?

## PROCEDURE.

According to the foregoing 3rd example it will be found that the 800 lb will be worth $3,467 \frac{991031}{1598907} \mathrm{lb}$ and the 300 lb will be worth $1,018 \frac{592674}{1598907} \mathrm{lb}$, and these two sums together anouiting to $4,485 \frac{1583705}{1598907} \mathrm{lb}$, this is the value of the 800 lb and the 300 lb together in 15 years.

## EXAMPLE 5.

A man owes 224 lb present value. If he paid in 4 years, every year one fourth, to wit 56 lb , on condition of his paying yearly the compound interest at 12 per cent a year, what would he have to pay every year?

## PROCEDURE.

It has to be found what Principal one keeps every year which according to the first condition one would not have kept, and then the interest on each Principal in every year has to be found.

But because every year a Principal has to be paid which has been put out at interest for one year only, it follows, according to the Sequel to the Sth definition, that in the present and similar conditions (although an agreement for compound interest has been made) it is impossible to charge compound interest, so that this question has to be solved in the manner of the third example of the first proposition. And we have merely given this example as an accidental feature of interest, worthy to be recorded.

## EXAMPLE 6.

A man owes $5,000 \mathrm{lb}$, to be paid in 12 years, to wit: every year one twelfth, i.e. 416 lb 13 sh .4 d . What will they be worth together at the end of the 12 years, charging compound interest at the 15 th penny a year?

## NOTE.

The solution of this and similar questions of compound profitable interest cannot be effected by means of the last column of the foregoing tables in the same way as similar questions of detrimental interest of the following 4th proposition can be solved therewith, such because the numbers of the said column are not proportional for detrimental as well as profitable interest. For this reason I have also computed tables like the foregoing, serving for compound profitable
dit tractaet wtghegaen is / ben ghecomen ter kennisse van solutie van dese questie op een ander maniere / te weten zonder eyghene tafelen daer toe te moeten hebben: Waer door op dat dit tractaet simpelder zoude zijn / ende dat die verscheyden tafelen niet eer oorsaecke en zouden zijn van confusie dan ter contrarien van claerheydt / en hebben de zelue tafelen hier niet beschreuen / dan alleenelick op dat wy bethoonen zouden der seluer tafelen constructie / proportie / ende eyghenschappen met d'ander voorgaende tafelen / zullen hier alleenelick dier tafelen een stellen / te weten van den penninck 15.

## CONSTRUCTIE VAN DESE TAFELE.

Deser tafelen constructie en heeft van de andere voorgaende gheen ander verschil / dan dat hier altijdt ghemultipliceert wordt (ter contrarien van de voorgaende tafelen) met het meeste ghetal / ende ghediuideert door het minste. Als dese tafel van den penninck 15. zijn ten iersten 10000000. ghemultipliceert met 16. ende t'productum wederom ghediuideert door 15. gheuende quotû 10666667. voor d'ierste iaer / welck ghetal wederom ghemultipliceert met 16. en̂ t'productum wederom ghediuideert door 15. gheeft den quotus het tweede iaer / en̂ soo voort met d'ander. Aengaende de constructie der laetster columnen / de zelue gheschiet door additien der ghetaelen der middelste columnê / ghelijck in de voorgaende tafelen / wtgenomen datmen hier bouen d'ierste iaer der middelste columnen sal stellen den wortel der tafelen / te weten 10000000 . en̂ de zelfde wortel noch eenmael bouen de laetste columne neuen het ierste iaer / ende voort salmen ordentlick de ghetaelen der middelste columnen adderen als in de voorgaende tafelen ghedaen is / zoo claerlicker in de onderschreuen tafele blijckt.
interest. But before the publication of this treatise another solution of this question came to my notice, to wit one for which no separate tables are needed. Therefore, in order that this treatise might be simpler and those different tables should not create confusion tather than clarity, we have not described the said tables here. But only in order to show their construction, proportion, and properties as compared with the other (foregoing) tables, we shall here give only one of these tables, to wit for the 15 th penny.

## CONSTRUCTION OF THIS TABLE.

The construction of this table differs from that of the other foregoing ones only in that here the multiplication is always effected (contriary to the foregoing tables) by the greatest number and the division by the smallest. Thus in this table of the 15 th penny first of all $10,000,000$ has been multiplied by 16 and the product divided again by 15 , giving the quotient $10,666,667$ for the first year, and when this number is multiplied again by 16 and the product divided again by 15, this gives the quotient for the second year, and so on with the others. As for the construction of the last column, this is effected by addition of the numbers of the central column, as in the preceding tables, except that here above the first year of the central column has to be put the root of the tables, to wit $10,000,000$, and the said root once more above the last column, opposite the first year, and further the numbers of the central column have to be properly added up, as has been done in the preceding tables, as appears more clearly in the following table.

Tafele van Interest van den penninck 15.
10000000.
10666667.
10000000.
11377778.20666667.
$12136297 . \quad 32044445$.
$12945383 . \quad 44180742$.
$13808409 . \quad 57126125$. 14728970 . 70934534. 15710901.885663504. $16758294 . \quad 101374405$. $17875514 . \quad 118132699$. 19067215.136008213. 20338363.155075428. 21694254.175413791. 23140538.197108045. 24683241.220248583. 26328790.244931824. $28084043 . \quad 271260614$. 29956313.299344657. $31953401 . \quad 329300970$ $34083628 . \quad 361254371$. 36355870.395337999. 38779595.431693869. 41364901.470473464. 44122561.511838365. 47064065.555960926. 50201669.603024991. $53548447 . \quad 653226660$ $57118343 . \quad 706775107$. $60926233 . \quad 763893450$. 64987982.824819683. $69320514 . \quad 889807665$. 959128179.


De proportie van dese tafele met de voorgaende van den pennick 15 . is dese: Soo wy nemen wt elcke deser tafelen twee ghelijcke iaeren / haere responderende ghetaelen in de middelste columne zullen zijn proportionael: als by exempel het dertichste iaer deser tafelen heeft alzulcken reden tot ziin ierste iacr / ghelijck d'ierste iaer van de voorgaende tafel van den penninck 15 . tot zijn dertichste iaer / dat is ghelijck 69320514. tot 10666667. alsoo 9375000. tot 1442573. gheweert eenighe differêtie die daer valt op de laetste lettér spruytende van weghen de resterende gebroken die men in de constructie verlorê laet / welck verschil hier van gheender estimen en is. Item ghelijck het dryentwintichste iaer deser tafelen tot zijn vijfde iaer / alsoo oock het vijfde iaer der voorgaender tafel van den penninck 15. tot zijn 23. iaer / ende zoo voort met alle d'ander.

Wt welcke proportie volght dat wy met cene deser tafelen zoo vele wtrichten connen / als men met alle beyde de tafelen zoude moghen doen / Maer in de laetste columne en gaet het niet also / te weten de ghetaelen responderende in ghelijcke tafelen op ghelijcke iaeren en zijn niet proportionael. Ghelijckerwiis als het dertichste iaer der laetster columnen deser tafele en heeft niet alzulcken reden tot zijn ierste / ghelijck het ierste iaer van de voorgaende tafel van den penninck 15. tot zij nlaetste / noch ter contrarien / noch op eenighe ander manieren en vallen dese termijnen proportionael / 't welck een oorsaecke was dat wij dese tafelen maeckten als voren gheseyt is.

Om dan de questie van dit exempel te solueren door dese tafel / salmen in de zelue zien wat ghetal datter in de laetste columne respondeert op het 12. iaer / wordt bevonden 175413791. daer naer van weghen de 12. iaeren / salmen nemen twaelf mael den wortel te weten 10000000 . dat is 120000000 . segghende 120000000. comen van 175413791. waer van zullen comen 5000 lb ? facit $7308 \frac{108055}{120000} \mathrm{lb}$. dat is 7308 lb .18. B. $1 \frac{91}{100} \mathrm{gr}$.

Nu rester noch dese questie te solueren door onse ierste tafelê / de welcke wy voren gheseyt hebben generael te zijne / aldus:

## CONSTRUCTIE VAN DIT 6. EXEMPEL.

Men sal sien wat alsulcke 5000 . lb . ghereedt weerdich zijn naer de leeringhe des 6. exempels der volghende 4. propositie (tis wel waer dat in alle stijl gherequireert wordt datmen opereren zoude daert moghelick is wt voorgaende descriptie / ende niet wt volghende / maer ouermidts onse tafelen dienen tot dese ende de volghende propositie / dat is soo wel tot ghecomponeerden profijtelicken interest als tot schadelicken / volght daer wt dat dese twee laetste propositien malckanderen verclaeren moeten / waer wt wijder volght dat sommighe operatien deser propositien moeten bewesen worden wt het volghende) wordt bevödê $3369_{120000}^{6275} \mathrm{lb}$.

Daer naer salmen sien wat dese somme weerdich is binnen 12. iaeren daer naer teenemael/ wordt bevonden door het ierste exempel deser proposition $7308 \frac{5024756}{5531418} \mathrm{lb}$. dat is als voren 7308. lb. 18. B. $2 \frac{15386}{921003} \mathrm{gr}$. alleenelick isser differentie van een zeer cleyn deelken van 1. gr. van gheender estimen / ende dat van weghen dat de wterste perfectie (ghelijck oock in tabula sinuum ende veel anderen) in de tafelen niet en is.

The proportionality of this table to the foregoing one of the 15 th penny is as follows: If we take two similar years from each of these tables, their corresponding numbers in the central column will be proportional. Thus, for example, the thirtieth year of the present table has to its first year the same ratio as the first year of the foregoing table of the 15 th penny to its thirtieth year, i.e. $69,320,514: 10,666,667$, thus $9,375,000: 1,442,573$, except for some difference in the last digit, occasioned by the remaining fractions which are omitted in the construction, a difference which is insignificant here. Likewise, as the twentythird year of this table is to its fifth year, thus also the fifth year of the preceding table of the 15 th penny to its 23 rd year, and so on with all the others.
From this proportionality it follows that with one of these tables we can effect as much as we might do with the two tables. But in the last column this is not possible, to wit: the numbers corresponding in similar tables to similar years are not proportional. As the thirtieth year of the last column of this table does not have to its first the same ratio as the first year of the foregoing table of the 15 th penny to its last, these terms are proportional neither inversely nor in any other manner, which was the reason why we made these tables, as has been said above.
In order therefore to solve the question of this example by means of this table, it has to be ascertained therein what number in the last column corresponds to the 12 th year. This is found to be $175,413,791$. Thereafter, on account of the 12 years, one has to take twelve times the root, to wit $10,000,000$, which is $120,000,000$, saying: $120,000,000$ comes from $175,413,791$; what will 5,000


Now it still remains to solve this question by means of our first tables, which we have said above to be general, as follows:

## PROCEDURE OF THIS 6th EXAMPLE.

Find what is the present value of this $5,000 \mathrm{lb}$ according to the 6th example of the following 4th proposition (it is true that in good style it is required that, if possible, operations should be based on a preceding description, and not on a succeeding one, but since our tables serve for the present as well as for the following proposition, i.e. both for compound profitable and for detrimental interest, it follows that these two last propositions have to explain one another, from which it further follows that some operations of this proposition have to be proved from the following); this is found to be $3,369 \frac{6275}{120000} \mathrm{lb}$.
Thereafter find what this sum will be worth 12 years later. By the first example of this proposition this is found to be $7,308 \frac{5024756}{5531418} \mathrm{lb}$, that is, as above, $7,308 \mathrm{lb} 8 \mathrm{sh} .2 \frac{15386}{921003}$ d.; there is only a difference of a very small fraction of 1 d., of no significance, such because there is no extreme perfection in the tables (just as in sine tables and many others).

NOTA.
De'volghende exempelen dependeren ex alterna vel inuersa proportione deser propositien.

## EXEMPEL 7.

Eenen is schuldich ghereedt 400 lb . presenteert ten eynde van 10 . iaeren 1037. lb . De vraeghe is / tegen wat ghecomponeerde interests reden dat betaelt ware.

## CONSTRUCTIE

Men sal segghê 1037. lb. gheuen 10000000. wat gheuen 400. lb? facit 3857281. t'zelfde ghetal salmen ten naesten zoecken door alle de tafelen op het thiende iaer / wordt bevonden in de tafel van 10. ten 100. al waer men vindt 3855434. waer door men zegghen zal dese interests reden te zijne teghen 10 . ten 100. t'siaers bycans / maer want 3855434. wat minder zijn dan 3857281 . soo zalmen zegghen dese interests reden een weynich minder te zijne dan teghen 10. ten 100.

Maer tot een perfecte solutie deser ende dergelijcke questien / ist noodich dat 'men onder zijn tafelen hebbe een tafel van alzulcken interests reden als daer questie af is / dies niet / zoo en kanmen de solutie maer bycans zegghen / t'welck in de practijcke oock dickmael ghenoech is.

## EXEMPEL 8.

Men begheert te weten hoe langhe 800 . lb . loopen zullen teghen ghecomponeerden profijtelicken interest van den penninck 17. t'siaers / om met haeren interest t'saemen weerdich te zijne 2500 . lb .

CONSTRUCTIE.
Men sal zegghen 2500 . lb. geuê 10000000 . wat gheuen 800 . lb? facit 3200000 . t'zelfde ghetal salmen zoecken ten naesten ende meerder in de tafel van den penninck 17. wordt bevonden 3375606. responderende op het 19. iaer. Ergo 19. iaeren zullen de 800 lb . loopen. Maer om nu te vinden wat deel des iaers de voornoemde 800. lb. noch te loopen hebben / zoo zalmen de 3375606 . multipliceren met 17. (met 17. van weghen den penninck 17.) gheeft productum 57385302. t'zelue zalmen diuideren door de 3200000. gheeft quotum $17 \frac{2985302}{3200000}$ welcke 17. men verlaeten zal ende hebben alleene opsicht op het ghebroken / welcke ons alzulck een deel des iaers beteeckent als de $800 . \mathrm{lb}$. noch bouen de 19. iaeren te loopen hebben / te weten in als $19 \frac{2985302}{3200000}$ iaerê.

## EXEMPEL 9.

Eenen ontfangt 700. lb. voor ghecomponeerden profijtelicken interest tegen 13. ten 100. t'siaers voor 9. iaeren. De vraeghe is wat d'Hooft-somme was.

## CONSTRUCTIE.

Men zal zien in de tafel van 13. ten 100, wat ghetal datter respondeert op 9. iaeren / wordt bevonden 3328849. t'zelfde zalmen trecken van 10000000 . rest 6671151 . daer naer salmen zegghen / interest 6671151 heeft Hooft-somme 3328849. wat Hooft-somme zal hebben interest 700 . lb? facit $349 \frac{1962601}{6671151} \mathrm{lb}$.

NOTE.
The following examples depend on this proposition in alternate or inverse proportion.

## EXAMPLE 7.

A man owes 400 lb present value and pays at the end of 10 years $1,037 \mathrm{lb}$. What was the rate of compound interest in this payment?

## PROCEDURE.

Say as follows: $1,037 \mathrm{lb}$ gives $10,000,000$; what does 400 lb give? This is $3,857,281$. Seek a number as close as possible to this through all the tables at the tenth year. It is found in the table of 10 per cent, where the number 3,855,434 is found. Therefore it has to be said that this rate of interest is almost 10 per cent a year, but because $3,855,434$ is a little less than $3,857,281$, it has to be said that this rate of interest is slightly less than 10 per cent.

But for a perfect solution of this and similar questions it is necessary to have among one's tables a table of the same rate of interest as that under consideration. If this is not the case, the solution can only be given approximately, which in practice is often sufficient.

## EXAMPLE 8.

It is required to know how long 800 lb has to be put out at compound profitable interest of the 17 th penny a year in order that its value together with that of its interest may be $2,500 \mathrm{lb}$.

## PROCEDURE.

Say as follows: $2,500 \mathrm{lb}$ gives $10,000,000$; what does 800 lb give? This is $3,200,000$. Seek a number as close as possible to and higher than this in the table of the 17 th penny. We find $3,375,606$, corresponding to the 19 th year. Therefore the 800 lb has to be put out for 19 years. But in order to find for what part of a year the aforesaid 800 lb still has to be put out, multiply the 3,375,606 by 17 (by 17 on account of the 17th penny); this gives the product $57,385,302$. Divide this by the $3,200,000$; this gives the quotient $17 \frac{2985302}{3200000}$. The 17 has to be discarded and reference has to be made only to the fraction, which indicates that part of a year for which the 800 lb still has to be put out over and above the 19 years, to wit: $19 \frac{2985302}{3200000}$ years in all.

## EXAMPLE 9.

A man receives 700 lb for compound profitable interest at 13 per cent a year for 9 years. What was the Principal?

## PROCEDURE.

Look up in the table of 13 per cent what number corresponds to 9 years. This is found to be $3,328,849$. Subtract this from $10,000,000$. The remainder is $6,671,151$. Thereafter say: an interest of $6,671,151$ has for Principal 3,328,849; what Principal will an interest of 700 lb have? This is $349 \frac{1962601}{6671151} \mathrm{lb}$.

## DEMONSTRATIE.

Ghelijck int ierste exempel deser propositien hem heeft t'ghereede tot het ghene verschijnen zal binnen 8. iaeren daer naer rekenende profijtelicken interest teghen 11. ten 100. t'siaers (want zulck is de conditie des voornoemden exempels) alsoo heeft hem 4339266. tot 10000000 . door de tafelê / ende zoo hem heeft 4339266. tot 10000000 . alsoo heeft hem oock 380 . lb.- tot $875 \frac{3142250}{4339266}$. lb. door de constructie. Ergo $875 \frac{3142250}{4339266} \mathrm{lb}$. is des iersten exempels waere solutie. Sghelijcks zal ook zijn de demonstratie van alle die ander exempelen / welck wy om de cortheyt hier achter laetê. Alsoo dan wesende verclaert Hooft-somme tijdt ende interests reden van ghecomponeerdê profijtelicken interest / hebben wy ghevonden wat d'Hooft-somme met haeren interest bedraecht / t'welck gheproponeert was alsoo ghedaen te worden.

PROPOSITIE IIII.
Wesende verclaert Hooft-somme tijdt ende interests reden van ghecomponeerden schadelicken interest: Te vinden wat die ghereet ghelt weerdt is.

EXEMPEL 1.
Het zijn $700 . \mathrm{lb}$. te betaelen ten eynde van thien iaeren. De vraeghe is wat die ghereet weerdich zijn / aftreckende ghecomponeerden interest teghen 12. ten 100. t'siaers.

## CONSTRUCTIE.

Men sal sien in de tafel van 12. ten 100. wat ghetal datter respondeert op de 10. iaeren / wordt bevonden 3219732. waer door men segghen zal 10000000. gheuen 3219732 . wat gheuen $700 . \mathrm{lb}$ ? facit $225 \frac{38124}{100000} \mathrm{lb}$.

EXEMPEL 2.
Het zijn 600 . lb . te betaelen binnen $13 \frac{1}{2}$ iaereri. De vraeghe is wat die weerdich ziijn ghereedt aftreckende ghecomponeerden interest teghen 14. ten 100. t'siaers.

## CONSTRUCTIE.

Men sal zien in de tafel van 14. ten 100. wat ghetal datter respondeert op het 13. iaer / wordt bevonden 1820695. t'zelfde zalmen multipliceren met 100. gheeft producturn 182069500. t'welck men diuideren zal door 107. (te weten met 100. / ende 7. daer toe ghedaen van weghen een half iaer interest) gheeft quotum 1701584. t'welck cen ghetal is dat in de tafel responderê zoude op het $13 \frac{1}{2}$ iaer / by aldien de tafelen met halue iaeren ghemaeckt waerê; daer naer salmen seggen 10000000 . gheuen 1701584. wat gheuen $600 . \mathrm{lb}$ ? facit $102 \frac{9504}{100000} \mathrm{lb}$.

S'ghelijcks zal oock ziin d'operatie in alle andere deelen des iaers / want waerender tot eenighe iaeren dry maenden / zoo zoudemen (om dat 3. dry maenden is een vierendeel iaers) dan diuideren (in de plaetse daer bouen met 107. ghediuideert is) met $103 \frac{1}{2}$ / ende soo voorts met alle ander deel des iaers / ghelijck van deser ghelijcke breeder ghetracteert is int 3 . exempel der 2. propositien.

## PROOF.

As in the first example of this proposition the present value is to that which will expire in 8 years, charging profitable interest at 11 per cent a year (for that is the condition of the aforesaid example), thus $4,339,266$ is to $10,000,000$ by the tables. And as $4,339,266$ is to $10,000,000$, thus also 380 lb to $875 \frac{3142250}{4339266} \mathrm{lb}$ by the procedure. Therefore $875 \frac{3142250}{4339266} \mathrm{lb}$ is the true solution of the first example. The same will also be the proof of all the other examples, which we here omit for brevity's sake. Hence, given Principal, time, and rate of compound profitable interest, we have found what the Principal with its interest amounts to, which had been proposed to be done.

## PROPOSITION IV.

Given Principal, time, and rate of compound detrimental interest: to find what is the present value.

## EXAMPLE 1.

A sum of 700 lb is to be paid at the end of ten years. What is its present value, subtracting compound interest at 12 per cent a year?

## PROCEDURE

Look up in the table of 12 per cent what number corresponds to the 10 years. This is found to be $3,219,732$. Therefore say: $10,000,000$ gives $3,219,732$; what does 700 lb give? This is $225 \frac{38124}{100000} \mathrm{lb}$.

## EXAMPLE 2.

A sum of 600 lb is to be paid in $13 \frac{1}{2}$, years. What is its present value, subtracting compound interest at 14 per cent a year?

## PROCEDURE.

Look up in the table of 14 per cent what number corresponds to the 13th year. This is found to be $1,820,695$. Multiply this by 100 . This gives the product $182,069,500$, which divide by 107 (to wit, by 100 with 7 added thereto, because of half a year's interest). This gives the quotient 1,701,584, which is a number which in the table, would correspond to the $13 \frac{1}{2}$ th year, if the tables had been made with half years. Thereafter say: $10,000,000$ gives $1,701,584$; what does 600 lb give? This is $102 \frac{9504}{100000} \mathrm{lb}$.

The same will also be the operation for all other parts of a year, for if over and above a number of years there were three months, the division would then (because 3 months is one fourth of a yeat) have to be effected (instead of the above division by 107) by $103 \frac{1}{2}$; and so on with all other parts of a year, as has been discussed more fully in the 3 rd example of the 2 nd proposition.

EXEMPEL 3.
Eenen is schuldich te betaelen binnen 5. iaeren 800 . lb . ende binnen 4. iaeren daer naer noch $600 . \mathrm{lb}$. De vraeghe is wat die t'saemen ghereedt weerdich zijn / aftreckende ghecomponeerden interest teghen 15. ten 100. t'siaers.

## CONSTRUCTIE.

De $800 . \mathrm{lb}$. op 5 . iaeren zullen ghereedt weerdich zijn door het ierste exempel deser propositien $397 \frac{74144}{100000} \mathrm{lb}$. ende de 600 lb . op 9 . iaeren zullen ghereedt weerdich zijn door t'voornoemde ierste exêpel $170 \frac{55744}{100000} \mathrm{lb}$. welcke twee sommê bedraeghende t'sacmen $568 \frac{29888}{100000} \mathrm{lb}$. is de solutie.

## EXEMPEL 4.

Eenen is schuldich 2000. lb. te betaelen ten eynde van 27. iaeren. De vraeghe is wat die weerdich zijn te betaelen ten eynde van 9 . iaeren aftreckende ghecomponeerden interest den penninck 19.

## CONSTRUCTIE.

Men zal zien in de tafel van den penninck 19. wat ghetal datter respondeert op het 9. iaer / wordt bevonden 6302494 . Oock mede wat ghetal datter respoindeert op het 27 . iaer / wordt bevonden 2503440. daer naer salmê zegghen 6302494. gheuen 2503440. wat gheuen 2000. lb? facit $794 \frac{2699764}{6302494} \mathrm{lb}$.

Ofte anders machmen doen aftreckende voor 18. iaeren door het 1. exempel deser propositien.

EXEMPEL 5.
Eenen is schuldich te betaelen ten eynde van vier iaeren 360 lb . veraccordeert met zijnen crediteur die te betaelen in 4. payementen / te weten ten eynde van d'ierste iaer een vierendeel / tweede iaer noch een vierendeel / ende t'derde iaer noch een vierendeel / ende t'vierde iaer t'laetste vierendeel / midts aftreckende ghecomponeerden interest den penninck 16 . De vraeghe is wat hy op elck iaer betaelen zal?

## CONSTRUCTIE.

Men zal aenmercken wat penninghen datmen naer dese conditie verschiet diemê naer d'ierste conditie niet en zoude verschoten hebbê / nu dan wantmen naer dese conditie binnen een iaer betaelt t'vierendeel der sommen bedraeghende 90. lb. midts aftreckêde / etc. die mê naer d'ierste conditie binnê 3. iaeren naer daer ierst zoude betaelt hebben / volght daer wt datmen zien zal wat 90 . lb. te betaelê binnen 3. iaeren / weerdich zijn ghereedt / wordt bevonden door het ierste exempel deser propositien $75 \frac{33585}{1000000} \mathrm{lb}$. voor d'ierste paye.
Ende om der ghelijcke redenen zaImen bevinden 90 . lb . op 2. iaerê weerdich te zijne $79 \frac{723188}{1000000} \mathrm{lb}$. voor de tweede paye.

Ende om der ghelijcke redenen zalmen bevinden 90 . lb. op een iaer weerdich te zijne $84_{17}^{12} \mathrm{lb}$. voor de derde paye.

## 'EXAMPLE 3.

A man owes 800 lb , to be paid in 5 years, and another 600 lb 4 years later. What is the present value of the two together, subtracting compound interest at 15 per cent a year?

## PROCEDURE.

The present value of the 800 lb to be paid in 5 years by the first example of this proposition will be $397 \frac{7444}{100000} \mathrm{lb}$ and the present value of the 600 lb to be paid in 9 years by the aforesaid first example will be $170 \frac{55744}{100000} \mathrm{lb}$, and these two sums together amounting to $568 \frac{29888}{100000} \mathrm{lb}$, this is the solution.

## EXAMPLE 4

A man owes $2,000 \mathrm{lb}$, to be paid at the end of 27 years. What is the value to be paid at the end of 9 years, subtracting compound interest at the 19 th penny?

## PROCEDURE.

Look up in the table of the 19th penny what number corresponds to the 9 th year; this $\stackrel{\text { is }}{ }$ found to be $6,302,494$. Also what number corresponds to the 27 th year; this is found to be $2,503,440$. Thereafter say: $6,302,494$ gives $2,503,440$; what does $2,000 \mathrm{lb}$ give? This is $794 \frac{2699764}{6302494} \mathrm{lb}$.

Or otherwise it may be done by subtracting for 18 years, according to the 1 st example of this proposition.

## EXAMPLE 5.

A man owes 360 lb , to be paid at the end of four years. He agrees with his creditor to pay them in 4 payments, to wit at the end of the first year one fourth, the second year again one fourth, and the third year again one fourth, and the fourth year the last one fourth, subtracting compound interest at the 16 th penny. What does he have to pay every year?

## PROCEDURE.

It has to be found what money is disbursed according to this condition which would not have been disbursed according to the first condition. Now because according to this condition in a year one fourth of the sum is paid, which amounts to 90 lb , subtracting, etc., which according to the first condition would not have been paid until 3 years later, it follows that it has to be found what is the present value of 90 lb to be paid in 3 years. By the first example of this proposition this is found to be $75 \frac{33585}{1000000} \mathrm{lb}$ for the first payment.
And for similar reasons the present value of 90 lb to be paid in 2 years will be found to be $79 \frac{723488}{1000000} \mathrm{lb}$ for the second payment.

And for similar reasons the present value of 90 lb to be paid in one year will be found to be $84 \frac{12}{17} \mathrm{lb}$ for the third payment.

Ende want de laetste paye op zulcken conditie betaelt wordt als d'ierste conditie was / en zal die winnen noch verliesen / maer zijn van 90 . lb .

EXEMPEL 6.
Het zijn 324. lb. te betaelen binnen 6. iaeren / te weten 54 . lb. elcken iaere. De vraeghe is wat die weerdich zijn ghereedt ghelt / aftreckende gecomponeerden interest dê penninck 16. t'siaers.

## NOTA:

Voor alzulcke questien als dit exempel een is/te weten daer betaelinghe in gheschieden op vervolghende iaerê / ende het een iaer zoo veel als het ander iaer / daer toe dient ons de laetste columne in elcke tafele. Alsoo dan om wt onse tafelen proportionale ghetaelen te crijghen met de ghene daer questie af is / soo salmen den wortel der tafelen te weten 10000000 . altijdt moeten multiplicerê met soo veel iaeren als daer questie af is / want t'productum heeft dan zulcken reden tot het ghetal responderende op het iaer daer questie af is / ghelijck d'Hooft-somme met haeren interest / ghelijck alles claerder zijn zal wt d'exempelen.

## CONSTRUCTIE

Men zal zien in de tafel van den penninck 16. wat ghetal datter in de laetste columne respondeert op het 6 . iaer / wordt bevonden 48789356. Daer naer van weghen de 6 . iaeren salmen nemen 6 . mael 10000000 . dat is 60000000 . seggende 60000000 gheuen 48789356 . wat gheuen 324. lb? facit voor solutie $263 \frac{27751344}{60000000} \mathrm{lb}$.

EXEMPEL 7.
Eenen is schuldich 800. lb . te weten ten eynde van zes iaeren $50 . \mathrm{lb}$. ende voorts alle iaere daer naer $50 . \mathrm{lb}$. tot de volle betaelinghe / welck strecken zal (tellende van het beghinsel af) tot het tween twintichste iaer. De vraeghe is wat die ghereedt weerdich zijn / rekenende gecomponeerden interest den penninck 18.

## CONSTRUCTIE

Men zal zien wat 800 lb . weerdich zijn int beghinsel van het zesde iaer / t'welck zoo veel is als oftmen zochte wat alzulcke 800 . Ib. te betaelen op 16 . iaeren weerdich zijn ghereedt/wordt bevonden door het voorgaende 6 . exempel $521 \frac{13152}{160000} \mathrm{lb}$. ende soo veel zijn die 800 lb . weerdich int beghinsel van het zeste iaer ofte (dat het zelfde is) ten eynde van het vijfde iaer.

Daer naer zalmen zien door het ierste exempel deser propositien wat de zelfde $521 \frac{13152}{160000} \mathrm{lb}$. op vijf iaeren weerdich zijn ghereedt ghelt / wordt bevonden voor solutie $397 \frac{1039615363808}{1600000000000} \mathrm{lb}$.

And because the last payment is made on the same condition as the first, this will neither gain nor lose, but be 90 lb .

EXAMPLE 6.
A sum of 324 lb is to be paid in 6 years, to wit each year 54 lb . What is their present value, subtracting compound interest at the 16th penny a year?

## NOTE.

For all such questions as this example, to wit where payments are made in successive years, one year as much as the other, the last column in each table serves. Therefore in order to obtain from our tables numbers proportional to those under consideration, the root of the tables, to wit $10,000,000$, will always have to be multiplied by as many years as are under consideration, for the product then has to the number corresponding to the year in question the same ratio as the Principal in question to this Principal with its interest, as will all be clearer from the examples.

## PROCEDURE 1).

Look up in the table of the 16th penny what number in the last column corresponds to the 6th year. This is found to be $48,789,356$. Thereafter, on account of the 6 years, take 6 times $10,000,000$, that is $60,000,000$; and say: $60,000,000$ gives 48,789,356; what does 324 lb give? The solution is $263 \frac{27751344}{60000000} \mathrm{lb}$.

## EXAMPLE 7.

A man owes 800 lb , to wit at the end of six years 50 lb and further every year thereafter 50 lb until payment is complete, which will extend (counting from the beginning) to the twenty-second year. What is the present value, charging compound interest at the 18th penny?

## PROCEDURE.

It has to be found what is the value of 800 lb at the beginning of the sixth year, which is as much as if it were sought what is the present value of that 800 lb , to be paid in 16 years. By the foregoing 6th example this is found to be $521 \frac{13152}{160000} \mathrm{lb}$, and this is the value of that 800 lb at the beginning of the sixth year, or (which is the same) at the end of the fifth year.

Thereafter it has to be found by the first example of this proposition what is the present value of the said $521 \frac{13152}{160000} \mathrm{lb}$ to be paid in five years. The solution is found to be $397 \frac{1039615363808}{160000000000} \mathrm{lb}$.
${ }^{1}$ ) The French edition of 1585 omits, as everywhere else, the reference to Trenchant (See the Introduction, p. 19). A note was added, which will be found in the Supplement.

NOTA.
De volghende exempelen dependeren ex alterna vel inuersa proportione deser propositien.

EXEMPEL 8.
Eenen is schuldich ten eynde van 17 iaeren 700 lb . zijn crediteur schelt hê quijte met 292. lb . ghereedt. De vraeghe is teghen wat ghecomponeerde interestsreden dat afghetrocken waere.

CONSTRUCTIE.
Men zal zegghen 700 . lb . gheuê 10000000 . wat 292. lb ? facit 4171429 . t'zelfde ghetal zalmen zoecken ten naesten door alle de tafelen op het zeuenthiende iaer; wordt bevonden in de tafel van den penninck 19. daermen vindt 4181203. waer door men zegghen zal dese interestsreden te zijne tegê den penninck 19. t'siaers bycants / maer want 4171429. wat minder is dan 4181203. soo salmen segghen desen penninck een weynich minder te zijne dan 19. te weten den penninck 18. met eenich ghebroken.

Maer tot een perfecte solutie deser ende dergelijcke questien / ist noodich datmen onder zijn tafelen hebbe een tafel van alzulcken interest reden als daer questie af is / dies niet / zoo en kanmê de solutie maer bycants zegghen / t'welck in de practijcke oock dickmael ghenoech is.

## EXEMPEL 9.

Eenen is schuldich te betaelen teenemael binnen zekere iaeren $1400 . \mathrm{lb}$. ende betaelt die ghereedt met 107. lb. aftreckende ghecomponeerden interst teghen 13. ten 100 . t'siaers. De vraeghe is binnen hoe veel iaeren die 1400 lb . te betaelen waeren.

## CONSTRUCTIE.

Men zal zegghen $1400 . \mathrm{lb}$. gheuê 10000000 . wat $107 . \mathrm{lb}$ ? facit 764286 . t'zelfde ghetal salmen soecken ten naestê ende meerder in de tafel van 13. ten 100. wordt bevonden 767985. responderende op het 21. iaer. Ergo binnen 21. iaeren waeren de 1400 . lb . te betaelen. Ende om nu te vinden wat deel des iaers datter bouen de voor noemde 21. noch was / salmen zegghen 764286. gheuen 767985. wat 100? facit $100 \frac{369900}{764286}$ van welcken facit men trecken zal 100 . de reste is $\frac{369900}{764286}$ welcker resten $\frac{1}{13}\left(\frac{1}{13}\right.$ van weghen 13 . ten 100 .) is het deel des iaers datter noch bouen de 21. iaeren was / te weten t'saemen $21 \frac{369900}{9935718}$ iaeren.

EXEMPEL 10.
Eenen ontfangt $1100 . \mathrm{lb}$. ende hem was afghetrocken ghecomponeerden interest teghen den penninck 16. voor 18. iaeren. De vraeghe is / wat d'Hooftsomme was.

CONSTRUCTIE.
Men zal zien in de tafel van den penninck 16. wat ghetal datter respôdeert op het 18. iaer/wordt bevonden 3357988. Daer naer zalmen zegghen 3357988. comen van 10000000 . waer van comen $1100 . \mathrm{lb}$ ? facit d'Hooft-somme $3275 \frac{2589300}{3357988} \mathrm{lb}$.

## NOTE.

The following examples depend on this proposition in alternate or inverse proportion.

## EXAMPLE 8.

A man owes 700 lb , to be paid at the end of 17 years. His creditor quits him with 292 lb present value. What is the rate of compound interest at which the subtraction has been made?

## PROCEDURE.

Say as follows: 700 lb gives $10,000,000$; what does 292 lb give? This is 4,171,429. Seek a number as close as possible to this throughout the tables at the seventeenth year. It is found in the table of the 19th penny, where is found 4,181,203, for which reason it has to be said that this rate of interest is almost at the 19th penny a year, but because $4,171,429$ is slightly less than $4,181,203$, it has to be said that this penny is a little less than 19 , to wit the 18 th penny with a fraction.
But for a perfect solution of this and similar questions it is necessary to have among one's tables a table of such a rate of interest as the one in question. If this is not the case, the solution can only be given approximately, which in practice is often sufficient.

## EXAMPLE 9.

A man owes $1,400 \mathrm{lb}$, to be paid at once after a certain number of years, and pays their present value of 107 lb , subtracting compound interest at 13 per cent a year. After how many years was this $1,400 \mathrm{lb}$ to be paid?

## PROCEDURE.

Say as follows: $1,400 \mathrm{lb}$ gives $10,000,000$; what does 107 lb give? This is 764,286 . Seek a number as close as possible to and higher than this in the table of 13 per cent. There is found 767,985 , corresponding to the 21 st year. Therefore the $1,400 \mathrm{lb}$ had to be paid in 21 years. And in order to find what part of a year there was over and above the aforesaid 21, say: 764,286 gives 767,985 ; what does 100 give? This is $100 \frac{369900}{764286}$, from which 100 has to be subtracted. The remainder is $\frac{369900}{764286}, \frac{1}{13}$ of which remainder ( $\frac{1}{13}$ on account of 13 per cent) is the part of a year there was over and above the 21 years, to wit: together $21 \frac{369900}{9935718}$ years.

## EXAMPLE 10.

A man receives $1,100 \mathrm{lb}$, compound interest at the 16 th penny for 18 years having been subtracted. What was the Principal?

## PROCEDURE.

Look up in the table of the 16th penny what number corresponds to the 18th year. This is found to be $3,357,988$. Thereafter say: 3,357,988 comes from $10,000,000$; what does $1,100 \mathrm{lb}$ come from? The Principal is $3,275 \frac{2589300}{3357988} \mathrm{lb}$.

## EXEMPEL 11.

Eenen wordt afghetrocken 2022. lb. voor ghecomponeerden interest van 13. iaeren tegen 9. ten 100. t'siaers. De vraeghe is wat d'Hooft-somme was.

## CONSTRUCTIE

Men zal zien in de tafel van 9. ten 100. wat ghetal datter respondeert op het 13. iaer / wordt bevonden 3261786 . t'zelfde zalmen trecken van 10000000 . lb. rest 6738214. Daer naer salmen segghen 6738214. heeft Hooft-somme 10000000. wat Hooft-somme zal hebben 2022. lb? facit $3000 \frac{5358000}{6738214} \mathrm{lb}$.

NOTA.
Dese dry volghende exempelen worden ghesolueert door de laetste columne der tafelen.

## EXEMPEL 12.

Eenê is schuldich 33000 . lb . alle iaere 1500 . lb . tot 22 . iaeren toe/ende zijn crediteur schelt hem quijte met 15300 . lb. ghereedt ghelt. De vraeghe is teghen wat ghecomponeerde interestsreden dat afghetrocken is.

## CONSTRUCTIE

Men zal zeggen 33000 . lb. gheuê 220000000 . (te weten 10000000 . ghemultipliceert met 22. iaeren) wat gheuê 15300 . lb? facit 102000000. dit ghetal salmen ten naesten soecken door alle de tafelê in de laetste columne op het 22 . iaer wordt bevondê in de tafel van 8. ten 100. al waermen vindt 102007429. waer door men zegghen zal dese 'interests reden te zijne van 8. ten 100. t'siaers bycants / maer want 102007429. wat meerder is dan 102000000. soo salmen seggen dese interests reden wat meerder te ziijne dan teghen 8 . ten 100 . te weten 8 . met eenich zeer cleyn ghebroken.
Maer tot een perfecte solutie deser ende der gelijcke questien / ist noodich datmen onder zijn tafelen hebbe een tafel van alzulcken interests reden als daer questie of is.

## EXEMPEL 13.

Eenen is schuldich te betaelen zeker somme / te weten alle iaere een zesten deel der zeluer sommen / zes iaeren lanck gheduerende; veraccordeert met zijnen crediteur die te betaelen ghereedt / midts aftreckende ghecomponeerden interest den penninck 16. ende gheeft hem ghereedt 263. lb. De vraeghe is wat d'Hooftsomme was.

## CONSTRUCTIE.

Men zal zien in de tafel van de penninck 16. in de laetste columne wat ghetal datter respondeert op het 6 . iaer / wordt bevonden 48789356. Daer naer salmen zegghen 48789356 . comen van 60000000 . (te weten 10000000 . ghemultipliceert met 6. iaeren) waer van comen 263. lb? facit Hooft-somme $323 \frac{21038012}{48789356} \mathrm{lb}$.

## EXAMPLE 11.

A man receives a sum of money, $2,022 \mathrm{lb}$ of compound interest at 9 per cent a year for 13 years having been subtracted. What was the Principal?

## PROCEDURE.

Look up in the table of 9 per cent what number corresponds to the 13 th year. This is found to be $3,261,786$. Subtract this from $10,000,000 \mathrm{lb}$. The remainder is $6,738,214$. Thereafter say: $6,738,214$ has for Principal $10,000,000$; what Principal will $2,022 \mathrm{lb}$ have? This is $3,000 \frac{5358000}{6738214} \mathrm{lb}$.

## NOTE.

The three following examples are solved by means of the last columns of the tables.

## EXAMPLE 12.

A man owes $33,000 \mathrm{lb}, 1,500 \mathrm{lb}$ every year, up to 22 years, and his creditor quits him with $15,300 \mathrm{lb}$ present value. At what rate of compound interest was the subtraction made?

## PROCEDURE.

Say as follows: $33,000 \mathrm{lb}$ gives $220,000,000$ (to wit: $10,000,000$ multiplied by 22 years); what does $15,300 \mathrm{lb}$ give? This is $102,000,000$. Seek a number as close as possible to this throughout the tables in the last column at the 22 nd year. It is found in the table of 8 per cent, where is found $102,007,429$, so that it has to be said that this rate of interest is approximately 8 per cent a year; but because $102,007,429$ is a little more than $102,000,000$, it has to be said that this rate of interest is slightly more than 8 per cent, to wit 8 plus a very small fraction.

But for a perfect solution of this and similar questions it is necessary to have among one's tables a table of such a rate of interest as the one in question.

## EXAMPLE 13.

A man owes a certain sum, to wit that every year one sixth of this sum has to be paid, during six years. He agrees with his creditor to pay its present value, subtracting compound interest at the 16 th penny; and he gives him 263 lb present value. What was the Principal?

## PROCEDURE.

Look up in the table of the 16 th penny in the last column what number corresponds to the 6th year. This is found to be $48,789,356$. Thereafter say: $48,789,356$ comes from $60,000,000$ (to wit $10,000,000$ multiplied by 6 years); what does 263 Ib come from? The Principal is $323 \frac{21038012}{48789356} \mathrm{ib}$.

EXEMPEL 14.
Eenen is schuldich te betaelen zeker somme / te weten alle iaere het $\frac{1}{27}$ der zeluer sommen 27. iaeren lanck gheduerende / veraccordeert met zijn crediteur die te betaelen ghereedt / mits aftreckêde 4010 . lb. voor ghecomponeerden interest tegen 14. ten 100. De vraeghe is wat d'Hooft-somme was.

## CONSTRUCTIE

Men zal zien in de tafel van 14. ten 100. wat ghetal datter respondeert in de laetste columne op het 27 . iaer / wordt bevonden 69351565 . t'zelfde zalmen aftrecken van 270000000 . (te weten 10000000 . ghemultipliceert met 27 . iaeren) rest 200648435. Daer naer salmê seggê 200648435. compt van 270000000. waer van zal comen 4010. lb? facit voor solutie $5396 \frac{1044470}{200648435} \mathrm{lb}$.

## DEMONSTRATIE.

Aenghesien int ierste exempel deser propositien gheseyt is $700 . \mathrm{lb}$. te betaelen ten eynde van 10 . iaeren / ghereet ghelt weerdich te zijne $225 \frac{38124}{100000} \mathrm{lb}$. aftreckende ghecomponeerden interest teghen 12. ten 100. t'siaers / volght daer wt dat indien mê de zelue $225 \frac{38124}{100000} \mathrm{lb}$. terstont op interest leyde teghen den voornoemden interest van 12. ten 100. dat de selue Hooft-somme met haeren interest (zoo d'operatie goedt is) zullen moeten t'saemen bedracghen $700 . \mathrm{lb}$.
Alsoo dan rekenende dien interest naer de leeringhe des ierstê exempels der tweeder propositien / zal bedraeghen met haere Hooft-somme 700. lb. waer wt besloten wordt de constructie goedt te zijne.
S'ghelijcks sal ook zijn de demonstratie van d'ander exempelen deser propositiê / welcke wy of de cortheydt achter laeten.

Alsoo dan wesende verclaert Hooft-somme tijt ende intersts reden van ghecomponeerden schaedelicken interest / hebben wy ghevonden wat die gereedt weerdich is/t'welck gheproponeert was alsoo ghedaen te worden.

## APPENDIX.

Ten laetsten heeft mij goedt ghedocht een generale reghel hier te beschrijuen / om van twee ofte meer conditien de profijtelickste te kennen / ende hoe veel zy profiitelicker is dan d'ander / want hier in is by ghevalle de principaele nutbaerheydt deser tafelen gheleghen / ende dat ouermidts trafiquerende persoonen malckanderen daghelicks conditien voorstellen / welcker conditien de beste dickmael gheen van beyden bekent en is.

Om dan metten cortsten dien reghel te verclaeren / zegghe ick / dat men zien zal wat elcke gheproponeerde conditie ghereedt weerdich is in respect van eenighe interests reden jende dat door de leeringhe van eenighe der voorgaende exempelen / welcker ghereeder sommen differentie betoont hoe veel d'een conditie beter is dâ d'ander, t'welck door exempel claerder zijn zal.

## EXEMPEL.

Eenen is schuldich $32500 . \mathrm{lb}$. te wetê 12000 . lb. ghereedt ende $6500 . \mathrm{lb}$. binnen 3. iaeren / ende de resterende $14000 . \mathrm{lb}$. aldus / te weten op het vierde iaer $500 . \mathrm{lb}$.

## EXAMPLE 14.

A man owes a certain sum, to wit that every year he has to pay $\frac{1}{27}$ of this sum, during 27 years. He agrees with his creditor to pay its present value, subtracting $4,010 \mathrm{lb}$ for compound interest at 14 per cent. What was the Principal?

## PROCEDURE.

Look up in the table of 14 per cent what number corresponds in the last column to the 27 th year. This is found to be $69,351,565$. Subtract this from $270,000,000$ (to wit $10,000,000$ multiplied by 27 years); the remainder is $200,648,435$. Thereafter say: $200,648,435$ comes from $270,000,000$; what will $4,010 \mathrm{lb}$ come from? The solution is $5,396 \frac{1044740}{200648435} \mathrm{lb}$.

## PROOF.

Since in the first example of this proposition it has been said that the present value of 700 lb to be paid at the end of 10 years is $225 \frac{38124}{100000} \mathrm{lb}$, subtracting compound interest at 12 per cent a year, it follows that if this $225 \frac{38124}{100000} \mathrm{lb}$ is put out at interest at once at the aforesaid rate of 12 per cent, the said Principal with its interest (if the operation is correct) will have to amount together to 700 lb.
Thus, charging the interest according to the first example of the second proposition, with its Principal it will amount to 700 lb , from which it is concluded that the procedure was correct.
The same will also be the proof of the other examples of this proposition, which we omit for brevity's sake
Hence, given the Principal, the time, and the tate of compound detrimental interest, we have found the present value, which had been proposed to be done.

## APPENDIX

Finally it seemed suitable to me to describe here a general rule for finding which is the most profitable of two or more conditions, and by how much it is more profitable than the other, for in this consists perhaps the principal usefulness of these tables, such because businessmen will daily propose conditions to one another, while frequently neither of the two knows which condition is the best.
In order to set forth this rule as shortly as possible, I say that it has to be found what is the present value of each proposed condition in respect to a given rate of interest, such in accordance with one of the foregoing examples, the difference between these present values showing by how much one condition is better than the other, which will be clearer from an example.

## EXAMPLE.

A man owes $32,500 \mathrm{lb}$, to wit $12,000 \mathrm{lb}$ present value and $6,500 \mathrm{lb}$ in 3 years, and the remaining $14,000 \mathrm{lb}$ as follows: the fourth year 500 lb , and further
ende voorts alle iaere daer naer $500 . \mathrm{lb}$. totte volle betaelinghe / welcke aenloopen sal 28. iaeren. Ende hem wordt ghepresenteert te betaelen ghereedt $6000 . \mathrm{lb}$. ende ten eynde van 4 . iaeren noch $5000 . \mathrm{lb}$. ende resterende 21000 lb . aldus; te weten op het vijfde iaer $3000 . \mathrm{lb}$. ende voort alle iaere daer naer 3000 . lb . tot de volle betaelinghe / hetwelck aenloopen zal 7. iaeren. De vraeghe is welcke conditie de beste is voor den crediteur / ende hoe vele sy beter is dan d'ander / rekenende ghecomponeerden interest den penninck 16.

## CONSTRUCTIE.

De 12000. lb. die ghereedt te betaelen zijn ghereedt weerdt
Ende de $6500 . \mathrm{lb}$. die binnen 3. iaerê te betaelê ziinn / zijn reedt weerdich door het 1 . exempel der 4. prop.

Ende de 14000 lb . die te betaelen zijn alle iaere 500 lb . tot 28 . iaeren toe / beghinnende van het vierde iaer tot het 32. iaer / zijn ghereedt weerdich door het 7. exempel der 4. prop.

Welcke dry sommê voor de weerde in ghereeden ghelde van d'ierste conditie bedraeghen
Nu volght de calculatie vande tweede conditie.
De 6000. lb. ghereedt te betaelen zijn ghereet weerdt
Ende de 5000 . lb. te betaelen ten eynde van het 4. iaer/ zijn ghereedt weerdt door het 1 . exemp. der 4. prop.

Ende de 21000 . lb. die te betaelen zijin alle iaere 3000 . lb . tot 7 . iaeren toe beginnende van het vijfde iaer tot het 12 . iaer zullen ghereedt weerdt zijn door het 7 . exempel der 4. prop.

Welcke dry sommê voor de weerde in gereeden ghelde van de tweede conditie bedraeghen

12000 lb.
$5419 \frac{9225}{100000} \mathrm{lb}$.
$5448 \frac{42830451195}{280000000000} \mathrm{lb}$.
$\underline{22867 \frac{68660451195}{280000000000} \mathrm{lb} .}$

6000 . lb.
$3923 \frac{3245}{10000} \mathrm{Ib}$.
$13024 \frac{647522600753}{700000000000} \mathrm{lb}$.
$22948 \frac{174672600753}{700000000000} \mathrm{lb}$.

Alsoo dan de tweede conditie (want zy meer bedraecht dan d'ierste) is beter voor den crediteur dan d'ierste. Nu dan afghetrocken de ghereede weerde der ierste conditie van de ghereede weerde der tweeder conditien/rester $81 \frac{12085891062}{28000000000} \mathrm{lb}$. ende soo veel is de laetste conditie beter voor den crediteur dan d'ierste / welcke solutie met veel anderen dier ghelijcke daghelicks in praxi te voren comende en zouden zonder t'behulp van dese tafelê nict dan door eenen onestimeerlicken aerbeydt connen ghegheuen worden.

## ANDER EXEMPEL

Men begheert te weten hoe veel 2000. lb. ghereedt op 7. iaeren beter zijn / rekenende ghecomponeerden interest teghen 4. ten 100. alle vierendeel iaers: dan de zelue 2000. 1b. ghereedt op zeuen iaeren rekenende gecomponeerden interest dê penninck 16. t'siaers.
every succeeding year 500 lb until payment is complete, which will take 28 years. An offer is made to him that he shall pay $6,000 \mathrm{lb}$ present value and at the end of 4 years $5,000 \mathrm{lb}$ more, and the remaining $21,000 \mathrm{lb}$ as follows: the fifth year $3,000 \mathrm{lb}$ and further every succeeding year $3,000 \mathrm{lb}$ until payment is complete, which will take 7 years. The question is which condition is the best for the creditor, and by how much it is better than the other, charging compound interest at the 16th penny.

## PROCEDURE.

The present value of the $12,000 \mathrm{lb}$ to be paid at present is $12,000 \mathrm{lb}$.
And the present value of the $6,500 \mathrm{lb}$ which has to be paid in 3 years, by the 1 st example of the 4 th proposition, is $5,419 \frac{9225}{100000} \mathrm{lb}$

And the present value of the $14,000 \mathrm{lb}$, of which every year 500 lb has to be paid, during 28 years, beginning from the fourth year up to the 32 nd year, by the 7 th example of the 4th proposition, is

$$
5,448 \frac{42830451195}{28000000000} \mathrm{lb}
$$

The present value of the three sums on the first conditions amounts to

$$
22,867 \frac{68660451195}{280000000000} \mathrm{lb}
$$

Now follows the computation of the second condition.
The present value of the $6,000 \mathrm{lb}$ to be paid at present is $6,000 \mathrm{lb}$.
And the present value of the $5,000 \mathrm{lb}$ to be paid at the end of the 4th year, by the 1st example of the 4th proposition, is

$$
3,923 \frac{3245}{10000} \mathrm{lb}
$$

And the present value of the $21,000 \mathrm{lb}$, of which every year $3,000 \mathrm{lb}$ has to be paid, up to 7 years, beginning from the fifth year to the 12 th year, by the 7 th example of the
4th proposition, will be
The present value of the three sums on the second condition amounts to $\quad 22,948 \frac{174672600753}{\frac{10000000000}{} \mathrm{lb}}$

The second condition therefore (because it is more than the first) is better for the creditor than the first. And when the present value on the first condition is subtracted from the present value on the second condition, there remains $81 \frac{12085891062}{2800000000000} \mathrm{lb}$, and by so much the last condition is better for the creditor than the first; and this solution and many other similar cases, which are of daily occurrence in practice, could not be given without the aid of these tables unless with incalculable exertion.

## OTHER EXAMPLE.

It is required to know by how much $2,000 \mathrm{lb}$ present value is better in 7 years, charging compound interest at 4 per cent every quarter of a year, than the said $2,000 \mathrm{lb}$ present value in seven years, would be, charging compound interest at the 16 th penny a year.

Dese conditien zouden in simpelen interest gelijck zijn / maer in ghecomponeerden interest is de differentie groot.

## CONSTRUCTIE

Men zal zien in de tafel van 4 . ten 100 . wat $2000 . \mathrm{lb}$. ghereedt met haeren interest bedraegen op 28. termijnen / (want 28. zulcke termijnen maken 7. iaeren) wordt bevonden $5997 \frac{1372316}{3334772} \mathrm{lb}$.

Daer naer salmen zien wat 2000. lb. met haeren interest bedraegen op zeuen iaeren teghen 16. ten 100 . t'siaers / wordt bevonden door het 1 . exempel der 3. propositiê $5652 \frac{1556660}{3538295} \mathrm{lb}$. Nu dâ afgetrockê $5652 \frac{1556660}{3538295} \mathrm{lb}$. van $5997 \frac{1372316}{3334772} \mathrm{lb}$. rest bycants $345 . \mathrm{lb}$. ende soo veel bedraecht den interest van d'ierste conditie meer dan den interest van de laetste.
Alsoo dan alsvoren gheseyt is / salmê in alle anderen dier ghelijcken de ghereede weerde zoecken van verscheyden conditiê / ende haere differentien zullen de profijtelickste conditie betoonen.

## NOTA.

Soo iemandt te opereren hadde in cleyne sommen / zoude moghen twee oft dry cijffer letterê van de ghetaelen der tafelen min ghebruycken / die van achteren af cortende / midts der ghelijcke menichte van letteren / oock afcortende van de wortel der tafel / als dies ghelijcke in tabula sinuum ende meer andere oock de ghebruyck is / wantet op cleyne sommen gheen merckelicke differentie en can brengen / iae dickmael veel minder dan de weerde van den minsten penninck die der ghemunt wordt: Maer op groote sommen zoudet merckelijcker ziijn. Daer om hebbê wy onse tafelen ghemaeckt dienende zoo wel tot groote notabele sommen / ghelijck dickmael zijn penninghen van Banckiers / Potentatê / Prouincien ende dierghelijcke / als tot cleyne sommen.

## NOTE.

These conditions would be equal in simple interest, but in compound interest the ${ }^{v}$ difference is great.

## PROCEDURE.

Look up in the table of 4 per cent what $2,000 \mathrm{lb}$ present value with its interest amounts to in 28 terms (for 28 such terms make 7 years); this is found to be $5,997 \frac{1372316}{3334772} \mathrm{lb}$.

Thereafter it has to be found what $2,000 \mathrm{lb}$ with its interest amounts to in seven years at 16 per cent a year; by the 1st example of the 3rd proposition this is found to be $5,652 \frac{1556660}{3538295} \mathrm{~b}$. When $5,652 \frac{1556660}{3538295} \mathrm{lb}$ is subtracted from $5,997 \frac{1372316}{333472} \mathrm{lb}$, there remains approximately 345 lb , and by so much the interest on the first condition is more than the interest on the last one.

Thus, as has been said above, in all similar cases the present value on different conditions has to be sought, and their difference will show which is the most profitable condition.

## NOTE.

If a man had to operate with small sums, he might omit two or three digits from the numbers of the tables, abbreviating them on the right, provided the root of the table were also abbreviated by the same number of digits, such as is also commonly done in sine tables and more such tables, for on small sums this cannot make any appreciable difference, yea, often much less than the value of the smallest coin that is minted. But on large sums it would be more perceptible. For that reason we have made our tables so that they may serve for large and notable sums (such as often occur with Bankers, Potentates, Provinces, and the like) as well as small sums.

## SUPPLEMENT (1590)

## EXEMPEL 7.

Het zijn 324 lb / te betalê binnê 6 iaren / te wetê 54 lb t' siaers. Vrage wat de selue weerdich zijn gereet gelt / aftreckêde simpelê interest tegê 12 tề 100 ?

## CONSTRUCTIE

Men sal sien wat ghelt datmen nae dese conditie verschiet / datmen na d'eerste niet en soude verschoten hebben. Nu dan wantmen na dese conditie verschiet 54 lb die te betalen waren binnen 1 iaer daer nae / soo moetmen sien hoe veel de selue 54 lb te betalen binnen een iaer / weerdich zijn ghereedt gelt / ende wort bevonden deur het voorgaende eerste exempel van dese propositie / $48 \frac{3}{14} \mathrm{lb}$. Ende om der gelijcke redenen sullen ander $54 \mathrm{lb} /$ op 2 iaeren weerdich ziin gereet $43 \frac{17}{31} \mathrm{lb}$. En̂ de derde 54 lb op 3 iaren $39 \frac{12}{17} \mathrm{lb}$. En̂ de vierde 54 lb op 4 iarê $36_{3 \hat{7}}^{18} \mathrm{lb}$. Ende de vijfde 54 lb op de 5 iarê $33 \frac{3}{4} \mathrm{lb}$. En̂ de laetste 54 lb op 6 iaren $31 \frac{17}{43} \mathrm{lb}$. En̂ de somme der bouê schreuen ses partien is voor solutie $233 \frac{2356847}{23476796} \mathrm{lb}$.

## NOTA

Maer want dit moeyelijck is voor elck termijn een bysonder reeckeninge te maken / als hier bouen / voornamelick alst van veel iaeren of termijnen is / soo machmen tafelen maken / deur welcke mê sulcx sal moghen solveren met een werckinghe aldus:
Om te maken eê tafel van 12 ten 100 / men sal nemen eenich groot getal / waer af d'eerste letter sy 1 / ende al d'ander 0 ; als by voorbeelt 10000000 , t'welck wy noemê wortel des tafels: seggende 112 (te weten cápitael 100 / metten interest van een iaer) geuen 100, wat 10000000 ? compt 8928571 / als ghetal dienende voor t'eerste iaer. Aengaende het ouerschot / dat laetmen verloren gaen / als van geender acht zijnde. Voorts om te vinden t'getal van 2 iaeren / mê sal seggen 124 (te weten 100 capitael / metten interest van twee iaren) geuen 100. wat 10000000 ? compt 8064516 /de selue vergaert tot 8928571 / maken 16993087 / voor t'getal der twee iaren. Daer nae om te vinden het ghetal der drie iaren / men

## SUPPLEMENT

## ADDITIONS AND MODIFICATIONS, FOUND IN THE EDITION OF 1590

## Modified text of Example 7, p. 45.

A sum of 324 lb is to be paid in 6 years, to wit 54 lb a year. What is the present value of this sum, subtracting simple interest at 12 per cent?

## PROCEDURE.

It has to be found what money one disburses on this condition that one would not have disbursed on the first condition. Thus, because on this condition one disburses 54 lb , which was to be paid 1 year later, it has to be found what is the present value of this 54 lb to be paid in one year; by the preceding first example of this proposition this is found to be $48 \frac{3}{14} \mathrm{lb}$. And for the same reasons the present value of the second 54 lb , to be paid in 2 years, will be $43 \frac{17}{31} \mathrm{lb}$. And that of the third 54 lb , to be paid in 3 years, $39 \frac{12}{17} \mathrm{lb}$. And that of the fourth 5.4 lb , to be paid in 4 years, $36 \frac{18}{37} \mathrm{lb}$. And that of the fifth 54 lb , to be paid in 5 years, $33 \frac{3}{4} \mathrm{lb}$. And that of the last 54 lb , to be paid in 6 years, $31 \frac{17}{43} \mathrm{lb}$. And the sum of the above-mentioned six amounts is $233 \frac{2356847}{23476796} \mathrm{lb}$, which is the solution.

## NOTE.

But because it is difficult to make a separate calculation for each term, as above, especially in the case of many years or terms, one can make tables by means of which such problems can be solved by the following operation:
In order to make a table of 12 per cent, take some large number, of which the first figure-is to be 1 and all the others 0 , e.g. $10,000,000$, which we call the root of the table, saying: 112 (to wit the principal of 100 with the interest of one year) gives 100 ; what does $10,000,000$ give? This is $8,928,571$, being the number serving for the first year. As to the remainder, this is neglected as being of no account. Further, in order to find the number of 2 years, say: 124 (to wit the principal of 100 with the interest of two years) gives 100 ; what does $10,000,000$ give? This is $8,064,516$. When this is added to $8,928,571$, this makes $16,993,087$ for the number of the two years. Thereafter, in order to find the number of the
sal segghen 136 (te weten capitael $100 /$ metten interest van 3 iaeren) geuen 100 / wat 10000000 ? compt 7352941 / de selue vergaert tot de 16993087 / maken 24346028 / voor t'getal der drie iaren. Ende alsoo machmen voort varen met soo veel iaeren alsmen wil / welcke wy in dese tafel tot 8 termijnen veruolcht hebben / in deser voegê.

Tafel van simpelen schadelicken interest/van 12 ten 100.
8928571.
16993087.
24346028.

3110278 s.
37352785.
43166738.
48601521.

53703562 .

Nu om deur dese Tafel te solverê de questie van die seuende exempel / men sal Multiplicerê de wortel des tafels 10000000 / met de iaren daer questie af is / te weten / met 6 / maeckt 60000000 / daer na salmen seggen / 60000000 gheuen 43166738 ( $t$ 'welck het ghetal is ouercomende inde tafel tegen de 6 Jaren) wat 324 lb ? compt $233 \frac{6023112}{60000000} \mathrm{lb}$. die doen $233 \mathrm{lb} 2 \mathrm{Bo} \frac{5546880}{60000000}$ gr. en̂ d'ander solutie was $233 \frac{2356847}{23476796} \mathrm{lb}$ doende 233 lb 2 B $0 \frac{2200176}{23476796} \mathrm{gr}$. welcke solutien alleenlijck verschil hebben van een seer cleyn ghedeelte van 1 gr. / dat van gheender achte en is / deur oorsaeck dat de uyterste volmaecktheyt inde tafel niet en is / om de resten diemen int maecken der tafelen verloren laet.

## EXEMPEL 9.

Een is schuldich 200 lb te betaelen in 5 iaeren/wat sullen die weerdich zijn in 2 iaeren /rekenende simpelen interest teghen 10 ten hondert.

## CONSTRUCTIE.

Men sal trecken 2 iaeren van 5 iaeren / blijft 3. iaeren / op de weicke de voornoemde 200 lb weerdich sullen zijn (deur het tweede exempel van dese propositie) $153 \frac{11}{13} \mathrm{lb}$.
three years, say: 136 (to wit the principal of 100 with the interest of 3 years) gives 100; what does $10,000,000$ give? This is $7,352,941$. When this is added to the 16,$993 ; 087$, this makes $24,346,028$ for the number of the three years. And thus one may go on with as many years as one wishes, which we have continued in this table up to 8 terms, as follows:

Table of simple detrimental interest of 12 per cent.
8928571
16993087
24346028
31102785
37352785
43166738
48601521
53703562

Now in order to solve by means of this table the question of the seventh example, multiply the root of the table $(10,000,000)$ by the years in question, to wit by 6 . This makes $60,000,000$. Thereafter say: $60,000,000$ gives $43,166,738$ (which is the number corresponding in the table to the 6th year); what does 324 lb give? This is $233 \frac{6023112}{60000000} \mathrm{lb}$, which makes $233 \mathrm{lb} 2 \mathrm{sh}: 0 \frac{5546880}{60000000} \mathrm{~d}$.; and the other solution was $233 \frac{2356847}{23476796} \mathrm{lb}$, which makes $233 \mathrm{lb} 2 \mathrm{sh} .0 \frac{2200176}{23476796} \mathrm{~d}$.; these solutions only differ by a very small part of 1 d ., which is of no account, because there is no extreme perfection in the table, because of the remainders that are neglected during the making of the tables.

Modified text of Example 9, p. 47.
A man owes 200 lb to be paid in 5 years. What is their value in 2 years, charging simple interest at 10 per cent a year?

## PROCEDURE.

Subtract 2 years from 5 years; the remainder is 3 years, in which the value of the aforesaid 200 lb will be (by the second example of this proposition) $153 \frac{11}{13} \mathrm{lb}$.

EXEMPEL 10.
Eenen is schuldich binnen 3 iaren 420 lb / ende binnen 6 iaren daer na noch 560 lb : de vraghe is wat dese partien weert zijn te betalen t'samen op 2 iaren / rekenende simpelen interest tegen 10 tê 100 ?

## CONSTRUCTIE.

De 420 lb te betalen binnê 3 iaren / zijn weerdich binnen 2 iarê / deur het voorgaende 9 exempel / $381 \frac{9}{11} \mathrm{lb}$; ende de 560 lb te betalen op 6 iaren daer nae / dats binnen 9 iaeren / zijn weerdich binnen 2 . iaeren /deur het voornoemde 9 . exempel / $329 \frac{7}{17} \mathrm{lb}$. welcke met de voorsz. $381 \frac{9}{11} \mathrm{lb} /$ maecken voor solutie $711 \frac{43}{187} \mathrm{lb}$.

## NOTA.

So de somme en̂ plaets van 324 lb . een ander gheweest hadde niet passende op 6 . cuen iacren /ick neme van $330 . \mathrm{lb}$. te betalen met 54 lb . tsiaers 6 . iaer lanck en̂ op seuende iaer noch 6 lb . men soude eerst vinden de weerde in ghereet ghelt vande 324. lb. na de leeringhe wt dit seste exempel. Daer nae de weerde in ghereedt ghelt vande 6. lb . (die te betaelen zijn in 7. iaer) naer de leeringhe van teerste exempel van dese propositie. Ende desomme van deze twee partyen soude t'begheerde zijn.
Merckt oock cortheyts haluen / dat sooder effen 100. lb. te betalen waeren ettelijcke iaeren achter malcander ende dattet niet noodich en waer de menichte der $ß$ ende gr. te weten gelijckt somwijlen wel te passe coemt. So wijsen d'eerste letteren in de derde tafel de menichte der ponden / sonder datmen behoeft eenige rekeninghe te maecken. Als by gelijckenis 100. lb iaerlijcx 12. iaerê lâck / wat zijn die gereed weert / af te trecken tegê dê penninck 16 ?
Ick sien in de tafel van dê penninck 16. al waer ick deerste letter van het 12. iaer vinde 827. daerô 827. lb. (wel verstaende dat daer toch noch $ß$ ende gr. gebrekê) is de solutie. Maer waerêt geweest 200. Ib. iaerlijcx / 12 iaeren lanck / soo en soudemen die $827 . \mathrm{lb}$. maer te dobbeleren hebben /bedraghende voor solutie 1654. lb . waer wt de gemeenen regel te verstaê is /hoemê de somme met 300 lb . 400. lb. oock mede met effen duysent en dierghelijcke.

## Modified text of Example 10, p. 49.

A man owes 420 lb to be paid in 3 years, and 6 years later 560 lb more. What will these sums be worth, if paid together after 2 years, charging simple interest at 10 per cent a year?

PROCEDURE.
The value in 2 years of the 420 lb , to be paid in 3 years, by the preceding 9th example is $381 \frac{9}{11} \mathrm{lb}$, and the value in 2 years of the 560 lb , to be paid 6 years later, i.e. in 9 years, by the preceding 9 th example is $329 \frac{7}{17} \mathrm{lb}$, which together with the aforesaid $381 \frac{9}{11} \mathrm{lb}$ makes $711 \frac{43}{178} \mathrm{lb}$, which is the solution.

$$
\text { Note, added after Example 6, p. } 101 .
$$

## NOTE.

If instead of 324 lb the amount had been another, not divisible in 6 equal yearly terms, I assume 330 lb , to be paid with 54 lb a year during 6 years and the seventh year 6 lb more, the present value of the 324 lb would first have to be found, in accordance with this sixth example. Thereafter the present value of the 6 lb (which is to be paid in 7 years) in accordance with the first example of this proposition. And the sum of these two amounts would be the required value.

Note also, for brevity's sake, that if precisely 100 lb were to be paid several years in succession and if it were not necessary to know the amount of the sh. and the d., as sometimes happens, the first figures in the third table indicate the amount of the pounds without any calculation having to be made. For example: What is the present value of 100 lb to be paid yearly during 12 years, interest at the 16 th penny to be subtracted?

I look it up in the table of the 16 th penny, where I find the first figures of the 12 th year to be 827 ; therefore 827 lb (on the understanding that this number still lacks sh. and d.) is the solution. But if the amount had been 200 lb , to be paid yearly during 12 years, one would merely have to double this 827 lb , the solution thus being $1,654 \mathrm{lb}$, from which can be inferred the general rule how to find the sum with $300 \mathrm{lb}, 400 \mathrm{lb}$, and also with precisely one thousand and the like.


## PROBLEMATA GEOMETRICA




## INTRODUCTION

## § 1

Stevin's contributions to geometry illustrate the fundamental position of Euclid's Elements in the work of sixteenth-century mathematicians. The Elements were their main source of reference, to which they constantly returned for knowledge, method, and inspiration. The typically "Greek" reasoning of Euclid, which was also basic to the demonstrations of Apollonius and Archimedes, geometrical to the core, was an essential element in the mathematical thinking of sixteenth-century Europe.

This Greek influence was gradually undermined by the adaptation of the arithmetical-algebraic methods traditional in the Orient, which reached Europe almost entircly through authors originally writing in the Arabic language. Stevin's Tables of Interest present a good example of how the practice of life itself compelled mathematicians to become proficient in these methods. On a higher theoretical level we see the same influence at work in Stevin's Arithmétique. Even the Problemata Geometrica, though fundamentally a series of papers based on the "Greek" approach, shows the influence of the Arabic tradition in several places.

Several printed editions of the Elements existed in Stevin's days. One of Stevin's favourites was the Latin edition by Clavius, the Jesuit astronomer at the Vatican. It was a thorough piece of work, first published in 1574, consisting of two volumes in a rather handy quarto size. It had the advantage of introducing the reader to related work by other mathematicians, explained in Scholia to the text 1). Other books used by Stevin in preparing his Problemata were Dürer's Underweysung of 1525 and Commandinus' Latin edition of the principal works of Archimedes of 1558

The Problemata consists of five books, each with a topic of its own ${ }^{2}$ ). The first book, after an introduction on proportions of lines, solves problems concerning the division of polygons into parts of a given ratio. The second book contains the application of the so-called regula falsi to certain constructions or, in other words, shows how certain constructions can be performed with the aid of similarity of figures. In the third book we find Stevin's studies on regular and semi-regular polyhedra. The fourth book deals with the construction of a polyhedron of a given volume similar to a given polyhedron, the fifth book with the construction of a polyhedron similar to two (similar) polyhedra and equal to either their sum or their difference. While the first and second books are based on Euclid, the third is based on Dürer; the last two are the result of Stevin's study of Archimedes.

[^7]
## § 2

The first book opens with a classification of ratios and proportions, based on the fifth book of Euclid's Elements. This classification, in its attempt to give special names to particular proportions, strikes us as clumsy and pedantic, but Stevin merely followed an ancient tradition. All this labelling was fundamentally due to a serious desire to understand Euclid, though it was encumbered with relics from the works of medieval latinists ${ }^{3}$ ). The following list may explain some of the terminology for ratios in a modern fashion:

| $(n+1): n$ | superparticularis | $n:(n+1)$ subsuperparticularis |
| :---: | :---: | :---: |
| $(n+l): n$ | superpartiens | $n:(n+l))$ |
| $k n: n$ | multiplex | $n: k n$ like the corresponding terms to |
| $(k n+1): n$ | multiplex superparticularis | $n:(k n+1)$ the left, with "sub" prefixed: |
| $(k n+l): n$ | multiplex superpartiens | $n:(k n+l)$ |

In accordance with the Greek precedent the cases $l=1$ and $l>1$ are treated separately, since unity was not considered a number. Stevin was later to break with this concept (see the introduction to L'Aritbmétique).

There are terms for special ratios in accordance with the general scheme. For instance:

2:1 dupla, $\quad 3: 1$ tripla
$(n+1): n\left\{\begin{array}{l}n=2 \\ n=3 \\ n=3 \\ \text { sesquitertia, hence } 4: 3\end{array}\right.$
$n:(n+1) \begin{cases}n=2 & \text { subsesquialtera, hence } 2: 3 \\ n=3 & \text { subsesquitertia, hence } 3: 4\end{cases}$
$(n+2): n \begin{cases}n=3 & \text { superbipartienstertias, hence } 5: 3 \\ n=5 & \end{cases}$
$(k n+1): n\left\{\begin{array}{l}k=2, n=4 \text { duplasesquiquarta, hence } 9: 4 \\ k=3, n=6 \text { triplasesquisexta, hence 19:6. }\end{array}\right.$
There are more terms in Stevin's text, which are not all to be found in Clavius, but which all formed part of the regular curriculum of the universities. The figures, with the simple numerical illustrations, are similar to those in Clavius.
The next part consists of the application of this theory of proportions to the problem of the division of figures into parts of a given ratio. Stevin found an example of this problem in an appendix by Clavius to the 6th book of the Elements, where it is shown how to divide a triangle into two parts in a given

[^8]ratio by a line passing through a point on a side ${ }^{4}$ ). This was not, however, an original idea of Clavius. As he sets forth himself in the Prolegomena to his translation, he found the problem in a book published by Commandinus and John Dee in 1570, which, he says, though ascribed to a certain Mahomed of Bagdad 5), may have been Euclid's book on Divisions 6). Stevin, who did not know this book, took Clavius' problem and discussed aspects of it in his first set of three problems. Then he himself added five more problems, which he thought to be novel. All eight problems deal with the division of polygons in a given ratio either by a line through a vertex, or by a line through a point on a side, or by a line parallel to a side.

They were not so very novel after all, as Stevin would have discovered if he had found an opportunity to consult Mahomed of Bagdad-Commandinus. We do not know if he ever did. But after the Problemata had been published and Steyin had found the time to catch up in his reading, he discovered some other authors who had dealt with the division of figures 7). Stevin mentions Cardan, Ferrari, and especially Tartaglia in a part of his General Trattato (1560) 8). These authors took their inspiration directly or indirectly (through Paciolo's Summa of 1494) from Leonardo Pisano's Practica Geometriae (1220), and through this book from Arabic sources. We now know that the text of Mahomed of Bagdad and that of Leonardo Pisano are different versions of the lost book of Euclid on Divisions of Figures. It has been possible to reconstruct the lost book from these different versions, together with another one, found by Woepcke in 1851 in a manuscript text ${ }^{9}$ ). This book, as the title indicates, contains a large number of problems of the same nature as those of Stevin, in the first book of his Problemata.

Stevin also mentions in the Meetdaet that after his book had been published, Benedetti published a treatise in which the division of figures was taken up ${ }^{10}$ ). However, despite all this competition, Stevin's work was excellent enough to be preferred by Clavius, who in 1604 praised his treatment of the division of figures above the others ${ }^{11}$ ). Stevin himself was not too satisfied with his work,
4) Clavius, l.c. ${ }^{1}$ ), p. 230 r., Problema XIII: "A dato puncto in latere trianguli lineam rectam ducere quae triangulum dividat in duo segmenta secundam proportionem datam." ${ }^{5}$ ) De superficierum divisionibus libri Machometo Bagdedino ascriptus nunc primum Joannis Dee Londinensis et Federici Commandini Urbinatis opera in lucem editus (Pesaro, 1570). There was an Italian translation of $157^{\circ}$ and an English one of 1660.
${ }^{6}$ ) Clavius, l.c. ${ }^{1}$ ), P. 4, dealing with Euclid: "Opus de Divisionibus, quod nunnulli suspicantur esse libellum illum acutissimum de superficierum divisionibus, Machometo Bagdedino ascriptum, qui nuper Ioannis Dee Londinensis et Federici Commandini Urbinatis opera in lucern est editus".
${ }^{7}$ ) Meetdaet, p. 144. See our Introduction.
${ }^{8}$ ) N. Tartaglia, La quinta parte del general trattato de' numeri et misure. Venetia 1 g 6 o , fol. 23.v-44 ${ }^{\mathrm{v}} \mathrm{R}$.
${ }^{9}$ ) R. C. Archibald, Euclid's Book on Divisions of Figures . . . with a restoration based on Woepcke's text and on the Practica Geometriae of Leonardo Pisano (Cambridge, I915, VIII + 88 pp.) - This book has an extensive bibliography, in which the references to Leonardo, Cardan, and Ferrari can be found.
${ }^{10}$ ) G. B. Benedetti, Diversarum speculationum mathematicarum et physicarum liber (Taurini, 1585), esp. pp. 304-307.
${ }^{11}$ ) Clavius, Opera mathematica II (Mainz, 1611), p. 417; after having mentioned the DeeCommandinus edition as "acutissimus et eruditione resertissimus", Clavius continues: "Idem vero postea argumentum alia via agressus est, et meo certo iudicio, faciliori, et
and in his Meetdaet improved in several ways on his Problemata. In particular he generalized the problem of the division of figures by taking the point through which the line of division has to be constructed, inside and outside the polygon in any position ${ }^{12}$ ).

## § 3

The second book of the Problemata contains problems involving the so-called ",regula falsi", the rule of the false supposition 13). It is a device to solve problems leading to the linear equation $a x=b$ by first substituting for $x$ an arbitrary number $x=x_{0}$; if $a x_{0}=b_{0}$, then $x: x_{0}=b: b_{0}$ and $x$ is found by means of proportion. It is a method used even now by people unfamiliar with algebra - or, in the language of the sixteenth century, unfamiliar with "coss". The device also functions for problems which lead to an equation of the form $a x+b=c$; in this case we need two "false suppositions" $x=x_{1}, x=x_{2}$; if $a x_{1}+b=c_{1}, a x_{2}+b=c_{2}$, then $\left(x-x_{1}\right):\left(x-x_{2}\right)=\left(c-c_{1}\right):\left(c-c_{2}\right)$, and $x=\frac{x_{2}\left(c-c_{1}\right)-x_{1}\left(c-c_{2}\right)}{c_{2}-c_{1}}$. This is the "regula falsi duplicis positionis". Both rules are standard in all sixteenth-century books on arithmetic, and Stevin also teaches them in his La Pratique D'Arithmétique 14). In the Problémata Stevin introduces this "regula falsi" in accordance with this desire to bring about as close a relation as possible between arithmetical and geometrical proportions. Applying the "regula falsi" to problems in geometry, he has to consider proportions, and this amounts to the solution of certain geometrical problems by means of similarity. If, for instance (Ex. II), we have to construct a square when the difference between diagonal and side is given, we start with any square (this is the false supposition), determine for this square the difference between diagonal and side, and then find the side of the required square by means of a proportion. All that Stevin now requires is Euclid's theory of proportions, which he finds in Books V and VI of the Elements.

## § 4

The third book is by far the most interesting part of the Problemata. It contains a theory not only of the regular solids, but also of certain semi-regular solids and of polyhedra which Stevin calls "augmented regular solids". All Stevin had to go by was Euclid's Elements, Book XIII, the so-called XIVth, XVth, and XVIth books, which Clavius also had translated, and Dürer's Underweysung der

[^9]Rechnung mit dem Zirckel und Richtscheyt of 152515). From Euclid-Clavius Stevin obtained his information on the five regular solids, from Dürer the method of obtaining semi-regular solids (as well as the regular ones) by paper-folding. To understand these different achievements, we shall denote a polyhedron with $m$ faces which are regular polygons of a sides, $n$ faces which are regular polygons of $b$ sides, etc., by $\left\{m_{a}, n_{b}, \cdots\right\}$. Then the five regular solids are the tetrahedron $\left\{4_{3}\right\}$, the cube $\left\{6_{4}\right\}$, the octahedron $\left\{8_{3}\right\}$, the dodecahedron $\left\{12_{5}\right\}$, and the icosahedron $\left\{20_{3}\right\}$. A semi-regular solid or, as Stevin calls it, a "truncated regular solid" is defined (Def. 11) as a solid inscribed in a sphere, of which all the solid angles are equal, of which the faces are regular polygons which are not all congruent, and of which all the edges are equal. Dürer had the models of seven such solids: $\left\{4_{3}, 4_{6}\right\},\left\{8_{3}, 6_{8}\right\},\left\{6_{4}, 8_{3}\right\},\left\{8_{6}, 6_{4}\right\}$, $\left\{18_{4}, 8_{3}\right\},\left\{6_{4}, 32_{6}\right\},\left\{6_{8}, 8_{6}, 12_{4}\right\}$. Dürer had two more models, but one of these, $\left\{6_{4}, 12_{3}\right\}$, has some isosceles triangles, while the other $\left\{6_{12}, 32_{3}\right\}$, as Stevin showed, is impossible as a closed polyhedron ${ }^{16}$ ).

Stevin reconstructed these solids, not only from plane diagrams by folding, but also by finding the method by which these solids are generated by cutting off (truncating) parts of the regular solids. He found three types not described by Dürer. We can give a survey of his results and those of others in the following way.

The five regular solids can be divided into two pairs of dually related bodies, the pair $\left\{6_{4}\right\}$ and $\left\{8_{3}\right\}$, and the pair $\left\{12_{5}\right\}$ and $\left\{20_{3}\right\}$, and the tetrahedron $\left\{4_{3}\right\}$, which is dual to itself. By duality is meant one-to-one correspondence of vertices and faces, edges corresponding to themselves. For instance, the cube $\left\{6_{4}\right\}$ has 8 vertices and 6 faces, while the octahedron $\left\{8_{3}\right\}$ has 6 vertices and 8 faces; both have 12 edges. The polyhedra $\left\{12_{5}\right\}$ and $\left\{20_{3}\right\}$ both have 30 edges.
Semi-regular solids can be obtained from the regular solids by truncation, as follows:

1) cutting off pyramids at the vertices up to the centre of the adjacent edges, so that the original edges disappear:
a) $\left\{4_{3}\right\}$ passes into a smaller $\left\{4_{3}\right\}$.
b) $\left\{6_{4}\right\}$ and $\left\{8_{3}\right\}$ pass into $\left\{6_{4}, 8_{3}\right\}=\left\{8_{3}, 6_{4}\right\}$. Described by Stevin in Def. 13, Section 15 (also Def. 17). Kepler later called this solid cuboctabedron.
c) $\left\{12_{5}\right\}$ and $\left\{20_{3}\right\}$ pass into $\left\{12_{5}, 20_{3}\right\}=\left\{20_{3}, 12_{5}\right\}$. Described by Stevin in Def. 21, Section 18 (also Def. 19). Kepler later called this solid icosidodecabedron. Wanting in Dürer.

[^10]2) cutting off pyramids at the vertices till the original faces have become regular polygons with twice the number of sides:
a) $\left\{4_{3}\right\}$ passes into $\left\{4_{3}, 4_{6}\right\}$. Described by Stevin in Def. 12, Section 11,
b) $\left\{6_{4}\right\}$ passes into $\left\{6_{8}, 8_{3}\right\}$. Described by Stevin in Def. 14, Section 12.
c) $\left\{8_{3}\right\}$ passes into $\left\{8_{6}, 6_{4}\right\}$. Described by Stevin in Def. 16, Section 18.
d) $\left\{12_{5}\right\}$ passes into $\left\{12_{10}, 20_{3}\right\}$. Described by Stevin in Def. 20, Section 17. Wanting in Dürer.
e) $\left\{20_{3}\right\}$ passes into $\left\{20_{6}, 12_{5}\right\}$. Described by Stevin in Def. 22, Section 19. Wanting in Dürer.
3) letting faces shrink into similar ones. At the edges squares are formed, instead of vertices there appear regular triangles, squares or pentagons:
a) $\left\{4_{3}\right\}$ passes into $\left\{8_{3}, 6_{4}\right\}=1$ b)
b) $\left\{6_{4}\right\}$ and $\left\{8_{3}\right\}$ pass into $\left\{18_{4}, 8_{3}\right\}=\left\{8_{3}, 18_{4}\right\}$. Described by Stevin in Def. 15, Section 13.
c) $\left\{12_{5}\right\}$ and $\left\{20_{3}\right\}$ pass into $\left\{12_{5}, 20_{3}, 30_{4}\right\}$. Wanting in Stevin and.Dürer, but to be found in Archimedes.
4) letting faces shrink and be transformed into regular polygons with twice the number of sides. At the edges squares are formed:
a) $\left\{6_{4}\right\}$ and $\left\{8_{3}\right\}$ pass into $\left\{6_{8}, 8_{6}, 12_{4}\right\}$. Described by Stevin in Def. 16, Section 14.
b) $\left\{12_{5}\right\}$ and $\left\{20_{3}\right\}$ pass into $\left\{12_{10}, 20_{6}, 30_{4}\right\}$. Wanting in Stevin and Dürer, but to be found in Archimedes.

Apart from these solids there exist two more semi-regular bodies. One, $\left\{32_{3}, 6_{4}\right\}$, was found by Stevin, Appendix, p. 83, and Stevin remarks that it does not seem possible to obtain it from one of the regular bodies by truncation. It is asymmetric in the sense that there are two forms, distinguishable by the epithets left and right. Kepler called this solid cubus simus, snub cube. There also exists a semi-regular body $\left\{12_{5}, 80_{3}\right\}$ with the same type of symmetry, wanting in Stevin, which Kepler called snub dodecahedron.

Stevin thus obtained, apart from the seven Dürer types, the additional solids $\left\{20_{3}, 12_{5}\right\},\left\{12_{10}, 20_{3}\right\}$, and $\left\{20_{6}, 12_{5}\right\}$. He was one of the first, if not the first, in Renaissance days to find all these ten.

However, shortly after he had published his Problemata, the Collectiones mathematicae of Pappus appeared in print for the first time (1588), and this book contained an account of Archimedes' work on the semi-regular solids 17). It was then found, not only that Archimedes had listed all of Stevin's polyhedra, but that he even had three additional ones, which we have marked $\left\{12_{5}, 20_{3}, 30_{4}\right\}$, $\left\{12_{10}, 20_{6}, 30_{4}\right\}$, and $\left\{12_{5}, 80_{3}\right\}$. There is no sign in the Meetdaet to show that Stevin became aware of this contribution by Archimedes, nor is there any sign that he ever knew of any other student of semi-regular solids besides Dürer 18).

Pappus' enumeration of Archimedes' solids was made the subject of a study

[^11]by Kepler in 1619 19). Kepler derived them systematically, illustrated his description by figures, and gave them the names by which they are still known. Kepler was also the first to pay attention to the polar figures of the "Archimedean solids", as he called them. He described two of them, the polar of $\left\{8_{3}, 6_{4}\right\}$, called the rbombic dodecabedron, and the polar of $\left\{20_{3}, 12_{5}\right\}$, called the rbombic triacontabedron.
Besides the thirteen Archimedean solids described by Kepler there exist two more, but they are rather trivial ones. They are obtained by taking two regular polygons of $n$ sides in two parallel planes, and placing them in such a way that they are either the bases of a rectangular prism with square faces, or the bases of an antiprism (prismoid) with equilateral faces. Their symbols are $\left\{2_{n}, n_{4}\right\}$, $\left\{2_{n}, 2 n_{3}\right\}$.

The third book of the Problemata also contains a description of what Stevin called "augmented regular solids". These are polyhedra obtained by placing on top of each face of a regular polyhedron as base a pyramid with equal edges. Stevin lists all five of them. He was led to the consideration of these solids by a discovery of Frans Cophart, leader of the Collegium Musicum at Leiden. Cophart had taken a cube and cut out twelve tetrahedra, each having the end points of an edge and the midpoints of the faces through this edge as vertices. The solid thus obtained by "faceting" the cube is what is now called the stella octangula; it is bounded by twenty-four congruent equilateral triangles. Cophart had claimed it as a sixth regular solid.

Stevin, while admiring the discovery, had to deny this claim. He pointed out that the vertices of Cophart's solid do not all lie on one sphere, but are distributed on two spheres, six on one sphere and eight on a concentric one. At the same time he discovered another construction of the solid by starting, not from a cube and then faceting it, but from an octahedron and then "augmenting" it by placing a regular tetrahedron on each face with this face as base. He now saw that this procedure could be applied to all regular bodies, and in this way he obtained four new polyhedra.

Of all these five solids of Stevin we only call the stella octangula a regular star-polyhedron. The reason is that regular star-polyhedra are obtained from the regular polyhedra by the process of "stellating", i.e. by producing the planes of the faces and allowing non-adjacent faces to intersect in such a way that the faces of the new solid are regular star-polygons (polygons obtained by allowing non-adjacent sides of regular polygons to intersect). This procedure does. not yield a new body in the case of the regular tetrahedron and the cube, but gives us the stella octangula in the case of the regular octahedron. We also obtain regular star-polyhedra by stellating the regular dodecahedron and icosahedron; for each of these solids we obtain two possible star-polyhedra. But whereas these four bodies are single, the stella octangula is found to be the intersection of two regular tetrahedra. We may thus speak of nine regular solids: five ordinary (Platonic) and four stellated ones.
These solids can be obtained, not only by stellating, but also by "faceting" the five Platonic bodies, i.e. by taking solid pieces out of them in accordance with definite directives. The Copland solid was obtained by faceting a cube. We

[^12]now see that Stevin was on the way to show how to replace faceting by stellating; unfortunately, he missed the final step. He also missed the other fundamental property of the stella octangula, viz. that it is decomposed into two regular tetrahedra. Instead of this he continued to construct other augmented solids by placing equal-edged pyramids on top of the faces of the other Platonic bodies ${ }^{20}$ ).
Stevin does not seem to have been aware that Pacioli, in his Divina proportione of 1509 , had enumerated a large number of solids obtained from regular solids by "rruncating" and "augmenting" - procedures called by Pacioli "abscindere" and "elevare" 21). However, Pacioli did not show how these solids are to be obtained from Platonic bodies by Monsignor Daniel Barbaro. The La Pratica Della that he actually constructed models of some, if not all, of his polyhedra). It was Dürer who stressed the method of paper-folding, and it was from him that Stevin obtained his ideas. It also seems to have escaped Stevin's attention that Dürer's ideas had been applied to many semi-regular and other polyhedra obtained from Platonic bodies by Monsignor Daniel Barbaro. The Pratica Della Perspectiva of this Patriarch of Aquileia, published in 1568 22), contained not only the description of a large number of polyhedra obtained by truncating or augmenting the Platonic bodies (many of them are non-Archimedean solids), but also their construction by paper-folding, as well as a representation of them in perspective drawing ${ }^{23}$ ).

## § 6

The fourth and fifth books of the Problemata Geometrica present Stevin to us as a student of Archimedes. The editio princeps of Archimedes' works had appeared at Basle in 1544; it contained not only the original Greek text and a Latin translation, but also the precious commentaries of Eutocius, again both in Greek and in Latin 24). Another useful, though limited, edition was the Latin trans-

[^13]lation of five of Archimedes' treatises with Eutocius' commentary on one of them, prepared by Commandinus and published in $1558{ }^{25}$ ). Stevin quotes Commandinus' edition, but he must also have known the editio princeps, since he shows himself to be acquainted with material which is to be found in the publication of 1544, but not in that of $1558{ }^{26}$ ).
Archimedes, in the book On the Sphere and Cylinder, the book in which he determines the area and the volume of the sphere, solves some problems which involve the finding of the two mean proportionals between two given lines. An example is formed by the problem: "given two spherical segments, to find a third segment similar to the one and having its volume equal to that of the other"; another example consists in the problem of finding a sphere equal in volume to a given cone or cylinder. These problems have in common that they lead up to what we call a cubic equation, and in particular to an equation of the form $x^{3}=a r^{3}$, where $r$ is a given line and $a$ a given number. Thus the second problem, in the case of a given cone of height $b$ and base radius $r$, leads to the equation $x^{3}=\frac{b}{4} r^{2}=\frac{b}{4 r} r^{3}$ for the radius $x$ of the sphere. The classical example of such problems is the duplication of a cube, where $a=2$. A common Greek method of solving such problems was that by means of two mean proportionals $x, y$ between two given lines $a, b$; if
$$
a: x=x: y=y: b
$$
then $x^{3}: a^{3}=b: a$. In the case mentioned above we might write, for instance: $r: x=x: y=y: \frac{b}{4}$. However, two mean proportionals between two given lines cannot be constructed with compasses and straightedge alone. It is one of the merits of Eutocius (6th cent. A.D.) that he preserved in his commentaries a large number of solutions for this problem; they bear the names of Hero, Diocles, Eratosthenes, Apollonius and Plato, and of several others 27). They solve the problem either by the intersection of certain curves or by the use of some special instrument ("mechanice" - "tuighwerckelyk", as Stevin was to translate it). About all this Stevin could find information in the editio princeps. Moreover, in Commandinus' edition, though it does not contain the book On the Sphere and Cylinder with its commentaries, there are several problems which belong to the same group ${ }^{28}$ ). The first is the problem: "Given any two cones (or cylinders), to find a third cone (or cylinder), equal in volume to the first and similar to the second"; the second replaces the full cone (or cylinder) by segments. The
25) Arcbimedis opera non nulla a Federigo Commandino Urbinate nuper in Latinum conversa ot commentariis illustrata (Venice, 1558). This edition contains Circuli dimensio, De lineis spiralibus, Quadratura parabolae, De conoidibus et spbaeroidibus, De arenae numero, and Eutocius' commentary on the Circuli dimensio.
${ }^{20}$ ). On Archimedes, apart from the edition by J. Heiberg, Arcbimedis opera omnia cum commentariis Eutorii (Lipsiae, 1910-1915), see the following books:
P. Ver Eecke, Les oeuvres complètes d' Archimède (Paris, Bruxelles, 1921) LIX + 553 pp. . E. J. Dijksterhuis, Archimedes (Copenhagen, 1956), 422 pp .
${ }^{27}$ ) On these methods, apart from the books mentioned sub $\left.{ }^{26}\right)$, see Th. Heath, History of Greek Mathematics (Oxford, I921) I, pp. 244-270, or id., A Manual of Greek Mathematics
(Oxford, 1931), pp. 154-170.
${ }^{26}$ ) Commandinus, l.c. $\left({ }^{25}\right)$, pp. ${ }^{2} 2 \mathrm{r}$, v.
others replace cone and cylinder by ellipsoids and paraboloids of revolution and their segments.

Stevin, in his fourth book, casts the problem into its general form: "Given two solids $S_{1}, S_{2}$, to find a third solid $S_{3}$, equal to $S_{1}$ and similar to $S_{2}$ ". As such it is the generalization of the problem discussed in plane geometry by Euclid in Elements VI, 25. Euclid states the problem for arbitrary polygons. Stevin uses the general term "solid" and then makes use of the theorem that any solid can be changed into a cone of equal volume; he actually applies the theorem to the solids in which Euclid was interested; polyhedra, spheres, circular cones, cylinders, and to segments of cones: Stevin shows, for instance; how a spherical segment can be changed into a cone with equal base. Later, in the Meetdaet, he gives some more examples ${ }^{29}$ ).

Stevin's procedure is as follows: a) he changes $S_{1}$ into a circular cone $C_{1}$, and $S_{2}$ into a circular cone $C_{2} ; b$ ) he then changes $C_{1}$ into a cone $C_{1}{ }^{\prime}$ of the same altitude as $C_{2} ; c$ ) then constructs a cone $C_{3}$, similar to $C_{2}$ and equal to $C_{1}{ }^{\prime}$; d ) he then changes $C_{3}$ into an equal solid $S$, reversing the process by which $S$ was changed into $C_{2}$. The steps a), b), d) only involve ordinary proportions, step $c$ ) involves the construction of two mean proportionals; for this purpose Stevin mentions Hero's construction, on which Eutocius reports.

It is difficult to say how far the material provided by Stevin in his fourth book has any originality. Stevin seems to have felt this also, and therefore, in the last book of the Problemata, solved another problem leading to two mean proportionals between two lines, which appears to be a new one. Given two similar solids $S_{1}$ and $S_{2}, S_{1}>S_{2}$, Stevin asked to find a solid similar to $S_{1}$ and $S_{2}$, and equal to a) the sum of, b) the difference between $S_{1}$ and $S_{2}$. The problem was again solved by reducing the solids to circular cones.
${ }^{29}$ ) Meetdaet VI, Props. 3 I-34.



The Semi-Regular Solids


Inside the dodded contour : the 13 Archimedean solids.
Each solid is designated by two notations: one of W. W. R. Ball (History of Mathematics, inth edition, p. 136), and another, used in the text of this introduction. See also: Cundry-Rollett, Mathematical'Models, p. 94, 120. L. F. Toth, Lagerungen in der Ebene, p. 20.


## PROBLEMATVM

GEOMETRICORVM

In gratiam d. maximiliani, domini a crvningenac. editorum, Libri v.

eAuctore<br>SIMONE STEVINIO BRVGENSE.



ANTVERPIAE,
Apud Ioannem Bellerum ad infigne
Aquilx aurex.

# ILLVSTRIS S I MO <br> HEROI, D. MAXIMILIANO, DOMINO CRVNINGAE, CREVECVEVR, HEENVLIET, HASERVVOVDE, STEENKERCKEN, vicecomiti zelandiae \&x. 

SUPREMO MACHINARVM BELLICARVM INFERIORIS GERMANIAE PRAEEECTO.

## SIMOX STEUINIUS. S. . $\boldsymbol{P}$

eometriae, mediusfidius, vtilitas magna, imo vero necefsitas. Et vero, quid tandem non illi feremus acceptum? Ponamus nobis ante oculos pauca quredam ex multis, fine quibus certè neque cơmmodè, negue omnino benè viuitur. An non hinc domicilia, an non \& vrbes? an non veftes; omnifq́ue fuppellex? an non omnia cum pacis tum belli inftrumenta? Hic mihi tu ipfe teftis locupletifsimus, tu inquam Heros clarifs. qui nobilitate cuiuss par, ingenio fuperas omnes. Neque enim potes, neque, credo, vis celare tuos in hac arte profesus: fama hinc tibi magna: $\&$, quod noftro reculo infolens, inculpata.

$$
\mathrm{A}_{2}
$$

Equi.

# PROBLEMATA GEOMETRICA 

To the illustrious hero, Maximilian, Lord of Cruningen, Crevecueur, Heenvliet, Haserwoude,

Steenkercken, Viscount of Zeeland, etc. Supreme Superintendent of the Implements of War of the Low Countries. ${ }^{*}$ )

## SIMON STEVIN.

S. P.

Great indeed is the usefulness, nay the indispensability of Geometry. For indeed, what good thing do we not owe to it after all? Let us bear in mind a few things out of many without which life certainly cannot be lived so comfortably, nay, even not at all well. Do not the houses and the towns result from it, clothes and all furniture? And all implements, both of peace and of war? In this respect Thou Thyself art a most reliable witness, Thou, I say, most famous hero, who art the equal of anyone in nobility and excellest all in spirit. For Thou art neither able nor, I believe, desirous to conceal Thy proficiency in this art. Thou hast gained in it a great end, what is unusual in our age: an unblemished fame.
) Maximilian van Cruyninghen was born on July 29, 1555. By resolution of the States General of December 27, is 79 he was appointed General of the Artillery of the Army of the States General by anticipation, and by resolution of the States General of January 13, 1581 this appointment was made permanent. In 1597 he became a member of the Council of State for Zeeland and in 1600 Governor of Ostend, a post which he held only a short time. He died on January 5, I6I2 (see: F. J. G. ten Raa en F. de Bas, Het Staatsche Leger, 1568-1795. Deel I (Breda i9i1), pp. 151, 159, 240. Deel II (Breda 1918) pp. 275, 278).

IN GEOMETRICA PROBLE-
MATA SIMONIS.STEVINITI
Lucx Belleri 1. F. Carmen.
CVR opifex rerum Calos, cur pondera Terra Cur Maris Gndifoni tratitus, cur AEshera fecir? Quid polus? E quorfum calo radiantia fxit Lumana ? cur Lune curfus, Solifǵs iabores? Scilicet Gt rerum moles, E夭 congruus ordo, ad fe animos trabat bwmanos: propiuf gwe sidera Artificem per tanta fuan miracula poßent. Hinc Deus in paucis Jublimius organa Gexir Ingenï, per qua manuum fruitura fuarum, Et forme decor, Ef dewina pateret imago. Veré igitur Dinambeteres dixére Matbefin, Cuias ab arte labor, fuperas cognofrere fedes, Terrarnom, pelagióp bias, ©̛o operta tenebris Nature fecreta dedit: coramque cuers.
Queque bigores fuo religuas exufcitat Artes, Y suificam onfpirans animam: fragilefys per artus Lapfa, fouer, iusat, so toro fo corpore mifcet. Qualis $\operatorname{\text {bbefagramsexaftuasaggereNilus,}}$ Impatiens frent, Ef laxir iam luber habenis Per Pharios fpaciatar agros: omnem ${ }^{\text {g b benigno. }}$ Diluaio facundat bumum: iam bertace lato, Stant fruges, grasibuiggs tumet iamz campus ariffis. Ergo age, quid rantas ogulis bis cernere males, Aut Geri te ducit amor, doctaf(g) per artes So facili cuppis ire Gia : te Diva Matbefos Inforuet, EG religuas ibif comes Gnas per onnes; Doatrinaǵs alto ©

IN EIVSDEM GEOMETRICA PROBLEmata Henricus Vuithemius.
AEgyprus celerem feptenia per afia vilum Dumb Gidet in Garias ire, redire, plagar:
Dism Gidet obducios Giolento gurgite campos, Arvaǵg-limitibus cuntra carere futs:
Arte Geomesrica (mexdux nify facra beenfas)
Fluminis aduer $f$ p poblica dismna mouer.
Nonfatis effe purdins, dipingui lumite terras intermofeends ni quog'g morma fores.
Hazd alber $S I$ in O n confufa Mathemata cernens stevinives: numerss mee bene iuniza fuis
 Dofuiant facilem monilration Arree Giam.
|ase

## EPIST:

Equidé meritifsimò Refpublica fibi gaudeat, ego illi gratuler, delatam hanc tibi provinciam, vt bellicarum machinarum cura penes te fumma fit. Vota, fateor, fint omnium noftrum non iis opus effe, fed pace pasta, firma, ftabiliq́ue bello bellicifque inftrumentis femel, fimulq̆ue interdici, te quoque tua prxfectura abdicari. (Quodfifata duint, neq; te fententia vertit, finon maiora, iocondiora tamen à te pace, quam bello expectaremus. Neque enim dubitamus quin ingenium illud tuum, bellicis iam negotiis occupatum, fi Deus Patriam quandoque faluam pacatam velit, tum vero vel minimè in ipfo otio futurum fit otiofum.

Nunc certè, vt optimo iure Refpublica fuas Machinas, fuam Salutem, ita ego mea Problemata, meoslabores, tibi Patrono dignilisimo commendo, dedicoq́ue. Profint foris, profint domi. Tu, ea, fi mereantur, foue, fludiifq́que, vt foles, faue.

The Commonwealth therefore may rightly rejoice at this, and I congratulate them on the fact that Thou hast been entrusted with the whole task of attending to the implements of war. Let everyone, I declare, hope that they will not be needed, but that, once a firm and lasting peace has been concluded and war, along with the implements of war, is forbidden once and for all, Thou wilt also be able to forgo Thy command. If Fate ordains this and Thy disposition does not alter, in peacetime we might expect from Thee, if not greater, at any rate surely even more pleasant things than in wartime. For we do not doubt but Thy mind, which is now engrossed by military matters, will, once God preserves our country in peace, by no means become idle in retirement.
However, as the State by the best of rights is now doing with regard to its implements of war, its welfare, I entrust to Thee, as a most worthy protector, my Problemata, my work, and I dedicate them to Thee. I hope that they may benefit both public and private life. If they so deserve, mayest Thou be pleased to give them Thy approval and to promote them in Thy own studies, as Thou art wont to do.


## LIBER PRIMVS

IN QVO DEMONSTRABITVR QVOmodo à dato punato in latere cuiufcunque rectilinei, recta linea Geometricè ducenda fit verfus partem petitam, que rectilineum diuidat fecundum rationem
datam.

ITEM QVOMODOIN QVOCVNQVERECTIlineo ducenda erit linea recta \& parallela cum latere ipfius quxfito, qua rectulineum diuidat verfus partem petitam fecun. dum rationem datam.

QVे on a a in quibujdam demonftrationibus fequéntium Probles matum, babbebimus rationsm ac proportionum quedam inuftata rocabulaw, vt transformate proportionis © $\sigma$. Vtile duxi ante ipforium Problematum defriptionem, aperire quid cum ipfs vocabulis pelimus. Leem quid de ratione ac proporione fentiamus.

Dico enimmionem Geometricam, quam alij fub duobus terminis limitant, admittere terminos quotibet, quia tam inter tres quatuor vel plures, quam inter duas magnitudines, eSC ipjarum fecundum quantitatem mutua- babitudo. Hoc igitur retilitatis (ro feo loco apparebit) © (quian. res. ita fe babet) neceßitatis gratio ve concedatur petimus.

A 3

## FIRST BOOK,

in which it is to be demonstrated how from a given point on the side of any rectilinear figure a straight line is to be drawn geometrically towards a required part, which line divides the rectilinear figure in a given ratio.
Also how in any rectilinear figure is to be drawn a line parallel to a required side of said figure, which line divides the rectilinear figure towards a required part in a given ratio.

Since in certain proofs of the following problems we shall have certain unusual terms of ratios and proportions, e.g. of transformed proportion, etc., I have deemed it expedient to reveal before the description of the problems themselves what we mean by these terms. Also what are our views on ratio and proportion.
In fact, I say that Geometrical ratio, which others limit to two terms, admits of any desired number of terms, because between three, four or more as well as between two magnitudes there is a mutual relation in respect of quantity. We therefore request the reader to concede us this for the sake of utility (as will appear in its place) and necessity (because the matter is like this).

6
EX que conceßso opus erit, talis rationis ac proportionis or reliquorum ex ipfis dependentium definitiones defcribere . Ipfarum autem fumma in fubiecto fchemate exhibetur.


When this has been conceded, it will be necessary to describe the definitions of such ratio and proportion and the other things dependent on them. Now the sum of these is shown in the following scheme.

Magnitudes, which are also called terms, are compared in

|  | (regular | $\left\{\begin{array}{l} \text { positive Def. } 2 \\ \text { changed }\left\{\begin{array}{l} \text { transformed } \\ \text { inverted } \end{array}\right. \end{array}\right.$ | Def. 8 Def. 9 |
| :---: | :---: | :---: | :---: |
| ratio, which is | $\{$ irregular, | e.g. perturbed Def. 10 |  |
| proportion, which is | $\left\{\begin{array}{l} \text { regular } \\ \text { irregular, } \end{array}\right.$ | $\begin{cases}\text { positive } & \text { Def. } 12 \\ \text { changed } & \left\{\begin{array}{l} \text { transformed } \\ \text { inverted } \\ \text { alternated } \end{array}\right.\end{cases}$ <br> e.g. perturbed Def. 22 | Def. 19 Def. 20 Def. 21 |

## Definitio x.

Terminus eft vna finita magnitudo.
Explicatio.
Vo linea a dici poeft terminus, eodemque modo vna fuperficies aus onum corpus terminus dicitur quafi difinguens (potentialiter (altem) partes rationis aut proportionis: quare notandum eft bic fenfum effo de alio A termino quam babetur in 14 prop. lib.1. Euclid, nam ibi de extremitate vel extremitatibus magnitudinum loguitur: bic vero conidideram is totam magnitudinem, qiatenus e, limes, pt diximus, terminars pares rationis feu proportionis.

## Definitio 2.

Ratio magnitudinum eft diuerforum terminorum eiufdem gemeris magnitudinis mutua guxdam fecundum quantitatem has bitudo.

## Explicatio.



Sint quidam termini magnitudinis eiufdem ge42 I 3 neris (termini aullem diuterforum generum magnitus dinum non babent inter fe Geometricam comparationem) ve lineec a в с $\mathbf{D}$. ISitur illarum linearum mutua babituio jecurdum quantitatem, of a duplum ipfus в, Є̛ в duplum ipfius C, © D Jefquial: serum ipfus в ơc. dicitur ratio.

## Definitio 3.

Ratio in duobus terminis paucifsimis confiltit.

## Definition 1.

A term is one finite magnitude.

## Explanation.

Thus, the line $A$ may be called a term, and in the same way a figure or a body is called a term, as if to distinguish (at least potentially) the parts of a ratio or a proportion: for which reason it is to be noted that term is used here in another sense than in the 14th proposition *) of Euclid's 1st book, for there the extremity or extremities of magnitudes are referred to; here, however, we consider the whole magnitude, as far as it is a limit, as we have said, which terminates the parts of a ratio or a proportion.

## Definition 2.

A ratio of magnitudes is a certain mutual relation in respect of quantity of different terms of the same kind of magnitude.

## Explanation.

Let there be certain terms of a magnitude of the same kind (indeed, the terms of different kinds of magnitudes are not susceptible of Geometrical comparison among each other), such as the lines $A, B, C, D$. Then the mutual relation in respect of quantity of those lines, e.g. $A$ being twice $B$, and $B$ twice $C$, and $D$ one and a half times $B$, etc., is called their ratio.

## Definition 3.

A ratio consists of at least two terms.

[^14]Explicatio.
Tes ciara eff cum in omni comparatione ad minimum fint due quans titates quarum fit fimilitudo.

Definitio 4.
Dinaria ratio eft, qux in duobus terminis confiftit. Ternaria vero ratio qua in tribus terminis: Et fic pari ordine fecundum multtudinem terminorum vocabitur ratio.

Explicatio.
Ito duorum terminorum a в comparatio, dicitur à binis illis terminis binaria ratio. Eodem modo dicetur CDE ernaria, © FGHI quaternaria ratio ©oc.


## Definitio 5 .

AEquales rationes funt, quarum termini funt multitudine pares, $\&$ ve vnius rationis primi termin quantitas, ad fecundi termini quantitatem: fic alterius rationis primi termini quantitas, ad fecundi termini quantitatem. Si vero rationes effent ternarix : tunc vt vnius rationis primi termini quantitas, ad fecundi, \& fecundi ad tertii: fic alterius rationis primi termini quantitas, ad fecundi, \& fecundi ad tertii: \& fic deinceps pari ordine in omnibus rationibus fecundum multitudinem terminorum.

## Explanation.

This is clear, since in every comparison there are at least two quantities which are similar to one another.

## Definition 4.

A binary ratio is a ratio which consists of two terms. A ternary ratio, however, is a ratio which consists of three terms. And thus in the same way the ratio is called after the number of its terms.

## Explanation.

Thus, the comparison of two terms $A, B$ is called, after those two terms, a binary ratio. In the same way $C: D: E$ will be called a ternary, and $F: G: H: I$ a quaternary ratio, etc.

Definition 5.
Equal ratios are ratios whose terms are the same in number, and as in the one ratio the quantity of the first term is to the quantity of the second term, so in the other ratio is the quantity of the first term to the quantity of the second term. But if the ratios are ternary ratios, then as in the one ratio the quantity of the first term is to that of the second term, and that of the second term to that of the third term, so in the other ratio is the quantity of the first term to that of the second term, and that of the second term to that of the third term; and so on in the same way with all the ratios according to the number of the terms.

## Explicatio.

Sit binariaratio A $上$, cuius primitermini quantitas A, fit duplum fecundi termini B: Sit e altera ratio binaria C $D$, cuius primi termini guantitas $C$, fit quoque duplum jecunde D . Igitur ratio A B, aqualis decitur rationi C D. Si verò effet ternaria ratio vi E F G, cuus primi termini quanatitas E , fir jéquialtera \ecundi F , © jecundi termini F quantitas, /If fubduplum teriij G . Effecque đ̛ altera ternaria ratio H I K , cuius primi termini quantitas $\mathrm{H}_{3}$ fit quoque fefquialtera fecundi, of fecundi termini I quantitas, fit quoque jubáuplum tertij K: Igitur ratio EFG equalis dicitur rationi HIK.

## ABCDEFGHIK



Idem intelligendum erit de rationibus equalibus inexplicabilium magnizudinum.

Definitio 6.
Explicabilis ratio eft qux explicabili numero explicari puteft.
Explicatio.
Vt babitudo fecundum quantitatem relta a ad reltum B , fit dupla. Quare, quia talis ratio explicabili numero explicatur (fumus autem in fententia allorum qui radices inexplicabiles numerum vocant, de quo alias in nofira Algebra latius dicetur) nempe boc vocabulo dupla, dicitur a в explicabilis ratio: Idemque intellıgendum est in ternaria ov quaterna raa tione, ©̛́c. Huc pertinent explicabilis binaric rationis 乃pecies © $\int$ fubdiuifones, quas in Jubfcripta tabula complectemur boc modu:

А $\boldsymbol{B}$
21
11

## Explanation.

Let there be a binary ratio $A: B$, the quantity of whose first term $A$ is twice the second term $B$. Let there also be another binary ratio $C: D$, the quantity of whose first term $C$ is also twice the second term $D$. Then the ratio $A: B$ is said to be equal to the ratio $C: D$. If, however, there is a ternary ratio, such as $E: F: G$, the quantity of whose first term $E$ is one and a half times the second term $F$, and the quantity of the second term $F$ is one half the third term $G$, and if there is another ternary ratio $H: I: K$, the quantity of whose first term $H$ is also one and a half times the second term, and the quantity of the second term $I$ is also one half the third term $K$, then the ratio $E: F: G$ is said to be equal to the ratio $H: I: K$.

The same is to be understood with regard to equal ratios of irrational magnitudes.

## Definition 6.

A rational ratio is a ratio which can be expressed by means of a rational number.

## Explanation.

Thus, let the relation in respect of quantity of the line $A$ to the line $B$ be double. Therefore, because such a ratio is expressed by means of a rational number (we are of the opinion of those who call irrational roots numbers, about which we shall speak more fully elsewhere in our Algebra) *), to wit by the word "double", $A: B$ is called a rational ratio. And the same is to be understood with regard to a ternary and a quaternary ratio, etc. Here belong the kinds and subdivisions of a rational binary ratio, which we include in the table below, as follows:
') See L'Aritbmétique, Def. XXXI.



Inexplicabilis ratio eft, qux explicabili numero explicari non poceft.

Explicatio.
Vt git inter infinitas alias magnitudines latus quadrati ad eiufdem quaarati diagonalem.

Definition 8.
Transformata ratio eft, in qua per refumptionem fit termini vel terminorum transfigurato.

> Explicatio.

Sit data ratio quecunque wit binaria A B, ad B C, Igitar fitota A C, fumatur pro wno termino, to comparetur ad alterutrum datum terminum, ve A B, proaltero termino, dicetur illa fumptio A C, ad A B, (propect cer: minorum transffgurationem) transformata ratio (quam alij compofiram rationem rocant) data rationis A B, ad B C .

Aut alio modo jecetar à relta в C , refla в D , equalis recte a B , fit jue religuum D C: Igitur $f$ D C, /umatur pro ono termino, đr comparetar ad alcerutrum datum terninum, vt A B, pro altero termino, dicetur illa jum: pric D C, ad A B, (propter terminorum transfiguraticneni) transfirmata ratio ( 7 uam alij quogue cififunclam rationem vocant) date rationis A B, ad B C.

Aut alio modo fo jumatur pars quacunque retta a $\mathrm{B}, 2 t$ reda A E , $\mathrm{G}^{\circ}$ comparceur ad totam a c, vel ad quandam partem dictetur talis refumprio (propter terminorum transfigurationem) transformata ratio data rationiis A B, ad B C.

Aut fo mulitiplictur aliguis terminus vel termini pars, © comparetur ad tocam vol alequam partem rationis, dicetur zalis refumpzo (propter terminorum transfigurationem) transformata ratio data rationis.

In fumma omnem refumptionem per transffurationem termini vel terminorum ex data ratione originem trabentem, qua multis as peve infiuitis modis ficri potef, rocamus ipfies data rationss transformatain racionem.

Complectimurque hoc modo fub bac definitione Coniunclam, Diffunctam, $\nleftarrow$ Converfam rationem, fimul' © omnes alias rationes, quarum terminorum or jupra disimus fir per tranfigurationem mutatio. Qualis nero fit

Definition 7.
An irrational ratio is a ratio which cannot be expressed by means of a rational number.

Explanation.
Thus, among an infinite number of other magnitudes, the ratio of the side of a square to the diagonal of said square.

## Definition 8.

A transformed ratio is a ratio in which by re-association a transfiguration of a term or of terms is effected.

## Explanation.

Let any ratio be given, e.g. the binary ratio $A B: B C$. Then, if the whole $A C$ be taken as one term and compared with one of the two given terms, e:g. $A B$, as the other term, this association of $A C$ and $A B$ (on account of the transfiguration of the terms) will be called a transformed ratio (which others call a compound ratio) of the given ratio $A B: B C$.

Or, in another way, let there be cut from the line $B C$ the line $B D$, equal to the line $A B$, and let the rest be $D C$. Then, if $D C$ be taken as one term and compared with one of the two given terms, e.g. $A B$, as the other term, this association of $D C$ and $A B$ (on account of the transfiguration of the terms) will be called a transformed ratio (which others also call disjunct ratio) of the given ratio $A B: B C$.
Or, in another way, if a part of any line $A B$, e.g. the line $A E$, be taken and compared with the whole line $A C$ or with any part, such a re-association (on account of the transfiguration of the terms) will be called a transformed ratio of the given ratio $A B: B C$.
Or if a multiple be taken of some term or part of a term and compared with the whole or some part of the ratio, such a re-association (on account of the transfiguration of the terms) will be called a transformed ratio of the given ratio.
In general, we call every re-association through transfiguration of a term or of terms originating from a given ratio, which can be effected in many and almost an infinite number of ways, a transformed ratio of the said given ratio.
And we thus include in this definition the Conjunct, the Disjunct, and the Converse ratio, and likewise all other ratios whose terms have been changed, as we have said above, through transfiguration. However, which practical use is
in praxi buius definitionis v/ues, in demonflerationibus quorundam Problematum buius libri fatis erit manifeftum.
A E B
D C

Definitio 9.
Inverfaratio eft fumptio confequentis termini ad antecedentem.
Explicatio.
Sit data ratio A ad B , in qua comparetur A ad B, Igitur for comparemus pice verja confequentem $B$, ad antecedentem $A$, dicetur talus jimpuio $B$ ad $A$, inverfa ratio rationis A ad B .
A B


Definitio 10.
Perturbata ratio eft, comparatio fecundi termini ad tertium, \& primiad fecundum: fi verò plurium terminorum fuerit ratio, tum fecundiad tertium, \& tertij ad quartum, \& fic deinceps quamdiu ratio extiterit : tandemque primiad fecundum.


Explicatio.
Sint termini A B C D, Igitur fo comparemies B ad C of C ad D tamdemque A ad B talis comparatio dicitur per= turbata ratio.

Definitio Ir.
Perturbata ratio in tribus terminis paucifsimis confiftit.
Definitio 12.
Proportio magnitudinum eft duarum xqualium rationum fimilitudo.
made of this definition will be sufficiently shown in the proofs of some Problems of this book.

Definition 9.
Inverted ratio is an association of the consequent with the antecedent term.

## Explanation.

Let there be given the ratio $A: B$, in which $A$ is compared with $B$. Then, if we compare vice versa the consequent term $B$ with the antecedent term $A$, such an association of $B$ with $A$ is called the inverted ratio of the ratio $A: B$.

Definition 10.
Perturbed ratio is the comparison of the second term with the third, and of the first with the second; but if the ratio should comprise more terms, then of the second with the third, and of the third with the fourth, and so on as far as the ratio goes, and finally of the first with the second.

## Explanation.

Let the terms be $A, B, C, D$. Then, if we compare $B$ with $C$, and $C$ with $D$, and finally $A$ with $B$, such a comparison is called a perturbed ratio.

Definition 11.
A perturbed ratio consists of at least three terms.
Definition 12.
A proportion of magnitudes is the similarity of two equal ratios.

Sint due quecunque equales rationes, ve binaria A B, G C D, Illarm berd comparatio nempe ve fe habet $A$ ad B , fic fe babet C ad D dicitur proportio: Vel termini A B dicuntur proporcionales cum terminis CD.
A B C D
2346


Definitio 13.
Binaria proportio eft qux ex duabus æqualibus binarijs rationibus confitit. Ternaria verò proportio qux ex duabus xqualibus ternarijs rationibus conffitit, \& fic pariordine fecundum fpecies ratio * num vocabitur proportio.

## Explicatio.

Vt dua equales binaria rationes A B \& C C D , dicuntur binaria proportio: Similiter duse aqeales ternarize rationes E F G О Н I K, dicuntur ternaria proportio: Similiter due aquales quaternarie rationes LMNO, © $P Q R S$, dicuntur quaternaria proportio. Idem de roliquis, ot quinaria, fenaria $\because c$. proportione intelligendum eft.


## Explanation.

Let there be any two equal ratios, such as the binary ratios $A: B$ and $C: D$. Now their comparison, viz. as $A$ is to $B$, so is $C$ to $D$, is called a proportion; or the terms $A$ and $B$ are said to be proportional to the terms $C$ and $D$.

Definition 13.
A binary proportion is a proportion which consists of two equal binary ratios. But a ternary proportion is a proportion which consists of two equal ternary ratios, and thus in the same way the proportion will be called after the kind of the ratios.

## Explanation.

Thus, two equal binary ratios $A: B$ and $C: D$ are called a binary proportion. Similarly, two equal ternary ratios $E: F: G$ and $H: I: K$ are called a ternary proportion. Similarly, two equal quaternary ratios $L: M: N: O$ and $P: Q: R: S$ are called a quaternary proportion. The same is to be understood of the others, viz. of a quinary, a senary, etc. proportion.

## PRORLEMATVM

## Definitio 14.

Continua proportio eft, cum quilque intermedius terminus vice antecedentis $\&$ confequentis fumstur.

Explicatio.
Sit proportio A B C D, fitque terminus A duplus ip $\sqrt{i}$ B, $\sigma$ B duplus $i j \sqrt{1} \mathrm{C}$, $\leqslant \mathrm{C}$ duplus ip 1 D : igitur quia intermedij termıni, $v \in \mathrm{~B} \sigma \mathrm{C}$, vice antecedentis
 camus vt в ad C, fic C ad D)arunt в C C D termini proportionales.

Similiter fidaem terminu:s B, fumatur proconfequentitermino, बr dicarur, $w t$ A ad B, fic B ad C, erunt A B B C, termini proportionales. Eodem modo invenietur $\mathbf{C}$ pofje fumi pro antecedenti * conjequenti zermino, dicturüque A B CD proportio continua.

AвCD
8421


Definitio 15.
Comeinua proportio in tribus teamins paucifimis confifite
Explicatio:
Vt continua proportio A B C, inqua dicimus $D t$ A ad $B_{2} / f$ Bad $C$, est minoribers terminis quam rribus conflare non posest.

ABC
842


Defi-

## Definition 14.

Continuous proportion is if each of the mean terms may be taken as the antecedent and the consequent term.

## Explanation.

Let the proportion be $A: B=C: D$, and let the term $A$ be twice the term $B$, and $B$ twice the term $C$, and $C$ twice the term $D$, then because the mean terms, viz. $B$ and $C$, can be taken as the antecedent and the consequent term (for if $B$ is taken as the antecedent term, we also say: as $B$ is to $C$, so is $C$ to $D$ ), then $B, C, C, D$ will be proportional terms.

Similarly, if the same term $B$ is taken as the consequent term and it is said: as $A$ is to $B$, so is $B$ to $C$, then $A, B, B, C$ will be proportional terms. In the same way it will be found that $C$ can be taken as the antecedent and the consequent term, and $A: B=C: D$ will be called a continuous proportion.

Definition 15.
A continuous proportion consists of at least three terms.
Explanation.
Thus, the continuous proportion $A: B=B: C$, in which we say: as $A$ is to $B$, so is $B$ to $C$, cannot consist of fewer than three terms.

Difcontinua proportio eft cum quifque intermedius terminus vice antecedentis \& confequentis fumin non poteft.

## Explicatio.

Sit proportio A в C D, fitque terminus A duplus ipf в, ©゚ в, in fubiefqui alcera
 rice antecedentis $\begin{gathered} \\ \text { confoquentis fumi non poffunt (nam pt в ad c, fic non }\end{gathered}$ of C ad D ofc.) dicizur A в C $\mathrm{D}_{2}$ dif continua proportto.

ABCD


Definitio 17.
Difcontinua proportio in quatuor terminis paucifsimis confifit.
Explicatio.
It difontinua proportio A B C $口$ pracedentis decima fexta definitionis, confiftit in quatuor terminis, neque ex minoribss conflare potest.

Definitio 88.
Proportionis Homologitermini dicuntur, primus primx ratio: nis, cùm primo fecundx rationis: Similiter dicuntur Homolngi termin i fecundus primx rationis, cum fecundo fecundx rationis, \& fic part ordine in reliquis fecundum multirudinem terminorum.

## Explicatio.

Sit proportio quecunque, viternaria А в C, ad D ह F: giturprimus terminus a prime rationis, cum primo termino D, fecunde rationis, dicuntur Homologi termini: Eodemque modo dicuntur в E Homologi termini, $/$ /imilicer © C F Homologi zermini.

## Definition 16.

Discontinuous proportion is if each of the mean terms cannot be taken as the antecedent and the consequent term.

## Explanation.

Let the proportion be $A: B=C: D$, and let the term $A$ be twice the term $B$, and let $B$ be to $C$ in the ratio of $3: 4$, and let $C$ be twice the term $D$, then because the mean terms, viz. $B$ and $C$, cannot be taken as the antecedent and the consequent term (for as $B$ is to $C$, so is $C$ not to $D$, etc.), $A: B=$ $C: D$ is called a discontinuous proportion.

Definition 17.
A discontinuous proportion consists of at least four terms.

## Explanation.

Thus, the discontinuous proportion $A: B=C: D$ of the foregoing sixteenth definition consists of four terms, and cannot consist of fewer terms.

Definition 18.
Homologous terms of a proportion are the first of the first ratio to the first of the second ratio. Similarly, homologous terms are the second of the first ratio to the second of the second ratio, and thus in the same way with the rest, according to the number of terms.

## Explanation.

Let there be any proportion, e.g. the ternary proportion $A: B: C=$ $D: E: F$, then the first term $A$ of the first ratio with the first term $D$ of the second ratio are called homologous terms. And in the same way $B$ and $E$ are called homologous terms; similarly also $C$ and $F$ are called homologous terms.


Definitio 19.
Transformata proportio eft quax ex duabus xqualibus transfor: matis rationibus conliftit.

## Explicatio.

Sint dua rationes quarum prema A B ad B C, Secunda D E ad E F, fitque rationis A B ad B C cransformata ratio per 8. definitionem A G ad G C, cui aqualis ratio fit, transformata ratio DH ad H F : lgitur proportio à ratios nibus A G ad GC, © D H ad HF, dectur iransformata proportio data proportionis A B, B C, D E, E F. Poteflque liac transformata proportio tamvarijs modis accidere, quám funt transformataram rationum octaus definitionis differentia.


## NOTA.

Hac definitione transformate proportionis conceffa, fuperflua videntur theoremata 1.2.3.4.5.6.12.15.17.18. 19.20.22.6 24. lib. s,Euclid. que omnia cum multis alijs fimilibus (cum omnia jub bac voica definitione comprehendantur) in vno theoremate poßent explicari.

## Definitio 20.

Inverfa proportio eft qux ex duabus æqualibus inverfis ratio: nibus conffiftit.

## Definition 19.

Transformed proportion is a proportion which consists of two equal transformed ratios.

## Explanation.

Let there be two ratios, of which the first is $A B: B C$, the second $D E: E F$, and let the transformed ratio of the ratio $A B: B C$ by the 8 th definition be $A G: G C$, to which let the transformed ratio $D H: H F$ be equal. Then the proportion consisting of the ratios $A G: G C$ and $D H: H F$ is called a transformed proportion of the given proportion $A B: B C=D E: E F$. And this transformed proportion may occur in as varied ways as there are different kinds of transformed ratios of the eighth definition.

## NOTE.

Once this definition of a transformed proportion has been conceded, the theorems $1,2,3,4,5,6,12,15,17,18,19,20,22$, and 24 of Euclid's 5th book would seem to be superfluous; they can all, with many other and similar theorems (since they are all included in this one definition), be expressed in one theorem *).

## Definition 20.

Inverted proportion is a proportion which consists of two equal inverted ratios.

[^15]Explicatio.
Sit data proportio A B C $\mathrm{D}_{1}$ jigque DC rationis CD invorfa ractio por nouam definitoonem: Similiter в а rationis a в inverfa ratio: Igitur ff ins feraurur, $x=$ Dad C fic B ad A, vel, vo B ad A, fic Dad C, dicertur hoc argumentari ab inverya proportione, proportionis A B C $D$.

A B CD
2346


Definitio 21 .
Alterna proportio ef fimilis fumptio homologorum terminorum ad homologos terminos.

Explicatio.
Sit proportio quacunque, viteriaria A B C, DE F fumanturq́ue bomologi termini, Dt A D ©́ CF: Igitur proportio A D C F. dicitur alterna proportio data proportionis, potefigue boc modo alterna proportio ex ipfa data proportucne varis modis Jumi.
Abc Def
NOTA.


Dicitur in bac definitione fimilis fumptio, boc ef, fiautecedens terminus prima alerna rationis, tucrit ex prima data ratione, requiritur pt antecedens termintus jectunda alterna rationis, fumatur quoque exprima data ratione, ơ ita de confequentibus terminis, vt jupra facium eft, nam a \& c funt alterne proporionis antecedentes termini, 的 ex eadem prima data raticne.

Hac igitur fimilis fumptio objervatu neceßaria est, nam et/f da funt bomologi termini, fimiluer © C C F, Tamen ve D ad A fic non of Cad F : Ouare vt in definitione, termini funt /imiliser fumendi.

Notandum

## Explanation.

Let there be given the proportion $A: B=C: D$, and let $D: C$ be the inverted ratio of the ratio $C: D$ by the ninth definition. Similarly, let $B: A$ be the inverted ratio of the ratio $A: B$. Then, if it is inferred that as $D$ is to $C$, so is $B$ to $A$, or as $B$ is to $A$, so is $D$ to $C$, it will be said that this is proved from the inverted proportion of the propertion $A: B=C: D$.

Definition 21.
Alternated proportion is a similar association of homologous terms with homologous terms.

## Explanation.

Let there by any proportion, e.g. the ternary proportion $A: B: C=$ $D: E: F$, and let the homologous terms be taken, such as $A, D$ and $C, F$ Then the proportion $A: D=C: F$ is called an alternated proportion of the given proportion, and thus an alternated proportion can be taken from the said given proportion in various ways.

## NOTE.

In this definition a similar association is spoken of, i.e. if the antecedent term of the first alternated ratio is taken from the first given ratio, it is required that the antecedent term of the second alternated ratio be also taken from the first given ratio, and thus with the consequent terms, as has been done above, for $A$ and $C$ are antecedent terms of an alternated proportion and have been taken from the same first given ratio.
Hence it is necessary that this similar association be observed, for though $D$ and $A$ are homologous terms, and similarly $C$ and $F$, nevertheless as $D$ is to $A$, so is $C$ not to $F$. And therefore, as in the definition, the terms have to be associated in a similar way.

Notandum ef quoque alternam proporionem non foffe fumi nifi ex duabus rationibus eivjitem generis magnitudinis.

## Definitio 22.

Perturbata proportio eft fimilitudo duarum aqualiam rationum quarum altera eft perturbata.

$$
\begin{array}{cccc}
\text { ABC } & \text { DEF } & \text { GHIK } & \text { LMNO } \\
6.42 . & \text { 6.3.2. } & \text { 12.8.4.2. } & 6.3 .2 .5 .
\end{array}
$$



Explicatio. Sint duc rationes quartim prima А в С regularis per in.defi. © altera DEF perturbata per 10. defi. © aqualis prima rationi, id est, vi a ad $B, G$ B ad $C, f i c \mathrm{E}$ ad E © O ad̀ E. Idemq́ue intelligendum efl, obi rationes fuerint ex pluribus quain tribus terminis, pe ratio regularis G H I K cum perturbata L м N O. I Iitur talis comparatio dicitur perrurbata probortio, ad differentuam regularisproportionis definita in pracedenti 12 . defi.
$V$ tilitas buius definitionis in praxi nempe in propoftionum demontratione eft, quod rationum extremi termini junt proportionales, boce $\mathbb{C}$, fi eft


 neceßariam conjequentiam, colligitur ex 23 . prop. lib. 5. Euclid.

Definitio 23.
Perturbata proportio in fex termanis paucifsinus confific.
Definitio 24:
Cum tres termini proportionales fuerint: Primus ad tertium dupicatam rationem habere dicitur eius, quam habet ad fecundum. At cum quatuor termini continuè proportionales fuerint, primus ad quartum triplicatam rationem habere dicitur eius, quam haber ad fecundum : Et Cemper deinceps voo amplius quamdiu proportio extuterit:

It is also to be noted that an alternated proportion cannot be associated unless from two ratios of the same kind of magnitude.

## Definition 22.

Perturbed proportion is the similarity of two equal ratios, one of which is perturbed.

## Explanation.

Let there be two ratios, the first of which, $A: B: C$, is regular by the 12th definition, while the other, $D: E: F$, is perturbed by the 10th definition and equal to the first ratio, i.e. as $A$ is to $B$, and $B$ to $C$, so is $E$ to $F$, and $D$ to $E$. And the same is to be understood where there should be ratios of more than three terms, such as the regular ratio $G: H: I: K$ with the perturbed ratio $L: M: N: O$. Then such a comparison is called a perturbed proportion, to distinguish it from the regular proportion defined in the foregoing 12th definition.

The utility of this definition in practice indeed is shown in the proof of the propositions, because the extreme terms of the ratios are proportional, i.e. if as $A$ is to $B$, and $B$ to $C$, so is $E$ to $F$, and $D$ to $E$, it is concluded that as $A$ is to $C$, so is $D$ to $F$; or if as $G$ is to $H$, and $H$ to $I$, and $I$ to $K$, so is $M$ to $N$, and $N$ to $O$, and $L$ to $M$, then as $G$ is to $K$, so is $L$ to $O$. And that this is perpetually a necessary consequence, is inferred from the 23rd proposition of Euclid's 5 th book *).

## Definition 23.

A perturbed proportion consists of at least six terms.

## Definition 24.

When three terms are proportional, the first is said to be to the third in the duplicate ratio of that in which it is to the second. And when four terms are continuously proportional, the first is said to be to the fourth in the triplicate ratio of that in which it is to the second. And so always on, one more than the proportion goes.

[^16]
## GEOMETRICORVM. LIB.I. <br> Explicatio.

Sint termini continué proportionales А в С D Е: Igitur primus terminus A adtertium C duplicatam dicitur babere rationem ëuus, quam babet ad fecund\&m e. Et primus terminus $A$, ad quarrum $D$ triplicatam dicitur babcre rationcm eits, quam habet ad fecundum B: Similiter primus terminus A ad gurntum E, quadruplicatäa dicitur babere rationem eius, quam babet ad jecunıium B.

## ABCDE

16842 I . Notarsdum oft bis non effe quaftionem (ve multi putant) $\mid 1$ ! de magnitudine terminorum (nam dici poteft E ad C duplicatum babere rationem eius guam babes ad D evc. Sed de ipforum nomine proportionis duplicate triplicata (Gc. ot relle bunclocum fub. 1o. definitione lib. s. Euclid. explicat doctijimus Mathematzicus, Chriffophorus Clauius, cuiplacebit legat ipjum.
$\mathcal{P} \mathcal{R} O \mathcal{B} L M \mathcal{A} 1$.
Datis rectilinei triangulis: Rectas lineas invenire interfe in ea ratione ac ordine vt funt trianguli.

Explicatio dati.
ABCDEF quatuor trianguli ABC, ACD,
Sint dati rectilinei ADE, AEF.

Oporteat quatuor rectas lixeas in venire, inter fe in ea Yatione ac ordine, quo funt iph trianguli, boc eft, cum triangulis proportionales.

ConItruatio.
Defcribattre per 45 . prop. lib.1. Enclid. Parallologrammum G HIK aquale toti rectilineo dato A B CDEE, Sitǵue paralielogrammum G L
 © parallelogrammum O P equale triangulo A $D$ E $\mathcal{O}$ O parallelogrammum Q1 equale triangulo A E F ,

## Explanation.

Let the continuously proportional terms be $A: B=B: C=C: D=D: E$. Then the first term $A$ is said to be to the third term $C$ in the duplicate ratio of that in which it is to the second term $B$. And the first term $A$ is said to be to the fourth term $D$ in the triplicate ratio of that in which it is to the second term $B$. Similarly, the first term $A$ is said to be to the fifth term $E$ in the quadruplicate ratio of that in which it is to the second term $B$.

It is to be noted here that there is no question (as many people think) of the magnitude of the terms (for it may be said that $E$ is to $C$ in the duplicate ratio of that in which it is to $D$, etc.), but of the name "duplicate, triplicate, etc. proportion" of these terms, as this passage is rightly explained under the 10th definition of Euclid's 5th book by the most learned Mathematician Christophorus Clavius; let he whom it pleases read him *).

## PROBLEM I.

Given the triangles of a rectilinear figure, to find lines which are to one another in the same ratio and order as the triangles are.

## Given.

Let the four triangles $A B C, A C D, A D E, A E F$ of a rectilinear figure $A B C D E F$ be given.

## Required.

Let it be required to find four lines which are to one another in the same ratio and order as the triangles are, i.e. proportional to the triangles.

Construction.
By the 45th proposition of Euclid's 1st book construct a Parallelogram GHIK equal to the whole given rectilinear figure $A B C D E F$, and let the parallelogram $G L$ be equal to the triangle $A B C$, and the parallelogram $M N$ equal to the triangle $A C D$, and the parallelogram $O P$ equal to the triangle $A D E$, and the parallelogram $Q I$ equal to the triangle $A E F$.

[^17] fe in ea ratione ac ordine qua funt trianguli dati; hoc eft, we triangulus ABC ad ACD, GOCD ad ADE, G ADE ad AEF: SickL ad $\mathrm{L} \mathrm{N}, \mathrm{O}_{\mathrm{O}} \mathrm{L} \mathrm{N}$ ad NP , er $\mathrm{NPad} \mathrm{P} 1 ;$ or erar quafitum.


## Demonftratio.

Vt refla к ц ad reGam in, fic parallelogramum $\mathrm{M} \mathbf{N}$ per 1 prop.lib. 6. Eucl. Et rriangulus А в с aqualis eff parallelogrammo G L, © ryiangulus ACD aqualis H eff parailelogrammo M $\mathbf{N}_{2}$ per conflructionem: Quare $\operatorname{Dt}$ recta K L ad rectam $\mathrm{L} \mathrm{N}_{2}$ Jic triangulus A B C, ad triangulum A C $\nu_{0}$. Eodem-
ǵue modo oftendetur re= Eam N P correßondere triangulo A D E, © reltam PI triangulo A E F.

## Conclufio.

Igitur datis rettilinei triangulis, recte linea inventa funt infer fe jn ea ratione ac ordine, $x t$ junt trianguli, quod erat faciendum.

## Idem alio modo.

Explicatio dati.
Sint iterum dati rectilinei trianguly ABC, $A C D, A D E, A E F$.
Explica-

I say that four lines $K L, L N, N P, P I$ have been found which are to one another in the same ratio and order in which the given triangles are, i.e. as triangle $A B C$ is to $A C D$, and $A C D$ to $A D E$, and $A D E$ to $A E F$, so is $K L$ to $L N$, and $L N$ to $N P$, and $N P$ to $P I$; as was required.

## Proof.

As the line $K L$ is to the line $L N$, so is the parallelogram $L G$ to the parallelogram $M N$ by the 1st proposition of Euclid's 6 th book. And the triangle $A B C$ is equal to the parallelogram $G L$, and the triangle $A C D$ is equal to the parallelogram $M N$ by the construction. And therefore, as the line $K L$ is to the line $L N$, so is the triangle $A B C$ to the triangle $A C D$. And in the same way it will be shown that the line NP corresponds to the triangle $A D E$, and the line PI to the triangle $A E F$.

## Conclusion.

Therefore, given the triangles of a rectilinear figure, lines have been found which are to one another in the same ratio and order as the triangles are; which was to be performed.

The same in another way.
Given.
Let the triangles $A B C, A C D, A D E, A E F$ of a rectilinear figure again be given.

Explicatio quefiti.
Oportear quatuor reltas lineas inventre, inter (ee in ea ratione ac ordine quo junt ipf trianguli.

## Conftructio.

Dacatur relta в G perpendicularis ad reflam A C, or rella D н perpendicularis ad eandem rectam A C, ov retta C I perpendicularis ad reltam A D, © reta E K perpendicularis ad rectam A D, © reCta D L perpendi-

 per 12. prop. lib.6. Euclid. quarta linea proporionalis, quarumprima C I, - fecunda K E, tertia н D vel O P, fitgue quarta $\mathbf{P} \mathbf{Q}$ : In beniatur deinde quarta linea proportionalis querum prima $D \mathrm{~L}$, fecunda $\mathrm{F} M$, tertia $\mathrm{P} Q$, Sitǵue quarta QR: Eodemque modo continuandum eßet $\sqrt{2}$ plures eßent trianguli.

Dico quathor reftas lineas n O, OOFP; $P Q, Q R$ eße inventas inter fe in ea ratione ac ordine, in quon junt dati stianguli, boc eff, yt triangulus a b cad acd, g acdadade, ef adead aef: sic no



Demonfratio.
Diftinctio I .
$V$ reetab gad reciă ho, fic triangulus A B C ad triangulum A C D, re colligitur ex I prop. lib. 6. Euclid. Quod initer alics explicauit Cbrit?opiorus Claius ad dittam t.prop.
 dem A C , quare ita fe babent ot alitudines: Et reilia B g aqualis efl. $C_{3}$ retta

## Required.

Let it be required to find four lines which are to one another in the same ratio and order as the triangles are.

## Construction.

Draw the line $B G$ perpendicular to the line $A C$, and the line $D H$ perpendicular to the same line $A C$, and the line $C I$ perpendicular to the line $A D$, and the line $E K$ perpendicular to the line $A D$, and the line $D L$ perpendicular to the line $A E$, and the line $F M$ perpendicular to the line $A E$, and the line $N O$ equa! to the line $B G$, and the line $O P$ equal to the line $H D$. And by the 12 th proposition of Euclid's 6th book find the fourth proportional, the first term being $C 1$, the second $K E$, the third $H D$ or $O P$; and let the fourth be $P Q$. And subsequently find the fourth proportional, the first term being $D L$, the second $F M$, the third $P Q$; and let the fourth be $Q R$. And this would have to be continued in the same way if there were more triangles.

I say that four lines $N O, O P, P Q, Q R$ have been found, which are to one another in the same ratio and order in which the given triangles are, i.e. as the triangle $A B C$ is to $A C D$, and $A C D$ to $A D E$, and $A D E$ to $A E F$, so is $N O$ to $O P$, and $O P$ to $P Q$, and $P Q$ to $Q R$; as was required.

## Proof.

## Section 1.

As the line $B G$ is to the line $H D$, so is the triangle $A B C$ to the triangle $A C D$, as is inferred from the 1st proposition of Euclid's 6th book, which has been explained, among others, by Christophorus Clavius in his commentary on the 1st proposition of Euclid's 6th book. For they are triangles with the same base $A C$, on which account they are to one another in the ratio of their heights. Moreover the line $B G$ is equal to the line $N O$, and the line $H D$ to the line $O P$
 ad OP, fic triangulus A B C ad triangulum A C D.

## Diftinctio 2.

Vt recta: C-I ad reltam K E,fic triangulus A C D aderiangulum a D E per locum citafum in I difinctione, nam junt trianguli ad eavdem bafin a $D$. © per congfructionem tit reata C 1 ad, rectam K E, fic relta O P ad PQ , Ergo vt recta OP ad PQ, foctriangulus ACD ad rriangulum A DE.

## Diftinctio 3 .

Dt recta D L ad rectam $M$ F, fic triangulus A D E ad triangulum A E E per locum citatum in I difintione; nam jiunt trianguli ad eaiddem lafin A E: Et ot recta D L ad rectam M F, fic recta $\mathrm{P} Q$ ad $Q$ R per conflructionem, Ergo Dit retta P Qad er, fic triangulus A D E ad triangulum A E F.

Conclufio.
Igitur datis rectilinet triangulis recta linea inventa junt inter fe in ea ratione ac ordine ot funt trianguli. Quod per bunc focundum modum erat faciendum.


A'qnouis angulo trianguli retam lineam ducere, qux dinidat triangulum verfus partem petitam fecundum rationem datam.
by the construction. Consequently, as the line $N O$ is to $O P$, so is the triangle $A B C$ to the triangle $A C D$.

## Section 2.

As the line $C I$ is to the line $K E$, so is the triangle $A C D$ to the triangle $A D E$ by the passage cited in the 1st section, for they are triangles with the same base $A D$, and by the construction: as the line $C I$ is to the line $K E$, so is the line $O P$ to $P Q$. Consequently, as the line $O P$ is to $P Q$, so is the triangle $A C D$ to the triangle $A D E$.

## Section 3.

As the line $D L$ is to the line $M F$, so is the triangle $A D E$ to the triangle $A E F$ by the passage cited in the 1st section, for they are triangles with the same base $A E$. Moreover, as the line $D L$ is to the line $M F$, so is the line $P Q$ to $Q R$ by the construction. Consequently, as the line $P Q$ is to $Q R$, so is the triangle $A D E$ to the triangle $A E F$.

## Conclusion.

Therefore, given the triangles of a rectilinear figure, lines have been found which are to one another in the same ratio and order as the triangles are. Which was to be performed by this second method.

## NOTE.

If any of the perpendiculars should fall outside the rectilinear figure, such as the perpendicular $D H$ to the line $A C$, then the line $A C$ would have to be produced and $D H$ would have to be drawn perpendicular to $A C$ produced. And similarly, $D L$ to $A E$ produced, as is visible in this drawing, to which the preceding construction and proof can be applied.

## PROBLEM II.

To draw from any angle of a triangle a line which divides the triangle in a given ratio such that required parts are towards given vertices.

Explicatio dati.
Sit datus triangulus A B C, © data ratio refta D ad E.
Explicatio quxfiti.
Oporteat ab angulo A rectam limeain duccere, qux diuidat trianguliun A 1 c boc modo ve pars verjus в at parem verjus с eam babeat rationem quam. D ad E.

Conftructio.
Dividatur per ro prop. lib 6. Euclid. oppofium latus dati anguli a $v t$ latus в $\mathbf{C}$ boc modo, po pars verjus в ad partem verfus $\mathbf{C}$ eambabeat rationsm, quam reita D ad E fitque in F, © $̛$ ducatur A F .


## Demonftratio.

Vt reita B F adrectam ÉC, fic triangulus A F B ad triangutum A F C per 1 . prop. itib. 6: Euclid. Et Dt B F ad FC , fic D ad E per conflturionem, Ergo vt D ad Efic triangulus A FB ad triangulum A FC.

## Conclufio.

lgitur à quouis angulo triangulu ©c. Quod erat facicudum.

$$
\mathcal{P R O B L E \subseteq M : A I I . ~}
$$

A dato puncto inlatere trianguli, rectam lineam ducere qux diuis: dat triangulum verfus partem petitam fecundum rationem datam.

Explicatio dati.
 ro ratio relta Ead F .

Explicatio quxfiti.
Oporteat apuncto D rettam lineam ducere, qua dividat triangulum A B C boc modu pe pars verfus B ad parté verjus A, eam labeat ratione quă E add F . Con =

## Given.

Let a triangle $A B C$ and the direct ratio $D: E$ be given.

## Required.

Let is be required to draw from the angle $A$ a line which divides the triangle $A B C$ in such a way that the part towards $B$ is to the part towards $C$ in the same ratio as $D$ to $E$.

## Construction.

By the 10th proposition of Euclid's 6th book divide the side opposite to the given angle $A$, viz. the side $B C$, in such a way that the part towards $B$ is to the part towards $C$ in the same ratio as the line $D$ to $E$, and let this be in $F$, and draw $A F$.
I say that from the angle $A$ a line $A F$ has been drawn, which divides the triangle $A B C$ in such a way that the triangle $A F B$, i.e. the part towards $B$, is to the triangle $A F C$, the part towards $C$, in the same ratio as $D$ to $E$; as was required.

## Proof.

As the line $B F$ is to the line $F C$, so is the triangle $A F B$ to the triangle $A F C$, by the 1st proposition of Euclid's 6th book. Moreover, as $B F$ is to $F C$, so is $D$ to $E$ by the construction. Consequently, as $D$ is to $E$, so is the triangle $A F B$ to the triangle $A F C$.

## Conclusion.

Therefore, from any angle of a triangle etc. Which was to be performed.

## PROBLEM III.

From a given point on a side of a triangle to draw a line which divides the triangle in a given ratio such that required parts are towards given vertices.

Given.
Let a triangle $A B C$ be given, and a point $D$ on the line $A B$, and let the direct ratio of $E: F$ be given.

## Required.

Let it be required to draw from the point $D$ a line which divides the triangle $A B C$ in such a way that the part towards $B$ is to the part towards $A$ in the same ratio as $E$ to $F$.

## Conftruatio.

Ducatur retia D C, boc eSe, à dato punto D in angulum oppofitusm lateri A b. Inveniantur dinde per pracedens primum Probl:ma dua recta linea $\mathrm{GH}, \mathrm{\sigma} \mathrm{HI}$, inter fè in ea ratione ac ordine, ve fant tranguli
 boc modo vi pars verfus G ad partem verfus I, eam habeat rationem quam E ad E , fitguse in $\mathbf{K}$. Animaduertatur deinde in verum terminum rationis G н ad Hisadat punClum K , nempe an in GHan in H I, cadit austem in boc exemplo in rectam feu terminum G H, cuius fuisnndus eft Homologus terminus triangulurum nempe D С в (e/l enim criangulus D С в $\mathrm{Hon}^{-}$ mologas terminus cum GH , nam $n$ crangulus D C B ad triangulum
 fitum angulo в D C wi latus в C, diuidatur per so.prop. lib. 6. Euclid.
 ducaturáye rella DL L.
Dico à dato puncto D rectam lineam DLeffe ducaam, que diuidit iriangulum а в с boc modn, pt pars verfus в nempe triangulus D L b, ad partem reerfus a nempe traperium D LC A, eam babeat ratio:iem quam E ad f it erat quisititum.


## Demontratio.

Vt reita в ц ad rellam L C; fic triangulus De b ad triangulum de ceper prop. lib. 6. Euclid. Et per conStructionem, rerccta в L ad reltam l c fic rella $\mathbf{\mathrm { c }} \mathrm{\kappa}$ ad rectam K H : Ergo pt triangulus $\mathbf{D T} \mathrm{B}$ ad criangulum D L G, fic relta G K ad rellam к H , Quare triangulus D.L B \& rella G K junt transformata proportionis bomologi termini (nam ve fupra deftum eff, triangulus d C B eft bomologus terminus (ím G H) ligitur per transfornatam proportionem, $x t$ refla $\mathbf{G} \mathbf{K}$ ad reliquum fue rationis KI, fic triangulis DLE ad religuum jut ratio-

## Construction.

Draw the line $D C$, i.e. from the given point $D$ to the angle opposite to the side $A B$. Subsequently, by the foregoing first Problem, find two lines $G H$ and $H I$ which are to one another in the same ratio and order as the triangles $D B C$ and $A D C$ are. Then by the 10th proposition of Euclid's 6 th book divide the line $G I$ in such a way that the part towards $G$ is to the part towards $I$ in the same ratio as $E$ to $F$, and let this be in $K$. Then note in which term of the ratio $G H$ to $H I$ falls the point $K$, to wit: whether in $G H$ or in $H I$. Now in this example it falls in the line or term GH. Now take the homologous term of this in the triangles, viz. $D C B$ (in fact, triangle $D C B$ is the term homologous to $G H$, for as triangle $D C B$ is to triangle $D C A$, so is the line $G H$ to the line $H I$ by the construction), and by the 10th proposition of Euclid's 6th book divide its side opposite to the angle $B D C$, viz. the side $B C$, in $L$ in such a way that $B L$ is to $L C$ in the same ratio as $G K$ to $K H$, and draw the line $D L$.

I say that from the given point $D$ a line $D L$ has been drawn, which divides the triangle $A B C$ in such a way that the part towards $B$, viz. the triangle $D L B$, is to the part towards $A$, viz. the quadrangle $D L C A$, in the same ratio as $E$ to $F$; as was required.

## Proof.

As the line $B L$ is to the line $L C$, so is the triangle $D L B$ to the triangle $D L C$, by the 1st proposition of Euclid's 6th book. Moreover, by the construction, as the line $B L$ is to the line $L C$, so is the line $G K$ to the line $K H$. Consequently, as the triangle $D L B$ is to the triangle $D L C$, so is the line $G K$ to the line $K H$; on which account the triangle $D L B$ and the line $G K$ are homologous terms of a transformed proportion (for as has been said above, the triangle $D C B$ is the term homologous to $G H$ ). Therefore, by the transformed proportion, as the line $G K$ is to the rest of its ratio, $K I$, so is the triangle DLB to the rest of its ratio, viz. to the quadrangle $D L C A$. But $G K$ is to $K I$ in the same ratio, by the con-
nis, nempe ad traperium D L C A. Sed GK ad к I babet eam rationem per confruclionem quam E ad F. Ergo triangulus DL B, ad trapeqium DLC. $A$, eam babet rationem quam recta Ead F .

## Conclufio.

Igitur à dato puncto in latere e̛r. Duod erat faciendum.
NOTA.
Alius efe modus consfructionis buius Problematis apud varios authores. cuius inter alios meminir Cbrifophorus Clauius in fine lib.6. Euclid. Sed vo fequentia Problemata efent apertiora, Jecuti fumus bic, nofliram generalem inventionem omnium reZZilincorum.

Sequentia quinque Problemata funt ea que ante bat nunquam defrripta putamas.

$$
\mathcal{P} \mathcal{R} O \mathcal{B} L \varepsilon M A
$$

A quovis angulo quadranguli, reદamlineam ducere, quax diuidat quadrangulum verfus partem petitam fecundum rationem datam.

Explicatio dati.
Sit datum quadrangulum quodcunque A B C D , data verò̀ ratio Ead F .
${ }^{\circ}$ Explicatio quæffiti.
Oporteat ab angulo d a в rettam lineam ducere, qúa diunidat quadrangulum A B C D boc modo ve pars verfus D, ad partem verfus B, eam babeat rationem quam Ead F .

ConAtructio.
Ducatur ab angulo D. A B in angulum oppofitum B C D retta A C: Deinde
struction, as $E$ to $F$. Consequently, the triangle $D L B$ is to the quadrangle $D L C A$ in the same ratio as the line $E$ to $F$.

## Conclusion.

Therefore, from a given point on a side etc. Which was to be performed.

## NOTE.

Among several authors there is another method for the construction of this Problem, mention of which is made, among others, by Christophorus Clavius at the end of Euclid's 6th book. But in order that the following Problems might be clearer, we have here followed our general invention concerning all rectilinear figures.

The following five Problems are such as we deem have never been described before.

## PROBLEM IV.

To draw from any angle of a quadrangle a line which divides the quadrangle in a given ratio such that required parts are towards given vertices.

## Given.

Let any quadrangle $A B C D$ be given, and let the ratio of $E$ to $F$ be given.

## Required.

Let it be required to draw from the angle $D A B$ a line which divides the quadrangle $A B C D$ in such a way that the part towards $D$ is to the part towards $B$ in the same ratio as $E$ to $F$.

## Construction.

From the angle $D A B$ draw the line $A C$ to the opposite angle $B C D$; sub-

Deinde recta в $G$ perpendicularis ad rectam A $C, \sigma$ recta $D$ н perpendicularis ad rectam A C, ©r relta 1 K equalis rectie D H, ó producasur 1 K in $L_{3}$ ifa $v \in$ K $L$ aqualis fit ipfi в $G$, diuidatur deinde recta 1 L in m per 10 prop. lib. 6. Euclid. Hoc modo ot 1 m ad m г eam habeat rationem quam E ad F . Animaduertatur deinde in quem terminum rationis 1 K ad K L cadat punclum M , falicet an in I K vel in K L : : cadit autem in boc exemplo in rectan Jeu terminum 1 K . Quare eius capienduts eft bomologus terminus triangulorum nempe A C D (eft enim triangulus A C-D bomologus terminus cum I K, nam ot triangulus A C D ad triangu'um A C B; fic rectla H D ad rectam G B per locum citatum in $\mathbf{F}$ diffinctione fecundi modi pracedentis primi Problematis, ơ rella I K aqualis eft recte: D H, ơ recta K L equalis recta G B. Ergo vt sriangulus A C D ad triangulum А С в fic recta 1 K ad rectam K L ) cuius latus oppofitum angulo D A C or latus D C, diuidatur per 10. prop. lib. 6. Euclid. in $\mathrm{N}_{3}$ boc modo pot recta DN ad $\mathrm{N} \mathrm{C}_{8}$ cam habeat rationem quam recta I M ad M. K, ducaturǵue recta A N.

Dico ab angule DAB, rectam lineam A N eße ductam, que diuidit quadrangulum A B C D boc modo, vt pars verfus D nempe triangulus A N B, ad partem verfus B nempe trapeqium A N C B, cam habeat ritionem quams E ad F, Dt erat quafitum.


## Demonftratio.

$V t$ recta D N ad rectam $\mathrm{N} \mathrm{C}, f i c$ triangulus A ND ad triangulй A N C per 1. prop. lib. 6. Euclid. Et per conflructionem vo recta DN ad reElam N C, fic recta $\mathrm{I} M$ ad rectam MK: Ergo ot triangulus AND ad triangulum A N C, fic recta I M ad rectain M K, quare triangulus A ND * recta I M funt transformata proportionishomologi termini (nam ot fu-
sequently the line $B G$ perpendicular to the line $A C$, and the line $D H$ perpendicular to the line $A C$, and the line $I K$ equal to the line $D H$, and produce $I K$ in $L$ in such a way that $K L$ be equal to the said $B G$, and then, by the 10 th proposition of Euclid's 6th book, divide the line $I L$ in $M$ in such a way that $I M$ is to $M L$ in the same ratio as $E$ to $F$. Then note in which term of the ratio $I K$ to $K L$ the point $M$ falls, viz. in $I K$ or in $K L$. Now in this example it falls in the line or term $I K$. Therefore we have to take its homologous term of the triangles, viz. $A C D$ (indeed, the triangle $A C D$ is the term homologous to $I K$, for as the triangle $A C D$ is to the triangle $A C B$, so is the line $H D$ to the line $G B$, by the passage cited in the 1 st section of the second method of the foregoing first Problem; and the line $I K$ is equal to the line $D H$, and the line $K L$ is equal to the line $G B$; consequently, as the triangle $A C D$ is to the triangle $A C B$, so is the line $I K$ to the line $K L$ ), and by the 10th proposition of Euclid's 6 th book divide its side opposite to the angle $D A C$, viz. the side $D C$, in $N$ in such a way that the line $D N$ is to $N C$ in the same ratio as the line $I M$ to $M K$, and draw the line $A N$.

I say that from the angle $D A B$ a line $A N$ has been drawn, which divides the quadrangle $A B C D$ in such a way that the part towards $D$, viz. the triangle $A N B$, is to the part towards $B$, viz. the quadrangle $A N C B$, in the same ratio as $E$ to $F$; as was required.

## Proof.

As the line $D N$ is to the line $N C$, so is the triangle $A N D$ to the triangle $A N C$, by the 1st proposition of Euclid's 6th book. And by the construction: as the line $D N$ is to the line $N C$, so is the line $I M$ to the line $M K$. Consequently, as the triangle $A N D$ is to the triangle $A N C$, so is the line $I M$ to the line $M K$; therefore the triangle $A N D$ and the line $I M$ are homologous terms of a transformed pra dictum efl triangulus A C D. ef bomologas terminus cum recta I к) Quare per transformatam proportioneñ, pt recta I м ad reliquum fua rationis $M L$, fic triangulus A ND ad reliquum füe rationis nempe ad trapezium A N C B. Et I M ad M L babet eam rationem per conflructio: ncm quam recta E ad F: Ergotriangulus A ND ad trapezium A NC $\mathrm{B}_{2}$ eam isabet rationcm quam recte E ad F .

## Conclufio.

Igitur à quovis angulo quadranguli ঋc. Quod erat faciondim.

## $\mathcal{P} \cap \mathcal{B L E M A} V$.

A dato puncto in latere cuiufcunque recilinei, redlam lineam ducere qux diuidat rectilineum verfus partem petitam fecundum rationem datam.

## Explicatio dati.

Sit datum rectilineum pentagonum А в С D E, datum亻́p punctum F in latcie a b: Data verò ratio recta G ad H .

Explicatio quafiti.
Oporteat à puncto f rectam lineam ducere, que dituidat rectilincum due tum, boc modo ve pars verfus B ad partem verfus. A, eam babeat rationem quam $\mathbf{G}$ ad H .

## Confruatio.

Ducantur tres recte E E, F D, F C. Inveniantur deinde quatuor recte lines per pracedens primum Problema $I K, K L, L M, M N$, inter fe in ea ratione ac ordine, $D$ t funt quatuor trianguli F B C, F C D, FD E, F EA. Diuidatur dennde recta in per ıo.prop. lib. 6. Euclid. in o, hoc modo ve IO ad O N cam babeat rationem quam G ad H , animadscrtatur deinde
proportion (for, as has been said above, the triangle $A C D$ is the term homologous to the line $I K$ ). Therefore, by the transformed proportion, as the line $I M$ is to the rest of its ratio $M L$, so is the triangle $A N D$ to the rest of its ratio, viz. to the quadrangle $A N C B$. And $I M$ is to $M L$ in the same ratio, by the construction, as the line $E$ to $F$. Consequently, the triangle $A N D$ is to the quadrangle $A N C B$ in the same ratio as the line $E$ to $F$.

## Conclusion.

Therefore, from any angle of a quadrangle etc. Which was to be performed.

## PROBLEM V.

From a given point on the side of any rectilinear figure to draw a line which divides the rectilinear figure in a given ratio such that required parts are towards given vertices.

## Given.

Let a pentagonal rectilinear figure $A B C D E$ be given, and also a point $F$ on the side $A B$; and let the direct ratio of $G$ to $H$ be given.

## Required.

Let it be required to draw from the point $F$ a line which divides the given rectilinear figure in such a way that the part towards $B$ is to the part towards $A$ in the same ratio as $G$ to $H$.

## Construction.

Draw the three lines $F E, F D, F C$. Subsequently, by the foregoing first Problem, find four lines $I K, K L, L M, M N$, which are to one another in the same ratio and order as the four triangles $F B C, F C D, F D E, F E A$. Then, by the 10th proposition of Euclid's 6th book, divide the line $I N$ at $O$ in such a way that $I O$ is to $O N$
28. PROBLEMATVM
in quem terminum quaternaria rationis $I K, K L, L M, M N$ cadat punGtum O , cadit autem in boc exemplo in tertum terminum- $\mathbf{L} M$ cuius $j u$ mendus eft bomologus terminus triangulorum nempe F D E (eff autem triangulus F DE homologus terminus cum 1 м per pracedentem 16. defini.) cuius latus oppofitum dato puncto F, Dt latus E D, diuidatur per 10 . prop. lib. 6. Euclid. in P, boc modo, Dt D P ad P E cam babeat rationem quam


Dico à dato punsto $F$, rectam lineam F P eße ductam, que diuidı reCtilineum darum boc modo, we pars verfus в nempe pentagonum $\mathbf{F}$ Р D C $\mathrm{B}_{2}$ ad partem verfus A nempetraperium $\mathbf{F} \mathbf{P}$ E $A_{2}$ eam habeat rationem quam c ad H ot erat quafitum.


Demonftratio.
Vt recta D P ad rectam PE, fic triangulus FPD . ad triangulum $\operatorname{FPE}$ per 1. prop. lib. 6. Euclid. Wo per confructionem, ot recta D Pad rectam P E, ficrecta lo adrectam om: Ergo $\nu_{t}$ triangulus $\operatorname{FPD}$ ad triangulum F P E, fic recta Lo ad rectam O M:
Quare triangulus FPE \& recta OM funt transformata proportionis bomologi sermini: Igitur per transformatam proportionem vo recta 10 , ad religuam fue rations O N , fic pentagonum FPD C B ad reliquam fue sationis nempe ad quadrangulum FP EA. Sed NO ad O I, eam babet rationem per confrudlionem quam H ad G: Ergo pentagonum FPDCB ad quadrangulum FPEA, eam babet rationem quam recia G ad H .

Conclufio.
Igitur à dato puncto in latere orc. Ruod erat faciendumo.
in the same ratio as $G$ to $H$. Then note in which term of the quaternary ratio $I K: K L: L M: M N$ the point $O$ falls. Now in this example it falls in the third term $L M$. Take the homologous term to this of the triangles, viz. FDE (indeed, the triangle $F D E$ is the term homologous to $L M$ by the preceding 16 th definition), and by the 10th proposition of Euclid's 6th book divided the side opposite to the given point $F, v i z$. the side $E D$, at $P$ in such a way that $D P$ is to $P E$ in the same ratio as $L O$ to $O M$, and draw the line $F P$.
I say that from the given point $F$ a line $F P$ has been drawn, which divides the given rectilinear figure in such a way that the part towards $B$, viz. the pentagon $F P D C B$, is to the part towards $A$, viz. the quadrangle $F P E A$, in the same ratio as $G$.to $H$; as was required.

## Proof.

As the line $D P$ is to the line $P E$, so is the triangle $F P D$ to the triangle $F P E$, by the 1st proposition of Euclid's 6th book. And by the construction: as the line $D P$ is to the line $P E$, so is the line $L O$ to the line $O M$. Consequently, as the triangle $F P D$ is to the triangle $F P E$, so is the line $L O$ to the line $O M$. Therefore the triangle FPE and the line $O M$ are homologous terms of a transformed proportion. Therefore, by the transformed proportion, as the line $I O$ is to the rest of its ratio $O N$, so is the pentagon $F P D C B$ to the rest of its ratio, viz. to the quadrangle $F P E A$. But $N O$ is to $O I$ in the same ratio, by the construction, as $H$ to $G$. Consequently, the pentagon FPDCB is to the quadrangle FPEA in the same ratio as the line $G$ to $H$.

## Conclusion.

Therefore, from a given point on the side etc. Which was to be performed.

## NOTA.

Si punctum o cecadiffet in M , tunc rella F e fine alia inguiftionefuiffot relta quafita. Si verò punitum o cecidijfet in L , tunc recta E Dabfía alia inquiffitione fuißet reeta quafta, G fic de ceteris.

Hucufque diflum ef de diuifione recitilineorum à dato pundo in latere ipforum : Sequitur nunc re in principio promisimus, we dicatur de reitlineorum diuifione verfius partem petitam jub ratione data, ©o cum linea paral lela cum latere quafito.

$$
\mathcal{P R} O \mathcal{B} L \varepsilon \mathscr{M} A \quad V I
$$

In dato triangulo redam lineam ducere parallelam cum latere trianguli quafito, qux triangulum duadat verfus partem quafi. tam fecundum rationem datam.

> Explicatio dati.

Sit datus rriangulus A в C, ©́ data ratio relía D E ad E F .

## Explicatio quxfiti.

Oporteat reitam lineam ducere paralielam cum lasere A $C$, que triangrlium A B C diuidat, hoc modo ot pars trianguli verfus B, ad reliquam partem eam habeat rationem quam DEad EF.

## Conftruatio.

Diuidatur per to.prop. lib. 6. Euclid. alterutrum latus в с نel в А, fitǵue в C in G , boc modo $n$ B G, ad G C eam babeat rationem quam recta D E ad E F: Inveniaturq́ue per 13. prop. lib. 6. Euclid. media linea
 parallela ipfis C.

$$
\mathcal{D}_{3} \quad \operatorname{Dite}^{2}
$$

## NOTE.

If the point $O$ had fallen in $M$, then the line $F E$ would have been the required line without any other investigation. But if the point $O$ had fallen in $L$, then the line $F D$ would have been the required line without any other investigation; and thus with the others.
Up to this point we have spoken about the division of rectilinear figures from a given point on a side of the latter. As we promised at the beginning, we shall now speak about the division of rectilinear figures towards a required part in a given ratio, viz. by a line parallel to a required side.

## PROBLEM VI.

In a given triangle to draw a line, parallel to a required side of the triangle, which divides the triangle in a given ratio such that required parts are towards given vertices.

## Given.

Let the triangle $A B C$ and the direct ratio of $D E$ to $E F$ be given.

## Required.

Let it be required to draw a line, parallel to the side $A C$, which divides the triangle $A B C$ in such'a way that the part of the triangle towards $B$ is to the remaining part in the same ra\%io as $D E$ to $E F$.

## Construction.

By the 10th proposition of Euclid's 6th book divide one of the sides $B C$ or $B A$ - and let it be $B C$ in $G$ - in such a way that $B G$ is to $G C$ in the same ratio as the line $D E$ to $E F$. And by the 13th proposition of Euclid's 6th book find the mean proportional between $B G$ and $B C$, and let this be the line $B H$. And draw the line HI parallel to the side $A C$.
$30^{\circ}$
Dico rectam lineam HI eße ductam parallelam cutn latcre A C , diuidentemi triangulum A B C boc modo, vt pars trianguli verfus в nempe triangulus 1 B H , ad reliquam partem nempe trapeq̌ium A C H I eam babeat rationem quam DE ad EF, ot erat quxfitum.

## Demonftratio.



Reła в с trianguli A в C eSt latus bomolegam cum в н trianguli 1 в H , $\dot{\mathcal{G}}$ redta в g ad reclam в с duplicatum eam babet rationem quam ipfa в $\operatorname{Gadre-}$ Alam в н per confructionem: Ergo per 20. prop. lib. 6. Euclid. wo recta m g ad reGam в C, fic triangulus $1^{-1} \mathrm{~B}$ ad triangulim ABC (Junt enim fimilia poligona) Et в G ad в С per confrutionem eam ba: betrationem quam D Ead D F: Ergove D E ad D F , fic triangulus i в H
 rectam $\mathbf{E} \mathrm{F}$, fic triangulus I B H ad trapezium AC C I.

Conclufio.
Igitur in dato triangulo © $\sigma$. Quod erat faciendum.

## $\mathcal{P R O B L E C M A}$ VII.

In dato trape $z$ io rectamlineam ducere parallelam cum latere trapezij quafito qua trapezium diuidat veifus partem quxfitam fecun. dum rationem datam.

NOTA.

I say that a line $H I$ has been drawn parallel to the side $A C$, dividing the triangle $A B C$ in such a way that the part of the triangle towards $B$, viz. the triangle $I B H$, is to the remaining part, viz. the quadrangle $A C H I$, in the same ratio as $D E$ to $E F$; as was required.

## Proof.

The line $B C$ of the triangle $A B C$ is the side homologous to $B H$ of the triangle $I B H$, and the line $B G$ is to the line $B C$ in the duplicate ratio of that of the line $B G$ to the line $B H$, by the construction. Consequently, by the 20 th proposition of Euclid's 6th book, as the line $B G$ is to the line $B C$, so is the triangle $I B H$ to the triangle $A B C$ (for they are similar polygons). And by the construction $B G$ is to $B C$ in the same ratio as $D E$ to $D F$. Consequently, as $D E$ is to $D F$, so is the triangle $I B H$ to the triangle $A B C$, and by the disjunct ratio: as the line $D E$ is to the line $E F$, so is the triangle $I B H$ to the quadrangle $A C H I$.

Conclusion.
Therefore, in a given triangle etc. Which was to be performed.

## PROBLEM VII.

In a given quadrangle to draw a line, parallel to a required side of the quadrangle, which divides the quadrangle in a given ratio such that required parts are towards given vertices.

## NOHA.

Omnis linea rella parall. cum latere diuideus trapeqium, tangit fuis limitibus duo latera eundem angulum trapeqij continentia, aut à latere in angulum lateri oppofitum cadit aut duo latera tangit ipfius oppofita. Igitur quoniam operatio in ipfos eft diuerfa dabuntur duo exempla.

## Explicatio dati primi modi.

Vbi linea diuidens trapeaium cadit in duo latera eundem angulum continentia.

Sit datum trapezium A B C D, st data ratio E F ad FG.
Explicatio quxfiti.
Oporteat rectam lineam ducere parallelam cum В С qua trapezium di:. uidat boc modo, ot pars trapezij verjus $A_{j}$ ad reliquam partem, ean babcat rationem quam EP ad FG.

## Conftructio.

: Difcribatur per 45 . prop. lib. 6. Euclid. parallelogrammium HI K L aqt:ale trapezio A E C D, jeceturǵg latus Hi in m per 10 .prop. lib. $\sigma$. Euclid. boc modo, $\boldsymbol{x}$ н M ad M I eambabeat rationem quam E E ad F G, ducaturq́ue M $\mathbf{N}$ parallela ip $\sqrt{3} \mathrm{H} \mathrm{L}$, ducaturqúue D o paraliela relta в C: defcribaturǵue per 25. prop. lib. o. Euclid. triangulus A \& Q equa. lis parallelogrammo it N, © fimilis triangulo $\mathrm{A} O \mathrm{D}$.

Dico rectam lineam P Q parallelam cum в C effe ductam, quat trapes zium a в C D diuidit hoc modo, we pars trapezij verjus a nempe triani gulus A Pıad reliquam partem nempe rectilineum P B C D Q, eam babeat rationem quam EFAd EG ot erat quefitum.

Demon-

## NOTE.

Any line, parallel to a side, which divides a quadrangle, touches with its extremities two sides including the same angle of the quadrangle, or it falls from one side to the angle opposite to the side, or it connects two opposite sides of the quadrangle. Therefore, since the operation in the said cases is different, two examples will be given.

Given according to the first manner.
Where the line dividing the quadrangle connects two sides containing the same angle.

Let the quadrangle $A B C D$ and the ratio of $E F$ to $F G$ be given.

> Required.

Let it be required to draw a line, parallel to $B C$, which divides the quadrangle in such a way that the part of the quadrangle towards $A$ is to the remaining part in the same ratio as $E F$ to $F G$.

## Construction.

By the 45th proposition of Euclid's 1st book construct the parallelogram $H I K L$, equal to the quadrangle $A B C D$, and by the 10 th proposition of Euclid's 6th book cut the side $H I$ at $M$, in such a way that $H M$ is to $M I$ in the same ratio as $E F$ to $F G$. And draw $M N$ parallel to the side $H L$, and draw $D O$ parallel to the line $B C$. And by the 25 th proposition of Euclid's 6 th book construct the triangle $A P Q$, equal to the parallelogram $H N$ and similar to the triangle $A O D$.
I say that a line $P Q$ has been drawn, parallel to $B C$, which divides the quadrangle $A B C D$ in such a way that the part of the quadrangle towards $A$, viz. the triangle $A P Q$, is to the remaining part, viz. the rectilinear figure $P B C D Q$, in the same ratio as $E F$ to $F G$; as was required. Demonftratio.


Vt Efad Fe fic HM ad MI per conSeructionem, 甘ro h m ad mi fic paralc lelogrammum $\mathbf{H} \mathbf{N}$ ad parallelogrammü MK per 1. prop. lib. 6. Euclid. Ergo vt E F ad I G fic parallelogrammum $\mathbf{H N}$, ad parallelogrammüи м $\mathrm{K}_{2}$ © triangulus APQ equalis ef parallelogrammo H N per confructionem: Rhare (quia totum traperium А вСD aquale eft $102 i$ parallelogrammo нк $\operatorname{per}$ conflrultio.
nem) retilineum P В СDQ aquale eft parallelogrammo M K : Ergo vt EF ad FG, fic triangulus A P Q ad rectilineum P в С DQ. Eft preterea $P$ Q parallela ipfio D per consfructionem, $\sigma$ o D parallela cum B C per conflructionem: Quare per 30. prop. lib. 1. Euclid. P Q eff parallela ipf в $\mathbf{C}$.

Conclufio.
Igitur in dato trapezio recta linea ducta of đ̛c. Ruod erat facienduen.
NOTA.
Si in boc examplo secla $P$ Q caderet à latere in anisulum lateri oppofitum,

## Proof.

As $E F$ is to $F G$, so is $H M$ to $M I$, by the cotstruction, and as $H M$ is to $M I$, so is the parallelogram $H N$ to the parallelogram $M K$, by the 1st proposition of Euclid's 6th book. Consequently, as $E F$ is to $F G$, so is the parallelogram $H N$ to the parallelogram $M K$. And the triangle $A P Q$ is equal to the parallelogram $H N$ by the construction. Therefore (because the whole quadrangle $A B C D$ is equal to the whole parallelogram $H K$, by the construction) the rectilinear figure $P B C D Q$ is equal to the parallelogram $M K$. Consequently, as $E F$ is to $F G$, so is the triangle $A P Q$ to the rectilinear figure $P B C D Q$. Morcover $P Q$ is parallel to $O D$ by the construction and $O D$ parallel to $B C$ by the construction. Therefore, by the 30th proposition of Euclid's 1st book, $P Q$ is parallel to $B C$.

## Conclusion.

Therefore, in a given quadrangle a line has been drawn etc. Which was to be performed.

## NOTE.

If in this example the line $P Q$ fell from one side to the angle opposite to this
tunc rett o D efer recta quafita; quare operatio eadem effet vt fupra.

## Explicatio dati fecundi modi.

Vbi linea duuidens traperium cadit in duo latera traperij oppofita.
Sit datum trapeqium A B C D © data racio retta E Fad F G.

## Explicatio quxfiti.

Oportat rectam lineam ducere parallilam cum A B, qua trapequium A B C D diuidat, boc modo re pars trapezij veryus D C, ad reliquam par. tem, eam balcat rationem quam EF ad EG.

## Conftruatio.

Producantur ea braperij latera qua concurrere poffunt, quod per 5. poffulatum lib. 1. Euclid. in omni trapezio eft poßibile, fintóg latera A D © BC, qua product concurrant in H : defcribatur deinde per 45 . prop. lib.t. Euclid. parallelogrammum IK L M aquale triangulo HCD, O parallelogrammum K NOL aquale trapežio А в С D , diuidaturq́ue K N ${ }^{3 n}$ P per 10.prop. lib.6. Euclid. boc modo, ot K P ad P N eam babeat rationem quam E F ad FG, ducaturgue P Q: Diuidatur deinde triangulus а н в per pracedens $\sigma$. Problem. recta rs parallela ipfi a в (qua in boc exemplo cadit in duo latera traperiij oppofita) boc modo vt triangulus R н S, ad trapeqium а в $\boldsymbol{S}$ к eam babeat rationem quam I P ad P No

Dico reflam lineam r s parallelam cum а в eße dullam, que trapequum А в С D diuidit, hoc modo, vt pars trapezij verfius D C nempe tra-
 beat rationem quám E Ead F G de erat quefitum.
side, then the line $O D$ would be the required line; therefore the operation would be the same as above.

## Given according to the second manner.

Where the line dividing the quadrangle connects two opposite sides of the quadrangle.
Let the quadrangle $A B C D$ and the direct ratio of $E F$ to $F G$ be given.

## Required.

Let it be required to draw a line, parallel to $A B$, which divides the quadrangle $A B C D$ in such a way that the part of the quadrangle towards $D C$ is to the remaining part in the same ratio as $E F$ to $F G$.

## Construction.

Produce those sides of the quadrangle which can meet, which by the 5th postulate of Euclid's 1st book is possible in every quadrangle, and let it be the sides $A D$ and $B C$ which, when produced, meet in $H$. Subsequently, by the 45 th proposition of Euclid's 1st book, construct a parallelogram $I K L M$, equal to the triangle $H C D$, and a parallelogram $K N O L$, equal to the quadrangle $A B C D$. And, by the 10 th proposition of Euclid's 6 th book, divide $K N$ at $P$, in such a way that $K P$ is to $P N$ in the same ratio as $E F$ to $F G$, and draw $P Q$. Subsequently, by the preceding 6th Problem, divide the triangle $A H B$ by the line $R S$ parallel to $A B$ (which in this example connects two opposite sides of the quadrangle) in such a way that the triangle RHS is to the quadrangle $A B S R$ in the same ratio as $I P$ to $P N$.
I say that a line RS has been drawn, parallel to $A B$, which divides the quadrangle $A B C D$ in such a way that the part of the quadrangle towards $D C$, viz. the quadrangle $D R S C$, is to the remaining part, viz. the quadrangle $R A B S$, in the same ratio as $E F$ to $F G$; as was required.

## Demonftratio.



Conclufio.
Jgitur in dato traperio rella linear duad eff to euod erat faciendum.

NOTA.

## Proof.

The triangle RHS is equal to the parallelogram $I Q$, and the triangle $D H C$ is equal to the parallelogram $I L$ by the construction. Therefore, by the 3rd Axiom of Euclid's 1st book, the quadrangle DRSC is equal to the parallelogram $K Q$.

- And in consequence the parallelogram $P O$ is equal to the quadrangle $R A B S$ (for - the parallelogram $K O$ is equal, by the construction, to the quadrangle $D A B C$ ). Now the parallelogram $K Q$ is to the parallelogram $P O$ in the same ratio, by the construction, as $E F$ to $F G$. Accordingly, the quadrangle DRSC is to the quadrangle $R A B S$ in the same ratio as $E F$ to $F G$. Moreover RS is parallel to $A B$ by the construction.


## Conclusion.

Therefore, in a given quadrangle a line has been drawn etc. Which was to be performed.

## NOTA.

Si quafium fuiffet, rectam lineam fecantem traperium ducere paralls. lam cum D C, áejcribendus fuiffet per 25.prop. lib.6. Euclid. triangu-
 monflrareturq́a, wt jupra trapeqium D T V C, ad trapeqium T A B V eam babere rationem quam EFad FG. Si verò illa linea fuifet ducenda parallela cum D A vel cum C B, turc effent latera A B $\mathcal{G}$ D C producenda verjus partes C B, © appofitus triangulus quilis eft н D C $t$ fit ad par: tem trajerij verfus $\mathbf{C}$ B, quare operatio ex ea parte eadem efser ret fupra.

## $\mathcal{P} \mathcal{B} \mathcal{B} \varepsilon \mathscr{M} A \quad V I I I$.

In dato quocunque rectilineo rectam lineam ducere parallelam cùm latere rectilinei quxfito, quax rectilineum diuidat verfus partem quxfitam fecundum rationem datam.

## Explicatio dati.

Sif datum retilineum a в C DEFG, or data racio recta $\mathbf{H}$ I ad K .

## Explicatio quxfiti.

Oporteat reltam lineam ducere parallelam cum a в, que reltilineum ABCDEFG diuidat, boc modo $2 t$ pars rectilinei verfius $\mathbf{E}$, ad reliquam partem eam babeat rationem quam H工ad I K.

## Conftructio.

 lib. r. Euclid. parallelogrammum M N O P aquale triangulo L E D, Є fimiliter parallilogrammum N QR O aquale rectilineo ABCDEFG:diuidaturq́ue N Q in s per 10.prop. lib.6. Euclid. boc modo $\gamma \mathrm{N} \mathrm{N}$ ad $\mathrm{S} \mathbf{Q}$ eam babeat rationem quam H I ad 1 K : ducaturón 5 T parallela cum M $\mathbf{P}$ ducaturque recta F V parallela cum A B, defcribatur deinde per 2 s. prop. E 2 lib.

## NOTE.

If it had been required to draw a line intersecting a quadrangle, parallel to $D C$, by the 25 th proposition of Euclid's 6th book a triangle $H T V$, equal to the parallelogram $I Q$ and similar to the triangle $H D C$, would have had to be constructed and it will then be proved as above that the quadrangle $D T V C$ is to the quadrangle $T A B V$ in the same ratio as $E F$ to $F G$. But if the said line had had to be drawn parallel to $D A$ or to $C B$, then the sides $A B$ and $D C$ would have to be produced towards the parts $C$ and $B$, and a triangle such as $H D C$ would have to be added to the part of the quadrangle towards $C B$; therefore the operation from this part would be the same as above.

## PROBLEM VIII.

In any given rectilinear figure to draw a line, parallel to a required side of the figure, which divides the figure in a given ratio such that required parts are towards given vertices.

## Given.

Let the rectilinear figure $A B C D E F G$ and the direct ratio of $H I$ to $I K$ be given.

## Required.

Let it be required to draw a line, parallel to $A B$, which divides the rectilinear figure $A B C D E F G$ in such a way that the part of the figure towards $E$ is to the remaining part in the same ratio as $H I$ to $I K$.

## Construction.

Produce $F E$ and $C D$ until they meet at $L$; and by the 45 th proposition of Euclid's 1st book construct the parallelogram $M N O P$, equal to the triangle $L E D$, and similarly the parallelogram $N Q R O$, equal to the rectilinear figure $A B C D E F G$. And divide NQ at $S$, by the 10th proposition of Euclid's 6th book, in such a way that $N S$ is to $S Q$ in the same ratio as $H I$ to $I K$. And draw $S T$ parallel to $M P$, and draw the line $F V$ parallel to $A B$. Subsequently, by the 25 th proposition
 zriangulo L FV.

Dico rectam lineam $\times \mathrm{Y}$ e, $S e$ ductam parallelam cum A B , diuidentem rectilineum datum A B C DEF G, boc modo, we pars rectilinei verfus $E$, nempe trapexium X Y D E, adreliquam partem nempe refilineum $\times$ F G А в $C X_{3}$ cam babeat rationem quam H 1 ad $\mathrm{I} K$ nt erat quefitum.

## Demonitratio.



Difinct. r.
Triangulus LXY aqualis est parailelogrammo M $\mathrm{T}_{2}$ OV triangulus LED agualis eft parallelogiâmo MO per conStiraElionem,quare per 3.axioma lib. 1. Euclid. trapeizium x Y D E equale eft parallelogràmo N T.

Difina. 2.
Rectilmeum ABCDEF C aquale eft parallelogrä-
of Euclid's 6th book, construct the triangle $L X Y$, equal to the parallelogram $M T$ and similar to the triangle $L F V$.

I say that a line $X Y$ has been drawn, parallel to $A B$, dividing the given rectilinear figure $A B C D E F G$ in such a way that the part of the rectilinear figure towards $E$, viz. the quadrangle $X Y D E$, is to the remaining part, viz. the rectilinear figure XFGABCY, in the same ratio as $H I$ to $I K$; as was required.

Proof.

## Section 1.

The triangle $L X Y$ is equal to the parallelogram $M T$, and the triangle $L E D$ is equal to the parallelogram $M O$ by the construction; therefore, by the 3 rd axiom of Euclid's 1st book, the quadrangle XYDE is equal to the parallelogram $N T$.

## Section 2.

The rectilinear figure $A B C D E F G$ is equal to the parallelogram $N R$ by the
mo NR per conftrufionem, tr traperium XYDE equale off parallelogrammo N T per primam diftinctionem, quare per cercium axioma lib. I. Euclid. recilizneum XfGABCY aquale eff parallelogrammo S .

Diftinctio 3 .
 lib. 6. Euclid. ve relta N s ad S Q , fic parallelogrammum N T ad parals lelogrammum SR: Ergopt H I ad I к /ic parallelogrammum $\mathrm{N} \mathbf{T}$ ad pas rallelogrammum S R. Parallelogrammum autem N T equale eft iraperio
 xfgabcyper fecundam diffinctionem: Ergo pt H I ad Iк, fic trapexium xyde ad recilineum xfgabcy. Efl praterealinea rella
 per $30 . p r a p . l i b$, . Euclid. $x$ у ef parallela ipfi а в.

## Conclufio.

Igitur in dato rectilineo relta lineaduita of parallela cum orc. Quod erat faciendum.

## NOTA.

Si terminus Y recte XY caderet in latus ED, operatio tunc foret faciBior, pt ex promo exemplo pracedentús Septimi problemats facilè colligi potefl, nam opus non effer triangulum E L D consf ruere. Si verò terminus antediEtus caderet in в C aut alias (quod rarijs modis contingere poteff) tum operatio ex antecedentibus efat collectu facilis.

Primi libri finis.
construction, and the quadrangle $X Y D E$ is equal to the parallelogram $N T$ by the first section; therefore, by the third axiom of Euclid's 1st book, the rectilinear figure $X F G A B C Y$ is equal to the parallelogram $S R$.

## Section 3.

As $H I$ is to $I K$, so is $N S$ to $S Q$ by the construction, and, by the 1 st proposition of Euclid's 6th book, as the line $N S$ is to $S Q$, so is the parallelogram. $N T$ to the parallelogram $S R$. Consequently, as $H I$ is to $I K$, so is the parallelogram $N T$ to the parallelogram $S R$. Now the parallelogram $N T$ is equal to the quadrangle $X Y D E$ by the 1st section, and the parallelogram $S R$ is equal to the rectilinear figure XFGABCY by the second section. Accordingly; as $H I$ is to $I K$, so is the quadrangle $Y X D E$ to the rectilinear figure $X F G A B C Y$. Moreover, the line $X Y$ is parallel to $F V$, and $F V$ is parallel to $A B$ by the construction. Therefore, by the 30th proposition of Euclid's 1 st book, $X Y$ is parallel to $A B$.

## Conclusion.

Therefore, in a given rectilinear figure a line has been drawn, parallel to etc. Which was to be performed.

## NOTE.

If the extremity $Y$ of the line $X Y$ fell on the side $E D$, then the operation would have been easier, as can readily be inferred from the first example of the preceding seventh problem, for it would not then be necessary to construct the triangle ELD. But if the aforesaid extremity fell on BC or somewhere else (which may happen in various ways), then the operation would easily be inferred from the preceding constructions.

END OF THE FIRST BOOK.

# 33 <br> LIBER SECVNDVS 

## de Continvae QVantitatis regula Falfi.

## Quid fit regula Falli.

QV O NI A M geometriam (quam breuiter fperamus nos edituros) in Nietbodum Arithmetica methodo fimilem digefimus (guod naturales ordo videtur requirere propter magnam convenientiam continuce © difcontinute quantitatis pbiquodcunque genus magnitudinis, wt
 nem, Müliplicationem © $\mathcal{D}$ iuifionem, praterea per regulas, $2 t$ proportionum (v̌. trattabimus) offerebat fe quogue ex ordine Froblema quoddam, vbi per faljam pofitionem veram folutionem petitam Geomerricètnveniremus: 2uare ot continue or difontinue quantisatum correßpondentiam tanto manifefitics redderemus (nam vulgaris quedam regula in Aritbmetica babetur qua regula Falf diciur) Regulam Fal/f continue quantitatus nominauimus, non quod falfum docet, jed quis per fallam pofitionem pervenitur ad cognitionem vieri.

Vititas buius regule inter alia bac eft, Quodeam quafi quoddam generale Problema citare pojimus, queties alicuites occulta magnitudinis quantitatem - formam ojercepretium erit invenire, id enim iubebitur tantum per regulam Falf expedirt. Itaque fape non opus erit in Problematum consfructionibus quarundam occultarum magnitudinum inventionem copiofius defcribere.

$$
\mathcal{P} \mathcal{R} O \mathcal{B} L \in M A
$$

Ex data linex explicata tantum qualitate, fuperficiem defcribere xqualem \& fimilem fuperficiei in qua ipfa linea exiftit.

NOTA.
Serfuls Problematis oft de juperficiebus Gecmeericis, boc eft, de ijs que

## SECOND BOOK

OF THE REGULA FALSI OF CONTINUOUS QUANTITY.
What the Regula Falsi Is.
Since we have arranged geometry (which we shortly hope to publish) in a Method similar to the method of Arithmetic *) (which the natural order of things seems to require because of the great agreement between continuous and discontinuous quantities, where we shall deal with any kind of magnitude, such as a line, a plane figure, a solid, by the four operations, wiz. Addition, Subtraction, Multiplication, and Division, and also by rules, viz. of proportions, etc.), a certain Problem presented itself also in due time, where by a false position we could find by Geometrical means the true solution sought. Therefore, in order to render the correspondence between continuous and discontinuous quantities the more evident (for in Arithmetic there is a certain common rule which is called regula falsi), we have called it the Regula Falsi of a continuous quantity, not because it teaches false things, but because knowledge of true things is arrived at by a false position.
The usefulness of this rule is, inter alia, that we can cite it as a general Problem whenever it is worth while to find the quantity and form of some unknown magnitude, for it will be prescribed to find this out only by the regula falsi. And thus it will frequently not be necessary in the constructions of Problems to describe the finding of unknown magnitudes more fully.

## PROBLEM.

If only the kind of line is given, to construct a figure equal and similar to the figure in which said line occurs.

NOTE.
The meaning of the Problem relates to Geometrical figures, i.e. such as can

[^18]
## Exemplum primum.

Explicatio dati.
Sit data relfa A , linea cuiuddam occulti equilateri irianguli, talis vo folinea equalis perpendiculari ab angulo in medium oppofiti lateris jectur $\dot{1}$ latere, $\sigma$ reliquo addatur retda aqualis retta à centro trianguli in medium lateris Summa Additionis fit ipfa A.

Explicatio quefiti.
Oporteat ex huiufmodilinee a explicata qualitate, equilaterum rriangulum deferbere, aqualem aguilatero occulto in $q^{i o}$ exiflit A.

## Conftruatio.

Fingamus (vt fit in regula Falfi Arithmetica) quafitum a $\beta$ ine inventum, defcribaturq́ue aquilaterus triangulus quicunque B С D (jed, quamvis demonftratio in omnibus ef eadem, tamen propter ocalorum © manuum erros rems, certior esader operatio fi pofitiua figura fumatar jemper maior quam data occulta) quafi eßet aguilaterum quafirum, fiat ${ }^{\prime} u{ }^{\text {a }}$ operatio in eo fecundum qua/lionem jupra adibibitam boc modo: Ducatur perpendicularis

 DI aqualis retta F G: Igitur fipofitio fuiffet rera, retia н I aqualis e $\beta$ set ipf A: Sed ei inequalis $\begin{gathered}\text { m maior eff, ergo \& falfa eft: Quare nunc rera pofitio in- }\end{gathered}$ venienda erit hoc modo: linveniatur quarta linea proportionalis per 12 . prop. Li6. 6. Euclid Quarum prima H i fectunda lauss quodibet trianguli poftii ve в. C, tertia reeta ^ fíque quarta K L, ex qua confituatur aquilaterum triangulum Lкм,

Dico ex linea a explicata qualiate, aquilaterum triangulum LKM effe defriptum, aqualem occulro equilatero triangulo in quo rella a exifit pe erat quafitum.

Prx-
be constructed by means of some Geometrical law.

## FIRST EXAMPLE.

## Given.

Let a line $A$ be given, a line of some unknown equilateral triangle, such that if a line equal to the perpendicular from an angle to the mid-point of the opposite side be cut off from a side, and to the rest be added a line equal to the line from the centre of the triangle to the mid-point of a side, the Sum Total of the Addition shall be the said line $A$.

## Required.

Let it be required, if only the kind of such a line $A$ is given, to construct an equilateral triangle equal to the unknown equilateral triangle in which $A$ occurs.

## Construction.

Imagine (as is done in the Arithmetical regula Falsi) that what is required has been found, and construct any equilateral triangle $B C D$ (but, though the proof is the same in all cases, nevertheless because of errors of eyes and hands the operation turns out more certain if the figure assumed is always taken larger than the unknown figure) as if it were the required equilateral triangle, and perform the operation in this triangle according to the problem set above, in the following way: Draw the perpendicular $B E$, and the line $F G$ from the centre of the triangle $F$ to the mid-point of the side $B C$, and from the side $C D$ cut off the line $C H$, equal to the said $B E$, and let the rest be $H D$, to which add the line $D I$ equal to the line $F G$. Therefore, if the position were true, the line $H I$ would be equal to $A$. But it is unequal thereto and larger; consequently it is also false. And therefore the true position will have to be found in the following way. By the 12th proposition of Euclid's 6th book find the fourth proportional, the first term being $H I$, the second the side of any assumed triangle, $v i z$. $B C$, the third the line $A$, and let the fourth be $K L$, in accordance with which construct the equilateral triangle $L K M$.
I say that, if the kind of the line $A$ is given, an equilateral triangle $L K M$ has been constructed, equal to the unknown equilateral triangle in which the line $A$ occurs; as was required.


Preparatio demonftrationis.
Ducatur perpendicularis L N, $\sigma$ recta $\mathbf{O} \mathbf{P}$ à centro $O$ in medium lateris L K , appliceturğue intervallum, perpendicularis L N à K in rettam
 $2!\sqrt{2} O P$.

Demonftratio.
Vt нi ad BC fic A ad к 1 per consfructionem: Similiter vt Hir ad
 $Q^{\mathrm{R}}$ ad eandem K L eandem bakent rationt $m$, quare funt inter fe aquales per 9. prop. lib. s. Euchd. Et proinde funt aquales iomologa linea. Sed aquales Siomologa linea exiftunt in aqualibus © fimilibus figuris, Ergo aquilaterum L K м aqualis eff occulto equilatero in quo exijfit recta A.

Conclufio.
Igitur ex data linea explicata rantum tor. Quod erat faciendum.

## Exemplum fecundum. <br> Explicatio dati.

Sit data recta A, linea cuinfdam occulti quadrati talis, pt folinea aqualis leteri ipfius quadrasi fectur à diagonali, reliquum fir ipfa A.

## Preparation of the Proof.

Draw the perpendicular $L N$, and the line $O P$ from the centre $O$ to the midpoint of the side $L K$, and mark off the length of the perpendicular $L N$ from $K$ on the line $K M$, and let this be $K Q$; and produce $Q M$ to $R$ so that the line $M R$ is equal to $O P$.

## Proof.

As $H I$ is to $B C$, so is $A$ to $K L$ by the construction. Similarly, as $H I$ is to $B C$, so is $Q R$ to $K L$, as is inferred from the 4th proposition of Euclid's 6th book. Therefore $A$ and $Q R$ are to the same $K L$ in the same ratio; consequently they are equal to one another by the 9 th proposition of Euclid's 5th book. And accordingly they are equal homologous lines. But equal homologous lines occur in equal and similar figures. Consequently the equilateral triangle $L K M$ is equal to the unknown equilateral triangle in which the line $A$ occurs.

Conclusion.
Therefore, if only the kind of line is given, etc. Which was to be performed.

## SECOND EXAMPLE.

Given.
Let a line $A$ be given, a line of some unknown square such that if a line equal to the side of said square be cut off from a diagonal, the rest shall be the said line $A$.

Explicatio quafiti.
Oporteat ex buiufmodi lineé a explicata qualitate, quadratum defcribere, aquale quadrato occulto in quo A exijfit.

## Conftructio.

Fingamus quafirum eßse inventum, defcribaturq́ue quadratam quodcunque в СDE quafi aßet quadratum quafutum, opereturq́ue in eo fecundün quaftionem jupra adbilitam, boc modo: Ducatur eius diagonalis E C, à gua
 fuiljet vera retta FC aqualis eßet ipfi A, fed ei inaqualis eo maior eft, ergo pofitio efl falia, quare nunc vera pofitio invenienda erit boc modo : Inveniatur quarta linca proportionalis per 12. prop, lib.6. Euclid. quarump prima FC, fecunda E D, tertia A, fitq́ue quarta $\mathbf{G} \mathbf{H}$, ex qua conffruatur quadratum \&кнG.

Dico ex linea A explicata qualitate, quadratum I K HG inpentum eße, equale occulto quadrato in quo a exifut bt erat quafitum.


Preparatio demonftrationis.
Ducatur diagonalis $\mathbf{G K}$, applicturuq̣ue intervallum GH à G in reGam GKad L.

F Demon-

## Required.

Let it be required, if only the kind of such a line $A$ is given, to construct a square equal to the unknown square in which $A$ occurs.

## Construction.

Imagine that what is required has been found, and construct any square $B C D E$ as if it were the required square, and perform the operation in this square according to the problem set above, in the following way: Draw a diagonal $E C$ of this square, from which cut off the line $E F$ equal to the side $E D$, and let the rest be FC: Therefore, if the position were true, the line FC would be equal to $A$, but it is unequal thereto and larger. Consequently the position is false; therefore now the true position will have to be found in the following way. By the 12th proposition of Euclid's 6th book, find we fourth proportional, the first term being $F C$, the second $E D$, the third $A$, and let the fourth be $G H$, in accordance with which construct the square IKHG.

I say that, if the kind of the line $A$ is given, a square $1 K H G$ has been found, equal to the unknown square in which $A$ occurs; as was required.

> Preparation of the Proof.

Draw the diagonal $G K$ and mark off the length $G H$ from $G$ on the line $G K$ to $L$.

## Demonftratio.

I't FC ad ED, fic A ad G H per confrullionem. Similiter $n t$ FC ad E D fic L K ad G H, vt colligitur ox 4.prop.lib. 6. Euclid. Igitur A $\sigma$ L K ad eandem $\mathbf{G} \mathbf{H}$ eandem babent rationem, quare funt inter $\int e$ aquales per 9. prop. lib. s. Euclid. Et proinde funt rquales bomologe linea, fed aquales bomologa linee exiftunt in aqualibus of fimilibus figuris, ergo quadratum I KHG aquale eff occulto quadrazo in quo exifit recta A.

## Conclufio.

Jgitur ex linea explicata tantum orc. Quod erat faciendum.

## Exemplum tertium.

Explicatio dati.
Sit data recta a linea perpendicularis ckiuldam occulti pentagoni aquilateri © equianguli, ab angulo in medium ipfius oppofiti lateris.

Explicatio quafici.
Oporteat ex ciufmodi linee a explicara qualitate pentagonum defcribere, aquale eff fimile pentagono occulto in quo a exiflit.

## Conftructio.

Fingamus quxfitum eße inventum dc/cribaturque pentagonum в С D. E F quodcunque, quafi eßet pentagonum quiffirum: Opereturq́ua in eo fecundum petitionem aditititam, boc modo: Ducatur reila в G a в in medium oppofiti lateris E D. Igitur fipofitio effet vera recta $\mathbf{B}$ G aqualis eßet ipfa A, fed ei inagualis ớ maior est, ergo illa pofitio eft Falfa, quare nune vera pofitio invenienda erit boc modo. Inveniatur quarta linea proportionalis per 12. prop. lib.6. Euclid. Quarum prima в G, fecunda в C, tertia $A$, frǵge quarta HI, a qua conftruatur pentagonum HIKLM.

## Proof.

As $F C$ is to $E D$, so is $A$ to $G H$ by the construction. Similarly, as $F C$ is to $E D$, so is $L K$ to $G H$, as is inferred from the 4th proposition of Euclid's 6th book. Therefore $A$ and $L K$ are to the same $G H$ in the same ratio; consequently they are equal to one another by the 9th proposition of Euclid's sth book. And accordingly they are equal homologous lines; but equal homologous lines occur in equal and similar figures, consequently the square $I K H G$ is equal to the unknown square in which the line $A$ occurs.

Conclusion.
Therefore, if only the kind of line is given, etc. Which was to be performed.

## THIRD EXAMPLE.

## Given.

Let the line $A$ be given, a perpendicular line of any unknown equilateral and equiangular pentagon, from an angle to the mid-point of the opposite side thereof.

## Required.

Let it be required, if the kind of such a line $A$ is given, to construct a pentagon equal and similar to the unknown pentagon in which $A$ occurs.

## Construction.

Imagine that what is required has been found, and construct any pentagon $B C D E F$ as if it were the required pentagon. And perform the operation in this pentagon according to the problem set, in the following way: Draw the line $B G$ from $B$ to the mid-point of the opposite side $E D$. Therefore, if the position were true, the line $B G$ would be equal to $A$. But it is unequal thereto and larger, consequently the position is false; therefore the true position will now have to be found in the following way. By the 12th proposition of Euclid's 6th book, find the fourth proportional, the first term being $B G$, the second $B C$, the third $A$, and let the fourth be $H I$, in accordance with which construct the pentagon HIKLM.

I say that, if the kind of the line $A$ is given, the pentagon $H I K L M$ has been constructed, equal and similar to the unknown pentagon in which $A$ occurs; as was required.

Dico è linea a explicata qualitate pentagonum нхKIM difcriptam efe, aquale \& formile occulto pentagono in quo A exifit yo erat quafitum.


Demonftratio.
Demonfratio ex primo of fecundo exemplo ef manifefta.

> Condlafio.

Igitur ©). linea explicata rantum ©̛. Quod erat facicadum.

## Exemplum quartum.

Explicatio dati.
Sit data reta A , linea cuiuldam occulti refilinij fimilis racilineo в С DEF, ita pt linca aqualis ucculti rectilinci bomologe linea cum в $\mathrm{C}_{2}$, feta ab occulii reClilinei homolyga linea cum F C, © religuo addita oculti rectilinci bomologa linea cum $\mathbf{E}$ e, fot in dizeetuin nnius linea ipfa data linea A.

## Proof.

The proof is evident from the first and the second example.

## Conclusion.

Therefore, if only the kind of a line is given, etc. Which was to be performed.

## FOURTH EXAMPLE.

## Given.

Let a line $A$ be given, a line of some unknown rectilinear figure similar to the rectilinear figure $B C D E F$, such that if the line equal to the line of the unknown figure that is homologous to $B C$ be cut off from the line of the unknown figure that is homologous to $F C$, and the line of the unknown figure that is homologous to $F E$ be added to the rest, the said given line $A$ shall lie on one and the same line.

## Explicatio quefiti.

Oporteat ex buiufmodilinez a explicata qualitate rectilineum defribere, aquale © $\sigma$ fmile fimiliterǵne pofitum reftilineo occulto in quo a exisfit.

## Conftruatio.

Fingamus quafitum effe inventum atque ip/um datum recilineum BCDEF offepritum rectilineum: Opereturq́ue in eo fecundum pecitios nem jupra exbibitam boc modo: Secetur à retta Cf reela c c aqualis
 retia $\mathbf{f}$ е. Igitur í pofitio efet vera reta $\mathbf{H} \boldsymbol{g}$ aqualis effet ipfía fed illi innqualis © maior eff, ergo pofitio erat Falla: Quare nunc vera pofutio invenienda erit boc modo: Inveniatur quarta linea proportionalis per 12.prop. lib. 6. Euclid. quarum prima $\mathrm{H} G$, fecunda ED, tertia A , fitq́ue quarta 1 K ; à qua vo homologa linea curn E D conftruatur per 18. prop. lib. 6. Euclid, ređilineum L M NKI, fimile fimiliterǵ̣ue pofitum retilineo bCDEF.
 fcriptum aquale ơ fimile fimiliterque pofitum reeiliineo occulto in quo Acxifit vo erat quafitum.


Demon-

## Required.

Let it be required, if the kind of such a line $A$ is given, to construct a rectilinear figure equal and similar and similarly placed to the unknown rectilinear figure in which $A$ occurs.

## Construction.

Imagine that what is required has been found, and that the said given rectilinear figure $B C D E F$ is the required rectilinear figure. And perform the operation in this figure, according to the problem set above, in the following way: From the line $C F$ cut off the line $C G$ equal to the line $C B$, and let the rest be $F G$, and produce $F G$ so that the line $F H$ is equal to the line $F E$. Therefore, if the position were true, the line $H G$ would be equal to $A$. But it is unequal thereto and larger, consequently the position was false. Therefore the true position will now have to be found in the following way. By the 12th proposition of Euclid's 6th book, find the fourth proportional, the first term being $H G$, the second $E D$, the third $A$, and let the fourth be $I K$, in accordance with which, as being the line homologous to $E D$, construct by the 18th proposition of Euclid's 6th book the rectilinear figure $L M N K I$, similar and similarly placed to the rectilinear figure $B C D E F$.

I say that, if the kind of the line $A$ is given, the rectilinear figure $L M N K I$ has been constructed, equal and similar and similarly placed to the unknown rectilinear figure in which $A$ occurs; as was required.

## Demonftratio.

Demonfratio ex demionfratione primi $\&$ fecundi exempli eft manifegla.

## Conclufio.

lgitur ex linea santum explicata cqualitate ofc. Ruod erat faciendum.

Varia poßent per banc regulam defcribi exempla tam in folidis quam in planis, ot in quadrato vel pentagono, maximus aquilaterus triangulus, aut in quocunque regulari polkgono, maximum quodcunque regulare poligonum, Similiter \& minimum cuius anguli tangant latera circumfcripti. Ơc. Sed cum regula fenfus ex pracedentibus quatuor, |atis videatur explicatus, commendamus reliqua quibus ille Geometrica ßeculationes erunt cordi.

## Secundi Libri

FINIS.

## Proof.

The proof is evident from the proof of the first and the second example.

## Conclusion.

Therefore, if only the kind of a line is given, etc. Which was to be performed.
By this rule various examples might be constructed, both in solid and in plane figures, e.g. in a square or a pentagon the greatest equilateral triangle, or in any regular polygon any greatest regular polygon. Similarly also the smallest figure whose angles touch the sides of the circumscribed figure, etc. But since the meaning of the rule seems to be sufficiently clear from the preceding four examples, we recommend the others to those to whom these Geometrical speculations are dear.

## LIBER TERTIVS

## DE CVIN QVE REGVLARIVM, QVINque autorum Regularium \& nouem Truncatorum regularium corporum èidem fphxre infcriptibilium defrriptione.

PR-AETER quingue corpora regularia quorsm Mathematici meminerunt, animaduertimus alia quedam corpora que quamvis talem non baberent regularitatem ot in quinque illis regularibus requixitur (nam demonflratur quinque tantum talia corpora poffe inveniri) nibilominus Geometricarum Jpeculationum effent plena, ac mirabilis dt ${ }^{-}$pofitionis correlatiuartion fiperficierum. Horum autem corporum fex mes minit Albertus Durerus, in fua Geometri: (Junt quidem in eadem Alberti defcriptione © alia duo corpora qua ex complicais planis componinntur quorum alterum non poteft plicari, ratio of quia ad onum angulum folidum conftruendium compofiti funt tres anguti plani aquales quasuor rectis, qui àngulum folidum per 2 I . prop. Wh. 1 I . Euclid. non conftituunt . Alterum verò corpus non continetur intra metas quie in feguenti If. definit. junt pofite, quare illa duo corpora reliquimus) fed cum talium corporum origiñem vél nomina apud neminem inveniremus tamen exiftimaremus non fine aliquo certo fundamento confiftere, ridimus tandem regularia corpora ipforum effe fcatebram, nam illorsm ronum, erat tetraedrum zruncatum, altera'tria, truncati cubi', © quintum, truncatum octoedrum : Sexti vera corports truncatio bac fcribentibus nobis erat ignota, quampis ex truncato cubo originem babere non dubitamus. Cumq́ue bac nobis eßent nota invenimus (nam tale quid fapei fit cum rerum caujas cognofcimus) alia tria corpore non minoris elegantix nemipe ex truncatis Dodecaedro * Icofaedro. Quorum definitiones jint fequentes def. 20.21. 22. Et ipforum planorum difpulitiones in jequenti fecundo Problemate difinct.' 17. 18. 19. in-renien.-

## THIRD BOOK.

Of the construction of the five regular, the five augmented Regular, and the nine Truncated regular solids that can be inscribed in the same sphere.

Besides the five regular solids mentioned by mathematicians, we draw attention to some other solids which, though they do not have so great regularity as is required in these five regular solids (for it is proved that only five such solids are to be found), nevertheless would be full of Geometrical speculations and of a remarkable arrangement of the correlative faces. Now six of these solids have been mentioned by Albert Dürer, in his Geometry (indeed, in the said description of Albert there are also two other solids which are composed by folding of planes, one of which cannot be folded; the reason is that for the construction of one solid angle, three equal plane angles equal to four right angles have been put together, which do not constitute a solid angle by the 21 st proposition of Euclid's 11th book. And the other solid is not included between the boundaries which are set in the following 11th definition, for which reasons we have omitted those two solids), but since we have not found the origin or the names of such solids in any author, and yet judged, not without a certain foundation, that they exist, at last we have found that the regular solids are their source, for one of them was a truncated tetrahedron, three others were truncated cubes, and the fifth was a truncated octahedron, but the truncation of the sixth solid was unknown to us when we were writing this, though we did not doubt that it derived from a truncated cube. And when these things were known to us, we found (for such a thing frequently happens when we become acquainted with the causes of things) three other solids of no less elegance, viz. from a truncated Dodecahedron and Icosahedron; their definitions are the following definitions 20, 21, 22; and the dispositions of their faces will be found in the following second Problem, sections 17, 18, 19. If by any chance they have
venientur. Si forte ab alio ante nos funt inyerta ( $d_{j}$ quo ferè non dubitarem propter magnam diligentiam neterum in formarum inquifrione) facemur boc nos ignorare. Quare nt pro noftro inventó ralia edimas.

Pofeea verò faltum ef? (recitamus bac quia aliquando non iniucundum ef inventionum occafiones non ignorare) ot Francifcus Cophart Archimuficus nojfri Leidenfis Maficorum collegij; \& Geometrie fingularis amator, vellet mibh perfuadere fe cafu quodam jextum corpus regulaze ridiliße, cuius conftrutio calis erat:

Ducantur omnes Diagonales linea omnium quad atorum cubi, ducar:tur deinde plana ab ominibusangulis jolidis cubi per duas diagonales lineas vfque al ipfarum diagonalium medietates, exfcindanturǵue boc modo omnia fuperficierum cubi latera, cum fubieita folida partè ipfius cubi inter dav jecano tia plana compreben'ja. Erunt itaque cubo (quoniam duodecim babec latera) duodecin crena in/cija : relingueturq́ue elegans corpus in piginti Gr quatuor equalibus triangulis aquilateris contentum. Quare ille argumentabatur hoc modo:

Corpora @hara infriptibilia quorum fuperficies
junt omines aquales ©́ fimiles, funt coxpora regularia:
Corpus boc eft corpus ßpbara inferipribile, cuius fuperficies funt omnes aquales $\sigma$ fimiles:

## Ergo eff corpus regulare, $\sigma$ per confaquens fextum.

Seduegabamus partem antccedentem aßumptionis, quoniam tale corpus noo eSt corpus ßphare ita infcripribile, pt in regularium corporum infcribilitate requiritur, nam 厅enfus ibi ef omnes angulos jalidos corporum debere exiffere in fuperfcis phera circumfcripte, buius però capporis dua funt /pecies folidorum an ${ }_{3} u l o r u m$, nam ailerius peciei anguli funt externi, alterius interni. Verum quidem e/t omnes anguios externos cidem phara e $\beta$ Be infcripribiles: Similiter © omnes angulos internos eidem Pbara injcriptibiles: Sed non omszes cidem, nam alia ef §hera externorum anguloram alia internorum.

Igizur
been found by someone else before us (which I should hardly doubt, considering the great diligence of the Ancients in the study of forms), we confess that we ignore this. We therefore publish them as our invention.
Afterwards it happened (we mention this because sometimes it is not unpleasant not to ignore the moments at which something was discovered) that Frans Cophart *), the leader of our Leiden society of musicians and an extraordinary lover of Geometry, wanted to persuade me that he happened to have found a sixth regular solid, whose construction was as follows:

Draw all the diagonals of all the squares of a cube, and then draw planes from all the solid angles of the cube through two diagonals up to the midpoints of said diagonals, and in this way cut off all the sides of the faces of the cube, with the adjacent solid part of the cube included between two intersecting planes. And thus the cube (since it has twelve edges) will have twelve incisions; there remains an elegant solid included by twenty-four equal equilateral triangles. Therefore he argued as follows:

Solids that can be inscribed in a sphere and whose faces are all equal and similar are regular solids.

This solid is a solid that can be inscribed in a sphere and whose faces are all equal and similar.

Therefore, it is a regular solid, and in consequence the sixth.
But we denied the first part of the assumption, since this solid is not a solid that can be inscribed in a sphere in such a way as is required with regular solids, for the meaning is there that all the solid angles of the solids must lie on the surface of the circumscribed sphere, but with this solid there are two kinds of solid angles, for the angles of one kind are exterior and those of the other, interior. Indeed, it is true that all the exterior angles can be inscribed in the same sphere. Similarly also all the interior angles can be inscribed in the same sphere. But not all in the same, for there is one sphere for the exterior angles

[^19]Igitur quia boc corpus non babebat omnes proprierates qua in regularibus corporibus requiruntur, concludebamus illud non eße exextum corpus regulare. Puseea verò vidimus rals corpus eße oftoedrum cui oppofina erant ocio ocecraedra, quorum baStes erant cllodrio oio Juperficies. Cumpue boc animaduerteremus wnà cum elogancia ipfus, atque Geomerricis rationibus in eo confisfentibus, adplicauimus talem conffructionem ad cetera quatuor regularia corpora, que omnia regularia autla rocauimus, quorum conjltrufio Ú eidem ßphera infcriptio onà cum cetersis, eSt materia de qua nunc agetur.
Primoigitur defcribemus borum corporum Definitiones. Seczndó illorum laterum inventiones, ita ve eidem fphara fint infrriptibilia. Tertio demonArabitur, ex inventislateribus, corporum confructio eidem Phara injcriptibilium. As notandum ef id quod de quinque regularibus corporibus dicetur pro nostro invento non exbiberi, fed ordinis ac necefititatis gratia fuis locis commemorare.

## Definitiones quinque

corporum regularium.
Definitio 1.
Tetraedrum eft corpus fub quatuor triangulis xqualibus \& xquilateris contentum.

Definitio 2.
Cubus eft corpus fub fex quadratis $x q u a l i b u s$ contentum.
Definitio 3.
OAoedrum eft corpus fub octo triangulis æqualibus \& xquilatesis contentum.

Definitio 4.
Dodecaedrum eft corpus fub duodecim pentagonis xqualhbus \& xquilateris \& xquiangulis contentum.
and another for the interior angles. Therefore, because this solid did not have all the properties which are required in regular solids, we concluded that this is not the sixth regular solid. Later, however, we found that such a solid is an octahedron against which had been placed eight tetrahedra, whose bases were the eight faces of the octahedron. And when we noted this, along with its elegance and the Geometrical ratios present in it, we applied this construction to the other four regular solids, all of which we called augmented regular solids, whose construction and inscription in the same sphere along with the others is the subject matter now to be dealt with.

In the first place therefore we are going to describe the Definitions of these solids. Secondly, the finding of their edges such that they can be inscribed in the same sphere. Thirdly, the construction, from the edges found, of the solids that can be inscribed in the same sphere will be proved. But it is to be noted that what is said about the five regular solids is not set forth as our invention, but is called to mind in its place for the sake of good order and necessity.

Definitions of the Five Regular Solids.
Definition 1.
A tetrahedron is a solid included by four equal and equilateral triangles.
Definition 2.
A cube is a solid included by six equal squares.
Definition 3.
An octahedron is a solid included by eight equal and equilateral triangles.

## Definition 4.

A dodecahedron is a solid included by twelve equal and equilateral and equiangular pentagons.

Definitio $s$.
Icofaedrum eft corpus fub vigintitriangulis xqualibus \& xquila. teris contentum.

## Definitiones quinque auctorum corporum regularium.

Definitio 6.
Si cuicunque fuperficiei tetraedri apponatur tetraedrom habens fuperficiem illam pro bafi: Corpus ex illis compofitam duodecim triangulis $æ q u a l i b u s ~ \& \&$ xquilateris contentum vocatur tetraedrum auctum.

Definitio 7.
Si cuicunque fuperficiei hexaedri apponatur pyramis habens fus perficiem illam pro bafi, \& reliquas fu perficies triangula aquilatera: Corpus ex illis compofitum vigintiquatuor triangalis $x$ qualibus \&6 aquilateris contentum, vocatur Hexaedrum auctum.

Definitio 8.
Si cuicunque fuperficiei oatoedri apponatur retraedrum habens fuperficiem illam pro bafi : Corpus ex illis compofitum viginti \& quatnor triangulis aqualbbus \& xquilateris contentum, vocatur ochoedrum auctum.

## Definitio 9 -

Si cuicunque fuperficiei dodecaedri apponatur pyramis habens fuperficiem illam pro bafi, \& reliquas fuperficies triangula aquilalatera : Corpus ex illis compofitum fexaginta triangulis aqualibus \& aquilateris contentum, vocatur dodecaedrum auctum.

Definitio io.
Sicuicunque fuperficiei icofaedri apponatur tetraedrum habens fuperficiem ipfam pro bafi: Corpus ex illis compofitum fexaginta triangulis $x$ qualibus $\& x$ aquilateris contentum, vocatur icofaedrum anaum.

Definition 5.
An icosahedron is a solid included by twenty equal and equilateral triangles.

> Definitions of the Five Augmented Regular Solids.

## Definition 6.

'If against every face of a tetrahedron is placed a tetrahedron having said face for its base, the solid composed of these, included by twelve equal and equilateral triangles, is called augmented tetrahedron.

Definition 7.
If against every face of a hexahedron is placed a pyramid having said face for its base, while the other faces are equilateral triangles, the solid composed of these, included by twenty-four equal and equilateral triangles, is called an augmented hexahedron.

## Definition 8.

If against every face of an octahedron is placed a tetrahedron having said face for its base, the solid composed of these, included by twenty-four equal and equilateral triangles, is called an augmented octahedron.

Definition 9.
If against every face of a dodecahedron is placed a pyramid having said face for its base, while the other faces are equilateral triangles, the solid composed of these, included by sixty equal and equilateral triangles, is called an augmented dodecahedron.

## Definition 10.

If against every face of an icosahedron is placed a tetrahedron having said face for its base, the solid composed of these, included by sixty equal and equilateral triangles, is called an augmented icosahedron.

Definitiones nouem truncatorum
corporum regularium.
Definitio 11 .
Solidum fphare infcriptibile cuius anguli folidi funt omnes xquales, \& cuius plana non funt omnia fimilia, \& quodcunque planum eft xquiangulum \&e xquilaterum, \&r omnium planorum latera funt interfe xqualia : vocatur truncatum corpus regulare.

Definitio 12.
Si omnia latera tetraedridiuidãtur in tres partes rquas, \& plano fingulus angulus folidus tetraedri abfindatur, per trium laterum diuifiones ipfi angulo proximas; Reliquum folidum vocatur truncatum tetraedrum per laterum tertias.

## NOTA.

Habet boc corpis quatuor plana bexigona, G quatior triangularia, duodecim angulos folidos, é decem ơ octo latera.

Supervacaneum exifimamuscum bic, tum in fequentibus nootis, horum planorum formas ex qualitate laterum, angulorum aqualitate, © fomilitudine plancrums exprimere, vo exemplig gratia, cum fupra dicatur de quatuor planis bexagonis, nondicimus quatuor plana bexagona, aquilatera, $\sigma$ equiangula, aqualiats fimilia: fed eantum quatuor bexagona. Similiter non dicimus duodecim angulos jolidos aquales, e oadodecim latera aqualia, Jed tantum duodecim angulos jolidos, © decem of oto latera: Quoniam reliqua ve colligitur ex 11. definitione fequuntur neceßario.

## NOTA.

Si tetraedri anguli jolidi fimiliter abjoindantur per laterum media, reliquum folidum erit otoodrum.

Definitio 13 .
Si omnia latera cubi diuidantur in duas partes xquas, \& plano fin.

## Definitions of the Nine Truncated Regular Solids.

Definition 11.
A solid that can be inscribed in a sphere, whose solid angles are all equal and whose faces are not all similar, while all the faces are equiangular and equilateral, and the sides of all the faces are equal to one another, is called a truncated regular solid.

## Definition 12.

If all the edges of a tetrahedron are divided into three equal parts, and each solid angle of the tetrahedron is cut off by a plane through those points of division of the three edges which are adjacent to said angle, the remaining solid is called a tetrahedron truncated through the third parts of the edges.

## NOTE.

This solid has four hexagonal and four triangular faces, twelve solid angles, and eighteen edges.

We consider it superfluous, both here and in the following notes, to express the forms of these faces in the kind of their sides, the equality of the angles, and the similarity of the faces; e.g. when above four hexagonal faces are referred to, we do not say four hexagonal equilateral and equiangular, equal and similar faces, but only four hexagonal faces. Similarly, we do not say twelve equal solid angles, and eighteen equal edges, but only twelve solid angles and eighteen edges, since the rest, as is inferred from the 11th definition, follows by necessity.

## NOTE.

If the solid angles of a tetrahedron are similarly cut off through the midpoints of the edges, the remaining solid will be an octahedron.

## Definition 13.

If all the edges of a cube are divided into two equal parts, and all the solid
fingulianguli folidi cubiabfcindantur, per trium laterum diuifiones ipli angulo proximas: Reliquam folidunn vocatur Truncatus Cubus per laterummedia.

NOTA.
Habet boc corpers fex plana quadrata, or oitotrangularia, $\mathfrak{G}$ dzode: cim angulos folidos, \& $24 \cdot$ letera.

NOTA.
Hoc corpus fimzle eff truncato offoedro per laterum media fequentis 17. Definitionis.

Definitio 14.
Si omnia latera cubidiuidantur in tres partes, hoc modo ve fingula medix partes fe habeát ad vtramque alteram partem ipfius late: ris ve diagonalis quadrati ad foum latus, \& plano finguli angulifolidi ipfius cubi abicindantur per trium laterum dinifiones ipfi angulo proximas: Relıquumfolidum vocatur trancatus cubus per laterum diunfiones in tres partes.

NOTA.
Habet boc corpas fex plana ologona, ofto criangularia, © nigintiquaeucr angulos jolidos, ev eriginta e jex latera.

Definitio 15.
Si omnia latera cubi diuidanturintres partes, hoc modo ve fingulx medix partesfe habeät ad veramque alteram partem ipfius lateris, vt diagonalis quadratiad fuum latus, \& plano fingula latera abfcindãtur per quatuor laterum diuifiones in ipfis ablcindendis lateribus, non exiftentibus \& ipfis lateribus proximas, relinquetur corpus has bens fex quadrata, \& octo angulos folidos in xquidiftantia à centro cubi, \& ab eodem centro renotiores quàm reliqui anguli folidi: Si deinde fingulianguliillorum ocio, planoabfcindãtur pertres proxis
angles of the cube are cut off by planes through those points of division of the three edges which are adjacent to said angle, the remaining solid is called a cube truncated through the mid-points of the edges.

## NOTE.

This solid has six square and eight triangular faces, and twelve solid angles, and 24 edges.

## NOTE.

This solid is similar to the octahedron truncated through the mid-points of the edges, of the following 17th Definition.

## Definition 14.

If all the edges of a cube are divided into three parts, in such a way that all the middle parts are to the two other parts of said edge as the diagonal of a square to its side, and if all the solid angles of said cube are cut off by planes through those points of division of the three edges which are adjacent to said angle, the remaining solid is called a cube truncated through the divisions of the edges into three parts.

## NOTE.

This solid has six octagonal and eight triangular faces, and twenty-four solid angles, and thirty-six edges.

## Definition 15.

If all the edges of a cube are divided into three parts, in such a way that all the middie parts are to the two other parts of said edge as the diagonal of a square to its side, and the edges are cut off by planes through those points of division of the four edges which do not lie on said edges to be cut off and are adjacent to said edges, a solid remains which has six squares and eight solid angles at the same distance from the centre of the cube and further distant from said centre than the other solid angles; if subsequently all the eight solid angles are cut off by planes through three adjacent plane angles of the
mos angulos planos trium quadratorum ipfis folidis angulis proxis morum: Reliquum folidum vocatur biftruncatus cubus primus.

## NOTA.

Habet boc corpus oflodecim quadrata, olto plana triangularia, riginti quatuor angulos jolidos, quadraginia latera.

Definitio 16.
Si omnia latera cubidiuidantur in quinque partes, hoc modo ve medix partes fe habeant ad quamcunque partem reliquarum quatuor partium ipfius lateris, vtdiagonalis quadrati ad fuum latus, \& plano fingula latera abfcindantur, per quatuor laterum diuifiones in vnoquoque abfindendo latere non exiftentes, \& ipfilateri proximas,relinquaturque hoc modo corpuṣ habens fex quadrata \& oâo angulos folidos in æquidiftantia à centro, $\&$ abeodé centro remotiores quàm reliqui anguli folidi: Si deinde omnia latera illorum fex quadratorum diuidantur in tres partes, hoc modo vt fingulx medix partes fe has beant ad vtranıque alteram partem ipfus lateris, vi diagonalis quadrati ad fuum latus, \& plano finguli anguli folidi illorum octo ano gulorum abfcindantur, per fex diuifiones illorum laterum quadra. sorum ipfis angulis folidis proximas: Reliquum folidum vocatur biAtruncatus cubus fecundus.

## NOTA.

Habet boc corpus fox plana ollogona, $\sigma$ ollo bexagona, of duodecims
 latera.

Definitio 17.
Si omnia latera oafoedri diuidantur in duas partes xquas, \& plano finguli anguli folidi octoedri abfcindantur per quatuor laterum diuifiones ip fis angulis proximas: Reliquum folidum vocatur truncatum octoedrum per laterum media.
three squares adjacent to said solid angles, the remaining solid is called the first twice-truncated cube.

NOTE.
This solid has eighteen squares, eight triangular faces, twenty-four solid angles, and forty edges.

Definition 16.
If all the edges of a cube are divided into five parts, in such a way that all the middle parts are to each of the four other parts of said edges as the diagonal of a square to its side, and the edges are cut off by planes through those points of division of the four edges which do not lie on the edges to be cut off and are adjacent to said edges, and in this way a solid remains which has six squares and eight solid angles at the same distance from the centre and further distant from said centre than the other solid angles; if subsequently all the sides of those six squares are divided into three parts, in such a way that all the middle parts are to the two other parts of said sides as the diagonal of a square to its side, and all the eight solid angles are cut off by planes through those six points of division of the sides of the squares which are adjacent to said solid angles, the remaining solid is called the second twice-truncated cube.

NOTE.
This solid has six octagonal, eight hexagonal, and twelve square faces, forty-eight solid angles, and seventy-two edges.

## Definition 17.

If all the edges of an octahedron are divided into two equal parts, and the solid angles of the octahedron are cut off by planes through those points of division of the four edges which are adjacent to said angles, the remaining solid is called an octahedron truncated through the mid-points of the edges.

NOTA.
Habet boc corpus fex plana quadrata, đo olto triangularia, ©́ duodecim angulos jolidos, to riginti quatuor latera.

NOTA.
Hoc corpous fimile of truncato cubo per laterum media 13 .definitionis.
Definitio 18.
Si omnia latera octoedri diuidantur in tres partes xquas, \& planofinguli anguli folidi ocaoedzi abfcindantur, per quatuor las terum diuifiones ipfis angulis proximas: Reliquum folidum vocatur odoedrum truncatum per laterum terias.

NOTA.
Habet boc corpus fex quadrata, ©o otlo plana bexagona, or riginti quatuor angulos /olidos, \& originta © fox latera.

Definjitio 19.
Si omnia latera dodecaedri diuidantur in duas partes xquas, \& plano finguli anguli folidi abrcindantur per trium laterum diuifiones ipfis angulis proximas: Reliquum folidum vocatur truncatum dodecaedrum per laterum media.

NOTA.
Habet boc corpus duodecim plana pentagona, riginti eriangularia, oftriginta angulos folidos, ©́ fexaginta latera.

## NOTA.

Hos corpus fimile off truncato Icofaedro per laserum media fequentis 21. definitienis.

NOTE.
This solid has six square and eight triangular faces, twelve solid angles, and twenty-four edges.

NOTE.

- This solid is similar to a cube truncated through the mid-points of the edges, of the 13th definition.


## Definition 18.

If all the edges of an octahedron are divided into three equal parts, and the solid angles of the octahedron are cut off by planes through those points of division of the four edges which are adjacent to said angles, the remaining solid is called an octahedron truncated through the third parts of the edges.

NOTE.
This solid has six square and eight hexagonal faces, twenty-four solid angles, and thirty-six edges.

## Definition 19.

If all the edges of a dodecahedron are divided into two equal parts, and the solid angles are cut off by planes through those points of division of the three edges which are adjacent to said angles, the remaining solid is called a dodecahedron truncated through the mid-points of the edges.

NOTE.
This solid has twelve pentagonal and twenty triangular faces, thirty solid angles, and sixty edges.

NOTE.
This solid is similar to an icosahedron truncated through the mid-points of the edges, of the following 21 st definition.

Definitio $=0$.
Si omnia latera dodecaedri diuidantur in tres partes, hoc modo vt fingulx medix partes ad veramque alteran partem uphus lateris fe habeant vt chorda arcus duarum quintarum peripherix circuli ad chordam arcus vnius quintx eiufdem peripherx \& plano finguliangulifolididodecaedri abfcindantur per trium laterum diuifiones iplis angulis proximas: Reliquum folidum vocatur truncatum dodecaedrum per laterum diuifiones in tres partes.

NOTA.
Habet hoc corpus duodecim plana decagona, © viginti triangularia, * Jexaginta angulos jolidos, ơ nonaginta latera.

Definitio 21 .
Siomnia latera Icofaedri diuidantur in duas partes xquas, \& plano finguli anguli folidi icofaedri abfcindantur per quinque laterum dinifiones ipfis angulis proximas; Reliquamfolddumvocatur truncatumicofaedrum per laterum media.

NOTA.
Habet hoc corpus duodecim plana pentagona, wr riginti triangularia, \& triginta angulos folidos, © fexaginta latera.

NOTA.
Hoc corpus fimile eft truncato dodecaedro per laterum media pracedentis 19. definitionis.

Definitio 22.
Si omnia latera icofaedri diuidantur in tres partes xquas, \& plano finguli anguli folidi icolaedri abfcindantur per quinque laterum diuifiones ipfis angulis proximas : Reliquum folidum vocatur icofaedrum per laterum tertias.

## Definition 20.

If all the edges of a dodecahedron are divided into three parts, in such a way that all the middle parts are to the two other parts of said edges as the chord of an arc of two-fifths of the circumference of a circle to the chord of an arc of one-fifth of the same circumference, and the solid angles of the dodecahedron are cut off by planes through those points of division of the three edges which are adjacent to said angles, the remaining solid is called a dodecahedron truncated through the division of the edges into three parts.

NOTE.
This solid has twelve decagonal and twenty triangular faces, sixty solid angles, and ninety edges.

## Definition 21.

If all the edges of an icosahedron are divided into two equal parts, and the solid angles of the icosahedron are cut off by planes through those points of division of the five edges which are adjacent to said angles, the remaining solid is called an icosahedron truncated through the mid-points of the edges.

NOTE.
This solid has twelve pentagonal and twenty triangular faces, thirty solid angles, and sixty edges.

## NOTE.

This solid is similar to a dodecahedron truncated through the mid-points of the edges, of the preceding 19th definition.

## Definition 22.

If all the edges of an icosahedron are divided into three equal parts, and the solid angles of the icosahedron are cut off by planes through those points of division of the five edges which are adjacent to said angles, the remaining solid is called an icosahedron truncated through the third parts of the edges.

NOTA.
Habet boc corpus riginsi plana bexagona, $\leftarrow$ duodecim pentagona, * fex. aginta angulos folidos, ©̛ nonaginta latera.

$$
\text { PROBLEMCA . } 1
$$

Dato maximo circulo fpharx : latera quinque regularium corporum, quinque auctorum corporum, \& nouem truncatorum corporum regularium, ipfi fichxrx infcriptibilium, invenire.

Explicatio dati.
Sit datus maximns circulus jphara a B C D cuius diameter fir A C $\sigma$ centrum $\mathbf{E}$.

Explicatio quxfiti.
Oparteat invenire latera quinque regularium corporum, quinque auctogum corporum regularium, © noucm trancatorum regularium corporam, fphara, cuius A B C D eff maximus circulus, inforiptibilium.

## Confruatio.

Diftinctio I .
Abrindatur à reala $\mathbf{E} C$ tertia pars ipfius vt $\mathrm{E} F$, ducaturque reda PG perpendicularis ad reftam E C, of terminus g fir in circuli periphe: ria: ducatur deinde reta a G pro latere tetraedri.

Diftinatio 2.
Ducatur reda c g pro latere cubi.
Difinctio 3 .
Ducatur femidiamecter e b perpendicularis ad a $C$, ducaturque reita в $\mathbf{C}$ pro latere odoedri.

Diftinctio 4.


NOTE.
This solid has twenty hexagonal and twelve pentagonal faces, sixty solid angles, and ninety edges.

## PROBLEM 1.

Given the great circle of a sphere: to find the edges of the five regular solids, the five augmented solids, and the nine truncated regular solids that can be inscribed in said sphere.

## Given.

Let the great circle $A B C D$ of a sphere be given, whose diameter shall be $A C$ and the centre $E$.

## Required.

Let it be required to find the edges of the five regular solids, the five aug. mented regular solids, and the nine truncated regular solids that can be inscribed in the sphere, of which $A B C D$ is the great circle.

## Construction.

Section 1.
From the line $E C$ cut off one third, viz. $E F$, and draw a line $F G$ perpendicular to the line EC, and let the extremity $G$ be on the circumference of the circle. Subsequently draw the line $A G$ as the edge of the tetrahedron.

Section 2.
Draw the line $C G$ as the edge of the cube.
Section 3.
Draw the semi-diameter $E B$ perpendicular to $A C$, and draw the line $B C$ as the edge of the octahedron.

## Section 4.

Draw the line $H C$ equal to the line $C A$, making the angle $H C A$ right, and
ducatsirq́ue recta E H fecans peripberiam ad $\mathrm{I}_{3}$ ducatureque I C pro latère ico/aedri.

Difinctio $s$.
Diuidatur per 30 .prop. lib. 6. Euclid. G C per extremam ac mediam rationem in K fitqúue maior pars $\mathbb{C} \mathbb{K}$ pro latere dodecaedri.

Difinctio $\sigma$.
Applicetur intervallam G A i G in produllam A C ad pundum $\mathbf{L}$, du-



Diftinctio 7.
Ducatur relta $E N$ ad angulos retaos cum a $G_{3}$ fecans $A G$ in $O$, $\sigma$ peripheriam in $P, \mathcal{O}$ intervallum $\mathbf{G} \mathbf{C}$ applicetur ab A in rectam $\mathbf{P N}$ sempe ad punctum $Q$, dscaturq́ase $A, \mathcal{O}$ reGa $P$ R parallela cum $Q A_{B}$ (r terminus eizes $\mathbb{R}$ in yeda $A E_{2}$ eritq́ue ipla PR pro latere aulti cubio.

Diftinctio 8.
Defcribatur triangulus aquilaterus cuius latus equale fit ipfi в Cof fits gue ipfous rrianguli perpendicularis ab angulo in medium oppofiti lateris
 ducaturǵ reda B R ducasur item relia E T ad angulos rellos cum R B fecans rectam R в ad v , Or peripheriam ad x , applicetur dionde interval-

 oldoedri.

Aut alio modo quod facilius © idem oft (Jed demonfrationis gratia que infra jequeitur, funt antediala de (cripra) accipiatur A $O$, nempe medium reits a $\operatorname{c}$ pro latere anteditit andi otioedri.

Dißinctio 9.
Applicetur in dafo circulo rella a $x$, aqualis relle $\mathbf{C K}$, inveniatur de-
draw the line $E H$, cutting the circumference at $I$, and draw $I C$ as the edge of the icosahedron.

## Section 5.

By the 30th proposition of Euclid's 6th book divide GC in extreme and mean ratio at $K$, and let the larger section $C K$ be the edge of the dodecahedron.

## Section 6.

Mark off the length $G A$ from $G$ on $A C$ produced up to the point $L$, and draw $G L$ and $E G$, and CM parallel to $G L$, with its extremity $M$ on the line $E G$, then said $C M$ will be the edge of the augmented tetrahedron.

## Section 7.

Draw the line $E N$ at right angles to $A G$, cutting $A G$ at $O$ and the circumference at $P$, and mark off the length GC from $A$ towards the line $P N$, viz. at the point $Q$, and draw $A Q$, and the line $P R$ parallel to $Q A$, with its extremity $R$ on the line $A E$, then the said $P R$ will be the edge of the augmented cube.

## Section 8.

Construct an equilateral triangle whose side shall be equal to the side $B C$, and let the perpendicular in the said triangle from an angle to the mid-point of the opposite side be the line $S$, and mark off its length from $B$ towards the line $E A$, and let this be at $R$, and draw the line $B R$, and also the line $E T$ at right angles to $R B$, cutting the line $R B$ at $V$ and the circumference at $X$; subsequently mark off the length $B C$ from $B$ towards the line $X T$, and let this be at $Y$, and draw the line $Y B$, and its parallel $X Z$, and let the extremity $Z$ lie on the line $B E$, then this line $X Z$ will be the edge of the augmented octahedron.

Or in another way, which is easier and the same (but, for the sake of the proof which will follow below, the aforesaid things have been described), take $A O$, viz. one half of the line $A G$, as the edge of the aforesaid augmented octahedron.

## Section 9.

In the given circle mark off the line $A I$, equal to the line $C K$, and subse-

## GEOMETRICORVM. IIB, III.

inde per 12. prop. lib. $\sigma$. Euclid. rella linea in ea ratione ad K C , we efl res cta linea ab angulo pentagoni aquilateri or a guianguli in medum oppofiti lateris ad latus eiufdem pentagon fitque retla 1,2, quo intervallo defcribatur centro. $\operatorname{arcus}$ circi 2, idemq́ue intervallu applicetur à C in ipfum arcum ad 2,
 ad angulos rectos cum C 2, appliceturq́ue intervallum С $К$ ex С in rectam 4, 3, repote ad s ducaturq́ue recta C s ó recta 4, 6, parallela cum C S fitğue terminus 6 in recta E C exitǵue ip $\mathrm{a}_{4} 4$, 6 , pro latere aucti dodecaedri.

Diftinctio 10.
Applicecur in dato circulo recta A $7_{2}$ aqualis reğe $C$ I, defcribatur deinde triangulus aquilaterus cuius latus aquale fit rectae C $1, \sigma$ reCfa ciufdem trianguli ab angulo in medium oppofiti lateris fit 8: deinde intervallo rette 8 defcribatur centro 7 arcus circa 9 : idemq́ue intervallum
 Cta E IO fecans peripheriam ad $I I$, of angulos efficiens rettos cum rella 7,9: Applicetarq́ue intervallum $\mathbf{C} 1$, a 7 in reCtam 11 , 10 nempe ad 12,
 tcrminus 13 in recta E 7 , eritg ip $\int$ a relta 14,13 pro latere aucti icofaedri.

## Diftinctio 1 r.

Producatur EA ad 14 © notetur tertia pars refice A G, fóque A 15 , ducaturq́ue rella E is, quax producatur in peripheriam ad 16, ducaturq́a reCla
 recta 16,17 pro latere tetruedri truncati per laterum tertias.

Diftinctio 12.
Diuidatur refla g C per ioprop.lib. 6. Euclid. in tres partes boc mo. do ot media pars 18; 19, ad Dtramq̆ extremam partem cam babeat ratio. nem quàm diagonales quadrai ad latus eiufdem, tum ducatur recta, $\mathbf{E}$ i8, $\nLeftarrow$ producatur in peripberiam ad punctum 20, fimilizer ducatur e $19 \mathcal{O}^{\circ}$ producatur in peripbseriam ad punctum 2 I ; ducaturq́q. recta 20,21 pro latere truncuti cubi per laterum diuifones in tres partes.
quently, by the 12 th proposition of Euclid's Gth book, find a line which is to $K C$ in the same ratio as a line from an angle of an equilateral and equiangular pentagon to the mid-point of the opposite side to the side of the said pentagon, and let this line be 1,2 ; with this length describe from the centre 1 an arc about 2 , and mark off the same length from $C$ towards the said arc at 2 , and draw the lines 1,2 and $2 C$, and the line $E 3$, cutting the circumference at 4 and at right angles to $C 2$, and mark off the length $C K$ from $C$ towards the line 4,3 , viz. at 5, and draw the line C5 and the line 4,6 parallel to $C 5$, and let its extremity 6 lie on the line $F C$; then this line 4,6 will be the edge of the augmented dodecahedron.

## Section 10.

In a given circle mark off the line $A 7$, equal to the line $C I$; subsequently construct the equilateral triangle whose side is equal to the line $C I$, and let the line in this triangle from an angle to the mid-point of the opposite side be 8 ; then with the length 8 describe an arc from the centre 7 in the neighbourhood of 9 , and mark off the same length from $C$ to the said arc at 9 , and draw the lines 7,9 and $9 C$, and the line $E 10$, cutting the circumference at 11 , and making right angles with the line 7,9. And mark off the length $C 1$ from 7 towards the line $11,10, v i z$. at 12, and draw the lines 7,12 , and $E 7$, and 11,13 parallel to 12,7 , and let the extremity 13 lie on the line $E 7$, then the said line 11,13 will be the edge of the augmented icosahedron.

## Section 11.

Produce $E A$ to 14 and mark off one third of the line $A G$, and let this be $A 15$; draw the line $E 15$, and produce it to the circumference at 16 , and draw the line 16,17 parallel to $G A$, and let its extremity 17 lie on the line $A 14$, then the said line 16,17 will be the edge of the tetrahedron truncated through the third parts of the edges.

## Section 12.

By the 10th proposition of Euclid's 6th book, divide the line GC into three parts in such a way that the middle part 18,19 is to the extreme parts in the same ratio as the diagonal of a square to its side. Then draw the line E18 and produce it to the circumference at the point 20 . Similarly draw E19 and produce it to the circumference at the point 21. And draw the line 20,21 as the edge of the cube truncated through the divisions of the edges into three parts.

Diftinctio 13.
Dividatur quadrans jeu peripheria A B, in duo aqualia in puncto 22, ducaturq́ue в 22: Similiter е 23 aqualís в 22 efficiens angulum е в 23 rectum, ducaturq́q recta E 23 jecans peripheriam ad 24 , ducatur item recta 24, 25 parallela cum 23 , B fitq́a terminus $2 s$ in recta B $\mathrm{E}_{2}$ eritq́ue recta 24, 25 pro latere cubi bisfruncati primi.

## Diftinctio $140^{\circ}$

Defcribatur quadratum 26,27,28 quodcunque, cuius latus fii 26, 27, diagonalis verò 26,28 , ducatur', lum 29, 31 aquale recte 26, 27: б recta $3 \mathrm{I}, 32$, aqualis reltar 26, 27: ©́ recta 32,33 , rqualis recte $26,28:$ © recta 33,34 , equalis rectie 26,27 , < recta 34,30 equalis recta 26,27 , ducaturq́ue recta 31,35 aqualis recte 29, 30 efficiens angulum $3 \mathrm{O}_{2} 31,35$ rectum: Ducatur recta 35,34 , Or recta 34,36 equalis recte 26,28 efficiens angulum 36,34 , 35 rectum: ducarur recta 35, 36: Appliceturǵue intervallum diametri dati circuli A C, à puncto 35 in rectớm 35,36 , fitq̣ue recta 35,37 ducaturq́ recta 37,38 parallela cum rectáa 36,34 , firque punctum 38 in recta 35 , 34 eritq̧ue recta 37,38 pro latere biseruncati cubi fecundi.

DiftinAio is.
Semidiameter e в eft pro latere octoedri truncari per laterum media.
Diftinatio 16.
Producatur E в ad 39. ducaturq́ue ab 1 recta $\mathrm{I}, 40$ parallela cum CB, © terminus 40 in recta B 39 , eritque recta 1,40 pro latere octoe-dri-truncati per laterum tertia.

Diftinaio 17.
Diuididutur recta a I per 10.prop. lib.6. Euclid. in tres partes tales vt media pars 41, 42 ad veramque extremam partem eam babcat rationem quam chorda arcus duarum quintarum peripberia ad chordam arcus vnius quinta: Ducaturq́ue recta E 42 que producatur in peripheriam ad

## Section 13.

Divide the quadrant or circumference $A B$ into two equal parts at the point 22, and draw B22. Similarly B23, equal to B22, making the angle EB23 right, and draw the line $E 23$, cutting the circumference at 24 . Also draw the line 24,25 parallel to $23, B$, and let its extremity 25 lie on the line $B E$. Then the line 24,25 will be the edge of the first twice-truncated cube.

## Section 14.

Construct any square $26,27,28$, whose side shall be 26,27 , and the diagonal 26,28 . And draw the line 29,30 , on which mark off the length 29,31 , equal to the line 26,27 ; and the line 31,32 , equal to the line 26,27 ; and the line 32,33 , equal to the line 26,28 ; and the line 33,34 , equal to the line 26,27 ; and the line 34,30 , equal to the line 26,27 . And draw the line 31,35 , equal to the line 29,30 , making the angle $30,31,35$ right. Draw the line 35,34 and the line 34,36 , equal to the line 26,28 , making the angle $36,34,35$ right. Draw the line 35,36 . And mark off the length of the diameter of the given circle $A C$ from the point 35 on the line 35,36 , and let this be the line 35,37 ; and draw the line 37,38 , parallel to the line 36,34 , and let the point 38 lie on the line 35,34 . Then the line 37,38 will be the edge of the second twice-truncated cube.

Section 15.
The semi-diameter $E B$ is the edge of the octahedron truncated through the midpoints of the edges.

## Section 16.

Produce $E B$ to 39, and from 1 draw the line 1,40 , parallel to $C B$, and let its extremity 40 lie on the line $B 39$; then the line 1,40 will be the edge of the octahedron truncated through the third parts of the edges.

## Section 17.

By the 10th proposition of Euclid's 6th book, divide the line A1 into three parts such that the middle part 41,42 is to the extreme parts in the same ratio as the chord of an arc of two fifths of the circumference to the chord of an arc of one fifth. And draw the line E42; produce this to the circumference at the
punctum 43: Similiter ducasur $\mathrm{E}_{41}$ © producatur in peripberiam ad punElum 44: duciariar deinde 43, 44 pro latere dodecaedri truncati per laterum diuifiones in tres partes.

Difinctio 18.
Diuidatur IC in duo aqualia in puncto 45, decaturǵue recta E 45 qua producatur in peripheriam ad punctum 46, ducatur'́g recta 46,47 pa-
 latere icofaedri cruncati per laterum media.

Diftintio 19.
Sumatur tertia pars reefa C I, ot C48, ducatur recta E 48 que producatur $v / \mathcal{q}_{\text {g }}$ in periphertam ad 49, ducaturq́ue recta 49, so parallele cum I C ©́て terininus so exijltens in recta C L, eritq́ue recta 49, so pro laterc icofaedri truncati per laterum tertias.

Dico latera fupra petita effe inventa yt fupra in fine cuiuffung difinctionis explicata junt vt erat quafitum.

## NOTA.

In definitionibus pracedentibus 25. corpora funt definita, bic verd tantum 19. conftructa: ratio eft quia cubus truncatus per laterum media © octoedrum truncatum per laterum media funt fimilia, vt in ipforum definitionibus notatum eft, quare bec duo corpora mnius tantum corporis conftructione egent. Similiter © pna confructione egent truncatum dodecaedrum per laterum media ©' truncatum Icof aedrum per laterum media.
point 43. Similarly draw $E 41$ and produce it to the circumference at the point 44. Subsequently draw 43,44 as the edge of the dodecahedron truncated through the divisions of the edges into three parts.

## Section 18.

Divide $I C$ into two equal parts at the point 45 , and draw the line $E 45$; produce this to the circumference at the point 46 ; and draw the line 46,47 , parallel to IC, and let its extremity 47 lie on the line $C L$. Then the line 46,47 will be the edge of the icosahedron truncated through the mid-points of the edges.

Section 19.
Take one third of the line CI, viz. C48. Draw the line E48; produce this to the circumference at 49 , and draw the line 49,50 , parallel to $I C$, with its extremity 50 lying on the line $C L$. Then the line 49,50 will be the edge of the icosahedron truncated through the third parts of the edges.

I say that the edges required above have been found as explained above at the end of each section; as was required.

## NOTE.

In the preceding definitions 21 solids have been defined, but here only 19 have been constructed. The reason is that the cube truncated through the midpoints of the edges and the octahedron truncated through the mid-points of the edges are similar, as has been mentioned in their definitions, so that these two solids call for the construction of only one solid. Similarly only one construction also is called for in the case of the dodecahedron truncated through the midpoints of the edges and the icosahedron truncated through the mid-points of the edges.




## Demonftratio.

## Diftinctio 1.

Latera quingue regularium corporum ea eße que quinque prioribus difinctionibus conftructionis explicata junt, per 18. prop. Lib. 13. Euclid. eft manifeftum.

Diftinctio 2.
 tat centrum bafis, fequitar rectam A F effe tetraedri perpendicularem feus alitudinem: Sed AF per conftructionem aqualis efl ip $\sqrt{i} \mathrm{~F} \mathrm{~L}$, quare E L ef femidiameter aucti tetraedsi cuiur latus aquale esf rccte L G: Sed re EL ad LG fic EC ad C mper 4 n prop. lib. 0 . Euclid, nam trianguli
H 2
ELG

## Proof.

## Section 1.

That the edges of the five regular solids are those which have been described in the first five sections of the construction, is evident by the 18th proposition of Euclid's 13th book.

## Section 2.

Since $A G$ is the edge of a tetrahedron, and $E$ its centre, and $F$ represents the centre of the base, it follows that the line $A F$ is the perpendicular or altitude of the tetrahedron. But by the construction $A F$ is equal to the line $F L$, so that $E L$ is the semi-diameter of the augmented tetrahedron, whose edge is equal to the line $L G$. But as $E L$ is to $L G$, so is $E C$ to $C M$, by the 4th proposition of Euclid's

ELG $夭$ ECM funt fimiles: Quare $x$ dictum of in consfeructione, disfindione 6. recta с м eft latus aucti tetraedri, cuius circumfcripribi. lis Jphara femidiameter eft dati circuli femidameter E C.

## Diftinctio 3.

Quoniam a G reprifentat cubiquadrati diagonalem, © E cubi centrum,
 vallum à centro cubi, ad centrum quadrati cubi, * quoniam a Q ejt latus trianguli triangulorum pyramidıs fupra guadratum cubi erectorum, erit Qo iphus'pyramidss altitudo, quare tota E Q erit Jemidiameter aucti cubi cuius latus A ©. Vt vero A $Q$ ad QE fic R P ad PE per 4. prop. l:b., 6. Euclid. (funt enim trianguli A QE © R P E fimiles) quare $2 t$ diEtum fll in conftructione, diffinct. texse R P of latus aucti cubi cuius circumfrripubilis Phara jemidimmeter eft dati circuli jemidiameter E P.

## Diftinctio 4.

Quoniam в R ef perpendicularis trianguli octoedri per conftructionem, © recta EV ad angulos rectos ipf BR, erit E V intervallum à centro octoedri ad centrum fui triangult: Et quia в у ef latus triangulorum $/ \dot{u}-$ perpofite pyramidis nempe aqualis ip $\sqrt{2}$ в $\mathbf{C}$, erit $\mathbf{y} \mathrm{v}$ ipfius pyramides altitudo, quare tota rocta E Y eff talis arcii octoedri jemidiameter, cuius
 (nam triunguli $\operatorname{BXE}$ Х XE funt fimiles) quare $2 t$ dictum eft in confructione, dift. 8. recta x z efit latus aucti octocdri cuius circumfcriptibiiss. ßhera femidiameter est dati circuli jemidiameter Ex.

## Diftinctios.

Quoniam recta $\mathbf{C z}$ ef recta cadens ab angulo pentagoni dodecaedri in medium oppofiti lateris eiufdem pentagoni, praterea recta E $S$ I ad angulos rectos ipfi C 2 , erit punctum si centrum pentagoni dodccaedri, quare E SI erit intervallum à centrododec aedri in centrum ippyus bafis, esf praterea re-

6th book, for the triangles ELG and ECM are similar; therefore, as has been said in the construction, section 6 , the line $C M$ is the edge of the augmented tetrahedron for which the semi-diameter of the sphere that can be circumscribed about it is the semi-diameter $E C$ of the given circle.

## Section 3.

Since $A G$ represents the diagonal of the square of a cube and $E$ the centre of the cube, the line $E O$ ( $O$ being the point of intersection of the lines $A G$ and $Q E$ ) will be the distance from the centre of the cube to the centre of the square of the cube, and since $A Q$ is the side of one of the triangles of the pyramid which have been erected on the square of the cube, $Q O$ will be the altitude of said pyramid; therefore the whole line $E Q$ will be the semi-diameter of the augmented cube whose edge is $A Q$. But as $A Q$ is to $Q E$, so is $R P$ to $P E$, by the 4 th proposition of Euclid's 6th book (for the triangles $A Q E$ and RPE are similar); therefore, as has been said in the construction, third section, $R P$ is the edge of the augmented cube for which the semi-diameter of the sphere that can be circumscribed about it is the semi-diameter $E P$ of the given circle.

## Section 4.

Since $B R$ is the perpendicular of a triangle of an octahedron by the construction, and the line $E V$ is at right angles to the said line $B R, E V$ will be the distance from the centre of the octahedron to the centre of its triangle. And because $B Y$ is the side of the triangles of the superposed pyramid, viz. equal to the line $B C$, $Y V$ will be the altitude of the said pyramid; therefore the whole line $E Y$ is the semi-diameter of such an augmented octahedron, whose edge is $Y B$. But as $B Y$ is to $Y E$, so is $Z X$ to $X E$, by the 4th proposition of Euclid's 6th book (for the triangles BYE and ZXE are similar); therefore, as has been said in the construction, section 8 , the line $X Z$ is the edge of the augmented octahedron, for which the semi-diameter of the sphere that can be circumscribed about it is the semi-diameter $E X$ of the given circle.

## Section 5.

Since the line $C 2$ is a line falling from an angle of a pentagon of a dodecahedron to the mid-point of the opposite side of the same pentagon, and moreover the line $E 51$ is at right angles to the said line $C 2$, the point 51 will be the centre of the pentagon of the dodecahedron; therefore E51 will be the distance from the centre of the dodecahedton to the centre of its base; moreover the line CS

Eta C s latus rrianguli addita pyramidís, quare ritta SI , s erit ipfius pyramidis alitudo, quare tota E , eft talis aucti dodeccedri femidiameter. Sed ne recta C; ad rectam $; \mathrm{E}$, fic rectia 6, 4. ad rectam 4 E per 4 .prop. lib. 6. Euclid. (nam trianguli CSE G C, 4, E funt fimiles) quare $2 t$ dictum eff in confifuctione, difininct. 9. recta 6, 4. ef latus aucti dodecaedri caius circumfrriptzbilis $\beta$ hhara Jemidiameter of dati circuli femidiamea tey E4.

## Difinctio 6.

Quoniam recta 7; 9 eft recta cadens ab angulo trianguli icofaedri in medium oppofiti lateris eiufdem, praterea recta e 52 ad angulos rectos ipp 7,9 , erit punctum 52 centrum trianguli feu bafis icojaedri, quare rectia E 52 erit intervalium à centro icolaedri in centrum ipfurs bafis : efld praterec. recta 7, 12 latus addita pyramidís, quare recta 52,12 erit ipfous pyramidis altutudo, quare toia E 12 talis aucti dsdecaedri femidiameter. Sed pt 7,12 ad 12 E, fic recta 13,11 ad rectam 11 e per 4. prop. Lib.6. Euclid. (nam trianguli 7,12E G 13,11E funt fimiles) quare vt dictum eft in conftructione dise. 9. recta 13 ; 11 e/t latus aucti icojaedri cuius circumfertpribilis Phara Jemidiameter eft dati circuli. Femidiametir E It.

Diftinctio 7.
Quoniam A is est tertia pars lateris ag retraedri, erit els femidiameter circumfrriptibilis fhbare truntcati zetraedri cuius latus is A. Sed ot recta 15 A ad rectam A E , fic recte I , 17 ad rectam 17 E per 4.prop.lib. $\sigma_{i}$ Euclid. (nam trianguli is A E G 16, 17, E funt fimiles) quare ve dictum ef in conflructione diff. 1i, eecta 16, 17 eft latus truxcati zetraedri per laterum retrias, cuius circumfrciptibilis ßphara femidiameter of daci circuli jemidiameter 16 E .

Diftinctin 8. -
Quoniam recta 19, is ef pars lateris cubi refondens lateri ipfius truncati
is the side of the triangle of the added pyramid; therefore the line 51 , 5 will be the altitude of the said pyramid; therefore the whole line $E s$ is the semi-diameter of such an augmented dodecahedron. But as the line $C 5$ is to the line $5 E$, so is the line 6,4 to the line $4 E$, by the 4th proposition of Euclid's 6th book (for the triangles $C 5 E$ and $6,4 E$ are similar); therefore, as has been said in the construction, section 9 , the line 6,4 is the edge of the augmented dodecahedron for which the semi-diameter of the sphere that can be circumscribed about it is the semidiameter $E 4$ of the given circle.

## Section 6.

Since the line 7,9 is a line falling from an angle of a triangle of an icosahedron to the mid-point of its opposite side, and moreover the line $E 52$ is at right angles to the said line 7,9 , the point 52 will be the centre of the triangle or the base of the icosahedron; therefore, the line $E 52$ will be the distance from the centre of the icosahedron to the centre of its base; moreover the line 7,12 is the side of the added pyramid; therefore the line 52, 12 will be the altitude of the said pyramid; therefore the whole line $E 12$ will be the semi-diameter of such an augmented dodecahedron. But as 7,12 is to $12 E$, so is the line 13,11 to the line $11 E$, by the 4th proposition of Euclid's 6th book (for the triangles $7,12 E$ and $13,11 E$ are similar); therefore, as has been said in the construction, section 9 , the line 13 , 11 is the edge of the augmented icosahedron for which the semi-diameter of the sphere that can be circumscribed about it is the semi-diameter $E 11$ of the given circle.

## Section 7.

Since $A 15$ is one third of the edge $A G$ of a tetrahedron, $E 15$ will be the semi-diameter of the sphere that can be circumscribed about the truncated tetrahedron whose edge is $15 A$. But as the line $15 A$ is to the line $A E$, so is the line 16,17 to the line $17 E$, by the 4th proposition of Euclid's 6th book (for the triangles $15 A E$ and $16,17, E$ are similar); therefore, as has been said in the construction, section 11 , the line 16,17 is the edge of the tetrahedron truncated through the third parts of its edges for which the semi-diameter of the sphere that can be circumscribed about it is the semi-diameter $16 E$.of the given circle.

## Section 8.

Since the line 19,18 is a part of the edge of a cube corresponding to the edge
cati cubi per luterum ciuifiones in tres partes, erit 18 E - $\sqrt{\text { emidiameter iff fius }}$ truncsti cubi cuius latus eff recta 19,18. Sed vo rctla 19, 18 ad rectam 18 E, fic recta 21,20 adrectam 20 E per 4. prop. lib.6. Etucild. (nam trian guii 19, 18, E ※ 21, 20, E funt fimiles) quare pt dictum efl in conflructione, difinct. 12. recta $2 \mathrm{I}, 20$ eh Latas truncati culi per latersm diuifiones in tres partes cuius circum/criptibilis /pbara femidiameter eft daticirculia femidiameter 20 E:

## Diftinctio 9.

Quoniam в 23 ef latus cubi biffrruncati primi cuius /emidiameter eff 23 E (boc autem petimus bic brouitatis gratia concedi cium promó affectu in jolido corpore fit manifeftum) erit recta 25,24 latus culi biflruncati pri: mil cuius femidiameter 24 E: nam vo recta B 23 ad rectam 23 E fic reEla 25,24 ad rectam 24 E per 4 . prop.lib. 6. Euclid. (junt autcm trianguli в 23 E ( $25,24 \mathrm{E}$ fimiles) quare vt dictum eft in cinflructione, dif. 13. recta 24, 25 eft latus cubi biftruncati primi cuius circumfcriptibilis ßhara femidiameter dati circuli eft femidiameter 24. $\mathbf{E}$.

## Dittinctio 10.

Quoniain recta 34, 36 ef linea correfpondens lateri bisf runcati cubi fea cundi cuius circum/criptiōilis /pberce diameter eff rect.a 36,3s (boc autem petimus bic breuitatis gratia concedi cùm primò a fiectu in folido corpore fit manifesf(um) erit recta $38, .37$ linea correfpondens lateri beftruncati cubi fecundi cuius circum/criptibilis fphare diameter eft recta 35,37, nam vo reCla 38,37 ad reClam. $37,35 \mathrm{fic}$ reita 34,36 , ad reitam 36,35 per 4 . prop. lib. 6. Euclal. (funt autem trianguli 34; 36, 35, © 38, 37, 35 , fimiles) Sed reCta 37, 35 equalus eft diametro A C , quare vit diffum eff in conftrudione, difl. 14, recta $38,37 \mathrm{eft}$. latus bifiruncati cubi jecundi cuius circumfcriptibilis Jphara diameter eft dati circuli diameter a $\mathbf{C}$.

Diftinctio ir.
Diuidatur (demonfrationis gratia) в с boc efl latus olloedri, in duo equa-
of the said cube truncated through the divisions of the edges into three parts, $18 E$ will be the semi-diameter of the said truncated cube whose edge is the line 19,18 . But as the line 19,18 is to the line $18 E$, so is the line 21,20 to the line $20 E$, by the 4th proposition of Euclid's 6th book (for the triangles $19,18, E$ and $21,20, E$ are similar); therefore, as has been said in the construction, section 12 , the line 21,20 is the edge of the cube truncated through the divisions of the edges into three parts for which the semi-diameter of the sphere that can be circumscribed about it is the semi-diameter 20 E of the given circle.

## Section 9.

Since $B 23$ is the edge of the first twice-truncated cube, whose semi-diameter is $23 E$ (this we ask the reader to concede us here for brevity's sake, because it is evident at the first glance in a solid), the line 25,24 will be the edge of the first twice-truncated cube whose semi-diameter is $24 E$. For as the line $B 23$ is to the line $23 E$, so is the line 25,24 to the line $24 E$, by the 4 th proposition of Euclid's 6th book (for the triangles B23E and $25,24 E$ are similar); therefore, as has been said in the construction, section 13, the line 24,25 is the edge of the first twice-truncated cube for which the semi-diameter of the sphere that can be circumscribed about it is the semi-diameter $24 E$ of the given circle.

## Section 10.

Since the line 34,36 is a line corresponding to the edge of the second twicetruncated cube for which the diameter of the sphere that can be circumscribed about it is the line 36,35 (this we ask the reader to concede us here for brevity's sake, because it is evident at the first glance in a solid), the line 38,37 will be a line corresponding to the edge of the second twice-truncated cube for which the diameter of the sphere that can be circumscribed about it is the line 35,37; for as the line 38,37 is to the line 37,35 , so is the line 34,36 to the line 36,35 , by the 4th proposition of Euclid's 6th book (for the triangles 34,36,35 and $38,37,35$ are similar); but the line 37,35 is equal to the diameter $A C$; therefore, as has been said in the construction, section 14, the line 38,37 is the edge of the second twice-truncated cube for which the diameter of the sphere that can be circumscribed about it is the diameter $A C$ of the given circle.

## Section 11.

(For the sake of the proof) divide $B C$, i.e. the edge of an octahedron, into

GEOMETRICORVM. LIB. III. aqualia ad punctum $\leq 3$ ducaturǵáue E 53 . Igitur triangulus B $\leq 3$ E eftilo/celes per 8. prop. lib. 6. (nam E 3 e/l perpendicularis ad reclam B C in trianglous rotitangulo ifojcele в E C quare E-53 в fimilistriangulo в E C eflijofceles) cuius latera E 53 U大 53 B funt inter fe aqualia. Quare (quoniam B 53 reprafentat laties truncati oftoedri per laterum media cuius. Pemidiameter cir: cumforiptibilis fpbare efl E 53 ) latus truncati oftoedri per laterum media, aqualis esf fua circumfcriptibilis pherra femidiametro. Sed in bac propofitione ef circumfcriptibilis pherre fimidiameter e b , quare ot dietum ef in confiructione, diff. 15 . retta в E eft latus octoedri truncati per lateru media cuius circum/cr:etibilis fphara femidiameter ef dati circuli femidiameter х в.

Diftinctio 12.
Notetur demonfrationis gratia communis fetio redarum в C © nota 54 . lgitur rella B 54 eft tertia pars lateris olloedri в C (nam per 4-prop. lib. 6. Euclid. vt relta E F ad redtam F C: Sic relta B 54 adrectam
 tertia pars redte E C per primam diffindionem conftrultionis, quare B 54 eft tertia pars rectie B C) quare recta в 54 aqualis eft lateritruncatioctoedri per laterum tertias, cuius femidiameter Es4, fed bt recta B s4 ad rectam $\leq 4$ E, fic recta 40,1 ad rectam 1 E per 4 -prop. lib. 6, Euclid. (nam trianguli B 54 E Or 40 I E funt fimiles) quare $v t$ ditlum efl in conftriEtione, dift. 16, reCta 40 I eft latios truncati otioedri per laterum certias, cuius circum/cripribiins/phara femidiameter eft dati circuli femidiameter E I.

Diftinctio 13.
Quoniam recta 41,42 efl pars correffondens lateri truncati dodecaedri per laterum diuifiones intres partes, cuius circum/criptibilis fphaye jemidiametar efl recta E 4 I , crit recta 44,43 pars refpondens lateri truncati dodecacdri per laterum diuifones in tres partes cuius circumjoriptibilis /pbaras femidiameter efl E 44, Nam rt rella E4i adreltam 41, 42, fic rella E44, ad rectam 44, 43 per 4. prop. lib. 6. Euclud. (funt enim trianguli E41, 42.
 41,43 eft latus dodecaedri trisncati pier laterum diuifiones in tres partes, cuius circumfrriptibilisfiphere femidiameter eft dati circulifemidiameter E44.
two equal parts at the point 53 , and draw E53. Therefore the triangle $B 53 E$ is isosceles, by the 8th proposition of the 6th book (for $E 53$ is the perpendicular to the line $B C$ in the right-angled isosceles triangle $B E C$; therefore $E 53 B$, similar to the triangle $B E C$, is isosceles), while its sides $E 53$ and $53 B$ are equal to one another. Therefore (since B53 represents the edge of an octahedron truncated through the mid-points of the edges for which the semi-diameter of the sphere that can be circumscribed about it is E53) the edge of the octahedron truncated through the mid-points of the edges is equal to the semi-diameter of the sphere that can be circumscribed about it. But in this proposition the semi-diameter of the sphere that can be circumscribed about it is $E B$; therefore, as has been said in the construction, section 15 , the line $B E$ is the edge of the octahedron truncated through the mid-points of the edges for which the semi-diameter of the sphere that can be circumscribed about it is the semi-diameter $E B$ of the given circle.

## Section 12.

For the sake of the proof mark the point of intersection of the lines $B C$ and $F G$ by the mark 54. Therefore the line B54 is one third of the edge of the octahedron $B C$ (for, by the 4th proposition of Euclid's 6th book, as the line $E F$ is to the line $F C$, so is the line $B 54$ to the line $54 C$, because the triangle $E C B$ is similar to the triangle $F C 54$, and the line $E F$ is one third of the line $E C$ by the first section of the construction; therefore $B 54$ is one third of the line $B C$ ); therefore the line $B 54$ is .equal to the edge of the octahedron truncated through the third parts of the edges, whose semi-diameter is E54, but as the line B54 is to the line $54 E$, so is the line $40, I$ to the line $I E$, by the 4th proposition of Euclid's 6th book (for the triangles B54E and $40 I E$ are similar); therefore, as has been said in the construction, section 16 , the line $40 I$ is the edge of the octahedron truncated through the third parts of the edges for which the semi-diameter of the sphere than can be circumscribed about it is the semi-diameter EI of the given circle.

Diflincto-14.
Quoniam recta $\mathrm{C}_{45}$ of linea correfoondens lateri truncati ivofaedriper laterum media, cuius circum/criptibilis ßhara /emidiameter eft 45 E , erit recta 47,46 linea corre/pondens lateri truncati icojacedri per laterum media cuius circumfcriptibilis Jphare femidiameter eff recta 46, E. Nam virecta C 45 ad rectam 45 E , fic refa 47,46 ad retham 46 E per 4 . prop. lib. б. Euclid. (funt enim trianguli C4S E \& 47, 46 E fimiles) quare $2 t$ dictum eft in conflructione diff. 18, recta 47,46 efl latus truncati ico jaedri, per laterums media, cuius circumfrripribilis ßhere femidiamerer ef dati circuli femidiameter 46 E .

## Diftinfio 15 .

Quoniam recta C 48 eff linea correfpondens lateri truncati icofaedri per laterum tertias, cuius circumfcriptibilis ppbare femidiameter esf 48 E , erit recta 50,40 linea correfpondens lateri truncati icojaedri per laterum tertias, cuius circum/criptibilis Pheara femidiameter eft 49 E, nam vo rella C 48 ad rectam 48 E fic refta 50,49 ad rellam 49 E per 4.prop. lib. 6 . Euclid. (funt enim trianguli C 48 E © 50,49 E fimiles) quare pe dictum eff inconftructione disfe. 19. recta so, 49 eff latus truncati icofadedre per laterum zertias cuius circumscriptibilis fpherva femidiameter eft dati circuli Jemidiameter 49 E .

Conclufio.
Jgizar dato maximo circulo Jphara latera quinque erc. Quod erat fac iendum.

$$
\mathcal{P R O B L E M \mathscr { C } I I .}
$$

Datis lateribus quinque corporum regularium, \& quinque auctorum regulariom corporum, \& nouem trancatorii regularium corporum, eidem fphxrx infcripribllum, plana conftruere ac difponere, qux fir ritè complicentur efficiant ipfa corpora,

## Section 13.

Since the line 41,42 is a part corresponding to the edge of the dodecahedron truncated through the divisions of the edges into three parts for which the semidiameter of the sphere that can be circumscribed about it is the line E41, the line 44,43 will be the part corresponding to the edge of the dodecahedron truncated through the divisions of the edges into three parts for which the semidiameter of the sphere that can be circumscribed about it is $E 44$, for as the line E41 is to the line 41,42 , so is the line $E 44$ to the line 44,43 , by the 4th proposition of Euclid's 6th book (for the triangles E41,42 and E44, 43 are similar); therefore, as has been said in the construction, section 17, the line 41,43 is the edge of the dodecahedron truncated through the divisions of the edges into three parts for which the semi-diameter of the sphere that can be circumscribed about it is the semi-diameter $E 44$ of the given circle.

## Section 14.

Since the line C45 is a line corresponding to the edge of the icosahedron truncated through the mid-points of the edges for which the semi-diameter of the sphere that can be circumscribed about it is $45 E$, the line 47,46 will be the line corresponding to the edge of the icosahedron truncated through the mid-points of the edges for which the semi-diameter of the sphere that can be circumscribed about it is the line $46, E$. For as the line C45 is to the line $45 E$, so is the line 47,46 to the line $46 E$, by the 4 th proposition of Euclid's 6 th book (for the triangles C45E and $47,46 E$ are similar); therefore, as has been said in the construction, section 18, the line 47,46 is the edge of the icosahedron truncated through the mid-points of the edges for which the semi-diameter of the sphere that can be circumscribed about it is the semi-diameter $46 E$ of the given circle.

## Section 15.

Since the line C48 is a line corresponding to the edge of the icosahedron truncated through the third parts of the edges for which the semi-diameter of the sphere that can be circumscribed about it is $48 E$, the line 50,49 will be the line corresponding to the edge of the icosahedron truncated through the third parts of the edges for which the semi-diameter of the sphere that can be circumscribed about it is $49 E$, for as the line C48 is to the line $48 E$, so is the line 50,49 to the line $49 E$, by the 4 th proposition of Euclid's 6 th book (for the triangles C48E and $50,49 E$ are similar); therefore, as has been said in the construction, section 19, the line 50,49 is the edge of the icosahedron truncated through the third parts of the edges for which the semi-diameter of the sphere that can be circumscribed about it is the semi-diameter $49 E$ of the given circle.

Conclusion.
Therefore, given the great circle of a sphere: the edges of the five, etc. Which was to be performed.

## PROBLEM II.

Given the edges of the five regular solids and the five augmented regular solids and the nine truncated regular solids that can be inscribed in the same sphere, to construct and dispose plane figures which, if properly folded together, form said solids.

Explicatio dati.
Sint data latera antedictorum corporum (inventa per primum pracedens Problema) eidem Phare infcriptibilium talia:


## Explicatio quafiti.

Oporteat ex datis illis lineis confructa plana, dijponere qua fi vito complicentur efficiant anteditta corpora eidem 乃phara (cuius diameter afualis fit rectre a) injerppribilia。

I 2 Con-

Given.
Let the edges of the aforesaid solids (found by the first preceding Problem) that can be inscribed in the same sphere be given, as follows:

A the diameter of the sphere that can be circumscribed about the figures
$B \quad$ the edge of the tetrahedron
C : of the cube
$D \quad$ of the octahedron
$E \quad$ of the dodecahedron
$F \quad$ of the icosahedron
$G \quad$ of the augmented tetrahedron
$H$. of the augmented cube
$I$ of the augmented octahedron
$K$ of the augmented dodecahedron
$L$ of the augmented icosahedron
$M \quad$ of the truncated tetrahedron
$N \quad$ of the cube truncated through the divisions of the edges into three parts
$O^{-}$of the first twice-truncated cube
$P \quad$ of the second twice-truncated cube
$Q \quad$ of the octahedron truncated through the mid-points of the edges
$R \quad$ of the octahedton truncated through the third parts of the edges
$S \quad$ of the dodecahedron truncated through the divisions of the edges into three parts
$T \quad$ of the icosahedron truncated through the mid-points of the edges
$V$ of the icosahedron truncated through the third parts of the edges

## Required.

Let it be required to dispose the plane figures constructed from these given lines in such a way that, when properly folded together, they form the aforesaid solids that can be inscribed in the same sphere (whose diameter shall be equal to the line $A$ ).

Confructio.


Diftinotio r.
Ex apta quadam plica. bilima teria diponantur $v t$ infra pro tetraedro, qualuor trianguli guorum fingula latera aqualia fint retite b.

Diftinctio 2.
Difonantur $2 t$ infra pro cubo fex quadrata quorum fingula latera aqualia fint rettac.


## Construction.

## Section 1.

In order to form the tetrahedron dispose from some suitable foldable material, as shown below, four triangles, each of whose sides be equal to the line $B$.

## Section 2.

In order to form the cube dispose, as shown below, six squares, each of whose sides be equal to the line $C$.

## Diftinctio 3.

Difponantur vt infra pro ocsoedro, octo trianguli quorum fingula latora equalia fint recte $D$.


## Section 3.

In order to form the octahedron dispose, as shown below, eight triangles, each of whose sides be equal to the line: $D$.

## Diftinatio 4.

Diforvantur wi infra pro dodecaedro 12 pentagona quorum fingula latera aqualia fint recia $E$.


## Section 4.

In order to form the dodecahedron dispose, as shown below, 12 pentagons, cach of whose sides be equal to the line $E$.

Diftinctio 5.
Difponantar re infra pro Iofadro riginti trianguli quorum fimgula latera rqualia fint reltas. $\mathbf{F}$.


## Section 5.

In order to form the icosahedron dispose, as shown below, twenty triangles, each of whose sides be equal to the line $F$.

## Diftinctio 6.



Difponantur pro autto tetraedro quatuor trianguli $n t$ in pracedenti prima difinctione qucrum /ingula latera aqualia /inz redte Go Deinde quater tres criangula $2 t$ funt tres trianguli $1,2,3$, quarum $/$ ingus Ia latera aqualia fint ipfi $\mathbf{a}$.

## Diftinctio 7.



Difponantur pro aucto cubo fex quadrata, ve in pracedenti fecunda difinctione quorum fingxla latera aqualia fint relta H . Deinde fexies quatuor trianguli ot funt 4, $5,6,7$, quorun: fingula latera aqualia fint ipf H .

## Diftinatio 8.

Difponantur pro auloo ofloedro otto trian-
 guli vt in pracedenti tertia diflinctione, quos rum fingula later: aqualia fint refte 1. Deinde oflies tres trianguli vo junt tres trianguli 8,9,10, quorum fingula latera .equalia fint ipf I .

## Diftinctio 9.



Dijponantar pro aulo dodecaedro duodecim pentagona $v t$ in pracedenti quarta diftintione, quorum fingula latera aqualia fint rette K : Deinde duodicies quinque triarguli nt funt quinque trianguli 11,12 , 13, 14, 15, quorum fingula latera aqualia fint ipfik.

## Section 6.

In order to form the augmented tetrahedron, dispose four triangles, as in the preceding first section, each of whose sides be equal to the line $G$. Subsequently four times three triangles such as the three triangles $1,2,3$, each of whose sides be equal to the said $G$.

## Section 7.

In order to form the augmented cube, dispose six squares, as in the preceding second section, each of whose sides be equal to the line $H$. Subsequently six times four triangles such as $4,5,6,7$, each of whose sides be equal to the said $H$.

## Section 8.

In order to form the augmented octahedron, dispose eight triangles as in the preceding third section, each of whose sides be equal to the line $I$. Subsequently eight times three triangles such as the three triangles $8,9,10$, each of whose sides be equal to the said $I$.

## Section 9.

In order to form the augmented dodecahedron, dispose twelve pentagons as in the preceding fourth section, each of whose sides be equal to the line $K$. Subsequently twelve times five triangles such as the five triangles $11,12,13,14$, 15, each of whose sides be equal to the said $K$.

## Diftinatio 10.

Diponanzur pro aucto icofaedro vi-
 ginti trianguli pt in pracedenti quinta dijf. quorum fingula lacera agualia fint retta L. Deinde nicies tres rrianguli $n t$ junt tres trianguli 16, 17, 18, quorum. fingula latera aqualia finc ip 1 L .

## Dirtinctio II.

Difponantur Ne infra pro truncato tetiaedro per laterum tertias, quatuor bexagona, $\sigma$ quatnor zrianguli quorum fingula latera aqualia fint redle $M$.


K

## Section 10.

In order to form the augmented icosahedron, dispose twenty triangles as in the preceding fifth section, each of whose sides be equal to the line $L$. Subsequently twenty times three triangles such as the three triangles $16,17,18$, each of whose sides be equal to the said $L$.

## Section 11.

In order to form the tetrahedron truncated through the third parts of the edges, dispose, as shown below, four hexagons and four triangles, each of whose sides be equal to the line $M$.

## Difinctio $: 2$.

Di $\int_{\text {ponancur }}$ ve infra pro trincato cubo per laterum dituifones in tres partes, fex octogona, to ofto trianguif, qucruen fingula latera aqualia finc redte N,


## Section 12.

In order to form the cube truncated through the divisions of the edges into three parts, dispose, as shown below, six octagons and eight triangles, each of whose sides be equal to the line $N$.

## Diftincio 13.

Difponantur ot infra pro bistruncato cubo primo, oltudecim quadrata, - oito trianguli quorum fingula latera equalia fint rettic o.

$\mathrm{K}_{2}$

## Section 13:

In order to form the first twice-truncated cube, dispose, as shown below, eighteen squares and eight triangles, each of whose sides be equal to the line 0 .

Ditinctio 14 .
Difponantur wt infra pro bifiruncato cubo focundo fex ollogona, ofio bexagona, ơ duodecim quadrata, quoram fingula latera aqualia fint rette P .


## Section 14.

In order to form the second twice-truncated cube, dispose, as shown below, six octagons, eight hexagons, and twelve squares, each of whose sides be equal to the line $P$.

Diftinctio 15 .
Difpomantụr ot infra pro trancaso Odoedro per laterum media, fex quadrata, \& oflo trianguli, quoram fingula latera aqualia fint reata $Q$.

$K_{3}$

## Section 15.

In order to form the Octahedron truncated through the mid-points of the edges, dispose, as shown below, six squares and eight triangles, each of whose sides be equal to the line $Q$.

## Diftintio 16.

Difponantur ve infra pro truncato oEloedro per lateram tercias, fex quadrata, ớ offo bexagona, guorun fingula lasera aqualia fint retie $\mathbf{x}$.


## Section 16.

In order to form the octahedron truncated through the third parts of the edges, dispose, as shown below, six squares and eight hexagons, each of whose sides be equal to the line $R$.

## Didinaia 17.

Diponaynser yt infra pro truncuto dodectedro per haterum dinijorocs in tres partes duodecim decogona, ov yiginctitrianguli quorum fingula latera aqualia fint relta s.


## Section 17.

In order to form the dodecahedron truncated through the divisions of the edges into three parts, dispose, as shown below, twelve decagons and twenty triangles, each of whose sides be equal to the line $S$.

## Difinctio 18.

Didponantikr vt infra pro truncato icofadro per laterum media dwodecim pentagona, or riginti trianguli, quoram fingula latera aqualia fint retar т.


## Section 18.

In order to form the icosahedron truncated through the mid-points of the edges, dispose, as shown below, twelve pentagons and twenty triangles, each of whose sides be equal to the line $T$.

Diftinctio 19.
Difponantur, we infra, pro truscato icofaedro per laterum tertias; wiginti bexagona, or duodecim pentagona, quorum fingula latera aqualia fint recta v.

$L$

## Section 19.

In order to form the icosahedron truncated through the third parts of the edges, dispose, as shown below, twenty hexagons and twelve pentagons, each of whose sides be equal to the line $V$.

Pof talem planorum difpofrionem erunt plana site inter fe complicandas Quomodo veró jeet bec complicatio in ingulis corparibus defcribere /upervacesneum videcur, cuma res per fé fatus $\overline{\mathrm{Lt}} \mathrm{nota}$. Pof verò talem complicationem, erunt planörum latera, vinopus fuerit, conglutinanda, fiex papyro, ligno vel fimai fuerint plana: Aut ferruminanda, fifuerint ex aliquo metallo.

Auctorum verò corporum conftructio talis erit: Primó complicentur as perficisniur quinque corpora regularia que in principijs fexte, Jeptime, octaur, nona, G' decima disfinctionum funt recitata: Deinde cuicunque juperficiei ipforum applicetur fua pyramis $a^{b}$ 信 bafi: exempli gratia, aucti retraedri fètre difininonis tetrasdrum primum complictur: deinde coms plicentur $\mathfrak{*}$ tres illi trianguli his notis $\mathrm{r}, 2,3$, fignatis, ita vi efficiant pyramidim fine bafe: Appliceturq́ue iffa pyramis cum parte vbi bafos defici, cuidam Juperficiei tetruedis, ipfique conglutinetur, vel conferruminetur.

Eodennǵb modo applicentur tres tales pyramides reliquis tribus tetraedri fu: perficiebus, eritǵue auctum tetraedrum exalum . Similiter agetur in reliquis quarsor aultis corporibus.

Dico ex taitbus datis lizeis plana eße consfruita ac difpofita, qua $\beta$ ita $v e$ dillum eft complicentur, ér conglutinentur, efficient antedicia petita


## Demonftratio.

Demonfiratio ex demonsfratione pracedentis primi Problematis eft mayifesta.

## Appendix.

Planorum verò difpofitio corporis truncati (cuius of factamentio in principio buius 3. lib.) cusus zruncardi madus bat foribentem me lasebas talis

After this disposition of the plane figures, they will have to be folded together properly. It seemed, however, superfluous to describe for each of the solids how this folding takes place, since this matter is sufficiently known in itself. But after this folding, the sides of the faces will have to be glued together, wherever necessary, if the plane figures are made of paper, wood or the like, or to be joined together if they are made of some metal.

But the construction of the augmented solids will be as follows. First fold and complete the five regular solids which are mentioned at the beginning of the sixth, seventh, eighth, ninth, and tenth sections. Subsequently place against every face of those solids its pyramid without a base, e.g. of the augmented tetrahedron fold first the tetrahedron of the sixth section; next fold also those three triangles which are marked 1, 2, 3, in such a way that they form a pyramid without a base. And place the said pyramid with the part where the base is lacking against a face of the tetrahedron, and glue or join it thereto.

In the same way place three such pyramids against the remaining three faces of the tetrahedron; then the exact augmented tetrahedron will be completed. Proceed similarly with the other four augmented solids.

I say that from such given lines plane figures have been constructed and disposed which, if they are so folded and glued together as has been said, form the aforesaid required solids that can be inscribed in the same sphere; as was required.

## Proof.

The proof is clear from the proof of the preceding first Problem.

## Appendix.

However, the disposition of the faces of a truncated solid (of which mention has been made at the beginning of this 3rd book), of which I ignored the way
ff: Dipponantur, ve infra, jex quadrata * 36. trianguli.
Sed propter ipfius truncationis, fou vere ori;imis ignorantiam non potui. mus lioc Geometrici antedidue Jphatre infcribtibile cum ceteris conflruere.


Tertii Libri
FINIS.

L 2
of truncating when I wrote this, is as follows. Dispose, as shown below, six squares and 32 triangles.
But on account of lack of knowledge of the said truncation or of its true origin we have not been able to construct this solid that can be inscribed in the aforesaid sphere Geometrically along with the others.

## END OF THE THIRD BOOK.

## 84

## LIBER QVARTVS

## IN QVO DEMONSTRABITVR QVUmodo datis duobus corporibus Geometricis, tertium corpus defcribi potelt, alteri datorum fimile, alteri vero xquale.

PR О в LеMA quoddam exinium Clariß. vir, à veteribus inventum eft, ©r ab Euclide prop. 25. lib. 6. defrripum, cuius Jenfus talis eff : Datis duobus rectilineis, tertium reailineum defcri: bere, alteri datorum fimile, altsri vero xquale. Cumq́ue in planis tale Problemainventum animaduerieremus, tamen in jolidis non effe fimile generale Problema defcriprum (dico gene:ale) quoxiam Archimedis invertio in chordis fegmentis (pharalibus ad s.prop. lib.2. de fphara © cylindro eft in eo /pecialis: praterea cum confideraremus magnam \ympathiann inter magnitudinem /uperficialem $\mathfrak{G}$ sorpoream (nam quemadmodum triangula ©o parallelogramma quorum eadcm est altitudo, ita je babent inter Je vt bajes per 1. prop. lib. 6. Euclid. Sic parallelepipeda, pyramides, coni, \& cylindri, quorum eadicm ef altitudo, ita fe babent inter fe ne bafes, per 32. prop.lib. 11. Ǵ per s, 6, Ge 11. prop. lib. 12. Euclid. Praserea guemadmodum triangula $\sigma$ parallelogramma quorum bajes $\sigma$ altitudues reciprocantur, func inter fe aqualia: Sic parallelepipeda, pyramides, coni, ó cylindri, quorum bafes \&r allitudines reciprocantur funt inter fe aquales per 34. prop. lib. in. © per 9, Gf 15, prop. lib. i2. Euclid. Praterea quemadmodum fimilia rectilinea duplisatan eam babent inter fè rationem, quam latus bomoloosum ad homologüluaus per 20. prop. lib. 6. Euc. Sic fimilia corpora tripitastam cam bateat rationcm, quam latus bomologum ad homologum latus per 3 3.prop. lib. 11. © o per 8. 12 efr 18. prop. lib. 12. Eucid.) adplicauimus animum ad fimile Problema inveniendum in jobidis. lláue faliciter cffe inventum, atoure iza generale in folids, ve esf fupradiftum Problema ad 25. prop. lib.6. Euclid, in pharis, completiens tum Archi:

## FOURTH BOOK

in which it is to be proved how, when two Geometrical solids are given, a third solid can be constructed,
similar to one of the given solids and equal to the other.
A very beautiful problem, o illustrious lord, was found by the Ancients and described by Euclid in the 25th proposition of the 6th book, the sense of which is as follows: Given two rectilinear figures, to construct a third rectilinear figure, similar to one of the given figures and equal to the other. And since we noted that this Problem had been found for plane figures, yet that for solids no similar general Problem had been described (I say: general, since Archimedes' invention in the matter of segments of spheres in the 5th proposition of book 2 on the sphere and cylinder ${ }^{*}$ ) is of a particular character in this field); and since moreover we considered there was great similarity between a plane and a solid magnitude (for as triangles and parallelograms whose altitude is the same are to one another as their bases, by the 1st proposition of Euclid's 6th book, so parallelepipeds, pyramids, cones, and cylinders whose altitude is the same are to one another as their bases, by the 32nd proposition of Euclid's 11th book and by the 5th, 6th, and 11th propositions of his 12 th book) - moreover, as triangles and parallelograms whose bases and altitudes are inversely proportional are equal to one another, so parallelepipeds; pyramids, cones, and cylinders whose bases and altitudes are inversely proportional are equal to one another, by the 34th proposition of Euclid's 11th book and by the 9th and 15th propositions of his 12 th book; moreover, as similar rectilinear figures are to one another in the duplicate ratio of that of a homologous side to a homologous side, by the 20th proposition of Euclid's Gth book, so similar solids are to one another in the triplicate ratio of that of a homologous edge to a homologous edge, by the 33 rd proposition of Euclid's 11 th book and by the 8 th, 12 th, and 18th propositions of his 12 th book - we applied our minds to the finding of a similar Problem for solids. And that it has fortunately been found, and even as general for solids as the above-mentioned Problem in the 25th proposition of Euclid's 6th book is for plane figures, comprehending Archimedes' aforesaid invention

[^20] Archimedis antedictum inventum, tum omnia fimilia in alijs formes magniuidinum, renit in bac fecuedda parte demonfrandum.

Sed antequan ad rem propofitam perveniamus, trin Problemata defrris bentur ad quafita propofitionis conflrutionem necefaria, quorum primum eff.

## $\mathcal{P R O B L} \mathcal{E} A \quad I$.

Datis duabus rectislineis duas medias proportionales invenire.

## NOTA.

Etr 1 hoc Problema (quamvis non Germetrice) per diuerfa inffrumenta mslitifariam à petcitibus fit inventum, dabitur tamen bic tantum pnicum exemplum per lineas, jecundum modum Heronis. Reliquos modos qui per infirumenta expediuntur, in nootra Geometria fuis inflrumentis accommodatis bresiter fperamus nos edizares.

## Explicatio dati.

Sint igitur dut data linex A B, © C D.

## Explicatio quxfiti.

Oporteat ipfis duas medias lineas proportionales invenire.

## Conftructio.

 pliceturǵue interpalium $A B, a b \mathrm{E}$, in recta E F , fitǵue EH , ducaturǵue н I , aqualis ipfí C D ó ad angulos rectos ipf E F, Similiter ducatur rocta
 reta e 1, cuius medium punctum notetur ad L , deinde adiumento circini, pede fixo in L , fignentur pede mobili duo puncta $v t \mathrm{~m}$, in radta K G , al-
 rełta M N duta, contincret in fe puntlum 1, bene eßer; Si verò ita mi-
 L 3 - maius
as well as all similar ones for other forms of magnitudes, is shown in this second part.

But before we come to the matter proposed, three Problems will be described which are necessary for the construction of the proposition in question, the first of which is as follows.

## PROBLEM I.

Given two lines, to find the two mean proportionals.
NOTE.
Though this Problem was found (though not by a Geometrical method) by the Ancients in different ways by means of different instruments, yet only a single example for lines will here be given, according to the manner of Hero. The other methods, which are carried out by means of instruments, we hope to publish shortly in our Geometry by means of the appropriate instruments ${ }^{\star}$ ).

Given.
Therefore let there be two given lines $A B$ and $C D$.

## Required.

Let it be required to find for these lines the two mean proportionals.

## Construction.

Draw the lines $E F$ and $E G$, making the angle $G E F$ right. Mark off the length $A B$ from $E$ on the line $E F$, and let this be $E H$. And draw $H I$, equal to $C D$ and at right angles to $E F$. Similarly draw a line from the point $I$ to the line $E G$ and parallel to $E H$, and let this be $I K$; and draw the line $E I$, whose mid-point shall be marked at $L$; subsequently with the aid of the compasses, the fixed leg being at $L$, mark with the movable leg two points, viz. $M$ on the line $K G$ and the other, viz. $N$, on the line $H F$. Now if these points fell so that, when the line $M N$ is drawn, it would contain the point $I$, this would be al right. But if this did not happen at all, it would be necessary to mark points such as $M$ and $N$ at a greater

[^21]maius aut misus intervallum id puncio L , quo ad ducta reta MN , in fo punctum 1 contiveret, vo in boc exemplo, obi ponitur punfum is in reffa M N exijfere.

 C D) vt erat quefzum.


Demonftratio.
Demonfratio babetur apud Eutachium commentatorem in fecundum librum de ßbara or cylindro. Archimedis.

## Conclufio.

Igitur datis duabus reCtis lineis dut media proportionales inventa funt: Quod erat faciendum.

$$
\mathcal{P} \cap \mathcal{B L E} \mathbb{M} A \quad 1 I .
$$

Dato cono aqualem conum fab data altitudine defcribere.
or smaller distance from the point $L$ till the line $M N$, being drawn, would contain the point $I$, as in this example, where the point $I$ is supposed to lie on the line $M N$.
I say that, given the lines $A B$ and $C D$, the two mean proportionals $K M$ and $H N$ have been found (the first term being $A B$, the second $K M$, the third $H N$, the fourth $C D$ ); as was required.

## Proof.

The proof will be found in Eutocius the commentator, in the second book on the sphere and cylinder of Archimedes.

## Conclusion.

Therefore, given two lines, the two mean proportionals have been found; which was to be performed.

## PROBLEM II.

To construct a cone equal to a given cone, with a given altitude.

Explicatio dati.
Sit datus comis ABC, cuius aluizudo A D, Or diamerer bafis в $\boldsymbol{C}_{1}$ Data berò alitudo EF.

Explicatio quxfiti.
Oporteat alterwm conum dijcribere aqualem cono A B C, đூ fub data altitudine EF.

## Conftructio.

Inveniatur media linea propoztionalis inter A D, E F, per 13. prop. lib. 6. Euciid. fitq́u: G : inveniatur deinde quarta linea proportionalis per 12. prop. lib. 6. Euclid. quarum prima G, fecunda A D, zertie B C, fıq́ue quarta H1: Deinde ad circulum cuius diameter H I © add alcitudinem E F, conffruatur conus $\mathbf{E H I}$.

Dico ccnum EHI, effeconfrutum, aqualem conodato А в $\subset$ © fub data chitudine E F , pt erat quafitum.


NOTA.
Anse Problematis denonftrationem a exifimamus aliquid notari bit operso

## Given.

Let the cone $A B C$ be given, whose altitude is $A D$, and the diameter of the base $B C$. And let the altitude $E F$ be given.

Required.
Let it be required to construct another cone, equal to the cone $A B C$, and with the given altitude $E F$.

## Construction.

By the 13th proposition of Euclid's 6th book, find the mean proportional between $A D$ and $E F$, and let this be $G$. Then, by the 12th proposition of Euclid's 6th book, find the fourth proportional, the first term being $G$, the second $A D$, the third $B C$; and let the fourth be HI. Subsequently on the circle whose diameter is $H I$ and with the altitude $E F$ construct the cone $E H I$.

I say that a cone $E H I$ has been constructed, equal to the given cone $A B C$ and with the given altitude $E F$; as was required.

NOTE.
Before the proof of the Problem we think it worth while that something
operapretium, nempe quoniam in lequentibus demonfrationibus lape dices tur de duplicata ac triplicata ratione terminorum, lectori necefe eße ( $\bar{i}$ dẹmonftrationes velit intelligere) fcire, ér recté intelligere quid אzt daplicata © triplicata ratio: Definitur quidem ipfa in decima definitione lib.s. Eucl. Sed mulios interpretes elementorum Euclidis invenimus, bunc locum (quamris fit magnia confequentia) non rité explicanies, exceptó doctijsmo Máthematico Chriftophoro Clauio Bambergenfi commentatore in elementa Euclidis.

## Demonftratio.

## Diftinctio I .

A D, ad E E, duplicatam eam babet rationem quam A D, ad G, nam G eft illarums media proportionalis per conflrultionem.

## Diftinctio 2.

Circulus H I, ad circulum B C, duplicatam eam babet rationem quam bomologa linea HI, ad bomologam lineam B C, nt colligitur ex 20 .prop. lib. 6. Euclid. Sed $\nu t$ ređla н I, ad rectam в C, fic А D, ad G, per ine verfam rationem conftructionis: Ergo circulus H I, ad circulum в C, dus plicatam eams babet rationem quam reala A D, ad G. Sed A D, ad E F, dernonftrata eft diflinctione 1 , eandem babere duplicatam rationem quam AD, ad G: Ergo vt recta A D, ad rectam E F, fic circulus H I, ad circulum в С. lgitur fùnt coni quorum bafes or altitudines reciprocantur, quare per 15 . prop. lib. 12. Euclid. coni A B C, $\sigma$ E H1, funt inter fe aquales. Praterea conum EHI, conftructum eße ad datam altitudinem EF, ex ipfa conftructione manifeftum eft.

## Conclufio.

Igitur dato cono aqualis conus fub data alitiudine defrriptus off: Quod erat faczendum.

NOTA.
Anteditha conorum confiructio ac demomitratio applicari posefit ad fub. fariptes.
should be noted here, viz. that since in the following proofs there will often be question of the duplicate and triplicate ratio of the terms, the reader must know (if he is to understand the proofs) and understand aright what is the duplicate and the triplicate ratio. This is indeed defined in the tenth definition of Euclid's Sth book. But we have found many interpreters of the elements of Euclid who do not properly explain this passage (though it is of great consequence), except the most learned Mathematician Christophorus Clavius Bambergensis, the commentator of Euclid's elements.

## Proof.

Section 1.
$A D$ has to $E F$ the duplicate ratio of that of $A D$ to $G$, for $G$ is their mean proportional by the construction.

## Section 2.

The circle $H I$ is to the circle $B C$ in the duplicate ratio of that of the homologous line $H I$ to the homologous line $B C$, as is inferred from the 20th proposition of Euclid's 6th book. But as the line $H l$ is to the line $B C$, so is $A D$ to $G$, by the inverted ratio of the construction. Consequently, the circle HI is to the circle $B C$ in the duplicate ratio of that of the line $A D$ to $G$. But it has been proved in section 1 that $A D$ is to $E F$ in the same duplicate ratio of that of $A D$ to $G$. Consequently, as the line $A D$ is to the line $E F$, so is the circle $H I$ to the circle $B C$. Therefore the solids are cones whose bases and altitudes are inversely proportional, so that, by the 15th proposition of Euclid's 12th book, the cones $A B C$ and $E H I$ are equal to one another. Moreover, it is evident from the construction itself that the cone $E H I$ has been constructed with the given altitude $E F$.

## Conclusion.

Therefore, given a cone, a cone equal thereto has been constructed with a given altitude; which was to be performed.

NOTE.
The aforesaid construction and proof of cones can be applied to the cylinders

## GEOMETRICORVM. LTB.IIIX 89

 fcriptos cylindros, quorum bafes alitudines quia reciprocantur, conclina detur per is.prup. tiv. 12. Euclid. eße aquabes.

## PROBLECMcA 11 .

Dato chordx fegmento Sphxrali, xqualem conum deferibere, habentem bafin cum chordx fegmento eandem.

NOTA.
Cbordx fegmentam Pbarale rocamus partem phara plano i B'sara feitam, ratio buizes appellationis nna cum ratione nominis diametralis fegmenti ßhbaralis in nofita Geometria dicetur.

## Explicatio dati.

Sit igitur datum chorda jegmentum 乃pharale A B C, cuius diameter bafis а в centrum bafis D , vertex/egmenti C , © fegmenti maximus /phera circulus fir AEBC, cuius diameter CE, © femadiameter Fe.
shown below, for because their bases and altitudes are inversely proportional, it is concluded by the 15th proposition of Euclid's 12th book that they are equal.

## PROBLEM III.

Given a chordal segment of a sphere *), to construct a cone equal thereto, having the same base as the chordal segment of a sphere.

## NOTE.

A chordal segment of a sphere we call the part of a sphere cut from the sphere by a plane, the reason of which name will be explained in our Geometry along with the reason of the name of diametrical segment of a sphere **).

## Given.

Let therefore the segment of a sphere $A B C$ be given, whose diameter of the base is $A B$, the centre of the base $D$, the vertex of the segment $C$, and let the great circle of the segment of the sphere be $A E B C$, whose diameter is $C E$ and whose semi-diameter is $F E$.

[^22]
## Explicatio quaxfiti.

Cporteat ipf fegmento A B C, aqualem conum defcribere, babentem bafin cum jegmento candem.

## Conftructio.

Producatur E C, in direflum ad G: Inveniatur deinde grarta lineos proportionalis per 12. prop. lib. 6. Euclid. quarum prima efe E D, fecunda
 D H: Deinde ad circulum cuius diameter eft A B, ér ad alititudinem D H , confiruatur conus HAB.

Dico cborde Jegmento ßpharali п в с, aqualem conum н а в, effeconfrutum, babentem bafin cum dato chorda fegmento eandem, vi erat quas frum.

## Demonitratio.


 ac quefitum buius Quarti libri:

Demonferatio babetur ad 2. prop. lib. 2. de /phara of cylindro Arclimedis.

## Conclufio.

lgizur dato chordie fegmento Bherali ers. Ruod erat faciendum.

Huculg defrripta /unt que ad consfrutionem buius insentionis funt neceffaria. Nunc ad rem.

## Required.

Let it be required to construct a cone, equal to this segment $A B C$, having the same base as the segment.

Construction.
Produce EC to $G$. Then, by the 12 th proposition of Euclid's 6th book, find the fourth proportional, the first term being $E D$, the second the same $E D$ and $E F$ on one and the same line, the third $D C$; and let the fourth be $D H$. Subsequently construct the cone $H A B$ on the circle whose diameter is $A B$ and with the altitude $D H$.
I say that a cone $H A B$ has been constructed, equal to the segment of a sphere $A B C$, having the same base as the given segment of a sphere; as was required.

## Proof.

The proof will be found in the 2 nd proposition of book 2 on the sphere and cylinder of Archimedes.

## Conclusion.

Therefore, given a chordal segment of a sphere, etc. Which was to be performed.

Hitherto have been described the things which are necessary for the construction of this invention. Now let us come to the point.

## GEOMETRICORVM. LIB.IITI. gI

Datis quibufcunque duobus corporibus Geometricis, tertium corpus defcribere, alteri datorum fimile, alteri vero xquale.

## NOTA.

Geometricum corpus rocamis quod Geometrica lege confruitur, ve eft Jphara, Chorde jegmentum /piazra, Diametrale Jegmentum fphare, Spheroides, Segmentam /pbaroidis, Conoidale, Segmentim conoidale, Columna, cuius dua june Jpecies, yt Cylindrus, © Prijma: Pyramis, Corpora regularia, autda corpora regularia, truncata corpora regularia: de quorum omnium conStruitione in noftra Geometria abunde dicetur.
Hac inquam corpora ©̛ alia qua Geometrice' conftruuntur vocamuscorpora Geometrica ad differentiam corporam, ot funt plarungue filices, fra: gmenta lapidum of fimilia.

## Explicatio dati.

Exempli i.
Sint duo corpors quacunque, nempe duo coni A B C, Ó DEF, futque coni Defalitudo, relfa DG, e̛ bafis diametcr EF.

Explicatio quxfiti.
Oporteat tertium conum confiruere, cono DEFfimilem G' cono A BC equalem.

## Conitrutio.

Defcribatur cono AB C, aqualis conus HI K, fub alrizudine altitudini dg aquali, per pracedens fecundum Problema, eius bafis diameter fit IK: Inveniatur deinde tertia linea proportionalis per 11. prop.lib. 6. Euc. quarum prima EF, fecunda IK, fiţ̣́́ tertia L: Inveniantur deinde dua media linec proportionales, per pracedens primum Problema, inter E F, © L, quarum mediarum fequens ipfam E F, fit M N: Inveniatur deinde quarta linea proportionalis per 12.prop.lib.6. Euclid. quarum prima E $F$, jecunda D G, tertia M N, fıı́que quarta OP; Deinde ad circulum cuius M 2 diams.

## PROBLEM IV,

and what is sought in this Fourth book:
Given any two Geometrical solids, to construct a third solid, similar to one of the given solids and equal to the other.

## NOTE.

We call Geometrical solid a solid which is constructed by a Geometrical law, such as sphere, a segment of a sphere, a sector of a sphere, Spheroids, a Segment of a spheroid, a Conoid, a conoidal Segment, a Column, of which there are two kinds, viz. the Cylinder and the Prism, a Pyramid, the regular Solids, the augmented regular solids, the truncated regular solids; the construction of all of which will be dealt with fully in our Geometry.
Indeed, we call these solids and others which are constructed Geometrically Geometrical solids to distinguish them from bodies such as, generally, stones, fragments of stones, and the like.

## Given.

of Example 1.
Let there be any two solids, viz. the two cones $A B C$ and $D E F$, and let the altitude of the cone $D E F$ be the line $D G$, and the diameter of the base $E F$.

## Required.

Let it be required to construct a third cone, similar to the cone $D E F$ and equal to the cone $A B C$.

## Construction.

Construct the cone $H I K$ equal to the cone $A B C$, with an altitude equal to the altitude $D G$, by the preceding second Problem; let the diameter of its base be $I K$. Then, by the 11th proposition of Euclid's 6 th book, find the third proportional, the first term being $E F$, the second $I K$; and let the third be $L$. Subsequently, by the preceding first Problem, find the two mean proportionals between $E F$ and $L$, and let that one of these mean proportionals which follows $E F$ be $M N$. Then, by the 12th proposition of Euclid's 6th book, find the fourth proportional, the first term being $E F$, the second $D G$, the third $M N$; and let the fourth be
diameter $M \mathrm{~N}, \notin \int_{\mathrm{H}} \mathrm{b}$ altitudine $\cup \mathrm{P}$, confruatur conus $O \mathrm{MN}$.
Dico tertium conum ○ M N , eße defcriptum cono a в C aqualem, $\mathcal{G}$ cono DE F fimilem, we erat quefirum.


## Demionftratio.

Diftinctio 1.
Vt bafis diameter E F , ad jui coni alitudinem D G, fic bafis diame. ter $\mathrm{M} \mathbf{N}$, ad jui coni altitudinem OP, per consfructionem, quare per 24. definitionem lib. 11. Euclid. coni DEF, $\mathcal{O M N}$, junt fimiles, quod primə erat demonsfrandum.

Sequitur nune demonftrari conum O M N aqualem efse cono A B $\mathrm{C}_{2}$ boc modo.

Difinctio 2.
Recta E F, ad rectam $\mathbf{L}$, duplicatam eam babet rationem quam relta E F , ad I K, nam IK, eft illarum media proporionalis per conftructionem: fequitur vt colligitur ex 20. prop. lib. 6. Eucl. (nam rectade f, $\mathcal{\sigma}$ I K, Junt bomologa linex in fimilibus planis) rationens circuli $(K$, ad circulum $E F$, aqualem eße rationi recta 1 , adrętam E F : Sed per 11 .prop. lib. 11 : Euc. pi bafis feu circulus I $\kappa$, ad circulum E F, fic conus Hi K, ad conum DEE, nam funt per consfrudionem coni fub equalibus altitudinibus:

Diftin-
$O P$. Subsequently on the circle whose diameter is $M N$ and with the altitude $O P$ construct the cone OMN.

I say that a third cone $O M N$ has been constructed, equal to the cone $A B C$ and similar to the cone $D E F$; as was required.

## Proof.

## Section 1.

As the diameter of the base $E F$ is to the altitude of its cone $D G$, so is the diameter of the base $M N$ to the altitude of its cone $O P$, by the construction; therefore, by the 24th definition of Euclid's 11th book, the cones DEF and OMN are similar, which was to be proved in the first place.

Next it will be proved that the cone $O M N$ is equal to the cone $A B C$, in the following way.

## Section 2.

The line $E F$ is to the line $L$ in the duplicate ratio of that of the line $E F$ to $I K$, for $I K$ is their mean proportional by the construction. It follows, as is inferred from the 20th proposition of Euclid's 6th book (for the lines $E F$ and $I K$ are homologous lines in similar plane figures), that the ratio of the circle $I K$ to the circle $E F$ is equal to the ratio of the line $L$ to the line $E F$. But, by the 11th proposition of Euclid's 11th book, as the base or the circle $I K$ is to the circle $E F$, so is the cone HIK to the cone DEF, for by the construction they are cones with equal altitudes.

Difinctio 3.
Ergo ve relta L, ad reldam EF, fic conus HIK, ad conum DEFs
Diftinctio 4.
Deinde retia $\mathbf{E F}$, ad $\mathbf{L}$, triplicatam eam babet rationem quam ipla $\mathbf{E} \mathbf{F}$, ad reflam $\mathrm{M} \mathbf{N}$ (nam quatuor continue proporionalium linearum $\mathrm{E} F$, est prima, m N Jecu:da, $\sigma \mathrm{L}$ quarta) quare per 12. prop. Lib. 12. Euclid. vt recta L, ad rectam EF, fic (quia coni O M N, OT DEE, funt per primam dijinitionem fimiles) conus O M N, ad conum DEF: Sed difinactione tertia ofenfum ef eandem rationem effed à cons $\mathbf{H}$ i K , ad eundem co: num DEF. Ergo (quoniam quorum rationes ad idem aquales funt ea inter fe fuzt aqualia) conus o m N, aqualis est cono нıк. Deinde per confitructionem corus а в с, eff cono ні к equalis: Ergo (quia qua ei-
 lis efl.

## Conclufio.

Jgitur datis quibufcunque orc. Ruod erat faciendsim.

## Exemplum fecundum.

Antedita conorum confiructio ac demonflratio applicari potef ad fub. fcriptos cylizdros:


M 3
Expli:

## Section 3.

Consequently, as the line $L$ is to the line $E F$, so is the cone $H I K$ to the cone DEF.

## Section 4.

Next, the line $E F$ is to $L$ in the triplicate ratio of that of $E F$ to the line $M N$ (for of the four lines in continuous proportion $E F$ is the first, $M N$ the second, and $L$ the fourth); therefore, by the 12th proposition of Euclid's 12th book, as the line $L$ is to the line $E F$, so (because the cones $O M N$ and $D E F$ are similar by the first section) is the cone $O M N$ to the cone DEF. But in the third section it has been shown that the same ratio exists between the cone HIK and the same cone $D E F$. 'Consequently (since things whose ratios to the same thing are equal are also equal to one another), the cone $O M N$ is equal to the cone $H I K$. Then, by the construction, the cone $A B C$ is equal to the cone HIK. Consequently (because things which are equal to the same thing are also equal to one another), the cone $O M N$ is equal to the cone $A B C$.

Conclusion.
Therefore, given any etc. Which was to be performed.

## Second Example.

The aforesaid construction and proof of cones can be applied to the cylinders shown below.

## Explicatio dati.

Exempli tertii.
Sint duo chorda Jegmenta Jpíaralia ABCD, $\mathbf{O}$ EGG, fitque chorde fegmenti EfGH, altutudo HF, $\mathfrak{G}$ bafis diameter eg.

Explicatio quafiti.
Oporteat tertium chorda fegmenskm ßpharale confruere, fegmento E F C H fimile, © fegmento A B C D equale.

Conftructio.
Defribatur conus IAC, eqtialis chorde fegmento ßpbrali А в С D: Similiter ©́ conus KEG, aqualis fegmento EFG H, per pracciens terzium Prollema: defcibibatur deinde cono I A C, aqualis conus L M N, fub altitudine alritudini K F aquali per precedens fecundum Probiema, eius bafis diameter fit MN inveniatur deinde tertia linea proportionalis per 11.prop. lib. 6. Euclid. quarum prima EG, fecunda M N, fitǵue zertia $\circ \mathrm{P}$ : deináe inveniantur due media linee proportionales per pracedens primum Problema inter EG, © O P, quarum mediarum jequens ipfam EG, fit QR: Inveniatur deinde quarta linea. proportionalis per 12. prop. lib. 6. Euclid. quarum prima E G, jecunda н F, tertia QR, fity quarta s T: Deinde ad circulum cuius diameter QR, © fub alizitudine s T, confiruatur choode fegmentum Spharale QTRS.

Dico terium chorde fegmentum fpharale QTRS, effe confrutum chorde fegmento fipherali EFGH fimile, * fegmento A B C D.aquale, pt erat quafitum.

## Given.

of the third Example.
Let there be two segments of a sphere $A B C D$ and $E F G H$, and let the altitude of the segment $E F G H$ be $H F$ and the diameter of its base $E G$.

Required.
Let it be required to construct a third segment of a sphere, similar to the segment $E F G H$ and equal to the segment $A B C D$.

## Construction.

Construct a cone IAC, equal to the segment of a sphere $A B C D$. Similarly also a cone $K E G$, equal to the segment $E F G H$, by the preceding third Problem. Then construct a cone $L M N$, equal to the cone $I A C$, with an altitude equal to the altitude $K F$ by the preceding second Problem, and let the diameter of its base be $M N$. Subsequently, by the 11th proposition of Euclid's 6th book, find the third proportional, the first term being $E G$, the second $M N$; and let the third be $O P$. Then, by the preceding first Problem, find the two mean proportionals between $E G$ and $O P$, and let that one of these mean proportionals which follows $E G$ be $Q R$. Then, by the 12 th proposition of Euclid's 6 th book, find the fourth proportional, the first term being $E G$, the second $H F$, the third $Q R$; and let the fourth be ST. Subsequently, on the circle whose diameter is $Q R$ and with the altitude ST construct the segment of a sphere QTRS.
I say that a third segment of a sphere QTRS has been constructed, similar to the segment of a sphere $E F G H$ and equal to the segment $A B C D$; as was required.


Preparatio demonftrationis.
Defribatur conus V QR, aqualis chorda Jegmento faharali QTRS; per praccdens 3 . problema:

## Demontratio.

Segmentorum QTRS $ש$ EFGH alitudines, © bafium diametri, funt per confrutionem proportionales, quare fegmenta funt fimilia. Ruod primo erat notandum.
 A B C D buc modo:

Conus v QR per demonffrationem pracedentis primi exempli, aqualis ef cono 1 A C, ergo ó aqualis ofl fegmento ABCD, (nam fegmentum
 aquale eff fegme:tum Q-TRS, per praparationem demonfrationis: Ergo


Preparation of the Proof.
Describe a cone $V Q R$, equal to the segment of a sphere $Q T R S$, by the preceding 3rd problem.

Proof.
The altitudes of the segments $Q T R S$ and $E F G H$ and the diameters of the bases are proportional by the construction; therefore the segments are similar. Which was to be noted in the first place.

Next, it will be proved that the segment $Q T R S$ is equal to the segment $A B C D$, in the following way:

The cone $V Q R$, by the proof of the preceding first example, is equal to the cone IAC; consequently, it is also equal to the segment $A B C D$ (for the segment $A B C D$ and the cone $I A C$ are equal by the construction), and the segment $Q T R S$ is equal to the cone $V Q R$, by the preparation of the proof; consequently, the segment $Q T R S$ is equal to the segment $A B C D$.

## Conclufio.

Igitur datis quibufcunque ©r. Quod erat faciendum.

## NOTA.

Non importune nidetter bsuic Problemati apphicari modes confrullionis Archimedis eiufd on Problematis, ex propofitizness lib. 2. de fpibara efo cylindro jumprus, vt cuives cmioordantia paticuians defcriptionis problemao tis Archimedis, cum pniverjalit tac noflia cor.jthuctione fit inanifefila.

Explicatio dati.
Sit datum chorda /egmentum Bharale A в C D, cuius woriex D, © fui totius Jphava diameeter D E, © ipfius Jpbara jemidianceter FD: Sitq̣ue

 bac data legmenta a jualia ơ fimi ia daris fogmentis pracedentis cxempli, in eum finem ot comparemus joluionem pracedentis exempli, ad jolurionem buius, que debent eßs aquales cum fint aqualium quafitorum folutiones.)

## Explicatio quefiti.

Oporteat per modum Arclimedis servium fegmentum conffruere a /egmento, GHIK fimile, of fegmento ABCD aquale。

## Confructio.

Inveniatur quarta linea proporionalis per 12. prop. Iib. 6. Euclid. qua-
 firque quarta N: Similitrer inveniatur per eandem 12. prop. lib. 6. Euclid. quarta linea proportionalis quarum prima HL, fecunda H L, © M $\mathbf{L}$, in dircEtum vonus linee, tertia н к, fitǵue quarta O : Deinde inveniatur quarta linea proportionalis per eandem 12.prop.lib.6. Euclid. quarum prima o, jécunda GI, tertia Ns, fığue quarta P: Deinde inveriaintur dua me-

## Conclusion.

Therefore, given any etc. Which was to be performed.

## NOTE.

It does not seem inappropriate to apply to this Problem the construction method of Archimedes of the same Problem, taken from the 5th proposition of the 2 nd book on the sphere and cylinder, in order that the agreement of Archimedes' particular description of the problem with this general construction of ours may be evident to anyone.

## Given.

Let the segment of a sphere $A B C D$ be given, whose vertex is $D$, and the diameter of its total sphere $D E$, and the semi-diameter of the said sphere FD. And let the other given segment be GHIK, whose vertex is $K$, and the diameter of its total sphere $K L$, and the semi-diameter of the said sphere $M K$ (moreover let these given segments be equal and similar to the given segments of the preceding example, in order that we may compare the solution of the preceding example with the solution of this one, for they must be equal, since they are the solutions of equal requirements).

## Required.

Let it be required to construct, in the manner of Archimedes, a third segment similar to the segment $G H I K$ and equal to the segment $A B C D$.

## Construction.

By the 12th proposition of Euclid's 6th book, find the fourth proportional, the first term being $B E$, the second $B E$ and $E F$ on one and the same line, the third $B D$; and let the fourth be $N$. Similarly, by the same 12th proposition of Euclid's 6th book, find the fourth proportional, the first term being $H L$, the second $H L$ and $M L$ on one and the same line, the third $H K$; and let the fourth be 0 . Then, by the same 12th proposition of Euclid's 6th book, find the fourth proportional, the first term being $O$, the second $G I$, the third $N$; and let the fourth be $P$. Sub-
dia linea proporitionales per primum pracedens Problema inter A C, 的 $\mathrm{P}_{3}$ barum autem mediarum jequens iplam AC,fit $Q$ R: lnèniatur deinde quat ta linea proportionalis per 12.prop. li6.6. Euclid. quarum prima G I, fecunds H K, tertia QK, fitq́ quarta S T: Deinde ad circulum cuius dza-


Dico tertium chorda jegmentum jpberale Qt R S, eße conflrultum,
 erat quafitum.


Demonftratio.
Demonfiratio babetur ad s.prop. lib. 2. de fphara of cylindro Archimedis.

Conclufio.
Igitur Problema boc/ecundum Archimedem expeditum sft, quod erat fa: ciendum.

## NOTA.

Dico prater:a cborde figmentum Jpharale QTR S buivs conftructio. nis, equale $\mathfrak{*}$ fimile eße chorde Jegmento /pharali QT R s nólere pra-
sequently, by the first preceding Problem, find the two mean proportionals between $A C$ and $P$, but let that one of these mean proportionals which follows $A C$ be $Q R$. Then, by the 12th proposition of Euclid's 6th book, find the fourth proportional, the first term being $G I$, the second $H K$, the third $Q R$; and let the fourth be $S T$. Subsequently, on the circle whose diameter is $Q \widetilde{R}$ and with the altitude $S T$ construct the segment $Q T R S$.

I say that a third segment of a sphere $Q T R S$ has been constructed, similar to the segment of a sphere GHIK and equal to the segment $A B C D$; as was required.

Proof.
The proof will be found in the 5th proposition of book 2 on the sphere and cylinder of Archimedes.

## Conclusion.

Therefore this Problem has been carried out according to Archimedes, which was to be performed.

NOTE.
I say moreover that the segment of a sphere $Q T R S$ of this construction is equal and similar to the segment of a sphere $Q T R S$ of our preceding construction, for
cedentis conflruttions, nem per bypotbefin data fegmerta buius equalia ev fimiiza jant datis legmentis allius: Deinde queftum buixs ov ilius ef idem, quare requiruntur aquales Jolutiones: Sed probata ofl ab Arcbimede conflrultio buius, ov a n:bis probata eft conflructio illius, ergo legmentum QTRS bu'us, O jegmentum Q TRS illius, funt fomilia É equalia.
Quarum conftrudionum convenientiam propofitum erat exbibere.
Poteft quoque boc nofirum Problema per numeros demon/lrari, quod in maiursm sicclarationem effeciatur boc modo:

Explicatio dati.
Sit pyramis А в C, cuius bajis fit quadratum, of latus в С eiuldem quadrati 2 pedum, altitudo vero pyramidis A D fir 12 pedum, quare ipfius pyramidis magnitudo 16 pedum: Sut deinde pyramis E F G, cuius íafis fit quadratum, of latus F G eiujdem quadrati 8 pedum, alitudo vero ipfous pyramidis EH 3 pedum.

Explicatio quxfiti.
Oportcat per numeros eo ordine, vt jupra per lineas factum eft, tertiam pyramidem defcribere, pyramidi E F G fimilem of pyramidi, A в C aqualem.

## Conftruaio.

Defcribatur pyramidit a в C , equalis pyramis $\mathrm{x} К \mathrm{~L}$, fub altituaine I M , altiiudini E H aquali, nempe 3 pedum quare eities bafis ( re fiat $p y$ = ramis cuius magnitudo fit 16 pedum) erit quadratum cuius latus K L erit 4 pedum : Inveniatur deinde tertia linea proporizalis, quarum prima $F G$ 8, fecunda К L 4 , eritq́ue tertia $\mathrm{N}_{2}$ pedum: linveniantur deinde due me: dice linexi proportionales intcr F G 8, N N 2 , quarum mediarum fequens ipfam F G, erit O P, radix cubica de 128 , probatur quia 8, © radix cu. bica de 128 , Gr radix cubica de 32, G2, funt quatuor numeri in continua proportione; Inveniatur deinde quarta linea proportionalis, quarum prima FG 8 , fecunda E H 3, tertis OP radıx cubica de 128, eritg̣ue quarta pro alitudine QR radix cubica de $\frac{3456}{512}$, doinde ad qualratum
by the hypothesis the given segments of the latter are equal and similar to the given segments of the former. Next, the requirements of the latter'and the former are the same, so that equal solutions are required. But the construction of the latter has been proved by Archimedes, and the construction of the former has been proved by us; consequently the segment QTRS of the latter and the segment QTRS of the former are similar and equal; the agreement between which constructions it had been proposed to set forth.

This Problem of ours can also be demonstrated by means of numbers, which may be effected, for greater clarity, in the following way.

## Given.

Let there be a pyramid $A B C$, whose base be a square, and let the side $B C$ of said square be 2 feet, and the altitude of the pyramid $A D 12$ feet, so that the volume of this pyramid is 16 feet. Further let there be a pyramid $E F G$, whose base be a square, and let the side $F G$ of this square be 8 feet, and the altitude of said pyramid EH 3 feet.

## Required.

Let it be required to construct by means of numbers, in the same order as has been done above by lines, a third pyramid similar to the pyramid $E F G$ and equal to the pyramid $A B C$.

## Construction.

Construct a pyramid $I K L$ equal to the pyramid $A B C$, with the altitude $I M$ equal to the altitude $E H$, viz. 3 feet, so that its base (in order to make a pyramid whose volume be 16 feet) will be a square whose side $K L$ will be 4 feet. Then find the third proportional, the first term being $F G=8$, the second $K L=4$; then the third will be $N=2$ feet. Subsequently find the two mean proportionals between $F G=8$ and $N=2$, the one of these mean proportionals which follows FG being $O P$, the cube root of 128 ; this is proved because 8, and the cube root of 128 , and the cube root of 32 , and 2 are four numbers in continuous proportion. Then find the fourth proportional, the first term being $F G=8$, the second $E H=3$, the third $O P=$ the cube root of 128 ; then the fourth, viz. the altitude $Q R$, will be the cube root of $\frac{3456}{512}$. Subsequently, on the square

GEOMETRICORVM. LIBIIIT.
cuius latus $O P, \mathcal{G}$ fub alcitudine $Q R$, conffruatur pyramis $Q O P$, cius magnitudo erit 16 pedum : ratio eft quia guadratum cuius latus of $\mathbf{O} P$ radix cubica de 128 ; erit yadix cubica de 16384 , quod multiplicatum per altitudinem $Q$ к radicem cubicam de $\frac{345}{512}$, facit produlum radicem cubicam de $\frac{56623104}{512}$, cuius tertia pars pro magnitudine pyramidis QO P, of radix cubica de $\frac{56623104}{13824}$, boc eft radix cubica de 4096, facit $r$ fuiz pra ditum ef 16 pedes.

Dico tertiam tyramidem Q O P, per numeros eo ordine vt fupra per lineas faltum est, eße defcriptam pyramidi efg fimilem, * pyramidi A B C aqualem, ot erat quiafitum.


## Demonftratio.

Demonifratio ex eo manifefta eft quod pyramis Q $O P$, ef pyramidi Ef g fimilis, © fructionem.

## Conclufio.

Igitur quod primo in continua quantitate erat oStenfum, hic per numeros jimiliter demonfratum eft, quod in maiorem declarationem erat faciendum.
whose side is $O P$ and with the altitude $Q R$ construct a pyramid $Q O P$; its volume will be 16 feet. The reason is that the square whose side is $O P=$ the cube root of 128 will be the cube root of 16384 , which, when multiplied by the altitude $Q R=$ the cube root of $\frac{3456}{512}$, gives the product $=$ the cube root of $\frac{56623104}{512}$; the third part of which, viz. the volume of the pyramid $Q O P$, is the cube root of $\frac{56623104}{13824}$, i.e. the cube root of 4096 , which makes, as said above, 16 feet.

I say that a third pyramid $Q O P$ has been constructed, by means of numbers, in the same order as has been done above by lines, similar to the pyramid $E F G$ and equal to the pyramid $A B C$; as was required.

## Proof.

The proof is evident from the fact that the pyramid QOP is similar to the pyramid $E F G$ and equal to the pyramid $A B C$, by the numerical construction itself.

## Conclusion.

Therefore, what had first been shown in continuous quantity has here been similarly proved by means of numbers, which was to be done for greater clarity.
$100 \quad$ PROBLEMATVM
Poteft hoc exemplism quague fieri per regulan quic Algebra ditia af, Sed illa cum pulgaris fit, gion neiçßariu:n dunimus bic ixtibleri.

## NOTA.

Requirebatur quidem Problemate pracedenti quarto, datis quibufcunque duo'us corporibus Geometricis evc. Sed exempla fupra exbibita exifimamus pro quibufcunque datis corporibus fufficere, quia omni corpori Geometrico de guibus jupra eft facta mentio, aqualis conus poteft defcribi (guarsm defcriptionum Problemata in nostra Geometria ordine collccabimus) vnde operatio in alijs datis formis corporum non erii dißimilis ab operatione pracedentius exemplorum.

His ita demonsf $\mathbf{r a t i s}$, applicabimus pracedenti quarto Problemati quod. dam theoiema taile:

## THEOREMA.

Si fuerit diametrorum bafium tertia linea proportionalis, duo: rum rectorom conorum æqualis altitudins, fueritque prima linea media proportionalis, duarum mediarum proportionalium, inter primam diametrum \& tertiam, fuertíque quxdam recta linea in ea ratione ad illam primam mediam, vt primi coni altitudo ad fuam diametrum bafis: Conus rectus cuius diameter bafis fuerit illa prima medsa, altutudo vero illa recta linea, fimilis erit primo cono, xqualis vero alteri cono.

## Explicatio dati.

Sit (in figura frimi èiempli pracedentis guarti Problematis) diametrorum bafium EF, G IK, tertia linea proportionalis L, duurum reltorum conorum DEF, © HIK, aqualis aluitudinis ; fitgue prima media linea proportionalis $M \mathrm{~N}_{2}$ duarum ne ediarum proportionalium inter primains diainetrum EF, G tertiam lincam L: fuğue relia linea OP in ea

This example can also be dealt with by means of the rule called Algebra, but since this is common knowledge, we have not thought it necessary to set it forth here.

## NOTE.

It was indeed required in the preceding fourth Problem that, given any two Geometrical solids, etc. But we think the examples set forth above suffice for any given solids, because it is possible to construct a cone equal to any Geometrical solid mention of which is made above (the description of the Problems of which constructions we shall include in due order in our Geometry), whence the operation with other given types of solids will not be dissimilar from the operation of the preceding examples.

These therefore having been proved, we shall apply to the preceding fourth Problem a certain theorem, as follows:

## THEOREM.

If there were a third proportional to the diameters of the bases of two right cones of equal altitude, and if there were a first mean proportional of the two mean proportionals between the first and the third of the diameters, and if there were a line in the same ratio to said first mean proportional as the altitude of the first cone to its diameter of the base; then the right cone whose diameter of the base should be the said first mean proportional, and its altitude the said line, will be similar to the first cone and equal to the other cone.

## Given.

(In the figure of the first example of the preceding fourth Problem) let there be a third proportional $L$ to the diameters of the bases $E F$ and $I K$ of two right cones DEF and HIK of equal altitude; and let there be a first mean proportional $M N$ of two mean proportionals between the first diameter $E F$ and the third line

# GEOMETRICORVM. LIB.IIII. <br> Iot 

 ratione ad illam primam mediam $\mathrm{M} N$, ot primi coni Def alitudo D G , ad fram di:metrum bafis EF.Dico conum rellum cuits diameter bafis ef illa prima media M N , altitudo vero illa refla linea $\mathrm{O} \mathbf{P}$, fimilem effe primo coso D E F aquatem vero alteri cono HI .

Demonftratio.
Dem:onfratio babetur ad primum exemplum pracedentis quarti Problematis.

## Conclufio.

Igitur fí fuerit diametroram ©̛c. Quod erat demonfrandim.

## Quarti Libri <br> FINIS.

$L$; and let the line $O P$ be to the said first mean proportional $M N$ in the same ratio as the altitude $D G$ of the first cone $D E F$ to its diameter of the base $E F$.
I say that the right cone whose diameter of the base is the said first mean proportional $M N$, and whose altitude is the said line $O P$, is similar to the first cone $D E F$ and equal to the other cone HIK.

Proof.
The proof will be found in the first example of the preceding fourth Problem.

## Conclusion.

Therefore, if there were etc. Which was to be proved.
END OF THE FOURTH BOOK.

## LIBER QVINTVS

IN QVO DEMONSTRARITVR QVOMOdo datis quibufcunque duorum fimilium Geometricorum corporum homologis lineis, tertium corpus conftrui poteft datis duobus æquale, \& alteri datorum fimile.

Item quomodo datis quibufcunque duobus fimiliun $\& x$ inrqua lium Geometricorim corporum homologis lineis, tertium corpus conftrui poteft tanto minus dato maiore, quantum eft datum minus, \& alteri datorum fimile.

ANTEQVam explicetur Problematis conftrultio buius Quinti libri, dicetar prius quid \& quale fit, 完 quomodo inventum fit Problema.

Inprimis igrtur notandum eSf rarios eße modos, quibus datis duobus planis fimilibus, tertium planum defcribimus, duobus datis aquale, © alteri datorum fimile, quos modos exemplis explicare non videtur inutile.

Compleatemur igitur antedittum Problemate tali.

$$
\mathcal{P} \mathcal{R} O \mathcal{B} L \in M A \quad L
$$

Datis duobus planis fimilibus: tertium planum defcribere datis duobus xquale \& alteri datorum finmile.

Explicatio dati.
Sint duo finilia triangula A B, G CD, quorum bomologa latera $A$, $\rightarrow$ c.

## FIFTHBOOK,

in which it will be shown how, given any homologous lines of two similar Geometrical solids, a third solid can be constructed, equal to the two given solids and similar to one of the given solids.

Likewise how, given any two homologous lines of similar and unequal Geometrical solids, a third solid can be constructed, as much smaller than the larger of the given solids as the smaller of the given solids, and similar to one of them.

Before the construction of the Problem of this Fifth book is explained, it is first to be stated what and how it is, and how the Problem has been found. To begin with therefore it is to be noted that there are various ways in which, given two similar plane figures, we construct a third plane figure, equal to the two given figures and similar to one of the given figures; it does not seem inappropriate to explain these ways by examples.

Let us therefore comprehend the above in the following Problem.

## PROBLEM I.

Given two similar plane figures: to construct a third plane figure, equal to the two given figures and similar to one of the given figures.

## Given.

Let there be two similar triangles $A B$ and $C D$, whose homologous sides are $A$ and $C$.

Oporteat tertium triangulum deficibere, duobus AB, 守 CD aquale Or alteri $x t$ а в fimile.

## Conftruaio primi modi.

$\mathcal{D}_{e}$ fribatur per 45 -prop. lib.1. Eucl. parallelogrammum $\mathbf{E}$, aguale trian-
 demq́ue alititudinis cum parallelogrammo en: Dejcribatur deinde per 25 . prop. lib. 6, triangulum s , aquale toti parallelogrammo EH, $\sigma$ fimile triangulo A B.

Dico tertium triangulum I effe defcriptum, equale duobiss triangulis A B, OC CO, © ipf A B forile, rt erat quafitum.


Demonftratio.
Demonifratio ex conflructione eff manifefta.
Conclufio.
lgitur datis duibus planis ofc. Ruod erat faciendums.
Conftruxio fecundi modi.
Secundus modus multo est facilior atque generalior quam primas: fot

## Required.

Let it be required to construct a third triangle, equal to the two, $A B$ and $C D$, and similar to one of them, viz. $A B$.

## Construction According to the First Manner.

By the 45th proposition of Euclid's 1st book construct a parallelogram EF, equal to the triangle $C D$. And similarly, a parallelogram $G H$, equal to the triangle $A B$ and having the same altitude as the parallelogram $E F$. Then, by the 25 th proposition of the 6th book, construct a triangle $I$, equal to the whole parallelogram $E H$ and similar to the triangle $A B$.

I say that a third triangle $I$ has been constructed, equal to the two triangles $A B$ and $C D$, and similar to $A B$; as was required.

## Proof.

The proof is evident from the construction.

## Conclusion.

Therefore, given two plane figures etc. Which was to be performed.

## Construction According to the Second Manner.

The second manner is much easier and more general than the first. The first,
auten primus tantum Geometrici in reGilimeis planis, fed bic fecundus mo. des in circulis, or circulorom partibus babit locum, efQ autem talis:
 efficientes angrulum M K L reClum, ducaturq̣ue recta_ L M , cui per 18 .prop. lib. 6. Euclid. po bomologe linca cum A: confiruatur viangetus NM L , fimile triangulo AB.

Dico tertium triangulum NML, effe defriptum aquale diobus rriangulis A E ,
 erat quafitum.

## Demonftratio.

Demonftratio babetur ad 3x. prop. Lib. 6. Euclid.

$K$

His de planis intelletits, fiendum eft fimile generale Problema bocrigue in foitids non fuife cdium (dixi generale, qunniam, Problema illud de duplicatione culi fisciale in ea re eft) boc tamen à nobis eße inventum in bac terta parte demonfrabitur:

Primo notandum of talis Problematis consfructionem in fulidis, iuxta primum modum fupra in planis sfeenfum, ex precedenti Quarti ilibri quarto Froblimate elle notum, nam pif datorum/imilium corporum addition:ma nisil aliud defl', qu:m per artediftuk 4 . Problema corpori ex additis corporibus compofiuo, ajuale corpus dijcribere fimile dato corpori.

Tamen cum rideremus antedifium fecundum modum in planis mulco eles gantiorem, gencraliorem, atq/ faciliorem eße priore, incidimus in cam opinionem fimile in jolidis fieri poßes, propter magnam fympathiam inter magnitudinem corpoream, © juperficialem, vt fupra difum eff: neque fefellit nos in ea re opinio, nam per joias lineas abfque corporum converfione in alias
however, is performed Geometrically only with rectilinear plane figures, but this second manner takes place with circles and parts of circles; it is as follows.

Draw a line $K L$ equal to the line $A$, and a line $K M$ equal to the line $C$, making the angle $M K L$ right; and draw the line $L M$, on which, by the 18 th proposition of Euclid's 6th book, as being the line homologous to $A$, construct the triangle $N M L$, similar to the triangle $A B$.

I say that a third triangle $N M L$ has been constructed, equal to the two triangles $A B$ and $C D$, and similar to the triangle $A B$; as was required.

## Proof.

The proof will be found in the 31st proposition of Euclid's 6th book.
These things having beea understood for plane figures, it is to be known that a similar general Problem has not so far been published for solids (I have said: general, since the Problem of the duplication of the cube is particular in this respect); however, it will be proved in this third part that this has been found by us.

In the first place it is to be noted that the construction of this Problem for solids, along with the first manner shown above for plane figures, is known from the foutth Problem of the preceding Fourth book, for after the addition of the given similar solids nothing else remains to be done but to construct, by the aforesaid 4th Problem, a solid equal to the solid composed of the added solids, and similar to the given solid.

However, when we saw that for plane figures the aforesaid second manner is much more elegant, more general, and easier than the first, we hit on the idea that a similar thing could be done for solids, on account of the great. agreement between a solid and a plane magnitude, as has been said above. Nor were we mistaken in this opinion about the matter, for the construction of the similar Problem for solids will here be demonstrated by lines alone, without the con-

## GEUMETRICORVM, LIB.V. IOS

 formas corporan, fuemalmodism in planis in fupradilto jecundo excmpio falium efl, demonftrabitar bic fisilis Problematis cansfruitio in jolidis.Sed ve wna caufam inventionis aperiamus, demonftrabimus ante quomodo tertium modum invenerimus confleruCtionis precedentis problcmatis, pracadenci jécundo modo fimilum, jcilicet per folas lineas, boc modo;

## Conftructio tertii modi.

Inveniatur tertia linea proportionalis per II. prop: lib. 6. Euclid. quas rum prima $A_{3}$ fecunda $\mathbf{C}$, fitǵue tertia 0 : Inveniatur deinde media liness proportionalis per 13 -prop. lib. 6. Euclid. inter A, \&s lineam aqualem dusabus lineis $A$, ©́ $O$, in directum miuiss linee, fitg̣ue illa media proportionalis P , ex qua per 18 . prop. ibi. 6. Euclid. nt bomologa linea cum $A$, confruatur triangulus P Q, fimilis triangulo A B.

Dico tertium triangulum PQ , eße defcriptam aquale duobus trian"


## Demonftratio.

Diftinctio I .


Recta $A$, ad reclam n, duplicatam cam babet rationem quam reCla A, ad reClam C, per conflruAionem: quare wt retia $A$, ad reGlam $O$, fic triangulues $A \mathrm{~B}_{3}$ ad triangulum C D, per 20.prop. lib. 6. Euclid.

Diftinctio 2,
Quare per compoftam rationem, vt dua recite A \& o fimul, ad retam


$$
0^{\circ} \quad \text { Difin. }
$$

version of solids into other types of solids, as has been done for plane figures in the above-mentioned second example.
,But in order to reveal at the same time the cause of the discovery, we shall show first how we found the third manner of the construction of the preceding problem, similar to the preceding second manner, viz. by lines alone, in the following way:

## Construction According to the Tbird Manner.

By the 11th proposition of Euclid's 6th book, find the third proportional, the first term being $A$, the second $C$; and let the third be $O$. Then, by the 13th proposition of Euclid's 6th book, find the mean proportional between $A$ and a line equal to the two lines $A$ and $O$, on one and the same line; and let this mean proportional be $P$, from which, by the 18th proposition of Euclid's 6th book, as being the line homologous to $A$, construct a triangle $P Q$, similar to the triangle $A B$.
I say that a third triangle $P Q$ has been constructed, equal to the two triangles $A B$ and $C D$, and similar to the triangle $A B$; as was required.

## Proof.

Section 1.
. The line $A$ is to the line $O$ in the duplicate ratio of that of the line $A$ to the line $C$, by the construction; therefore, as the line $A$ is to the line $O$, so is the triangle $A B$ to the triangle $C D$, by the 20th proposition of Euclid's 6th book.

## Section 2.

Therefore, by the compound ratio, as the two lines $A$ and $O$ together are to the line $A$, so are the two triangles $A B$ and $C D$ together to the triangle $A B$.

## Diftinctio 3.

Recta a, ad reflam agualem duabus rettis a \& cam babet rationem, quam retta $A$, ad rettam $B$, per conffrutionem, quare ot retta $A$, ad duas rettas $A \in O$, fic triangulus $A$, ad triangu. lum $P Q$, Ge per ipfous inverfam sationem, po dua relle A \& 0 - fimul, ad retiam A , fic triangulus $\mathrm{P} Q$, ad triangulum A B: $S_{\text {ed }}$ ofeenfum eft disfinctione fecunda, eandem reße rationem duorum trrangulorum а в ${ }^{\text {®下 }}$ C D fimul, ad eundem triangulim A B: Ergo (quia quoruï̀ rationes adidem junt aquales, ea inter fe junt aqualia) triangulus $P Q$ aqualis eft duobus triangulis A B $\sigma$ C D.

Praterea fimilem eße triangulo a в , ex confructione apparet.

## Conclufio.

Igitur datis duabus planis © 6 . quod erat faciendum.
Potese quoque confruatio antedidi Problematis per numeros demonfirari: Quiod in maiorem euidentiam efficiatur boc modo.

Explicatio dati.
 4 pedum, ronde fuperficies tri.ınguli A B, (quia retiangulus eff per bypothefin) erit $\sigma$ pedum: Sit praterea latus C, $\sigma$ pedum, quare latus D (quid triangali A B $\forall \mathcal{C}$ D funt fimiles) erit 8 pedum; vonde fuperficies itianguli C $D$ erit 24 pedum.

Explicatio quxfiti.
Oporteat per mumeros terium triangulum invenize eo ordine ut fupra. in confructione tertij modi per lineas factum ef danis drobus triangulis a в \& C D equalem, © triangulo A B fimilem.

## Conitrutio.

Procedatur per numeros eo ordine yt in precedenti aercia comfructiond

## Section 3.

The line $A$ is to the line equal to the two lines $A$ and $O$ together in the duplicate ratio of that of the line $A$ to the line $B$, by the construction; therefore, as the line $A$ is to the two lines $A$ and $O$, so is the triangle $A$ to the triangle $P Q$, and by the inverted ratio of this: as the two lines $A$ and $O$ together are to the line $A$, so is the triangle $P Q$ to the triangle $A B$. But it has been shown in the second section that the ratio of the two triangles $A B$ and $C D$ together to the same triangle $A B$ is the same. Consequently (because things whose ratios to the same thing are equal are equal to one another) the triangle $P Q$ is equal to the two triangles $A B$ and $C D$.

Further it appears from the construction that it is similar to the triangle $A B$.

## Conclusion.

Therefore, given two plane figures etc.; which was to be performed.
The construction of the aforesaid Problem can also be proved by means of numbers, which may be done, for greater evidence, in the following way.

## Given.

Let the triangles $A B$ and $C D$ be right-angled, and let the side A be 3 feet and B 4 feet, whence the area of the triangle $A B$ (because it is right-angled by the hypothesis) will be 6 feet. Further let the side $C$ be 6 feet; therefore the side $D$ (because the triangles $A B$ and $C D$ are similar) will be 8 feet, whence the area of the triangle $C D$ will be 24 feet.

## Required.

Let it be required to find, by means of numbers, a third triangle in the same order as has been done above in the construction according to the third manner by means of lines, equal to the two given triangles $A B$ and $C D$, and similar to the triangle $A B$.

## Construction.

Proceed by means of numbers in the same order as has been done in the
per lineas failem ef，inveniatur名 tertia linea proportionalis quarum pri－ ma A 3，Pecunda C 6 ，quare tertia o cris 12 ．Inveniatur deinde media linea proportionalisinter A 3，©e lineam cequalem duabus lineis A 3，© O 12 ，boc eft inveniatur media lines proportionalis inter a 3 \＆is，facit pro P radicem quadratam de 45，ex qua ve bomologa linea cum A，conffruatur triangulus P Q fimilis triangulo A B，quod feet hoc mods：Inveniatur quar－ ta linea proportionalis per regulam proportionis，quarum prima A 3，fecunda B 4，tertia P＇radix quadrata de 45，erit⿸厃口 quarta pro retta Q radix qua－ drata de 80，quare fuperfficies trianguli P Q（quoniam radix quadrata de 45 mulliplicata per radicem quadratam de 80，dat productum 60，cuius me－ diam 30）erit 30.

Dico per numeros tertium triangulum PQ，inventum oße，eo ordine $\nu e$ fupra per lineas fatium ef，datis duobus triangulis A B ，© C D aqualem ＊triangulo а в fimilem，vt erat quxfitum．

## Demonftratio．

Demonftratio ex eo manifosfa eft，quod iriagulus a в $\sigma$ pedum，$\sigma$ triangulus C D 24 pedum，fimul efficunt（nt fupra de triangulo P Q oftenjum eft，） 30 pedes．Igitur triangulus P Q aqualis ef duobus trian－ gulis A B $̛$ ©́ C D．

Praterea latera $P$ er $Q$ trianguli $P Q$ ，proportionalia funt lateribus A，Є゙ в，tranguli А B，per numerorum conflruftonem：babent praterea anguluin angulo equalem，nempe ambo angulum reilum：Ergo per 7．prop． lib．6．Euclid．funt fimiles．

## Conclufio．

Igitur quod primd in continua quantitate erat oftenfum，bic per numeros fimiliter offerfums eft，quod in maiorem declarationern erat faciendum．

Cum paro buius tertie conseructionis inventio ita certò jit comprobata，
preceding third construction by means of lines, and find the third proportional, the first term being $A=3$, the second $C=6$, so that the third $O$ will be 12 . Then find the mean proportional between $A=3$ and a line equal to the two lines $A=3$ and $O=12$, i.e. find the mean proportional between $A=3$ and 15 . This makes, for $P$, the square root of 45 , from which, as being the line homologous to $A$, construct a triangle $P Q$ similar to the triangle $A B$, which is done in the following way. Find the fourth proportional by the rule of proportions, the first term being $A=3$, the second $B=4$, the third $P=$ the square root of 45 ; then the fourth, for the line $Q$, will be the square root of 80 , so that the area of the triangle $P Q$ (since the square root of 45 , multiplied by the square root of 80 , gives the product 60 , one half of which is 30 ) will be 30 .

I say that, by means of numbers, a third triangle $P Q$ has been found in the same order as has been done above by means of lines, equal to the two given triangles $A B$ and $C D$, and similar to the triangle $A B$; as was required.

## Proof.

The proof is evident from the fact that the triangle $A B=6$ feet and the triangle $C D=24$ feet make together (as has been shown above for the triangle $P Q$ ) 30 feet. Therefore the triangle $P Q$ is equal to the two triangles $A B$ and $C D$.

Further, the sides $P$ and $Q$ of the triangle $P Q$ are proportional to the sides $A$ and $B$ of the triangle $A B$, by the construction by means of numbers. Moreover, each has one angle equal to that of the other, viz. both a right angle. Consequently, by the 7th proposition of Euclid's 6th book they are similar.

## Conclusion.

Therefore, what had first been shown in continuous quantity, has here been similarly shown by means of numbers, which was to be done for greater clarity.

Now since the invention of this third construction has thus been proved for
vtile videtur ipf confructioni frum Theorema adijcere tale.

## $\mathcal{T} H E O R \in M A$.

Si tertia linea proportionalis duarum homologarum linearum exiftentium in fimitibus planis, addator primx linea: Media linea proportionalis inter primans \& illani compofitam, eft potentraliter homologa linea, cum illis homologis lineis, cusufdam plani quod finile eft alteri datorum, \& xquale ambobus.

Cum vero bunc tertium modum inveniffemus in planis, patefaria nobis eit via fimilis inventionis in folidis, nam quicquid in fimilibus planis factum eft per duplicatam rationem, id fiet in folidis pet triplicatam ratios neem, neque aliud (fiquis reté animaduertat) invenietur dafocrimen. Igitur ad rem nunc accedamus.

## $\mathcal{P} O \mathcal{B} L E M \mathcal{C} 11$.

Datis quibufcunque duorum fimilium Gcometricoram corporum homologis lineis, tertium corpus confruere datis duobus zquale, \& alteri datorum fimile.

Explicatio dati.
Sint duo dasa finilita Geometrica corpora а в $\nleftarrow C D, q u c r u m$ bamologa linea fint $A, O C$.

## Explicatio quxfiti.

 ©. corpori a s fimik.

Con-
certain, it seems useful to add to this construction its Theorem, as follows:
THEOREM.
If the third proportional to two homologous lines occurring in similar plane figures be added to the first line, the mean proportional between the first and the said composite line is potentially a line homologous to those homologous lines of a certain plane figure which is similar to one of the two given figures and equal to both.*)

When we had found this third manner for plane figures, a way to find a similar manner for solids occurred to us, for whatever has been done for similar plane figures by the duplicate ratio will also be done for solids by the triplicate ratio, and no other difference will be found (if one attends well).

Therefore let us now come to the point.

## PROBLEM II.

Given any homologous lines of two similar Geometrical solids, to construct a third solid, equal to the two given solids and similar to one of the given solids.

## Given.

Let two similar Geometrical solids $A B$ and $C D$ be given, whose homologous lines shall be $A$ and $C$.

## Required

Let it be required to construct a third solid, equal to the two given solids $A B$ and $C D$, and similar to the solid $A B$.

[^23]
## Conitructio.

Inveniatur tertia lineaproporticnalis jer 11. prop. lib: 6. Euclid. quaram prima 1 , fecunda $\mathbf{C}$, fitq tertia E: inpeniatur deinde quarta linsa propore tionalis per 12. prop. lib. 6. Eudid. quarum prima A, fecunda C, tertia E, fitque quarta F; Inveniantur demde dua media linea proportionales per primum Problema praceáentis 4. lib. inter reliam A, Gr rellam aquas lem duabus relis failicet A $\mathbb{F}$, quarum mediarum linearum fequens, rettam $A$, fit relta $G$, ex qua po bomologa linea cum linea $A$, conit rua. tiar corpus G $\mathrm{H}_{3}$ corpori A B fimile.

Dico tertium corpus G H, inventum eße datis duabus AB, © CD equale: © $犬$ corpori A B, fimile, we erat quafitum,

## $\mathrm{O}_{3}$

## Construction.

By the 11th proposition of Euclid's 6th book, find the third proportional, the first term being $A$, the second $C$; and let the third be $E$. Then, by the 12th proposition of Euclid's 6th book, find the fourth proportional, the first term being $A$, the second $C$, the third $E$; and let the fourth be $F$. Subsequently, by the first Problem of the preceding 4th book, find the two mean proportionals between the line $A$ and the line equal to the two lines, viz. $A$ and $F$, and let that one of these mean proportionals which follows the line $A$ be the line $G$, from which, as being the line homologous to the line $A$, construct the solid $G H$, similar to the solid $A B$.
I say that a third solid $G H$ has been found, equal to the two given solids $A B$ and $C D$, and similar to the solid $A B$; as was required.


Exem-
plum
de co-
nis.


Example of Spheres
Example of Cylinders
Example of Cones
Example of Cubes

Demonftratio.
Diftinctio I .
Rẹla $A$, ad rellam $F_{\text {, triplicutam eam babet rationem quam recta } A \text {, }, ~}^{\text {, }}$ ad rectam $C$, per consfructionem: Quare virelta $A$, ad rectam $F$; fic corpus A B, ad corpus C D, per 33 -prop.lib. 11 . © (or per 8, 12,'ơ 18.prop. lib. 12. Euclid.

Diftinctio 2.
Quare per compofitam rationem, vo duae reltie A, , $\sigma$ fimul, ad rectam $A, f i c$ duo corpora A B, © © C D fimul, ad corpus A B.

## Diftinctio 3.

Recta $A$, ad rettam rqualem duabus reltis $A$ F rriplicatam eam babet rationem quam recta $A_{2}$ ad reCtam $G_{2}$ per confructionem: Quare ve retta $A_{2}$ ad duas reltas A é $F$, fic corpus A B, ad corpus G $H$ : Et per ippius inverfam rationem, ot due recta A © F - $i m u l$, ad rectam $\mathrm{A}_{2}$ $\sqrt{I C}$ corpus G H, ad corpus A B: Sed osfenjum eft diftinctione fecunda, eandem e $\beta_{e}$ rationem duorum corporum A $B_{3}$ \& $\subset D_{2}$ ad idem corpus A $\mathbf{B}$ : Ergo (quia quorum rationes eidem funt equales, ea inter fe funt aqualia) corpus G H, equale eff duobus corporibius A B or C D.

Praterea corpus G $H_{3}$ fimile eße corpori A $B_{2}$ ex conftructione eft manifeflum.

## Conclufio.

lgitur datis quibufcunque duobus ©cc. Quod erat faciendum.
Poßumus quoque (in mai:rem declarationem Deritatis consfiructionis buius inventiones) conflrultionem antedilfi Problematis per numeros exisibere, quod efficiatur boc modo:

Explicatio dati.
Sit cubus A B, cuiss magnitudo 8 pedum, quare eius latus A, radix cubica

## Proof.

## Section 1.

The line $A$ is to the line $F$ in the triplicate ratio of that of the line $A$ to the line $C$, by the construction. Therefore, as the line $A$ is to the line $F$, so is the solid $A B$ to the solid $C D$, by the 33 rd proposition of Euclid's 11 th book and by the 8 th, 12 th, and 18th propositions of his 12 th book:

## Section 2.

Therefore, by the compound ratio, as the two lines $A$ and $F$ together are to the line $A$, so are the two solids $A B$ and $C D$ together to the solid $A B$.

## Section 3.

The line $A$ is to the line equal to the two lines $A$ and $F$ in the triplicate ratio of that of the line $A$ to the line $G$, by the construction. Therefore, as the line $A$ is to the two lines $A$ and $F$, so is the solid $A B$ to the solid GH. And by the inverted ratio of this: as the two lines $A$ and $F$ together are to the line $A$, so is the solid GH to the solid $A B$. But it has been shown in the second section that the ratio of the two solids $A B$ and $C D$ to the same solid $A B$ is the same. Consequently (because things whose ratios to the same thing are equal are equal to one another) the solid $G H$ is equal to the two solids $A B$ and $C D$.

Further it is evident from the construction that the solid GH is similar to the solid $A B$.

## Conclusion.

Therefore, given any two etc. Which was to be performed.
We can also (for greater revelation of the correctness of the construction of this invention) set forth the construction of the aforesaid Problem by means of numbers, which may be done in the following manner:

## Given.

Let there be a cube $A B$, whose volume is $\mathbf{8}$ feet; therefore its side $A$ will be
cubica de 8. crit 2: Sit deinde alcer cubus C D, cuius magnitudo 19 pedam, quare eius latus C, crit radix cubica de 19.

## Explicatio guxfiti.

Oporteat per numeros tertium cubum áefcribere (eo ordine vo fupra per lineas deficriptus eff) datis duobus cubis A B. © C D aqualèn.

## Conftructio.

Procedamus eo ordine wt fupra falium ef, inveniaturǵue tercia linea proportionalis quarum prima A 2, fecunda c radix culica de 19, quacre tertia linea E erit radix cubica de $\frac{361}{8}$, inveniatur deinde quarra linea proportionalis quarum prima A 2, fecunda C radix cubica de 19, tertia E radix cubica de $\frac{369}{8}$ : I Igitur quarta erit F radix cubica de $\frac{6899}{64}$, id esf. 19: Inveniantur deinde dua medis linea proporionales inter reitam a 2 , é rellam aqualem duabus retis a 2 of F 上星, boc autem in numeris ita proponcidum eft : Invoniantur duo medij numeri proportionales inter $2,0 \frac{29}{4}$, illorum autem mediorum numerorum numerus, feque.ss numerum 2, erit pro rella G 3, probatur :quia $2,3, \frac{2}{4}, \frac{27}{4}$, funt in continua proportione.

Igitar ex reita jeu latere G 3 confruatur cubus G H, cuius magyitudo erit 27, pedum.

Dico tertium cubum G H, per numeros eße inventum eo ordine ve fupra per lineas factum oft, $\sigma$ daxis dugbus cubis A B $\mathcal{O}$ C D equalem, nt erat quafitum.

Demon -
the cubic root of $8=2$. Let there also be another cube $C D$, whose volume is 19 feet; therefore its side $C$ will be the cube root of 19 .

## Required.

Let it be required to construct, by means of numbers, a third cube (in the same order as has been constructed above by means of lines), equal to the two given cubes $A B$ and $C D$.

## Construction.

Let us proceed in the same order as has been done above, and find the third proportional, the first term being $A=2$, the second $C=$ the cube root of 19 ; therefore the third line $E$ will be the cube root of $\frac{361}{8}$ Then find the fourth proportional, the first term being $A=2$, the second $C=$ the cube root of 19, the third $E=$ the cube root of $\frac{361}{8}$. Therefore the fourth will be $F=$ the cube root of $\frac{6859}{64}$, i.e. $\frac{19}{4}$. Subsequently find the two mean proportionals between the line $A=2$ and the line equal to the two lines $A=2$ and $F=\frac{19}{4}$; however, this has to be exposed in numbers as follows: Find the two mean proportionals between 2 and $\frac{27}{4}$; however, the number of these mean proportionals which follows the number 2 will be, for the line $G, 3$; this is proved by the fact that $2,3, \frac{9}{4}, \frac{27}{4}$ are in continuous proportion.

Therefore, from the line or side $G=3$ construct a cube $G H$, whose volume will be 27 feet.
I say that a third cube $G H$ has been found by means of numbers in the same order as has been done above by means of lines, and equal to the two given cubes $A B$ and $C D$; as was required.


Demonftratio.
Demonfiratio ex eo manifesfa eft, quod cubus a в 8 pedum, or cubus CD 19 pedum, efficiunt fimul' $v t$ fupra de cubo $G$ н oftenfum eff, 27 pedes.

## Conclufio.

Igitur quod primè in continua quantitate erat oftenfum, bic per numeros fimiliter oftenfum eft, quod in maiorem declarationem eral faciendum.

His ita demonfratis applicabimus pracedenti primo Problemati fuum Theorema zale.

## THEOREMA.

Si quarta linea proportionalis duarum homologarum linearum exiftentium in fimilibus corporibus, addatar primx linex: Antecedens linea duarum mediarum proportionalium inter pri: mam \& illam compofitam, eft potentaliter homoga linea cum illis homologis lineis, cuuufdam corporis quod fimile eft alteri datorum, \& xquale ambobus.

Proof.
The proof is evident from the fact that the cube $A B=8$ feet and the cube $C D=19$ feet together make 27 feet, as has been shown above for the cube $G H$.

## Conclusion.

Therefore, what had first been shown in continuous quantity has here been similarly shown by means of numbers, which was to be done for greater clarity.

These things thus having been proved, we shall add to the preceding first Problem its Theorem, as follows.

## THEOREM.

If the fourth proportional to two homologous lines occurring in similar solids be added to the first line, the antecedent of the two mean proportionals between the first and this composite line is potentially a line homologous to those homologous lines of a certain solid which is similar to one of the given solids and equal to both *).

[^24] lines $p_{1}$ and $p_{2}$, or $S_{1}: S_{2}=p_{1}{ }^{3}: p_{2}{ }^{3}$, then $S_{1}:\left(S_{1}+S_{2}\right)=p_{1}{ }^{3}:\left(p_{1}{ }^{3}+p_{2}{ }^{3}\right)$.

Explicatio dati.
Sit (in figuris pracedentis Problematis) quarta linea proportionalis $F_{3}$ duarum linearzim A © $C$; exifentium in fimilibus corporibus $\triangle$ в $G$ C D, qua linea $F$, addatur prime linew A.

Dico antecedentem lineats $\sigma_{3}$ duarum mediarum proportionalium intes
 mologam lineam cusm illis homologis lineis A © C , cuiujdam corporis nt $\mathrm{G} \mathrm{H}_{2}$
 bus ABECD.

## Demonitratio.

Demonsfrätio bajetur in pracedentibus demonftrationibus, tum per lineas, tum per numeros.

## Conclufio.

Igitur fi quarta linea óc. quod erat demonstrandum.

## PROBLEMMCA1I.

Datis quibufcunque duoram fimilium $\&$ inxqualium Geome. tricorum corporum homologis lineis, tervium corpus conftruere, tanto minus dato maiore, quantum eft datum minus, \& alteri datorum fimile.

Explicatio dati.
 quorum bomologa linea fint A \& C C.

Explicatio quxfiti.
Oporteat tertium corpus canfluxere santo minus dato maiore C D,quantum: ef datum corpus AB : Praterea $n t$ fir corpori C d fimile.

## Given.

(In the figure of the preceding Problem) let the fourth proportional $F$ to two lines $A$ and $C$, occurring in the similar solids $A B$ and $C D$ be given, which line $F$ shall be added to the first line $A$.
I say that the antecedent line $G$ of the two mean proportionals between the first $A$ and this composite line, viz. composed of $F$ and $A$, is potentially a line homologous to those homologous lines $A$ and $C$ of a certain solid, viz. GH, which is similar to one of the given solids, viz. to $A B$, and equal to both solids $A B$ and $C D$.

## Proof.

The proof will be found in the preceding proofs, both by means of lines and by means of numbers.

## Conclusion.

Therefore, if the fourth line etc.; which was to be proved.

## PROBLEM III.

Given any homologous lines of two similar and unequal Geometrical solids, to construct a third solid as much smaller than the larger of the given solids as the smaller of the given solids and similar to one of the given solids.

## Given.

Let the given smaller solid be $A B$, and the larger solid $C D$, similar to $A B$, whose homologous lines shall be $A$ and $C$.

Required.
Let it be required to construct a third solid as much smaller than the given larger solid $C D$ as the given solid $A B$; and further that it be similar to the solid $C D$.

Hoc Problema (ab ancecedenti primo Problemate depcriens) ite fe bas: bet ad antecedens primum Problema, , in Aritimetica jubtratio ad ad. ditionem: Quare fi pracedens Problema rocaretur fimilum corporium ad: ditio, poßer eadem ratione boc Problema aici fimilium corporum jubtraEtio. Igitur vt Problcmatis fonfus dilucidior fiat, dicimus quafrium feré nil ăliud efle quam fublata à corpore CD quadam partecorpori a a a equala, quod à reliquo oporteat corpus confrucere toti corpori co fimile.

## Conftrutio.

Inveniatur tertia limea proporionalis. per 11. prop. lib. 6. Euclid. quarum prima A, fecunda c, fitğue tertia a: Inreniatur deiande quarta lineca proportionalis per 12. prop. lib. 6. Euclid. quarum prima A, fccunda C, tercia E , fitǵğ quarta F : Inveniantur deinde dua media linea proportionales per primum Problema pracedentis quarti libri inter reftam A, © alleram reltam, equalem reliquo retta $\mathrm{F}_{\mathrm{F}}$, jubdulta re太la A , quarum mediarum linearum feguens retiam A, fit retta G, ex gua ve bomologa linea cam linea A conftruatur corpus G H corpori CD fimile.

Dico tertium tertium corpus G H effe indentuim, tanto minus dato corpore C D, quantim eft corpus AB, © corpori C D fimile, pt erat quafitum.

## NOTE.

This Problem (depending on the antecedent first Problem) is in the same relation to the antecedent first Problem as subtraction to addition in Arithmetic. Therefore, if the preceding Problem were called the addition of similar solids, this Problem might for the same reason be called the subtraction of similar solids. Therefore, in order that the sense of the Problem may become clearer, we say that what is required is hardly anything else but that, after a certain part equal to the solid $A B$ has been taken from the solid $C D$, it is required to construct from the rest a solid similar to the whole solid $C D$.

## Construction.

By the 11th proposition of Euclid's 6th book, find the third proportional, the first term being $A$, the second $C$; and let the third be $E$. Then, by the 12th proposition of Euclid's 6th book, find the fourth proportional, the first term being $A$, the second $\mathcal{C}$, the third $E$; and let the fourth be $F$. Subsequently, by the first Problem of the preceding fourth book, find the two mean proportionals between the line $A$ and another line, equal to the rest of the line $F$ when the line $A$ has been taken from it, and let that one of these mean proportionals which follows the line $A$ be the line $G$, from which, as being a line homologous to the line $A$, construct a solid $G H$ similar to the solid $C D$.

I say that a third solid GH has been found, as much smaller than the given solid $C D$ as the solid $A B$, and similar to the solid $C D$; as was required.


Example of Spheres
Example of Cylinders
Example of Cones
Example of Cubes

## Demonftratio.

Diftinctio I .
Recta $A$, ad reltam $F$, triplicatam eam babet rationem quam relta $A$, ad reEtam C, per consfiruliionem: Quare ve refla A, ad rectam $f$, fic
 lib. 12. Euclid.

Diftinctio 2.
Quare per difunclam proporionem, pt recta $\mathbf{E}$ minus recta $A$, ad reltam A, fic corpus C D, minus corpore A B, ad corpus A B.

## Diftinctio 3.

Recta $A$, ad rettam $\mathrm{F}_{2}$ minus recta A , triplicatam eam babet rationem quam recla $A$, ad rectam $G$, per confliruElionem : Quare pt rella $A$, ad reflain F , minus rella A , fic corfus A $\mathrm{B}_{3}$ ad corpus G H: Et per ipfius inDerfam proporicionm, Do recta $F$, minus reita $A$, at reltam $A$, fic corpics G in, ad corpus A B: Sed ofenfum eft diftinctione fecunda, eandem eferationem corporis C D, minis corpore A B, ad idem corpus A b: Ergo (quia guorum rationes cid, $m$ junt aquales ea inter fe junt aqualia) corpus $G \mathbf{H}$, aquale ert corpori $C D$, minus corpore a B, boc eft ccrpus $G H$, tanto minus eft dato corpori C D, quantum of datum corpus A B.

## Conclufio.

Igitur datis quibufcunque duorum evc. Qusod erat faciendum.
His ita demonflratis applicabimus boc Problemati fum Tbeoremasale.
THEORECMA

Si àquarta linea proportionali duarum homologarum linearum exnfentium in fimilhus inzaualibus corporibus,auferatur manos P 3
homo-

## Proof.

Section 1.
The line $A$ is to the line $F$ in the triplicate ratio of that of the line $A$ to the line $C$, by the construction. Therefore, as the line $A$ is to the line $F$, so is the solid $A B$ to the solid $C D$, by the 33rd proposition of Euclid's 11 th book and by the 8th, 12th, and 18th propositions of his 12 th book.

## Section 2.

Therefore, by the disjunct proportion: as the line $F$ minus the line $A$ is to the line $A$, so is the solid $C D$ minus the solid $A B$ to the solid $A B$.

## Section 3.

The line $A$ is to the line $F$ minus the line $A$ in the triplicate ratio of that of the line $A$ to the line $G$, by the construction. Therefore, as the line $A$ is to the line $F$ minus the line $A$, so is the solid $A B$ to the solid $G H$. And, by the inverted proportion of this: as the line $F$ minus the line $A$ is to the line $A$, so is the solid $G H$ to the solid $A B$. But it has been shown in the second section that the ratio of the solid $C D$ minus the solid $A B$ to the same solid $A B$ is the same. Consequently (because things whose ratios to the same thing are equal are equal to one another) the solid $G H$ is equal to the solid $C D$ minus the solid $A B$, i.e. the solid $G H$ is as much smaller than the given solid $C D$ as the given solid $A B$.

## Conclusion.

Therefore, given any etc. Which was to be performed.
These things thus having been proved, we shall add to this Problem its Theorem, as follows.

## THEOREM.

If from the fourth proportional of two homologous lines occurring in similar unequal solids the smaller of the homologous lines be taken away, the ante-
homologarum: Antecedens linea duarum mediarum proportionalium, inter minorem homologam lineam, \& illius linex reliquam, eft potentialiter homologa linea cum ills homologis, cuialdams corporis quod fimile eft alteri datorum corporum, \& tanto minus dato maiore, quantum eft datum minus.

## Explicatio.

Sit in figuris pracedentis fecundi Problematis quarta linea proportionas lis F , duarum bomologarum linearum A © C , ex fimilibus inaqualibus corporibus А в, Є C $\mathbf{D}$, á qua linea F , auferatur minor bomologarum A , dico minorem lineam G , duarum mediarum proportionalium linearum incer minorem bomologam lineam $A, G$ illius linea reliquum (hoc ef reliquum fubduila $A a b$ F) effe potentialiter homologam lineam cum illis homologis lineis A, © C, cuiufdam corporis $x t$ ipfrus G H, quod fimile ef aleri davorum corporum, Dt itpf CD, © tanto minus dato maiore C D , quantum of datum nininus corpus A B.

## Demonftratio.

Demonfratio buius fupra exbibita ef.
Adjiberemus buic fecundo Problemati demonsfrationem per numeros, nt ad primum Problema fafum eft, nifi rem fatis claram exisfimaremas.

## Quinti Libri <br> FINIS.

cedent of the two means proportionals between the smaller homologous line and the rest of the said line is potentially a line homologous to those homologous lines of a certain solid which is similar to one of the given solids, and as much smaller than the given larger solid as the given smaller solid.

## Explanation.

In the figures of the preceding second Problem let the third proportional $F$ to two homologous lines $A$ and $C$ from similar unequal solids $A B$ and $C D$ be given, from which line $F$ let the smaller of the homologous lines $A$ be taken; I say that the smaller line $G$ of the two mean proportionals between the smaller homologous line $A$ and the rest of this line (i.e. the rest after $A$ has been taken from $F$ ) is potentially the line homologous to these homologous lines $A$ and $C$ of a certain, solid, viz. of $G H$, which is similar to one of the given solids, viz. $C D$, and as much smaller than the given larger solid $C D$ as the given smaller solid $A B$.
Proof.

The proof of this has been set forth above.
We should have added to this second Problem a proof by means of numbers, as has been done for the first Problem, if we had not considered the matter clear enough.

## Epilogus.

Hac fint Generofiß. D. qua tibi dicare definauimus, qua fi A. T. grata effe fentiemus, alia habemus Matbefium arcana jub tui Nominis aulpicijs proditura: Interim bac qualiacunque boni conjules. Vale. Ego tibi me quam offciofifimè commendabo Lugduni Batauorum.

## ERRATA.

Pagin, 9 , in explicationislinea prima ad rectí, lege ad re fam. . 14.in explicationis lin. seex gunoibus, leg. ex paucleribus. 2 is in explicationis 17 . defiaitionis lin. 2. ex miuoribus, lege ex pauctoribus. 16 in explicationis lin.4. A G ad G B, lege A Gad G C. 19. lin. . . .ecundam
 $2 \sigma$ in figura pro $L$ pone $M$, \& pro $M$ pone $L$. 2) in coaltrualionis lin. $x$. inueniútur lege $i a$. veniantur. 3 i,ia conatruationislin. adifir batur lege defribatur. Etlin.j. A B Q lege AP $Q$.
 in demonftratiouis lin. 17. hsbeat lege haber. Et lin. 2t. habeat lege haber. ${ }_{3} 8$.lin.t. gua breui tei lege guan breui: 44 .in conftrutisnis 4 . lin. fiquelege litque. 48 din . 4.0 ppofita lige appo. fita, Eilin, s.ba'tes lege bakus. S4 lin, vitima, icofaedrum per latertum terias, lege icolaedrumtrancatum perhiterum tertias. i6.dit. B.ha.7. YZ lege $X \angle$. Eilin. 10 . Fequaneurlege feque-





## EPILOGUE

These are, most noble Lord, the problems which we resolved to dedicate to Thee, and if we learn that they please Thee, we shall publish other secrets of Mathematics under the protection of Thy Name. Meanwhile Thou will take all these, without distinction, in good part. Farewell. I commend myself to Thee most respectfully, at Leiden.


## DE THIENDE

## THE TENTH



## INTRODUCTION

## § 1.

Stevin published his essay on the decimal division in 1585 , when he had lived for at least four years in Holland, probably most of the time, if not all, at Leiden. It was a period of intensive work, in which between 1582 and 1586 he prepared for publication the whole series of books, mentioned on Pp. 26-27 of Vol. I. Once he had settled down after his peregrinations, he used the opportunity to publish, one after the other, the results of his experience and reflection.

De Thiende, English The Tenth, or The Disme, is by far the best known of Stevin's publications; it earned him the title of inventor of the decimal fractions. The title, if taken with a grain of salt, is deserved. It is true that decimal fractions appeared long before Stevin, but it was largely through his efforts that they eventually became common computational practice. It was also Stevin who first showed the advantage of a systematic decimal division of weights and measures.

By 1585 the system of Hindu-Arabic numerals, decimal and in positional notation, was in common use throughout Europe. Even the particular shapes of the ten digits $0,1,2,3,4,5,6,7,8,9$ had been more or less standardized and did not substantially differ from the shapes familiar to $u s$ at the present time. This system supplemented, but did not supplant, the older system which made use of counters on lines (Stevin's "legpenninghen", p. 34 of De Thiende, French "gettons") (1). Schools and schoolbooks often taught both methods. On the advanced front of learning the decimal positional system had been fully accepted. The great sixteenth-century progress in computational technique would have been impossible without it. However, there were still many who avoided fractions as hard to handle, and those who did use them often worked with different notations. This lack of consistency has never been completely removed, so that even now we write $4 \frac{1}{4}$ also in the form $41 / 4$ or $4.25(4,25 ; 4.25)$, and in angular notation in the form $4^{\circ} 15^{\prime}$. The notation 4.25 is clearly the result of applying the decimal method to fractions with cold consistency. It is Stevin's merit that he demonstrated the simplicity of this approach, even though his own particular notation was still clumsy.

The textbooks of the sixteenth century usually presented fractions with the aid of numerator and denominator, as it is still done. There were variations in the way these two parts of the fraction were distinguished from each other, sometimes with, sometimes without a fractional bar, sometimes by placing one above, sometimes beside the other. A special symbol might be introduced for

[^25]some simple fractions, such as $1 / 2\left({ }^{2}\right)$. For comparison with large denominators sexagesimal fractions were widely used, usually without explicitly expressing these denominators. This method dates back to ancient Mesopotamia, was used by Ptolemy in his Almagest, and is still in use for angular measurement; in it a symbol such as $4^{\circ} 21^{\prime} 33^{\prime \prime} 14^{\prime \prime \prime}$ means $4+\frac{21}{60}+\frac{33}{3600}+\frac{14}{216000}$. Another method, favoured by table-makers, was to eliminate fractions altogether by the choice of a sufficiently large unit. Here was a vital case where thinking in decimal rather than in sexagesimal terms became more and more common when the sixteenth century advanced.
$\therefore$ Ptolemy's chord tables in the Almagest had been composed for a circle with radius $R=60$, and both angles and chords were expressed in the sexagesimal system, so that chord $60^{\circ}=60^{\mathrm{D}}$, and chord $176^{\circ}=119^{\mathrm{D}} 55^{\prime} 38^{\prime \prime}$, which is equivalent to $\sin 30^{\circ}=30^{\circ}, \sin 88^{\circ}=59^{\circ} 57^{\prime} 49^{\prime \prime} .\left({ }^{3}\right)$. George Peurbach, the Viennese astronomer (1423-1416), left a table of sines computed for $R=60,000$, but with the sines expressed decimally, so that $\sin 30^{\circ}=30,000 ; \sin 88^{\circ}=59,964$ (sines were conceived as line segments-semi-chords of the double arc-, not as ratios) (4). This method was taken over by Peurbach's pupil Regiomontanus ( 1436 -1476), the Ian van Kuenincxberghe of De Thiende, p. 20, Jehan de Montroial of the French edition, p. 148, who not only used the unit $R=6.104$ in the sine table of his Tabula directionum, but also the unit $R=6.106$ in his Supplement to Peurbach's Tractatus on Ptolemy's propositions on sines and chords. In other tables Regiomontanus took a new step in the direction of the decimal system. In the same Tabula directionum we find a tangent table based on $R=105$ and in the Supplement to Peurbach's Tractatus computations based on $R=10^{7}{ }^{(5)}$. These tables, published many years after Regiomontanus' death,
(a) F. Cajori, A History of Mathematical Notations I, Chicago, 1926, pp. 309. ff; J. Tropfke, Gescbichte der Elementar-Mathematik I, 3 , Auf. Berlin-Leipzig, i930, pp. 172 ff.; D. E. Smith, History of Mathematics II, Boston-New York; pp. 235 ff. These books contain much information on the history of common and of decimal fractions. For decimal fractions see also G. Sarton, The First Explanation of Decimal Fractions:and Measures, Isis 33 (1935), pp. 153-244.

Measures, Isis 33 (1935), pp. 15 3-244.
$\left({ }^{3}\right)$ The chord table is found in Book I, Ch. 2, of the Almagest. It is equivalent with a table of sines, for angles ascending by $15^{\prime}$, the results are accurate to $s$ decimals. We write $p$ (partes) to express lengths in sexagesimal units. A transcription of the chord tables in the familiar Hindu-Arabic notation e.g. in Des Claudius Ptolemäus Handbuch der Astronomie, Erster Band. . . übersetzt. . . von K. Manitius. Leipzig, 1912, pp. 37~40.
${ }^{(4)}$ These tables by Peurbach are in the Osterreichische Nationalbibliothek: Cod. Vindob. 527.7, fol. $287^{r}-289^{\nu}$. They are mentioned in J. Tropfke, $\bar{l} . c .{ }^{2}$ ) p. 175.
${ }^{(5)}$ We have consulted the 1599 edition of the Tabulae directionum: Ioannis de Monteregio Mathematici clarissimi tabulae directionum projectionumque... eiusdem Regiomontani tabula sinuum, per singula minuta extensa:...Tubingae, 1559 , 156 double pages (H). The tangent table is the one page Tabula foecunda (p. 29r), which lists for $\tan 45^{\circ}$ the value.100,000, hence $R=10^{5}$. The sine table (pp. 139 ff) lists 30,000 for $\sin 30^{\circ}$, hence $R=6.10^{4}$. The first edition of this work was published at Augsburg 1490. - The tables with $R=$ 6. 10 ${ }^{\mathbf{6}}$ and $R=10^{7}$ in Tractatus Georgii Purbachii super propositiones Ptolemai de siniubus et chordis, Nuremberg, 1541, according to J. Tropfke, Geschichte der Elementar Mathematik V, ze Aufl., Berlin-Leipzig, 1923, pp. 178, 179. See also A. v. Braunmühl, Vorlesungen über Gescbichte der Trigonometrie I; Leipzig, 1900, p. 120; M. Cantor, Vorlesungen über Geschichte der Mathematik II, Leipzig, 1892, Ch. 55.
enjoyed considerable authority during the sixteenth century, and helped to establish the decimal system as the basis for the computation of trigonometrical tables. The great tables of that period, such as the Opus Palatinum, were all based on a radius equal to a power of 10 .

The basis $R=1$ remained unpopular for a long time, because of the lack of a convenient notation for decimal fractions. Stevin himself, in his Tables of Interest, which antedate De Thiende, and in his trigonometrical tables, published afterwards, used $10^{7}$ as his unit. The basis $R=1$ gained acceptance mainly through the influence of the logarithmic tables, and it was here that Stevin's suggestions fell on willing ears.

There are indications that in the period before the appearance of Stevin's booklet mathematicians began to appreciate the use of a decimal notation in working with fractions. There is an early - though not the earliest - example in a Hebrew manuscript written by Rabbi Immanuel Bonfils of Tarascon about 1350. Here we find a proposal for a system in which the unit is divided "into ten parts which are called Primes, and each Prime is divided into ten parts which are called Seconds, and so into infinity". For such fractional quantities Bonfils gives some rules of multiplication and division, which result from what we now call the exponential law $10^{a} .10^{b}=10^{a+b}(a, b$ positive integers). These rules are applicable to denominators as well as numerators, a fact we express by allowing $a, b$ to be positive as well as negative. The manuscript has no numerical examples (6). It is of some importance because Tarascon, in 1350, was an important trading and cultural centre close to the Papal Court at Avignon.

At about the same time the Paris astronomer John of Meurs (Iohannes de Muris) computed $\sqrt{ } 2$ by means of decimal magnification; in our present notation his reasoning may be transcribed as follows:

$$
\sqrt{2}=\frac{1}{1000} \sqrt{2,000,000}=\frac{1}{1000} 1414
$$

: He remarks that the result, $1024^{\prime} 50^{\prime \prime} 24^{\prime \prime \prime}$ in sexagesimal fractions, can also be expressed by considering $V 2$ as equal to 1414 , if the first digit is taken as an integer, the next one as a tenth, etc. (7).

In sixteenth-century printed mathematical texts we find some play with decimal fractions, written either with denominators as common fractions, or in some positional notation without denominator. For example, in the Exempel Büchlein of 1530 we find the author Christoff Rudolff teaching the compound interest calculus with a table for $375\left(1+\frac{5}{100}\right)^{n}, n=1,2, \ldots, 10$. He writes the results in a notation which only differs from our notation of the decimal fractions in the use of a vertical dash as the decimal separatrix, e.g. $413 \mid 4375$ for the case $n=2\left(^{8}\right)$. Another case is presented by François Viète in his Canon

[^26]mathematicus of 1579 , where we occasionally find decimal fractions without denominator, and the fractional part of the number in smaller type than the integral part and underlined. Writing $100,000000,00$ for the radius of a circle, Viète places the semi-perimeter between $314,159, \frac{265,35}{}$ and $314,159,265,37$. The commas are used to arrange the digits into groups of three. In another place in the same book we find for $\sin 60^{\circ}$ the value $86,602 \mid 540,37$, in another place again we find fractions with numerator and denominator (9).

## § 2.

Stevin's achievement consists in divesting the decimal fractions of their casual character. In doing this, he appealed to the learned as well as the practical world, to the reckonmaster as well as to the merchant and the wine gauger. He advertised the advantages of his decimal notation on the very title page of his pamphlet, proclaiming that he was "teaching how to perform with an ease, unheard of, all computations necessary between men by integers without fractions".

At a time when the fractional calculus and division in general were considered difficult operations (10), this computation by integers without fractions must have appealed to many. Stevin in particular appealed to the man of practice, for whose benefit he wrote in the vernacular and endeavoured to be as simple and clear as possible.

Stevin's claim that he could perform all computations by integers without fractions strikes us as rather odd, since he is supposed to have contributed more than anybody else to the introduction of decimal fractions. Yet he claimed that he had done away with fractions. It is true that, historically speaking, the result of Stevin's work was that the fractional calculus became as easy as the calculus with integers. But it is also true that Stevin was thinking primarily of the elimination of fractions. He accomplished this by introducing the tenth part of a unit, (1), the hundredth part of a unit, (2), as new units, so that for instance the fraction which we write 47.58 and Stevin 47 (0)5(1)8(2) was regarded by Stevin as 4758 (2) - a notation which he also used -, or 4758 items of the second unit. We do a similar thing when we express miles in feet, hectares in ares, or gallons in pints. However, especially after Napier introduced the notation 47.58 with special reference to Stevin, Stevin's method was understood as that of decimal fractions.
Stevin's notation seems to us clumsy and also less elegant than that which Rudolff used more than fifty years earlier. The notation 32(0)5(1)7(2) reminds us of the sexagesimal notation, where a symbol such as $5^{\circ} 7^{\prime} 26^{\prime \prime} 34^{\prime \prime \prime}$ can only be understood if the $5,7,26,34$ are separated by certain marks. This results from the fact that this sexagesimal notation is already mingled with a decimal one, since the number of units, minutes, seconds, etc. is expressed decimally ( 26 means

[^27]2 . $10+6$, not $2: 60+6$ ). Stevin's notation, however, is purely decimal. He might have written $32^{\circ} 5^{\prime} 7^{\prime \prime}$ (as some of his successors have done), but he preferred the 0 -notation which he had also used elsewhere to indicate powers, albeit not necessarily powers of ten. This was probably due to the influence of the Bolognese mathematician Bombelli, who, in his Algebra of 1572, had used half circles with numbers as insets to indicate powers of the variable, an improvement on the current Coss notation (11). Stevin had studied Bombelli, whom he quotes in L'Aritbmétique (12). This notation therefore means that 32 (0) 5 (1) 7 (2) $=32 \cdot 10^{0}+5 \cdot 10^{-1}+7 \cdot 10^{-2}$, to use our modern way of writing. Stevin was not too orthodox in his commitment to his own notation; in (1)(1)(2)(3)
other books he wrote 5789 , or the simpler 732(2) for what we write as 7.32 (13). An advantage of his method was that he could add 7(0)5(1)8(2) to 4(0)7(1)S(2) and get 11(0)12(1)13(2) $=11$ (0)13(1)3(2) $=12$ (0)3(1)3(2), which may have been helpful to inexperienced reckoners, who could thus keep track of intermediate stages in the process of calculation. Stevin was also able to do away with zeros: 5 (2)4(5) means 0.05004 in our notation.

Stevin gives a proof that his method allows the handling of decimal fractions as if they were integers by rewriting these fractions in the form $\frac{a}{b}$, where $b$ is an appropriate power of ten, and then applying the rules for the computation with these fractions as explained in L'Arithmétique. The result is then again cast into the decimal 0-notation. This proof is substantially the same we use, though, in accordance with his time, Stevin gives numerical examples where we should express ourselves in algebraic notation (14). He gives his demonstrations in the classical way with the terms Given, Required, Construction, Demonstration, Conclusion, which shows that he realized that careful proofs are as necessary in arithmetic as in geometry, an unusual thing for his day, and for many days to come.

## § 3.

After the appearance of De Thiende decimal fractions appeared more and more frequently in print. It is safe to assume that Stevin's work contributed to this growing popularity without ascribing the success exclusively to him. With all the table-making and other reckoning in progress decimal fractions were "in the

[^28]air". Stevin himself" saw to it that a French translation of his pamphlet under the name of La Disme was published in the same year 1585 in which De Thiende appeared. This translation was added to the collection of essays which he published under the title of La Pratique d'Arithmétique, a collection always bound together with Stevin's large treatise L'Arithmétique (15). De Thiende itself was reprinted in 1626, after Stevin's death, this time as an appendix to a book compiled by De Decker, who published it again in 1630 as part of another book (16). When Girard, in 1634, published the Oeuvres of Stevin, he included the French version (17). There were thus several ways by which mathematicians could become acquainted with the ideas of our pioneering engineer.

They were not the only opportunities. Two English versions appeared, a literal one by Robert Norton, published in 1608 (18), and a freer one by Henry Lyte, published in $1619\left({ }^{(19)}\right.$. We have taken the Norton translation to serve as the English version of De Thiende in the present edition of Stevin's works. In the mean time decimal fractions had appeared in books not, or only partly, influenced by Stevin, often rather casually, as if the authors were not sufficiently aware of the fundamental importance of the innovation. Clavius (1537-1612), the influential Vatican astronomer and a prolific textbook writer, used the notation 34.4 for the partes proportionales in his sine table of 1593 , though the sines themselves appear as integers to the radius $R=107\left({ }^{20}\right)$. Less casual was the
( ${ }^{15}$ ) La Disme, enseignant facilement expedier par nombres entiers sans rompuz, tous comptes se rencontrans aux affaires des Hommes... Leiden, Plantin, 1585, pp. 132-160 of the Pratigue $d^{\prime}$ Aritbmétique.
( ${ }^{18}$ ) Eerste Deel van de Nieuve Telkunst, inhoudende verscheyde manieren van rekenen. . . door Ezechiel De Decker. . . Noch is bier achter bygbevoeght de Tbiende van Symon Stevin van Brugghe. Ter Goude, by Pieter Rammaseyn... Ib26. - See on this book M. van Haaften, De Decker's Eerste deel van de Nieune Telkonst, De Verzekeringsbode, 25 Sept. 1920 (pp. 406-410). De-Decker's book of 1630 is called Niezive Rabattafels, Gouda, Rammaseyn.
( ${ }^{17}$ ) In the reprint of L'Arithmétique and La Pratique d'Aritbmétique, discussed further on in this volume.
(19) Dime: The Art of Tenths, or Decimall Arithmetic, teaching bow to perform all computations whatsoever by whole numbers without fractions, by the four principles of common aritbmetic, namely: addition, subtraction, multiplication, and division. Invented by the excellent mathematician, Simon Stevin. Published in English with some additions by Robert Norton, Gentleman. Imprinted at London by S.S. for Hugh Astley, and are to be sold at bis shop at St. Magnus' Corner. 1608 (H.). - The title page is reproduced in L. C. Karpinski, The History of Arithmetic, Chicago, New York, 1929, p. 132.
( ${ }^{19}$ ) The Art of tenths, or decimall arithmeticke. . exercised by Henry Lyte Gentleman. . . Londor, printed by Edward Griffn. 1619. (Hu.) (The title page is reproduced in Isis 33 (1935), p.223. This booklet contains an exposition of Stevin's method. The author has, to use his own words, 'sometime, now ten yeeres sithence (gentle reader) bin intreated by divers to publish my Exercises of Decimall...'; he acknowledges that this 'art of tenths' was 'devised first by the excellent Mathematitian Mr. Simon Steven'. Lyte writes (0) (1) (2) (3)
(0) (3)
(3)
$\begin{array}{llll}1 & 5 & 8 & 2\end{array}$ (brackets instead of circles) and explains $\begin{array}{llll}3 & 4 & 5\end{array}$ as 34000 (information from Dr. Frank Weymouth). On Lyte, who was born in I 573 as a son of Henry Lyte, translator of Dodoens' Cruydeboeck, see R. E. Ockenden, Apropos of Henry Lyte, Isis 25 (1936). pp; ${ }^{135-136 .}$

- (20) Clavius' table appeared with his Astrolabium ( 1593 ). It also appears as a separate item in 'Tome I of Clavius' Opera mathematica, Moguntiae, 1612,5 vols. (H.). The title is: Sinus vel semisses rectarum in circulo subtensarum: lineae tangentes atque secantes. On p. 54 the sexagesimal division is compared with the decimal one, the names Peurbach, Regiomontanus, and Appianus are mentioned, but not Stevin. See also J. Ginsburg, On the Early History of the Decimal Point, Amer. Mathem. Monthly 35 (1928), pp. 347-349.

Bolognese astronomer G. A. Magini, who in his text on plane triangles of 1592 taught that, in writing decimal fractions, integer and fractional part should be separated by a comma, such as 6822,11 (21). In Magini and Clavius we probably have the first authors to use our present notation (22).

Jost Bürgi (1552-1632), of Kassel and Prague, who with Napier is considered the inventor of logarithms, has a claim to the invention of decimal fractions; at any rate, Kepler thought so. We know that Bürgi used them after 1592, but his book Arithmetica remained in manuscript. He wrote $1410^{4}$ for 141.4. On the title page of Bürgi's published Progress Tabulen of 1620 we find $230270^{\circ} 022$ for our 230270.022 (23). Kepler, who claimed in 1616 that "this kind of fractional calculus has been invented by Jost Bürgi for the calculus of sines", used the notation 3 ( 65 for our 3.65. With these fractions, he wrote, we can perform all arithmetical operations just as with ordinary numbers (24).

Another claimant for the title of inventor of decimal fractions is Johann Hartmann Beyer (1563-1625) of Frankfurt a. M. He called his calculus the dekarithmos and in his Logistica decimalis of 1619 wrote that he invented this method of reckoning with decimal fractions in 1597 under the influence of astronomers, or "star-artisans". There are reasons for not taking these claims too seriously, since Beyer's notation and nomenclature is rather reminiscent of Stevin; he quotes the Dutch surveyor Sems, who recognized Stevin's influence, and when, in 1619, he dedicated another book to Prince Maurice of Orange, he may well have been aware who was Maurice's principal mathematical adviser. It is, of course, possible that this indirect acquaintance with Stevin only came about after Beyer had had his

0 I IIIIIIVVVI
happy inspiration in 1597. In his book we find such notations as 123459372
$0 \quad \mathrm{Vr}$
or 123459.372 (25).


A somewhat controversial figure in the present-day literature on the history of decimal fractions is Bartholomeus Pitiscus (1561-1625), of Heidelberg, who wrote a Trigonometria, published in editions of 1595, 1600, 1609, and 1612. This is the first book to use the term trigonometry. There is no doubt that Pitiscus knew decimal fractions; he used them freely. The controversial question is whether he used a decimal point (as did Clavius). It seems that while he used notations such as 02679492 for our 0.2679492, and 13|00024 for our 13.00024, and also $\left.29\right|_{\frac{95}{100}}$, it cannot be claimed that the dots he used for breaking up large numbers into groups to facilitate reading can be considered as decimal points (26).

## § 4.

The man who must rank with Stevin in his influence on the development of decimal fractions was no less a person than the Laird of Merchiston, John Napier (1550-1617), the inventor (or co-inventor with Jobst Bürgi) of logarithms. Napier. is also primarily responsible for our present notation with the point as decimal separatrix. The first edition of Napier's Descriptio (1614) is decimal in so as far that it contains sines based on $R=107$, but there are no decimal fractions yet. We find them, with a point as separatrix, in a passage in Edward Wright's English translation of the Descriptio (1616) (27). Napier's Rabdologia of 1617 hails. Stevin and adopts his principle, it also proposes the notation 1993,273 (with point or comma) for $1993 \frac{273}{1000}$ - using also $821,2^{\prime \prime} 5^{\prime \prime}$ for $821 \frac{25}{100}$, as well as a decimal fraction with 1014 fully written out in the denominator (28).

Zehentheiligen Brüchen ist mir erstlichen Anno $1597 \ldots$ von den Gestirnkünstlern folgender gestalt Anlasz gegeben werden'. The whole page is reproduced on p. 221 of G. Sarton, l.c. ${ }^{2}$ ). There exists an earlier version of the Logistica decimalis: Eine neue und schöne Art der Vollkommenen Visierkunst... Frankfurt 1603 , 191 pp., with a Latin version, also of Frankfurt 1603 : Stereometriae inanium nova et facilis ratio. Here Beyer published his ideas on decimal fractions for the first time. See G. Sarton, l.c. ${ }^{2}$ ), pp. 178-180, with facsimile titlepage reproductions. On Beyer's relation to Sems, see K. Hunrath l. $c^{9}$ ).
$\left({ }^{26}\right)$ On the different editions and translations of Pitiscus' Trigonometria, sce R. C. Archibald, Mathem. Tables and Other Aids to Computation 3 (1949) pp. 390-397, with full bibliography. The title of the 1600 ed. is Trigonometria sive De dimensione Triangulorum Libri Quinque...Augsburg 1600, VIII +371 pp . (H). Of the literature on Pitiscus and the decimal point in general we mention: N. L. W. A. Gravelaar, Pitiscus' Trigonometria, Nieuw Archief v. Wiskunde (2) 3 (1898), pp. 293-278; De notatie der decimale breuken, ib. (2) 4 (1899), pp. 54-73; F. Cajori l.c. ${ }^{2}$ ) pp. 317-322, with full discussion; J. W. L. Glaisher, On the Introduction of the Decimal Point into Arithmetic, Report $43^{\mathrm{d}}$ Meeting British Assoc. Adv. Science, London, 1874, pp. 13-17; J. D. White, London Times Liter. Suppl., Sept. 9, 1909; D. E. Smith, The Invention of Decimal Fractions, Teachers College Bulletin (New York) 5 (1910), Pp. 11-21.
${ }^{(27)}$ Mirifici Logarithmorum Canonis descriptio... Authore ac Inventore Ioanne Nepero. Edinburgi, $1614,8+57+91$ pp. Transl.: A description of the admirable table of logarithmes... translated into English by the late... Edward Wright... London, 1616 , $22+89+91+8 \mathrm{pp}$. The so-called decimal point may not have been intended as such, see F. Cajori l.c. ${ }^{2}$ ) p. 323.
$\left({ }^{28}\right)$ Rabdologiae, seu numerationis per virgulas libri dwo... Authore et Inventore Ioanne Nepere... Edinburgi, $1617,12+154+2 \mathrm{pp}$. On p. 2 I is the 'Admonitio pro Decimali Arithmetica' with the words... 'quas doctissimus ille Mathematicus Simon Stevinus in sua Decimali Arithmetica sic notat, et nominat (1) primas, (2) secundas, (3) tertias...' The notation $82 \mathrm{I}, 2^{\prime} 5^{\prime \prime}$ is on P. 39 .

In the posthumous Constructio (1619) we find the Laird more consistent; at the very beginning, in Prop. 5, we find the principle clearly stated: "whatever is written after the period is a fraction". Hence 25.803 means $25 \frac{803}{1000}$ (29). The appendix to the Constructio, written by Henry Briggs, uses the notation 25118865 .

We now enter the period of the great tables of logarithms, in which the decimal notation for fractions is taken for granted. Briggs, in the Arithmetica Logarithmica of 1624, which lists logarithms to the base 10, uses the comma as decimal separatrix (also for other purposes, as in 4,40141,77793 for $\log 25201$ ). Vlacq, who completed Briggs' tables, continued this practice of using the comma, so that we find in his work such familiar expressions as 0.47712 for $\log 3(30)$. The separation of mantissa and characteristic by some symbol such as a point or comma is a natural result of the listing of logarithms in tables, and leads naturally to decimal fractions in our modern notation when 10 is accepted as the base.
Stevin's, Napier's, and Briggs' contributions were combined in the Eerste Deel van de Nieuwe Telkonst (1626) and the Tweede Deel van de Nieuwe Telkonst (1627) by the Gouda surveyor Ezechiel De Decker (31). Here we find together Stevin's Thiende, Vlacq's translation of the Rabdologia, and the Briggsian logarithms of all numbers from 1 to 106. These two Telkonst books testify to the triumph of the decimal system. They stress three essential aspects of this victory: the Hindu-Arabic notation with the modern digits, the decimal fractions, and the logarithms to the base of 10 . One change was still to come, though it was implicit in the frame of the decimal system: the rewriting of the trigonometric tables to a unit $R=1$. Other deviations from the decimal method, such as the measurement of angles, of weights, of lengths, of volumes, continued to form a subject of discussion and disputation for many years and even now have not been removed to everybody's satisfaction.

## $\S 5$.

The further history of the decimal fractions is not without a certain interest. There were loyal Stevin followers, followers who preferred some modification of

[^29]his system, but maintained special symbols for the primes, seconds, etc., followers of Napier and Briggs, and writers who ignored the invention. Among the loyal Stevin followers we reckon the surveyors Dou, Sems, and De Decker, Albert Girard and Professor Van Schooten at Leiden. Van Schooten, in his Exercitationum mathematicarum liber of 1657 preferred 525 (3) to 5(1)2(2)5(3), but sometimes also wrote the redundant forms 27,3 (1) or 27.3 (1) (32). At the end of the seventeenth century we find the military engineer De la Londe with such a notation as $2^{\prime}, 4^{\prime \prime}, 3^{\prime \prime \prime}, 5^{\text {IV }}$ or $2435^{\text {IV }}$ or $0 \mid 2435$ ( $^{(33)}$, and the mathematician Ozanam (0)(1)(2)(3)(4)
with 382459 or 382459 (4); both authors refer to Stevin and call his method la dixme (34). As late as 1739 we find l'abbé Deidier teaching that decimal fractions should be written as $89.5^{\mathrm{I}} 2^{\mathrm{II}} 7^{\mathrm{III}} \mathrm{I}^{\mathrm{IV}}$ or $895276^{\mathrm{IV}}$, though he used the ordinary point notation for logarithms (35). The final judgment in favour of our present notation may well be ascribed to Euler, and in particular to that book of his which established so many of our mathematical customs (including the reference of sines, tangents, etc. to the radius $R=1$ ), the Introductio in analysin infinitorum of 1748. There remained some difference in form and position of the decimal separatrix; we still find 5,7 as well as $5.7,5 \cdot 7$, and $5^{\circ} 7$.
( ${ }^{32}$ ) Francisci à Schooten, Exercitationum mathematicarum liber primus... Lugd. Bat. 1697, pref. +112 pp . On p. 19 the author expresses 'stuivers' and 'duiten' in forins and writes: 'io stuft, 8 den', as 525 (3) (one florin' $=20 \mathrm{st}$.; i st. $=6$ den.) The notation 27.3 (1) and 27,3 (1) on p. 49; on p. 99 we read $14 \frac{93}{100}$.
(3) De la Londe, Traité de l'arithmétique dixme.Liège[?]. The author was one of Vauban's trusted engineèrs, commander of the corps de génie during the first siege of Philippsburg (Baden) in 1676 . During $1682-83$ we find him in charge of the Flemish barriere fortresses, and in 1688 again at Philippsburg during the second sicge. During this siege he was killed by a canon ball. See A. Allent, Histoire du corps impérial du génie I, Paris, 1805, Pp. 137, 164, 221, 225, 228; Lazard, Vauban, Thèse Paris, 1934, pp. 139, 140; R. Blomfield, Sebastien le Prestre de Vauban, 1633-1707, London, 1938, p. 86. - The title of De la Londe's book is given by F. T. Verhaeghe, Spreekbeurt, uitgegeven door de Kon. Maatsch. v. Vaderl. Taalen Letterkunde te Brugge, 1821 , p. 76 ; S. van de Weyer Steviniana, in Simon Stevin et M. Dumortier, Nieuport 1845 , and A. J. J. van de Velde, Meded. Kon. Vlaamse Acad. voor Wetensch. 1o (1948), with differing data. Terquem, Notice bibliographique sur le calcul décimal, Nouvelles Annales de Mathém. 12 (1853), pp. 195-208, mentions a L'Arithmétique des ingénieurs contenant le calcul des toises, de la maponnerie, des terres et de la charpente, par M. de la Londe, ie ed. 1685, ze ed., Paris, 1689 , 144 Pp . This book adopts Stevin's system. Our example of De la Londe 's notation is from L. Gougeon, Abrégé de l'Arithmétique en Dixme..., an appendix to Parallèle de l'arithmétique vulgaire et d'une autre moderne inventée par M. de la Londe, ingénieur général de France, Liège, IG95, 259 Pp., a book also mentioned by Terquem.
( ${ }^{34}$ ) L'usage du compas de proportion... par M. Ozanam, La Haye, 1691, 216 pp . The Traité de la Dixme is on pp. 198-216.
${ }^{\left({ }^{36}\right)}$ Suite de l'Arithmétique des géomètres. . . par M. l'abbé Deidier, Paris, $1739,6+416 \mathrm{pp}$. The chapter 'Des fractions décimales' is at the cnd, pp. 411-416. Deidier was not the only one to make a difference in the notation for decimal fraction and for logarithms. In the Eléments de mathématiques par M. Rivard, 6c éd., Paris, 1768, Première partie, 271 pp. , we find decimal fractions in the redundant form $4.25^{I I}$ (p. 208), but logarithms without any decimal separatrix, $\log 57=17558749$. For other examples of decimal notations in the 17 th $\& 18$ th centuries see the literature under ${ }^{2}$ ), Terquem, l.c. ${ }^{33}$ ) and F . Cajori, $A$ List of Oughtreds' Matbematical Symbols, with historical notes, Un. of California Publ. in Mathematics I (1920), pp. 171-186, esp. footnote ${ }^{2}$ ).

## § 6.

Stevin had yet another purpose with his pamphlet. He proposed to replace the confused systems of weights and measures of his day by a system based on the decimal division of one unit. He did not propose anything about the nature of the unit itself: he only pointed out the advantages of a decimal subdivision.

Attempts at the uniformization of measuring systems have been made whenever states were in process of consolidation. We know of such attempts by Frankish and French kings as far back as Charlemagne and Charles the Bald. To give an example closer to Stevin's days: in 1558 the French States General, in a request to Henry II, ordered the reduction of the weights and measures of the kingdom to those of Paris ( ${ }^{36}$ ).

Stevin's proposal was made at a time when the Northern Netherlands, after having officially constituted themselves as an independent commonwealth in 1581, were faced with this task of consolidation. This must have seemed to Stevin an appropriate time to press his suggestions. Here was a field in which the mathematician and the engineer could collaborate with the man of business for the common weal. Stevin dedicated his work to men of practice, for whose benefit he wrote and published it in the vernacular ( ${ }^{37}$ ). He wanted to be read outside the charmed circle of humanists and cossists.

He pointed out how useful the decimal subdivision would be to particular crafts. Let the surveyors apply it to their unit, the rod (la verge), the tapestry measurers to their unit, the ell ('aulne), the wine gaugers to the "aem" (l'ame), the astronomers to the degrees of the circle, the masters of the mint to their ducats and pounds. Stevin knew at least one precedent: at Antwerp the "aem" was already divided into 100 "potten". He also knew of surveyors who, on his advice, were using yardsticks with a decimal division (38). Stevin himself declared that he would use the decimal scale in his planned treatise on astronomy. However, his later book on this subject has no such innovations.

It is well known that Stevin's proposals on the reformation of weights and measures did not meet with the same success as his proposals on the reformation of fractions. Not until the French Revolution was anything of permanent importance accomplished in the decimal uniformization of scales, and then it took place as part of a reform which also standardized the units themselves. However, some
$\left.{ }^{(30}\right)$ G. Bigourdan, Le système métrique des poids et mesures, Paris, 1901, VI +458 pp ., see pp. $\varsigma \mathrm{ff}$; A. Favre, Les origines du système métrique, Paris, 1931, 242 pp. Neither Bigourdan nor Favre mentions Stevin.
$\left({ }^{37}\right)$ The French edition of De Thiende, l.c. ${ }^{17}$ ), carries on the front page the words: premierement descripte en Flameng, et maintenant convertie en Franfois, par Simon Stevin de Bruges.
${ }^{(38)}$ H. R. Calvert, Decimal Division of Scales before the Metric System, Isis 25 (1936), pp. 433-436. The oldest decimal division on a scale reported by this paper is the one described in The Mathematical Jenvel by J. Blagrave, 1585. The book by Henry Lyte, (l.c.) ( ${ }^{18}$ ) contains the following advertisement: 'Those that would have either the Yard or two foote Ruler made very well according to the Arte of Tens with tables for that purpose I have set downe in this booke let them repaire to Mr. Tomson dwelling in Hosicr Lanc, who make Geometricall Instruments.' About an assayer's Probierbüchlein of 1578 , written perhaps $c$. 1555 or earlier with a decimal system of weights see C. S. Smith, Isis 46 (1955), Pp. 354-357.
attempts at decimal scales were made before that period, though they may not always have been wholly or partly due to Stevin's influence. We have already mentioned the occasional decimal division of surveyors' yardsticks.' Of more importance were the attempts at a decimal division of angles. Such attempts date from far back; there exists in Munich a Latin codex of about 1450, in which a certain Ruffi proposes the division of a degree into 100 minutes, and of a minute into 100 seconds (39). The first printed tables with a decimal angular division are found in Briggs' Trigonometria britannica (40). Briggs acknowledges his indebtedness to an idea of Viète, but we also know that he was acquainted with Stevin's ideas (41). These tables still have a quadrant of 90 , not of 100 , degrees (42). This was in accordance with Stevin, who did not challenge the division of the quadrant into 90 degrees, but only the subdivision of the degrees. This reform did not meet with ready acceptance, and it was not until the period of the French Revolution that we find tables with a decimal division of angles, now also with a centesimal division of the quadrant. The continuity with the older work is preserved, since both the Borda and the Callet tables, which date from this period, refer to Briggs and to Vlacq (whose publisher, Rammaseyn, was also Briggs' Dutch publisher). Laplace, in his Mécanique céleste, adopted the decimal division of the degree, but not of the quadrant. The decimal division of the quadrant itself is now fairly generally accepted in surveying; in other fields it is making progress and even when the sexagesimal division is used, the fractions in the seconds are always decimal:, $5^{\circ} 7^{\prime} 8.5^{\prime \prime}\left({ }^{43}\right)$.
The standardization of the units themselves has also had its unsuccessful pioneers. An example is the proposal to use the seconds pendulum as the standard of length, to which in the second half of the seventeenth century such men as Mouton, Picard, Wren, and Huygens committed themselves. The system which the French committee during the Revolution accepted, and which was based on the metre as the forty-millionth part of the earth's circumference at the equator, goes back to another proposal of Mouton (44). But even now there is still plenty of disagreement on the subject of the standardization of units. It is a cause of satisfaction that in scientific work the C.G.S. system has been uniformly accepted. No unit in this system has as yet been called after Stevin.
$\left.{ }^{(39}\right)$ See Mathem. Tables and Other Aids to Computation I (1943-45), p. 33.
(40) Trigonometria britannica sive De doctrina triangulorum libri duo... a Clar. Doct.... Henrico Briggio... Goudac 1633. These tables are preceded by 110 pp. of trigonometry by H. Gellibrand. The unit is $R=10^{10}$.
${ }^{(41)}$ ) On Viète's influence, sec R. C. Archibald and A. Pogo, Briggs and Vieta, Matbem. Tables and Other Aids to Computation I (1943-45), pp. 129-130. An illustration of Stevin's influence is Gellibrand's use of Stevin's (1), (2),... for $x, x^{2}, \ldots$
${ }^{(42)}$ A follower of Stevin was J. Verrooten: Euclides zes eerste boekken van de beginselen der miskonsten, in Neerduits vertaald door Jacob Willemsz. Verrooten van Haerlem. .. Hamburg, 1638,344 pp., who divides the quadrant into ro parts or (1), every (1) into (2) .....; his unit is $R=10^{10}$.
$\left.{ }^{43}\right)$ R. Mehmke, Bericht über die Winkelteilung, Jahresber. Deutsch. Math. Ver. 8, Erstes Heft (1900), pp. 139-158; P. Wiidenes, Decimale tafels, Euclides 13 (1936/37), pp. 193${ }^{21} 7$; R. C. Archibald, Tables of Trigonometric Functions in Non-sexagesimal' Arguments, Mathem. Tables and Otber Aids to Computation I (1943-1945), pp. 33-44, 160, 400-401.
${ }^{(44}$ ) G. Sarton l.c. ${ }^{2}$ ) pp. 190-192; G. Bigourdan l.c. ${ }^{36}$ ), pp. 6, 7.

## § 7.

Two facsimile reprints of Stevin's pamphlet have been published. The original Dutch edition of 1585 was reproduced in 1924 by H. Bosmans, the French version of the same year in 1935 by G. Sarton. A modern English translation has been published by Vera Sanford in D. E. Smith's Source Book of Mathematics ( ${ }^{45 \text { ). }}$

NOTE. The Persian astronomer Al-Kashi, who lived for a while at the court of Ulugh Bey at Samarkand, and died in 1429, worked freely with decimal fractions. See D.G. Al-Kaš Ključ Arifmetiki, Traktat ob Okružnosti, translated and ed. by B. A. Rozenfel'd (Moscow 1956), 566 pp., especially 6. 62, where, in the "Key to Arithmetic", is shown how to multiply 14.3 into 25.07, answer 358.501. - According to Y. Mikami, The Development of Mathematics in China and Japan, (Abh. zur Gesch. d. math. Wissensch. XXX), Leipzig 1913, p. 26, Yang Hui (second half 13th century) showed that $24.68 \times 36.56=$ 902.308.

[^30]
## THIENDE

Leerende door onghchoorde lichricheyt allen rekeningen onder den Menfchen noodich vallende, afveerdighen door heele ghetalen fonderghebrokenen.

Befchreven door Simon Stevin
van Brugghe.


Totifeyen,
By Chriftoffel Plantijn.
M. D. LXXXV.

## DIME

## THE ART OF TENTHS

## or

Decimal Arithmetic,
Teaching how to perform all computations whatsoever by whole numbers without fractions, by the four principles of common arithmetic, namely: addition, subtraction, multiplication, and division.

Invented by the excellent mathematician,

## SIMON STEVIN.

Published in English with some additions
by
Robert Norton, Gentleman.
Imprinted at London by S.S. for Hugh
Astley, and are to be sold at his
shop at St. Magnus' Corner. 1608.1)

[^31]
## DEN STERREKYCKERS,

L A N DTMETERS,
Tapijtmeters, ${ }^{\text {Wijnameters, Lichaemme- }}$ tcrs int ghemeene, Muntmeefters, ende allen Cooplieden, wenfcht Simon Stevin Gheluck.

Emandt anfende de cleenheyt defes boucx, ende die vergbelijckende met de Grootheyt van uheden mīne E. Heeren ande welcke bet toegheeyghent vvort, fal bygbevalle vyt Jodanighe onevenbeydt ons Ppornemen ongefchict achten; Maer foo by de Everedenheydr premer infiet, velcke is ghelijck defes Pampiers Weynicheyt, tot dier MMenfchelicker Cranckbeyt, alfoo defes groote Nutbxeribeden, tot dier hooghe Verffanden, Jal bem berinden de uyterfte Palen met mal Tomina, carderen vergbelecken te bebben, vvelckenaer alle Everedenheyts verkeringe dat nict en lijden: $\mathcal{D e}$ derde dan tot de vierde. Maer vvat fal dit Doorgheffelde doch finn? eenen voonderlicken diep finnigben Vondt? $\mathrm{A}_{2}$ Neen

## THE PREFACE OF SIMON STEVIN.

To Astronomers, Land-meters, Measurers of Tapestry, Gaugers,
Stereometers in general, Money-Masters, and to all Merchants, SIMON STEVIN wishes health.

Many, seeing the smallness of this book and considering your wortbiness, to whon it is dedicated, may perchance esteem this our conceit absurd. But if the proportion be considered, the small quantity bereof compared to buman imbecility, and the great utility unto high and ingenious intendments, it will be found to bave made comparison of the extreme terms, which permit not any conversion of proportion. But what of that? Is this an admirable invention?

4
Neen poorvvaer, maer cenen harzdel foo gantch flecht, date nau Vondts name vverdich en is, vvant ghelick een grof'Menfche vvel bygbevalle eenen grooten Scbadt vindt, fonder eenighe conffe daer ingbelegen te fijne, alfo iff hier oock toogbeghaen: Daerom foo my yemandt om t'verlaren baerder prouf ijtelickbeydt, vvilde achten voor eenen Eygbenlover mïns verfandts, by betboont forder twviffel, ofte in bem noch oirdeel noch vuetenjchap des onder (cheydts te fijne, pan bet lechte buyten bet befonder, offe dat by een benïder is der Gbemeene velbaert: Maer $t$ fy daermede boet vvil, om diens onnutte lafer, en moet defes nut niet ghelaten fijn. Gbelijck dan een Schipper by ghevalle ghevonden hebberde een onbekent Eylandt, dë Coninck foutelick verclaert alle de coftelickbede' van dien, als in bem te bebbe Schcone Vruchtē, Goudtbergen, Luftige Landauvven, etc. Fonder dat fulcx tot fins felfs verbeffing frect; Alfo oulle vvy hier trymoedich Jpreken Dan defes Vonds Groote Nutbaerbeydt

No certainly: for it is so mean as that it scant deserves the name of an invention, for as the countryman by cbance sometime finds a great treasure, without any use of skill or cunning, so bath it bappened berein. Therefore, if any will think that I vaunt myself of my knowledge, because of the explication of these utilities, out of doubt be shows bimself to bave neither judgment, understanding, nor knowledge, to discern simple things from ingenious inventions, but be (rather) seems envious of the common benefit; yet bowsoever, it were not fit to omit the benefit bereof for the inconvenience of such calumny. But as the mariner, baving by bap found a certain unknown island, spares not to declare to bis Prince the riches and profits thereof, as the fair fruits, precious minerals, pleasant champions ${ }^{2}$ ), etc., and that without imputation of self-glorification, even so
${ }^{2}$ ) Champion, comp. French "champagne", field, landscape. Comp.e.g. Deut. XI, 30, author. transl. of 16 II : "the Canaanites which dwell in the campions".
beydt, Groote Jeg ick, ja Grooter dan ick dincke yemandt van ulieden vervvachts, $\int 0 n-$ der dat bet keren can tot mün Eygenroem.
eAngbefien dan dat de Stoffe defer voor- Nataria ghefeidderThiesde (diens naems Oir ake de polgende eerfe Bepalinghe verclaren fal) Drfitit. is Ghetal, vviens Daets nutbaerbeydt yeder esfai. van ulieden door de ervaring genouch bekēt is, foen valt daer af bier meet vele ghefeyt te vvordeे, wvant ift een Scerrekijcker, by vveet 』Apte dat de Werelt door des Sterreconlts Re- - fumperen keningë, als Maeckende Oirfaecke der configbe verre Seylaigen (vvant de verbeffing des Evenaers ende Alpunts, lert fy den Expmat. Stierman duer t middel vande Tafel des dagelerfchen af vuijckfels der Sonnen; Men befchrifft door baer der plaetfen vvare langden ende breeden, oock der felver veranderinge op yder Streecke, $せ(C$ c. )een prieel der veellufitcheydt gevvorden is, overvhedich tot veléplaetfen, van dies bet Eertrijck daer nochtans int der Natueren niet Poortbrenzben en can. Maer vvant felden befoeten fon-

$$
\mathrm{A}_{3} \quad \mathrm{der}
$$

shall we speak freely of the great use of this invention; 1 call it great, being greater than any of you expect to come from me. Seeing then that the matter of this Dime (the cause of the name whereof shall be declared by the first definition following) is number, the use and effects of which yourselves shall sufficiently witness by your continual experiences, therefore it were not necessary to use many words thereof, for the astrologer knows that the world is become by computation astronomical (seeing it teaches the pilot the elevation of the equator and of the pole, by means of the declination of the sun, to describe the true longitudes, latitudes, situations and distances of places, etc.) a paradise, abounding in some places with such things as the earth cannot bring

forth in other. But as the sweet is never without the sour, so the travail in such computations cannot be unto bim bidden, namely in the busy multiplications and divisions which proceed of the 60 th progression of degrees, minutes, seconds, thirds, etc.: And the surveyor or land-meter knows what great benefit the world receives from bis science, by wbich many dissensions and difficulties are avoided which otherwise would arise by reason of the unknown capacity of land; besides, be is not ignorant (especially whose business and employment is great) of the troublesome multiplications of rods, feet, and oftentimes of inches, the one by the other, which not only molests, but also often (though be be very well experienced) causes error, tending to the damage of both parties, as also to the discredit of landmeter or surveyor, and so for the money-masters, merchants, and

> Ende alfo met dë Muntmeefters, Cooplieden ${ }^{7}$ ende yegelick int fijne: maer fo vele die vveerdiger, ende de vvegé om daer toe te commen moeyelicker finn, foo Deel te meerder is defe Groote Ontdecte THiende, vvelcke alle dee fovaricheden gantfch te nederleght. Maer hoe? Sy leert (op dat ick met eĕ vvoort vele fegghe) alle rekeninghen die onder de Menfchen noodich vallen, afvecrdigëf $/$ onder gebroken getalen:Inder vougen dat der Telconftens vier eerfteflechte begbinfelen, diemen noemt Vergaderen, Aftrecken, Menichvuldighen, ende Dcelcn, met beele getalen tot defen genouch doen: Dergelijcke lichticheyt oock veroirfaeckende, dengenen die de legpenningĕ gebruycken, fo bier naer opentlick. blïcken Jal: Nu of bier duerghevvonnen fal vvorden dë cofelicken oncoopelicken Tüt; Of bier dwer behouden fal vvordè tgene anderfins dickmael verloren foude gaen; of bier duer geiveert fal vvorden Moeyte, Dvvalinghe, Tvijt, Schade, ende ander Ongevallen difegemeenelick volgende, dat felle ick geer$\mathrm{A}_{4} n e$
each one in bis business. Therefore bow much they are more worthy, and the means to attain them the more laborious, so much the greater and better is this Dime, taking away those difficulties. But bow? It teaches (to speak in a word) the easy performance of all reckonings, computations, $\mathcal{E}$ accounts, without broken numbers, which can bappen in man's business, in such sort as that the four principles of aritbmetic, namely addition, subtraction, mulipplication, $\varepsilon$ division, by whole numbers may satisfy these effects, affording the like facility unto those that use counters. Now if by those means we gain the time which is precious, if bereby that be saved which otherwise should be lost, if so the pains, controversy, error, damage, and other inconveniences commonly happening therein be
ne tot ulieden oirdecle. Angaiende my yemandt fegghen mochte, dat vele faecken int eerfle anfien dick mael befonder gelaten,maer alfmenfe int vverch vil fellen, foen canmen duer mede niet wytrechten, ende gbelijct met de Vonden der Roerfouckers dickuvils toegaet, vvelcke int clene goedt fijn, maer int groote en dwegen $\int y$ niet.Dien verantvvoorden vyy aldulck tvviff el bier geenfinste vvefen, overmidts bet int groote, dat is inde Jaecke felper, mu dagelijcx metter Daet ghenowch verfocht vvort, te veeten door verfcheyden erparĕ Landtmeters albier in Hollandt, die vvy dat verclaert bebben, welcke (verlatende tghenefy tot verlichtinghe van dien daer too gevonden badden, elck naer $f j \mathrm{jin}$ maniere) dit gebruycken tot hun groote vernouginge, ende met fulcken vrusibten, als de Nature vuijf duer wyt noot faeckelicken te moeten volyben: Tfelve al yegbelicken van ulieden mïne E. HEEREN vuedervarĕ, die doen fullen als fylieden. Vaert daerentuf. fchen vele, ende daer naer niet qualick.

CORT
eased, or taken away, then I leave it willingly unto your judgment to be censured; and for that, that some may say that certain inventions at the first seem good, which when they come to be practised effect nothing of worth, as it often happens to the searchers of strong moving ${ }^{3}$ ), which seem good in small proofs and models, when in great, or coming to the effect, they are not worth a button: whereto we answer that berein is no such doubt, for experience daily shows the same, namely by the practice of divers expert land-meters of Holland 4), unto whom we bave shown it, who (laying aside that which each of them bad, according to his own manner, invented to lessen their pains in their computations) do use the same to their great contentment, and by such fruit as the nature of it witnesses the due effect necessarily follows. The like sball also bappen to each of yourselves using the same as they do. Meanwhile live in all felicity.

[^32]
## CORTBEGRYP.

Thiende heeft tace deelen, Bepalinghen ende Werckinghe. Int ecrfte deet fal door d'certte Bepalinghe fy, door de tweede wat Beghin, door de derde wat Eerffe, T Weeede, \&cc. door de vierdewat Thiendetal berceckent.

De Werckinghe fal door vier Voorftellen leeren der Thiendetalens Vergadering, Aftrecking, Menichvuldiging, ende Deeling; wiens ooghenfchijnelicke oirden defe Tafcl anwijft aldus :

DETHIENDE
$\left\{\begin{array}{l}\text { Bepaling, als } \begin{array}{l}\text { Tbiende. } \\ \text { wat datfy. } \\ \begin{array}{l}\text { Beghin. } \\ \text { Eerfe Treede, } \\ \text { Uc. } \\ \text { Thiendetal. }\end{array} \\ \begin{array}{l}\text { Wercking, } \\ \text { die is der } \\ \text { Thiendetalës }\end{array} \\ \begin{array}{l}\text { Vergadering. } \\ \text { Aftrecking. } \\ \text { Menichvaldiging. } \\ \text { Deeling. }\end{array}\end{array}\end{array}\right.$

Byt'voorgaende fal noch gevoucht worden cen Anhangsel, wijfende des Thiendens ghebruyck door fommighe exempelen der Saecken.

## THE ARGUMENT.

THE DIME has two parts, that is Definitions \& Operations. By the first definition is declared what Dime is, by the second, third, and fourth what commencement, prime, second, etc. and dime numbers are. The operation is declared by four propositions: the addition, subtraction, multiplication, and division of dime numbers. The order whereof may be successively represented by this Table.
$\begin{cases}\begin{array}{l}\text { Definitions, } \\ \text { as what is }\end{array} & \left\{\begin{array}{l}\text { Dime, } \\ \text { Commencement, } \\ \text { Prime, Second, etc. } \\ \text { Dime number. }\end{array}\right. \\ \begin{array}{l}\text { Operations or } \\ \text { Practice of the }\end{array} & \left\{\begin{array}{l}\text { Addition, } \\ \text { Subtraction, } \\ \text { Multiplication, } \\ \text { Division. }\end{array}\right.\end{cases}$

And to the end the premises may the better be explained, there shall be hereunto an APPENDIX adjoined, declaring the use of the Dime in many things by certain examples, and also definitions and operations, to teach such as do not already know the use and practice of numeration, and the four principles of common arithmetic in whole numbers, namely addition, subtraction, multipli-

HET EERSTE DEEL
der Thiende vande
Befalinghen.
I. BEPALINGHE.

THIENDE is ec̈ $\int$ pecie derTelconften, door de ovelcke men alle rekeninghen onder den $\mathcal{M}$ enfché noodich vallende, afveerdicht door beele gbetalen, fonder ghebrokenen, ghevonden uyt de thiende poortganck, befatende inde cïfferletteren daer eenich ghetal door befchreven voort.

Verciaringhe.

HE I fy een ghetal van Duyft een hondert ende elf, befchreven met cijferletreren aldus 111 ; inde welcke blijet, dat elcke 1 , het thiende deel is van fijn naeft voorgaende. Alfoo oock in 2378 elcke een vande 8 , is her thiende decl van elcke een der 7 , ende alfoo in allen anderen: Maer want het voughelick is, dat de faecken daermen af fpreecken wil, namen hebben, ende dar defe maniere tan rekeninghe ghevonden is uytd’anmerckinghe van alfulcken thienden voortganck, ja welentlick in thiende vourtganck beftaet, als int volghende cherlick blijcken fal, foo noemen wy den
cation, \& division, together with the Golden Rule, sufficient to instruct the most ignorant in the usual practice of this art of Dime or decimal arithmetic.

## THE FIRST PART.

## Of the Definitions of the Dimes.

## THE FIRST DEFINITION

Dime is a kind of arithmetic, invented by the tenth progression, consisting in characters of ciphers, whereby a certain number is described and by which also all accounts which bappen in buman affairs are dispatched by whole numbers, without fractions or broken numbers.

## Explication

Let the certain number be one thousand one hundred and eleven, described by the characters of ciphers thus 1111, in which it appears that each 1 is the 10th part of his precedent character 1; likewise in 2378 each unity of 8 is the tenth of each unity of 7 , and so of all the others. But because it is convenient that the things whereof we would speak have names, and that this manner of computation
den handel van diencyghentlick ende bequamelick, de Thiende. Doordefelve worden alle rekeninghen ons on moerende volbrochr mer befondere lichticheyt door herleghetalen fonder gebrokenen als bier naer opentick bewefen fal worden.

## II. BEPALINGHE.

Alle voorgeftelde beel ghetal,nocmenvyy BEGHIN, fign teccken is foodanich ©.

Verciaringhe.
As byghelijckenis eenich heel ghegheven A ghetal van drichondert vierentleftich, wy noement driehondert vierent feftich BEGHINSELEN, die aldus befchrijvende $36_{4}$ (1). Ende alfoo met allen anderen dier ghelijcken.

## III. BEPALINGHE.

Ende elck tbienidedeel vanáe eenheyt des BEGHINS, noeznenvvy EERSTE, finn teecken is (U) Ende elckthiendedeel vande eenbeyt der Eerfe, noemévuy T W E ED E, finnteecken is E; Ende foo voort elck thiendedeel der cenbeyt van fijn voorgaende, altüt in d'oirdin cen meer.
is found by the consideration of such tenth or dime progression, that is that it consists therein entirely, as shall hereafter appear, we call this treatise fitly by the name of Dime, whereby all accounts happening in the affairs of man may be wrought and effected without fractions or broken numbers, as hereafter appears.

## THE SECOND DEFINITION

Every number propounded is called COMMENCEMENT, whose sign is thus (1).
Explication
By example, a certain number is propounded of three hundred sixty-four: we call them the 364 commencements, described thus 364 (1), and so of all other like.

## THE THIRD DEFINITION

And each tenth part of the unity of the COMMENCEMENT we call the PRIME, whose sign is thus (1), and each tenth part of the unity of the prime we call the SECOND, whose sign is (2), and so of the other: each tenth part of the unity of the precedent sign, always in order one further.

## S. Stevins

## Verciaringhe.

A $\mathrm{Ls}_{3}{ }^{(1)} 7$ (2) 5 (3) 9 (4), datis te feggen 3 Eerfien, 7 Tweeden, $s$ Derden, 9 Vierden, ende foo mochemen oneyndelick voortgaen. Maer om van hare weerde te fegghen, foo is kennelick dat naer luyt defer Bepalinge, de voornoemde ghetalen doen $\frac{3}{10}, \frac{7}{100}, \frac{5}{1050}, \frac{9}{10000}$, thamen $\frac{3759}{80000}$. Alfoo oock $8(0) 9$ (1) 3 (2) 7 (3), hjin weert $8 \frac{9}{10}, \frac{9}{100}$, $\frac{7}{1000}$, dat is t'famen $8 \frac{937}{1000}$ ende foo met allen anderen dier ghelijcke. Her is oock te anmercken, dat wy inde Thiende nerghens gebroken getalen en ghebruycken: Oock dat her ghetal vande menichvuldicheyt der Teeckenen, uyeghenomen (o, nummermeer boven de 9 en comt. By exempel, wy en fchrijven niet 7 (1) $: 2$ (2) maer in diens plaetfe 8(I) 2(2), want fy foo veel weert fijn.

## IIII. BEPALINGHE.

De ghetalen der voorgaender tvveeder ende derder bepalinghe, noemen vyy int gemeen Thiendetalen.

## Explication

As 3 (1) 7 (2) 5 (3) 9 (4), that is to say: 3 primes, 7 seconds, 5 thirds, 9 fourtbs, and so proceeding infinitely, but to speak of their value, you may note that according to this definition the said numbers are $\frac{3}{10}, \frac{7}{100}, \frac{5}{1000}, \frac{9}{10000}$, together $\frac{3759}{10000}$, and likewise 8 (0) 9 (1) 3 (2) 7 (3) are worth $8, \frac{9}{10}, \frac{3}{100}, \frac{7}{1000}$, together $8 \frac{937}{1000}$, and so of other like. Also you may understand that in this dime we use no fractions, and that the multitude of signs, except (0), never exceed 9 , as for example not 7 (1) 12 (2), but in their place 8 (1) 2 (2), for they value as much.

## THE FOURTH DEFINITION

The numbers of the second and third definitions beforegoing are generally called DIME NUMBERS.

The End of the Definitions

HET ANDER DEEL
der Thiende vande WERCKINCHE.
I. VOORSTEL VANDE Vergaderinghe.
WefendeghegevenThiendetalen te vergaderen: bare Somme te vinden.
Thegheven. Het fijn dric oirdens van Thiendetalen, welcker eerte 27 (0) 8 (1) 4 (3) 7 , ${ }^{3}$, de tweede, 37,@ 6 (1) 7 (2) s (3), de derde, 87s(0)7(i) 8 (2)2(3), Tbeghemide. Wy mocten hact Somme vinden. Wercxing. Men fal deghegheven ghe-
talen in oirden ftellen als (1) (3)
278487 hier neven, die vergaderende naer de ghemeene manie re der vergaderinghe van heelegetalen aldus:

| 8 | 7 | 5 | 7 | 8 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | 4 | 1 | 3 | 0 | 4 | Comt in Somme (door het I. probleme onfer Franfcher Arith.) 94 I 304 dat lijn (twelck de teeckenen boven de ghetalen ftaende, anwijfer) 941 (3) 3 ( 5 ) (3) 4 (3). Ick fegghe de felve re wefen de ware beghcerde Somme. Be wy s. De ghegeven 27 (0) 8 (1) 4 (2) 7(3), doen (doort de $3{ }^{\circ}$. henaling) $27 \frac{8}{10}, \frac{4}{100}, \frac{7}{1000}$, maecké rfamen $27 \frac{847}{1000}$ Ende door de felve reden fullen de 37 (0) 6 (1) 7 (2) 5 (3) weerdich fijn $37 \frac{675}{1008}$; Ende de 875 (1) 7 (1)

## THE SECOND PART OF THE DIME.

Of the Operation or Practice.

## THE FIRST PROPOSITION: OF ADDITION

Dime numbers being given, how to add them to find their sum.
THE EXPLICATION PROPOUNDED: There are 3 orders of dime numbers given, of which the first 27 (0), 8 (1), 4 (2), 7 (3), the second 37 (0), 6 (1), 7 (2), 5 (3), the third 875 (0), 7 (1), 8 (2), 2 (3).
THE EXPLICATION REQUIRED: We must find their total sum.

## CONSTRUCTION

The numbers given must be placed in order as here adjoining, adding them in the vulgar manner of adding of whole numbers in this manner. The sum (by the first problem of our French Arithmetic ${ }^{5}$ )) is 941304 , which are (that which the signs above the
 numbers do show) 941 (0) 5 (1) 0 (2) 4 (3). I say they are the sum required. Demonstration: The 27 (0) 8 (1) 4 (2) 7 (3) given make by the 3rd definition before $27, \frac{8}{10}, \frac{4}{100}, \frac{7}{1000}$, together $27 \frac{847}{1000}$ and by the same reason the 37 (0) 6 (1) 7 (2) 5 (3) shall make $37 \frac{875}{1000}$ and the 875 (0) 7 (1) 8 (2) 2 (3) will make $875 \frac{782}{1000}$,

[^33]8 (2) 2 (3) fullen doen $875 \frac{782}{1000}$ welcke drie ghetalen als $27 \frac{847}{1000} 37 \frac{675}{1000} 875 \frac{782}{1000}$, maecken efa:nen (doni het 10 . probleme onier Franfcher Arith.) $941 \frac{304}{10}$. Macr foo veel is oock weerdich de fomme 941 (O) 3 ( i ) 0 ( 4 (3), her is dan de ware fomme, r'welck wy bewijfen mocten. Besi Viv T . Welencie dan ghegheven Thicndetalente vergaderen, wy hebben haer fomme ghevonden foo wy voorghenomen hadden te doen.

## MERCKT.

COO iade ghegheven Thiendetalen cenich der naDituerlicke oirden ghelraecke, nien fal finn piaetfe vollen met dat ghebreeckende. Laet by exempel de gesheven Thiendetalen finn 8 @ 5 ( $) 6$ (2), ende 5 (a) - (2, in Welck laetfe ghebreet het Thiendetal der oirden (I, men fal infijn plactfe fiellen o( i , nemende dan als voor ghegeven Thiendetal 5 © 0 ( I ) 7 (2 die vergaderende als vooren, in defer voighben: $\frac{507}{1363}$
Dit vermaenflil oock dienä tot de drie volgende voorftelle, alivaernié alityt d"cirden der gebrceckerder Thiendetalen vervullen moet, gelijch in dit exempel gedaen is.

## II. VOORSTEL VANDE

Aftreckingee.
Wefende ghegheven thiendetal daermen aftrect, endeThiendeta! af te trecken: De Refe te vinden.
which three numbers make by common addition of vulgar arithmetic $941 \frac{304}{1000}$. But so much is the sum 941 (0) 5 (1) 0 (2) 4 (3); therefore it is the true sum to be demonstrated. Conclusion: Then dime numbers being given to be added, we have found their sum, which is the thing required.

NOTE that if in the number given there want some signs of their natural order, the place of the defectant shall be filled. As, for example, let the numbers given be 8 (0) 5 (1) 6 (2) and 5 (0) 7 (2), in which the latter wanted the sign of (1); in the place thereof shall 0 (1) be put. Take then for that latter number
(0) (1) (2) given 5 (0) 0 (1) 7 (2), adding them in this sort.
$\begin{array}{lll}8 & 5 & 6 \\ 5 & 0 & 7\end{array}$
1363
This advertisement shall also serve in the three following propositions, wherein the order of the defailing figures must be supplied, as was done in the former example.

## THE SECOND PROPOSITION: OF SUBTRACTION

A dime number being given to subtract, another less dime number given: out of the same to find their rest.

Thiendi.

T'Ghegheven. Hetfy Thiendetal dacrmen aftrect 237 (0) 5 (i) 7 (2) 8 (3); ende Thiendetal af te trecken. 59 (0) 7 (1) 4 (3). Tbegheerde. Wymoetéhaer Refte vinden. Wercking. Men fal de ghegheven Thiendetalen in oirden ftellen als hier neven, aftreckende naer de ghe(0) (1) (3) 3 meene maniere der Aftreckinge 237578 van heele ghetalen aldus:
Reft (door het 2. Proble- $\frac{59749}{177829}$ me onfer Franfcher Arith.) 17782 9, dat fijn (twelck de teeckenen boven de ghetalen ftaende anwijfen) 177 (e) 8 (1) 2 (3) 9 (3). Ick fegghe de felve te wefen de begheerde Refte. BEWYS. De ghegheven 237 (0) 5 (1) 7 分8 (3) doen (door de $3^{\text {c. Bepalinge) }} 237 \frac{1}{10} \frac{7}{100} \frac{8}{10} \frac{0}{10}$, maecken tramen $237 \frac{598}{1000}$; Ende door de Celve reden fullen de 59 (0) 7 (1) 4 (2) 9 (3) weerdich fijn $59 \frac{949}{1000}$, welcke gherrocken van $237 \frac{578}{1000}$, reft (door het 11 e. Probleme onfer Franfcher Arith.) $177 \frac{829}{1000}$ : Maer fo veel is oock weerdich de voornoemde refte 177 (0) 8 (1) 2 (2) 9 (3), het is dan de ware Refte, twelck wy bewijlen moeften. Besivyt. Wefende dan ghegheven Thiendetal daermen aftrect, ende Thiendetal af te trecken, wry hebben haer Refteghevonden, als voorghenomen was ghedaen te worden.

11I. VOOR.

EXPLICATION PROPOUNDED: Be the numbers given 237 (0) 5 (1) 7 (2) 8 (3) \& 59 (0) 7 (1) 3 (2) 9 (3). THE EXPLICATiON REQUIRED: To find their rest.

CONSTRUCTION: The numbers given shall be placed in this sort, subtracting according to vulgar manner of subtraction of whole numbers, thus.

$\begin{array}{lllll}5 & 9 & 7 & 3 & 9\end{array}$
$\begin{array}{llllll}1 & 7 & 7 & 8 & 3 & 9\end{array}$

The rest is 177839, which values as the signs over them do denote 177 (0) 8 (1) 3 (2) 9 (3). I affirm the same to be the rest required.
Demonstration: the 237 (0) 5 (1) 7 (2) 8 (3) make (by the third definition of this Dime) $237 \frac{5}{10}, \frac{7}{100}, \frac{8}{1000}$, together $237 \frac{578}{1000}$, and by the same reason the 59 (0) 7 (1) 3 (2) 9 (3) value $59 \frac{739}{1000}$, which subtracted from $237 \frac{578}{1000}$, there rests $177 \frac{839}{1000}$, but so much doth 177 (0) 8 (1) 3 (2) 9 (3) value; that is then the true rest which should be made manifest. CONCLUSION: a dime being given, to subtract it out of another dime number, and to know the rest, which we have found.
III. VOORSTEL VANDE Menichvifeighinghe.
Wefende ghegheven Thiendetal te © Menichruldighen, ende Thiendetal EMenichvulder: baer $V_{y}$ tbreng te vinden.
TGhegheven. Het fy Thiendetal te Mea nichvaldighen 32 (o) ${ }^{(1)} 7$ (3), ende het
 gheerde. Wymoeten haer Vybieng vinden. Wercking.Menfal de gegevé getalé in oirden ftellen als hier nevé. Menichvoldigende naer degemeene maniere van Menichvaldighen met heele ghetalen aldus: Gheeft Vytbreng ( door her $3^{\circ}$. Prob. onfer Fran. Arith.) $29137122: \mathrm{Nu}$
(c) (1)

3257 8946
19542 3028 29313 29137122 (c) (1) ( 3 (4) men fal vergaderen beyde de laette gegeven teeckenen, welcker een is (2, ende her ander oock (2), maeckentfamen © waer uyt men befluyten fal. dat de laetfe cijffer des Vytbrengs is $\oplus$, welcke bekent wefende foo fijn oock (om haer volghende oirden) openbaer alle dander, Inder voughen dat 2913(1)7(1)1(2)2(3)2(4), fijn het begheerde Vytbreng. Bewy s , Het ghegheven Thiendetal re menichvuldighen 32 © $S$ (1) 7 (2), doet (als
blijot

## THE THIRD PROPOSITION: OF MULTIPLICATION

A dime number being given to be multiplied, and a multiplicator given: to find their product.

THE EXPLICATION PROPOUNDED: Be the number to be multiplied 32 (0) 5 (1) 7 (2), and the multiplicator 89 (0) 4 (1) 6 (2).

THE EXPLICATION REQUIRED: To find the product. CONSTRUCTION: The given numbers are to be placed as here is shown, multiplying according to the vulgar manner of multiplication by whole numbers, in this manner, giving the product 29137122. Now to know how much they value, join the two last signs together as the one (2) and the other (2) also, which together make (4), and say that the last sign of the product shall be (4), which being known, all the rest are also known by their continued order. So that the product required is 2913 (0) 7 (1) 1 (2) 2 (3) 2 (4).
blijct door de derde Bepaling) $32 \frac{8}{10} \frac{7}{200}$, maccken tfamen $32 \frac{17}{100}$; Ende door de ielve reden blijet den Menichvulder 89(0) 4(1)6(2), weerdich refijine $89 \frac{46}{100}$, met de felve vermenichvuldicht de voornoemde $32 \frac{57}{100}$, gheeft Vytbreng (door het $12^{\text {e }}$. probleme onler Franfcher Arich.) $2913 \frac{7122}{10000}$; Maer foo veel is oock weerdich den voornoemden Vytbreng 2913(0) (1) 1 E2 (3) 2.(4), het is dan den waren Vyrbreng; Twelck wy bewijfen moeften. Maer om nu te bethoonen de reden waerom (2) vermenichyuldicht door (3, gheeft Vyrbreng (welck de fomme der ghetalen is) (4. Waerom (4) mer (5), geeft Vyrbreng (9), ende waerom (omet (3) gheeft (3;, etc. foo laet ons nemin $\frac{2}{10}$ ende $\frac{3}{100}$ (welcke door de derde Bepalinghe fijn 2 (1) 3 ( 2 ) hare Vytbreng is $\frac{6}{1005}$, welcke dour de voornoemde derde Bepalinge fijn 6 (3). Vermenichvuldighende dan (1) met (2;) den Vytbreng fijn(3). Bes lyy . Wefende dan gegeven Thiendetal te Menichvuldighen, ende Thiendetal Menichvulder, wy hebben haren Vyrbreng ghevonden; als voorghenomen was gedaen te worden.

MERCKT.

SOo het laetfe teecken des Thiendetals te Menichvuldigä ende Menichpulders ongelyick waren,als by exempel deen $3(4)$ 7 (5) 8 (3), dinder 5 (1) $4(2)$; Men fal doen a's vooren, ende de ghefteltheyt der' letteren vande Werckinghe fal foodanich Sign:
(4)(5)

378 54 (2) 1512 1890 12 (1) (2) (8)

B IIII.

DEMONSTRATION: The number given to be multiplied, 32 (0) 5 (1) 7 (2) (as appears by the third definition of this Dime), $32, \frac{5}{10}, \frac{7}{100}$, together $32 \frac{57}{100}$; and by the same reason the multiplicator 89 (0) 4 (1) 6 (2) value $89 \frac{46}{100}$ by the same, the said $32 \frac{57}{100}$ multiplied gives the product $2913 \frac{7122}{10000}$. But it also values 2913 (0) 7 (1) 1 (2) 2 (3) 2 (4).
It is then the true product, which we were to demonstrate. But to show why (2) multiplied by (2) gives the product (4), which is the sum of their numbers, also why (4) by (5) produces (9), and why (0) by (3) produces (3), etc., let us take $\frac{2}{10}$ and $\frac{3}{100}$, which (by the third definition of this Dime) are 2 (1) 3 (2), their product is $\frac{6}{1000}$, which value by the said third definition 6 (3); multiplying then (1) by (2), the product is (3), namely a sign compounded of the sum of the numbers of the signs given.

## CONCLUSION

A dime number to multiply and to be multiplied being given, we have found the product, as we ought.

## NOTE

If the latter sign of the number to be multiplied be unequal to the latter sign of the multiplicator, as, for example, the one 3 (4) 7 (5) 8 (6), the other 5 (1) 4 (2), they shall be bandled as aforesaid, and the disposition thereof shall be thus.
(4) (5) (6)

8
4
(2)


## 111I. VOORSTEL VANDE

 Derilnghe.
## Wefende ghereven Thiendetal te Deelen, ende Thiendetal Deeler: Haren Soomenich-

 mael te vinden.TGhegheven. Het fy Thiendetal te declen 3 (0) 4 (1) 4 (2) 3 (3) 5 (1) 2 (3), ende decter
 Soomenichmael vinden. Wefcking. Men Galde gegevé Thiendetalen deelen (achterlatende haer zeeckenen) nacr de ghemeene maniere van $76 x+$ (0) (2) (3) (3) deelen met heele $)^{*} 4388$ ( 3587 getalen aldus: $\quad \$ \$ 688$ GeeftSomenichmael 9.95 (door bet vierde Probleme onfer Franfcher Arith.) 3587 : Nuom te weten wat dit fijn, men fal af trecken het laeffeteecken des Deelders, welck is (2), van thaetfe teecken des Thiendetals te deelen (5), reft (3), voor het teecken der hatter cijffaletter des Soomenichmaels, welcke bekent welende, foo fijnoock (om haer volghende cirden) openbacr alle dander, inder voughon dat ; (2) 5 (i) 8 (3) 7 (3) fijn den begheerden Soomenichmad. Bi: $W$ y $s$, Herghegeven Thienderal 3 () 4 (1) $4(3) 3(3) S(9)$ 2 ( $)$ doet (als blijat dour de ${ }^{3}$ e Bepaling) $3 \frac{4}{70} \frac{4}{100}$ $\frac{3}{1000} \frac{5}{10000} \frac{2}{100000}$ maccken tamen $3 \frac{4+31.2}{10000} ;$

## THE FOURTH PROPOSITION: OF DIVISION

A dime number for the dividend and divisor being given: to find the quotient. EXPLICATION PROPOSED: Let the number for the dividend be 3(0)4(1)4(2)3(3)5(4)2(5) and the divisor 9(1)6(2). EXPLICATION REQUIRED: To find their quotient.
CONSTRUCTION: The numbers given divided (omitting the signs) according to the vulgar manner of dividing of whole numbers, gives the quotient 3587 ; now to know what they value, the latter sign of the divisor (2) must be subtracted from the latter sign of the dividend, which is (5), rests (3) for the latter sign of the latter character of the quotient, which being so known, all the rest are also manifest by their continued order, thus 3 (0) 5 (1) 8 (2) 7 (3) are the quotient required.
DEMONSTRATION: The number dividend given 3 (0) 4 (1) 4 (2) 3 (3) 5 (4) 2 (5) makes (by the third definition of this Dime) $3, \frac{4}{10}, \frac{4}{100}, \frac{3}{1000}, \frac{5}{10000}, \frac{2}{100000}$, together

## Thiende.

Ende door de felve reden blijct den Deelder $9\left({ }^{(1)}\right.$ 6 (2) weerdich te fijne $\frac{96}{100}$, door twelckegedecle de voornoemde $3 \frac{4+312}{100000}$, gheeft Soomenichmael (door het 13 . Probleme onfer Franfcher Arith.) $\frac{987}{1000}$. Maer fo veel is oock weerdich den voornomden Soomenichmael; (1) 5 ( 1 ) 8 (2) 7 ( 3 ), het is dan den waren Soomenichmael, Twelck wy bewijifen moeften. Besclyyt. Wefende dangegheven Thiendetal te Deelen, ende Thiendetal Deeler, wy hebben haren Soomenichmael gevonden, als wy voorghenomen hadden te doen.

## I. MERCKT.

COo de teeckenen des Deelders hoogher Waren dan Dies Thiendetals se Declen, men fal by bet Thieudetal tedcelen Soo veel ○ feilen, alfmen ivil, ofte alft roodich valt. By exempel 7 (3) fïn te deelen door 4 (5), ick felle neven de 7 etrelitke o aldus 7000 , dic deelende als voorenge- $5 z$ dacia is in defir vougä:Geeft $\dot{\eta} \phi \phi \phi(1750$ ) Soomenichmael I75○(). 4 * * *
Het ghebuiers oock alteinet dat den Soonseniclomael met gheen beele gloctalen en can uytghefproken worden, als 4(1), gheieelt $\times \times \times(1$ (9) (1) (2) door 3 (3) in defer ma- $4 \phi \phi \phi 00 \circ(1 ; 33$ nieren: Alwaer blija $x$; 55 datser oneyndelicke drien uyt commen fouden, fonder eenichmael even upt te glieraecken: In fulken ghevalle macbmen foo nuer commen als de faecke dat voordert, ende bet overfobot verloren lation. Wel is waer
$3 \frac{44352}{100000}$, and by the same reason the divisor 9 (1) 6 (2) value $\frac{96}{100}$, by which $3 \frac{44352}{100000}$ being divided, gives the quotient $3 \frac{587}{1000}$; but the said quotient values 3.(0) 5 (1) 8 (2) 7 (3), therefore it is the true quotient to be demonstrated.

CONCLUSION: A dime number being given for the dividend and divisor, we have found the quotient required.

NOTE: If the divisor's signs be higher than the signs of the dividend, there may be as many such ciphers 0 joined to the $\$ \not \perp$ dividend as you will, or many as shall be necessary: \# $\emptyset \emptyset$ (1750 (0) as for example, 7(3) are to be divided by 4(5), I 4 委A 4 place after the 7 certain 0 , thus 7000 , dividing them as afore said, and in this sort it gives for the quotient 1750 (0).

It happens also sometimes that the quotient cannot be expressed by whole numbers, as 4 (1) divided by 3 (2) in this sort, whereby appears that there $\quad 4 \emptyset \emptyset \emptyset 000$ 1 (0) (1) (2) will infinitely come 3 's, and in such \$ 8 \& 8
dat 13(0)3(1) $3 \frac{1}{3}$ (2), ofte 13(0)3(1)3(2) $3 \frac{1}{3}$ (3) etc. Jouden bet voicommen begheerde fign, maer ons voornemen is in defe Thiende te wercken met louter beele ghetalen, want wy opficht bebben naer tighene in fMenfchen bandel plaets houdt, alwaermois het duyfenfe deel van een mïte, van een Aes, van een Graen ende diergheligcke, verloren laet; So tfelfde oock byden voornaemffen Meters ende Telders dickmael onderhouden wort, in vele rekeninghen van grooten belanghe: Als Ptolemeus ende Ian van Kuenincxbergbe, en bebben bare Boogpees Tafelen met de uy:erffe volmaetheyt niet beforveven, boe wel het door Veelnamighe Ghetalen doenlick was, Reden dat defe onvolmaeciheyt (anfiende dier dinghen Eynde) nutter is din foodanighe volmaetlbeydt.

## II. MERCT.

D Vytrreckinghen aller Jpecien der Wortelen mueghen bier in oock ghefolien. By exempel om te vinden den viercanten Wortcl van 5 ( 2 2 (3) $9(4)$ (dienende tot bet maecken der Boogpeez Tafelen nacr Ptolomets maniere) mens Sal wercken naer de ghemecneghebruyck aldus: Ende den Wortel fal $8 x 9$ Sün 2 (1) 3 (2), want den belft van het laetfe teecken des gloghevens * is altitt het laetfe teecken des wortels: Daerom foe het laetfle ghegheven seicken oneffen gleetal ware,
a case you may come so near as the thing requires, omitting the remainder. It is true, that 13 (0) 3 (1) $3 \frac{1}{3}$ (2), or 13 (0) 3 (1) 3 (2) $3 \frac{1}{3}$ (3) ett. shall be the perfect quotient required. But our invention in this Dime is to work all by whole numbers. For seeing that in any affairs men reckon not of the thousandth part of a mite, es, grain, etc., as the like is also used of the principal geometricians and astronomers in computations of great consequence, as Ptolemy and Jobannes Montaregio ${ }^{6}$ ), bave not described their tables of arcs, chords or sines in extreme perfection (as possibly they might bave done by multinomial numbers), because that imperfection (considering the scope and end of those tables) is more convenient than such perfection.
NOTE 2. The extraction of all kinds of roots may also be made by these dime numbers; as, for example, to extract the square root of 5 (2) 2 (3) 9 (4), which is performed in the vulgar manner of extraction in this sort, and the root sball be 2 (1) 3 (2), for the moiety or balf of the latter sign of the numbers given is always the latter sign of the root; wherefore, if the latter sign given were of a number impair, the sign of the next following shall be added, and then it shall be a number


A

[^34]men falder noch een naeftvolghende teecken toedoen, ende wercken dan als boven.

In厅ghelijcx oock int Vyttrecken des Teerlincxwortel, daer fal bet laetfe teecken des Wortels, altÿt bet derdendeel fyn van hat laetfe ghegheventeecken, ende alfoo voort in allen anderen fpecien der Wortelen.

## Eynde der Thiende

B3 AEN
pair; and then extract the root as before. Likewise in the extraction of the cubic root, the third part of the latter sign given sball be always the sign of the root; and so of all other kinds of roots.

THE END OF THE DIME

## AENHANGSEL.

## VOORREDEN.

Ademael vuy bier vooren de Thiende befchreven bebben foo verre ter Saecken noodich cchijnt, fullen nu commen tot de ghebruyck Dan dien, bethoonende door 6 Leden, boe alle rekeningben ter JMenffbelicker nootlickbeyt ontmoetende, door baer licbtelick ende jlichtelick connen afgherverdicht vvorden met beele gbetalen, beghinnende eerft (gelijck (y oockeerft int vverckgeftelt is) ande rekeninghen der Landtmetcrie als nollght.

I. LIDT VANDE REKENINghen der Landtmeterie.

Ein falde roede anderfins fegghen te we-
 de in thien even deelen, welcker yder doen fal een Eerfe, ofte 1. © Daer naer falmen elcke Eer-

## THE APPENDIX

## THE PREFACE

Seeing that we bave already described the Dime, we will now come to the use thereof, showing by 6 articles bow all computations which can bappen in any man's business may be easily performed thereby; beginning first to show how they are to be put in practice in the casting up of the content or quantity of land, measured as follows.

THE FIRST ARTICLE: OF THE COMPUTATIONS OF LAND-METING.
Call the perch or rod 7 ) also commencement, which is 1 (0), dividing that into

[^35]Der Thiende.
fte wederom deelen in thien even deelen, welcker yder fijn, fal 1 ( 2 ; ende foomen dic deelinghen cleender begheert, foo falmen elcke $i$ (2), noch ecrimael deelen in thien even declen, die elck I (3) doen fullen, ende foo voort by aldien het noodich viele: Hoc wel foo veel het Landmeten belangt, dedeelen in (2 fijn cleen ghenouch: maer tut de faecken die nauwer mate begheeren, als. Lootdaecken, Lichamen,etc. daet machmen de (3) ghebruycken.

Angaende dat de meeftendeel der Landtmeters gheen roede en bcfighen, maereen keten van drie, vier, ofte vijfroeden lanck, teeckenende op den rock van het Rechtcruys, eenighe vijf ofte fes Voeten, met haren Duymen, fillcx mueghen fy hier oock doen, alleenelick voor die vijf ofre fes Voeren met haren Duymen, Itellende vijf ofte fes Eerften met haren Tweeden.

Ditaldus fijnde men fal int meten ghebruyeken defe deelen, fonder opficht te hebben naer Voeten ofte Duymen dic elcke Roede naer Landt $/$ ghebruyck inhoudt, endet'ghene naer diemate hal inoeten Vergadert, Afghetrocken, Ghemenichvuldichr, ofre Ghedeelt worden, dat falmen doen mer de leeringhe der voorgaender vier Voortellen.

By exempel, daer fijn te vergaderen vicr Drichoucken, ofte fticken Landts, welcker eerte 345 (0) 7 (1)2 (2), het tweede 872 (0) (1) 3 (2), her derde 615 (04(1)8(3), het vierde 956 (0)

$$
\mathrm{B}_{4} \quad 8(1)
$$

10 equal parts, whereof each one shall be 1 (1); then divide each prime again into 10 equal parts, each of which shall be 1 (2); and again each of them into 10 equal parts, and each of them shall be 1 (3), proceeding further so, if need be. But in land-meting, divisions of seconds will be small enough. Yet for such things as require more exactness, as roofs of lead, bodies, etc., there may be thirds used, and for as much as the greater number of land-meters use not the pole, but a chain line of three, four or five perch long, marking upon the yard of their cross staff 8 ) certain feet 5 or 6 with fingers, palms, etc., the like may be done here; for in the place of their five or six feet with their fingers, they may put 5 or 6 primes with their seconds.
This being so prepared, these shall be used in measuring, without regarding the feet and fingers of the pole, according to the custom of the place; and that which must be added, subtracted, multiplied or divided according to this measure shall be performed according to the doctrine of the precedent examples.
As, for example, we are to add 4 triangles or surfaces of land, whereof the first 345 (0) 7 (1) 2 (2) the second 872 (0) 5 (1) 3 (2), the third 615 (0) 4 (1) 8 (2), the fourth 956 (0) 8 (1) 6 (2).

|  |  |  | $(0)$ | 1 | $(2)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 4 | 5 | 7 | 2 |  |
| 8 | 7 | 2 | 5 | 3 |  |
| 6 | 1 | 5 | 4 | 8 |  |
|  | 9 | 5 | 6 | 8 | 6 |
| 2 | 7 | 9 | 0 | 5 | 9 |

[^36]

These being added according to the manner declared in the first proposition of this Dime in this sort, their sum will be 2790 (0) or perches 5 (1) 9 (2), the said rods or perches divided according to the custom of the place (for every acre contains certain perches), by the number of perches you shall have the acres sought. But if one would know how many feet and fingers are in the 5 (1) 9 (2) (that which the land-meter shall need to do but once, and that at the end of the casting up of the proprietaries, although most men esteem it unnecessary to make any mention of feet and fingers), it will appear upon the pole how many feet and fingers (which are marked, joining the tenth part upon another side of the rod) accord with themselves.

In the second, out of 57 (0) 3 (1) 2 (2) subtracted 32 (0) 5 (1) 7 (2), it may be effected according to the second proposition of this Dime in this manner:

5732
3257
2475

## Der Thiente.

Ten derden, wefende te Vermenichvuldighen van wegen de fijden eens Drichoucx ofte Vierhoucx 8 (0) 7 (1); (2), door 7 (©) 5 (1) 4(3): Men fal doen naer het $3^{e}$ voortelaldus: Gheven uytbreng ofre Plat 65 (0) 8 (D), etc.


Ten Vierden, laet ABCD, een vierfijdich rechthouck fijn, waer af ghefneden moer worden 367 © 6 (I), Ende de fijde A D, doet 26 () 3 (1), De vraghe is hoe verre men van $A$, naer $B$, meten fal, om af te fnijden de voornomde 367 © 6 (
Menfl; 67 (0) 6 (1) declen door de 26 (0) 3 (i), naer het vierde vooritel aldus:
Gheeft Soomenichmael vorr de begecrde langde van $A$, macr
 B, welcke fy A F, 13(3) 9 ( 7 (2), Ofte naerder canmen commen foomen wil (hoe wel het onnoodich fchijnt) door het cerfte Mcrct des viesden voorftels. Van

B s alle

In the third (for multiplication of the sides of certain triangles and quadrangles) multiply 8 (0) 7 (1) 3 (2) by 7 (0) 5 (1) 4 (2), \& this may be performed according to the third proposition of this Dime, in this manner:

| $(0)$ | $(1)$ | $(2)$ |
| :---: | :---: | :---: |
| 8 | 7 | 3 |
| 7 | 5 | 4 |

And gives for the product or superficies 65 (0) 8 (1) etc.

|  |  | 3 | 4 | 9 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 4 | 3 | 6 | 5 |  |
| 6 | 1 | 1 | 1 |  |  |

$\begin{array}{llllll}6 & 5 & 8 & 2 & 4 & 2\end{array}$
(0) (1) (2) (3) (4)

In the fourth let $A, B, C, D$ be a certain quadrangle rectangular, from which we must cut 367 (0) 6 (1), and the side $A D$ makes 26 (0) 3 (1): the question is how much we shall measure from $A$ towards $B$ to cut off (I mean by a line parallel to $A D$ ) the said 367 (0) 6 (1).

Divide 367 (0) 6 (1) by 26 (0) 3 (1) according to the fourth proposition of
 this Dime: so the quotient gives from A towards B 13 (0) 9 (1) 7 (2), which is AF. And if we will, we may come nearer (although it be needless) by the second
alle welcke exempclen de Bewijfen in hare vororftellen ghedaen fijn.

## II. LIDT VANDE REKENINGEN der Tapytmeterie.

Es Tapijtmeters Elle fal hem 1 © verftrecken de felve fal hy (op eenighe fijde daer de Stadmatens deelinghen niet en ftaen) deelen als vooren des Landemeters Roe ghedaen is, te weten in 10 even deelen, welcker yeder $\mathbf{t}$ (i) fy , ende yder 1 (1) wederin 10 even deelen, welcker yder $x$ (3) doe, ende foo voorts. Wat de gebruyck van dien belangr, anghefien d'exempelen in alles overcommen met het ghene int eerfte Lidt vande Landmeterie ghefeyt is, foo fijn defe door die, kennelick ghenouch, inder voughen dat het niet noodich en is daer af alhier meer te roeren.
III. LIDT VANDE Winmeterie.

FEn Ame (welcke r'Andtwerpen 100 potEten doet) fal 1 (o) Gijn, de felve fal op diepte ende langde der wijnroede ghedect worden in 10 evendeelen (wel verftaende even int anfien des wijns, niet der Roeden, wiens deelen der diepte oneven vallen) ende yder van dien fal 1 (1) fijn, inhoudende 10 potten, wederom elcke 1 (1) in thien even declen, welcke yder 1 (2) fal maecken, die
note of the fourth proposition; the demonstrations of all these examples are already made in their propositions.

```
        22
    # $
    2)0(8
    4631
104#B(9 1 1 3 9
30# 60\emptyset
263 3 3 B
    2666
    2 2
```

THE SECOND ARTICLE: OF THE COMPUTATIONS OF THE MEASURES OF TAPESTRY OR CLOTH
The ell of the measurer of tapestry or cloth shall be to him 1 (0), the which he shall divide (upon the side whereon the partitions which are according to the ordinance of the town is not set out) as is done above on the pole of the land-meter, namely into 10 equal parts, whereof each shall be 1 (0), then each 1 (1) into 10 equal parts, of which each shall be 1 (2), etc. And for the practice, seeing that these examples do altogether accord with those of the first article of land-meting, it is thereby sufficiently manifest, so as we need not here make any mention again of them.

## THE THIRD ARTICLE: OF THE COMPUTATIONS SERVING TO GAUGING, AND THE MEASURES OF ALl LIQUOR VESSELS

One ame (which makes 100 pots Antwerp) shall be 1 (0), the same shall be divided in length and deepness into 10 equal parts (namely equal in respect of the wine, not of the rod; of which the parts of the depth shall be unequal), and each part shall be 1 (1) containing 10 pots; then again each 1 (1) into 10 parts equal as afore, and each will make 1 (2) worth 1 pot; then each 1 (2) into 10 equal parts, making each 1 (3).
die een por weert is, ende elck van defen wederom in thienen, ende elck fal 1 (3) verftrecken. De roede allooghedeelt fijude, men fal (om te vinden het inhoude der tomaen) Menichvuldigen ende Wercken als int voorgaende $1^{t}$ Lidt ghedaen is, welck door teflfde openbaer ghenouch fijnde, en fullen daer af hier niet wijder fegghen.
Maer anghefien dees thiendeclighe voortganck der dicpten niet ghemeen en is, foo mueghen wy daer af dit verclaren: Laet de Roede A B; cen Ame fijn, dat is 1 ( 0 dicghedeelt $f y$ in thien dieppunten (́naer de ghabruyck) C, D, E, F, $\mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{K}, \mathrm{L}, \mathrm{A}$, yder doende I (i), welcke wederom ghedeelt moeten worden in thienen, dar aldus toegaet: Men fal eerft elcke I (1) deelen in tween in defer youghen: Men fal trecken de Linie B M, rechthouckich op A B, ende even met de I (i) BC, ende vinden daer naer (door het $i^{\mathrm{e}}$ voortel des feften boucx van Euclides) de middel Eveirrednighe Linie culffien B M, ende haer helff, welcke $f y \mathrm{~B} \mathrm{~N}$, reeckenende $B O$ even an $B N$, ende foo dan $N O$, even is an BC, de wercking gaedt wel; Daei naer falmen de langde $N C$, teeckenen van $B$ naer $A$, als B P, welcke even vallende an NC, rwerck is goedr; infhelijcx de langde D N, van B tot $Q$, ende foo voorts met dander. Nurefter noch elck defer lengden als BO , ende OC , etc. te deelen in vijven aldus: Men fal tuffehen B M, ende haer thiendedecl, vinden de middel Everednighe linie, welcke fy BR, teeckenende B S

Now the rod being so divided, to know the content of the tun, multiply and work as in the precedent first article, of which (being sufficiently manifest) we will not speak here any farther.

But seeing that this tenth division of the deepness is not vulgarly known, we will explain the same. Let the rod be one ame A B, which is 1 (0), divided (according to the custom) into the points of the deepness of these nine: $\mathrm{C}, \mathrm{D}, \mathrm{E}$, F, G, H, I, K, A, making each part 1 (1), which shall be again each part divided into 10, thus. Let each 1 (1) be divided into two so: draw the line BM with a right angle upon AB and equal to 1 (1), BC , then (by the 13th proposition of Euclid his 6 th book) ${ }^{9}$ ) find the mean proportional between BM and his moiety, which is BN, cutting BO equal to BN. And if NO be equal to BC, the operation is good. Then note the length NC from B towards A, as BP, the which being equal to NC, the operation is good; likewise the length of $B N$ from $B$ to $Q$; and so of the rest.

It remains yet to divide each length as $B O \& O C$, etc. into five, thus: Seek the mean proportional between $\mathrm{BM} \&$ his 10 th part, which shall be BR , cutting
${ }^{\text { }}$ ) Euclid, in Elements VI ${ }_{13}$, shows how to find the mean proportional to two given line segments with the aid of a circle drawn upon the sum of these line segments as diameter.
even $4 \mathrm{~B} B$; Daer naer falmen de langde $S \mathrm{R}$, teeckenen van $B$ naer $A$, als $B T$, infghelijcx de langde $T R$, van $B$ tor $V$, ende foo voorts. Sghelijex fal oock den voortganck fijn om de (2) ofte potten als BS ende $S$ T, etc. te deelen in (3. Ick legghe dat $B S$, ende $S T$, ende $T V$, etc. fijn de ware begeerde (2), t'welck aldus bewelen wort: Overmidts B N, is middel Everednighe (duer t'Gbeftelde) tuf. helf, foo is het viercant van $B N$ (duer het $17^{\circ}$ voorftel des feften boucx van Euclides) even an den rechthouck van B M ende hare helft; Maer dien Rechthouck is den helft des' viercants van B M, Het Viercant dan van $B N$, is even anden helfr des Viercants van BM. Maer BO is ( door t'Gheftelde ) even an BN, ende BC an
 B M, het Viercant dan van BO, is even anden helft des Viereants van BC, Sghelijex fal oock het bewijs fijn dat het Viercant van B S, even is an het thiendedeel des Viercants B M, daerom, etc.

BS equal to BR. Then the length SR, noted from B towards A as BT, and likewise the length TR from $B$ to $V, \&$ so of the others, \& in like sort proceeding to divide BS and ST, etc. into (3), I say that BS, ST, and TV, etc. are the desired (2), which is thus to be demonstrated.

For that BN is the mean proportional line (by the bypothesis) between BM and his moiety, the square of BN (by the 17th proposition of the sixth book of Euclid) ${ }^{10}$ ) shall be equal to the rectangle of BM \& his moiety. But the same rectangle is the moiety of the square of BM ; the square then of BN is equal to the moiety of the square of BM. But BO is (by hypothesis) equal to BN, and BC to BM ; the square then of BO is equal to the moiety of the square of BC . And in like sort it is to be demonstrated that the square of BS is equal to the

[^37]Herbewijs is cort ghemaect,overmidts wy indies niet aen Leerlinghen maer aen Mceltersfchrijven.
IIII. LIDT VANDE LICHAEMMETERIE INT GHEMEENE.
TTET is wel waer dat alle Wijnmeteric (die 1 wy hier vooren verclaert hebbé) is Lichaemmererie, maer anmerckende de verfcheyden deelinghen der roeden van d'een buyren d'ander, oock dat dit, alfulcken verfchil heeft tot dat, als Ghellachte tor Specie, foo inueghen fy met reden onderfcheyden worden, want alle Lichacmmeterie ghecn Wijnmetcric en is. Om dan tot de Saecke te commen, den Lichaemmeter fal ghebruycken de Stadtmate, als Roede ofte Elle met hare Thiendedeclinghen, foo dic int cerfle ende tweede Lidr befehreven fijn, wiens gebruyck van het voorgaende weynich fchillende, aldus toegact: Ick neme datter te meten fy cenige Vierhouckige Rechthouckighe Colomme, diens Lungde 3 (i) 2 (3, Breede 2 (1) 4 (2), Hoochde 2 (0) 3 (1), (2), Vraghe hoe veel Stoffe daer in fy, ofte van wat begrijp fodanighenlichaem is. Menfal Menichvuldigé naer de lecring des derden Vooritels. Laugde door

|  |  |  |
| :---: | :---: | :---: |
| $\begin{aligned} & 32 \\ & 24 \end{aligned}$ |  |  |
|  |  |  |
| 128 <br> 64 |  |  |
|  |  |  |
| 7680 |  |  |
| 235 (2) |  |  |
| 3840 |  |  |
| 30 |  |  | Breade, ende dien Vytbreng, $\begin{array}{llll}2 & 3 & 0 & 4 \\ 1\end{array}$ wader door Hoochde in defer 1 voughen: Gecft Vyrbrengals i 80480


tenth part of the square of BM. Wherefore etc. we have made the demonstration brief, because we write not this to learners, but unto masters in their science. 11)

## THE FOURTH ARTICLE: OF COMPUTATIONS OF STEREOMETRY IN GENERAL

True it is that gaugery, which we have before declared, is stereometry (that is to say, the art of measuring of bodies), but considering the divers divisions of the rod, yard or measure of the one and other, and that and this do so much differ as the genus and the species: they ought by good reason to be distinguished. For all stereometry is not gaugery. To come to the point, the stereometrian shall use the measure of the town or place, as the yard, ell, etc. with his ten partitions, as is described in the first and second articles; the use and practice thereof (as is before shown) is thus: Put case we have a quadrangular rectangular column to be measured, the length whereof is 3 (1) 2 (2), the breadth 2 (1) 4 (2), the height 2 (0) 3 (1) 5 (2). The question is how much the substance or matter of that pillar is. Multiply (according to the doctrine of the 4th proposition of this Dime) the length by the breadth, \& the product again by the height in this manner.
And the product appears to be 1 (1) 8 (2) 4 (4) 8 (5).
$\begin{array}{ll}\text { (1) } & \text { (2) } \\ 3 & 2 \\ 2 & 4\end{array}$
24
28
64
68 (4)
35
0

|  |  | 3 | 8 | 4 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 2 | 3 | 0 | 4 |  |
| 1 | 5 | 3 | 6 |  |  |

$$
\begin{array}{cccccc}
1 & 8 & 0 & 4 & 8 & 0 \\
(1) & (2) & (3) & (4) & (5) & (6)
\end{array}
$$

${ }^{11}$ ) Stevin's division of the unit $B C$ is equivalent to the following interpolation of numbers between 0 and $1: 0, \frac{1}{10} \sqrt{ } 10, \frac{1}{10} \sqrt{ } 20, \frac{1}{10} \sqrt{ } 30, \ldots, \frac{1}{10} \sqrt{ } 90$, 1 , where BS: BT: $\ldots .: B O=\frac{1}{10} \sqrt{ } 10: \frac{1}{10} \sqrt{ } 20: \ldots: \frac{1}{10} \sqrt{ }$ so. The squares of these numbers are $0, \frac{1}{10}$, $\frac{2}{10}, \frac{3}{10}, \ldots \frac{9}{10}$, .
$\boldsymbol{T E M A N D T}$ den Grondt der Lictuammeterie. niet ghenouch ervaren (Wiant tot dien/preecken B.y hier) mocht dincken waeromne men fegt dat de colomme bier boven maer I (I), etc. groot en is nademael fy over de 180 Teetlinghen in baer boudt, diens fijden elck van I ( E ) lanck finn; Die fal weten dat een Roede Licbsems niept en is van 10 ( 1 , alseen Roede in langde, maer van $1000(\mathrm{D}$, in welcken anfien I ( r ) doer 100 Teerlingbenelck. van 1 ( ; Alfooder glelijcke den Landimeters int Plat ghenouch bekendt is, Want alfmen fegt 2 Roeden 3 , Voeten Landts, dat en Sijn niet 2 Roeden ende d́rie Viercante roeten, maer 2 Roeden ende (rekenende 12 Voeten voor dé Roe) 36 viercante voeten: Daerom Soo de vragbe bier boven gheweeft wire van boe vcel teerlinglien elck. van 1 (I), de voornomde colomme groot is, men foude tbeftryt daer naer moeren voughen, anmerckende dat yder I (1) vandefe, doet 100 (I) vandien, ende yder. 1 (2) vandeff, 10 (1) vandien, etc. Ofte anderfins, foo bet thicodedeel der Roede de grootfe mate is, daer op den Lichaemmeter opfictotheeft, by mach dat Thiendeel noomen Beghin, dat is © , ende voort als boven.

## V. LIDT VANDE STERRE-

 consts rekeninghen. E oude Sterrekijckers het Rondt ghedeelt hebbende in 360 . Trappen, bevonder datNOTE, some, ignorant (and understanding not that we speak bere) of the principles of stereometry, may marvel whereof it is said that the greatness of the abovesaid column is but 1 (1), etc., seeing that it contains more tban 180 cubes, of which the length of each side is 1 (1); be must know that the body of one yard is not a body of 10 (1) as a yard in length, but 1000 (1), in respect whereof 1 (1) makes 100 cubes, each of 1 (1), as the like is sufficiently manifest amongst land-meters in surfaces; for when they say 2 rods, 3 feet of land, it is not barely meant 2 square rods and three square feet, but two rods (and counting but 12 feet to the rod) 36 feet square; therefore if the said question had been bow many cubes, each being 1 (1), was in the greatness of the said pillar, the solution should bave been fitted accordingly, considering that each of these 1 (1) doth make 100 (1) of those; and each 1 (2) of these makes 10 (1) of those, étc. or otherwise, if the tenth part of the yard be the greatest measure that the stereometrian proposes, be may call it 1 (0), and so as above said.

## THE FIFTH ARTICLE: OF ASTRONOMICAL COMPUTATIONS

The ancient astronomers having divided their circles each into 360 degrees, they saw that the astronomical computations of them with their parts was too
de Sterrecon tts rekeninghen der felver mer haren onderdeelen ofte ghebroken ghetalen, veel te moeyelick vielen, Daerom hebben fy elcken Trap willen fcheyden in feecker deelen, ende de felve deelen andermacl in alfoo veel, etc. om duer fulcke middel altije lichtelicker te mueghen wercken door hecle ghetalen, daer toe verkiefen$\mathrm{d} e \mathrm{de}$ t'feftichdeclighe voortganck, overmidts 60 een ghetal is merelick door vele verficheyden hecle maten, namelick $1,2,5,4,5,6,10,12$, I $5,20,30$. Maer foo wy de Ervaring ghelooven (met alder cerbieding der looflicker Oudiheyt, ende door beweechuifle tor de ghemeene nut gheforokegn) voorwaer de t'eftichdeclighe vootganck en was niet de bequaemfte, immeronder de ghene die nachtelick inde Natuete beftonden, maer de Thicndeclighe, weleke aldus toegredt: De 360 . Trappen des Rondts, neemen wy anderfins Beghinfelen, ende yder Trap ofte 1 (2) fal ghedecle worden in 10 even declen, welcker yder ons een (1) verftrest, dace naer $y$ der 1 (1), wader in Jo (2), ende foo vervolghens als int voorgaende dickmael ghedaen is.

Nu defe deylingleen alfoo vertaen fijende, wy fouden muephen hare beloofde lichee maniere van Vergaderen, Afrecken, Menichvuldighen, ende Declen, door verfcheyden exempelen befchrijven, maer anghefien fy vande vier voorgaende voortellen gantich niet en verfchillen, fulck verhael foude hier fchadelicke Tijuverlics, ende onnoodighe pampicrquiftighe fijn, dacrom
laten
laborious; and therefore they divided also each degree into certain parts, and
these again into as many, etc., to the end thereby to work always by whole these again into as many, etc., to the end thereby to work always by whole
numbers, choosing the 60 th progression because that 60 is a number measurable by many whole measures, namely $1,2,3,4,5,6,10,12,15,20,30$; but if experience may be credited (we say with reverence to the venerable antiquity and moved with the common utility), the 60 th progression was not the most convenient (at least) amongst those that in nature consist potentially, but the tenth, which is thus. We call the 360 degrees also commencements, expressing them so 360 (0), and each of them a degree or 1 (0) to be divided into 10 equal parts, of which each shall make 1 (1), and again each 1 (1) into 10 (2), and so of the rest, as the like hath already been often done.

Now this division being understood, we may describe more easily that we promised in addition, subtraction, multiplication, and division; but because there is no difference between the operation of these and the four former propositions of this book, it would but be loss of time, and therefore they shall serve for
laten wy die voor exempelen defes Lidts verftrecken. Ditnoch hier by voughende, dat wy inde Sterreconit die wy in onfe Duytche Tale (dat is inde aldercierlictte alderrijckitc, ende aldervolmaeckfte Spraecke der Spraecken, van wiens groote befonderheydt wy cortelick noch al veel breeder ende feeckerder betooch verwachten, dan Pieter ende lan daer af ghedaen hebben inde Bewijfcont ofte Dialectike onlancx uytghegheven) hopen te haten uytgaen, defe maniere der deelinghe in allen Tafelen ende Rekeninghen fich dier ontmoetende, ghebruycken fullen.

## VI. LIDT VANDE REKENINghen der Mvntmeesters, Cooplieden, ende allen Staten van volcke int ghemcene.

M genaralick ende int cort te fpreecken vanden grondr defes Lidts, foo is te weten dat alle mate, als Langhe, Drooghe, Natte, Ghelt, etc. ghedeelt lal worden door de voornoemde thiendeclighe voortganck, Ende elcke groote vermaerde Specie valn dien falmen beglim noemen, als Marck, Beghin der ghewichren daer mede men Silver ende Goudr weecht: Pondt, Beghin van dander ghemeene ghewichten: Pondtgroot in Vlaenderen, Ponftecrlincx in Inghelandt, Ducact in Spaeigne, etc. Beghin des Ghelts.
examples of this article; yet adding thus much that we will use this manner of partition in all the tables \& computations which happen in astronomy ${ }^{12}$ ), such as we hope to divulge in our vulgar German ${ }^{13}$ ) language, which is the most rich adorned and perfect tongue of all other, \& of the most singularity, of which we attend a more abundant demonstration than Peter and John have made thereof in the Bewysconst and Dialectique, lately divulged 14).

## THE SIXTH ARTICLE: OF THE COMPUTATIONS OF MONEYMASTERS, MERCHANTS, AND OF ALL ESTATES IN GENERAL

To the end we speak in general and briefly of the sum and contents of this article, it must be always understood that all measures (be they of length, liquors, of money, etc.) be parted by the tenth progression, and each notable species of them shall be called commencement: as a mark, commencement of weight, by the which silver and gold are weighed, pound of other common weights, livres de gros in Flanders, pound sterling in England, ducat in Spain, etc. commencement

[^38]Des Marcx hoochtte reecken fal lijn © 9 , want I(4) fal ontrent cen half Antwerps Aes weghen. Voor het hoochfte teecken vant Pondegroote, fchijnt de (3) te mueghen bettaen, aenghefien foodanighen 1 (3) min doer, dan het vierendeel van 18 .
Deonderdeelen desghewichts om alle dinghen ducr te connen weghen, fullen fijn (inde plaets van Halfpondr, Vierendeel, halfviercndeel, Once, Loot, Enghelfche, Grein, Aes, etc.) van elck teecken $5,3,2,1$; Dat is; Naer her Pondr ofe 1 (), fal volghen een ghewichte van, (I) (doende $\frac{z}{2} \mathrm{tb}$.) daer naer van 3 (I), dan vans 2 ( , dan van I (I): Ende dergelijcke onder deelen lal oork hebben de (1) ende d ander volghende.

Wy achrent oock nut dat elck onderdeel van wat Stoffe fijn Grondt fy, ghenocmt worde met name Eerfte, Tweede, Derde, etc. Endedat overmidts ons kennelick is Tipeede Vermenichunldicht met Derde, te gheven Vytbreng Vïfde, (want 2 endc.s maecken $s$, als vooren gheiey is) t'welck door andere namen foo merckelick niet en foude connen ghefchieden. Maer alfmen die met onderfcheyde der Stoffen noemen wil (ghelijekmen fegt Halfelle Halfpondt Halfpinte, etc.) foomneghen wy die heeten Marcxeerfte, Marcxtiseede, Pondtftweede, Ellenflweede, etc.

Nu om van defen exempel te gheven, Ick neme dat I Marck 'Goudt weerdich $\mathrm{f}_{\mathrm{y}} ; 6$ 施 $5(1)$ 3(2), de Vraghe is wat 8 Marck 3 (1) 5 (2) 4 (3) bedraghen fullen. Men fal 3653 vermenich-
$C$ vuldigen
of money; the highest sign of the mark shall be (4), for 1 (4) shall weigh about the half of one Es of Antwerp, the (3) shall serve for the highest sign of the livre de gros, seeing that 1 (3) makes less than the quarter of one gr.

The subdivisions of weight to weigh all things shall be (in place of the half pound, quarter, half quarter, ounce, half ounce, esterlin, grain, Es, etc. of each sign $5,3,2,1$, that is to say that after the pound or 1 (0) shall follow the half pound or 5 (1), then the 3 (1), then the 2 (1), then the 1 (1), and the like subdivisions have also the 1 (1) and the other following.
We think it necessary that each subdivision, what matter soever the subject be of, be called prime, second, third, etc., and that because it is notable unto us that the second, being multiplied by the third, gives in the product the fifth (because two and three make five, as is said before), also the third divided by the second gives the quotient prime, etc. that which so properly cannot be done by any other names; but when it shall be named for distinction of the matters (as to say, half an ell, half a pound, half a pint, etc.), we may call them prime of mark, second of mark, second of pound, second of ell, etc.

But to the end we may give example, suppose 1 mark of gold value 36 lbs 5 (1) 3 (2), the question what values 8 marks 3 (1) 5 (2) 4 (3): multiply 3653 by
vuldighen met 8; 54, gheeft Vyrbreng door het derde Voorttel, welck oock is het begheerde Be fluye, 305 tbI (i) 7 (3) 1 (3). wat de 6 (4) 2 (5) belange, die en fijt hier van gheender acht.

Andermael 2 Ellen 3 (0), coften; th 2 (1) 5 (2), wat Gulien coften 7 Ellen 5 (D) 3 (2)? Men fal naer deghebruyck de laette ghegheven Pale Vermenichvuldighen mer de tweede, ende den uytbreng declen door d'eerte; Datis 753 met 325 , docr 24472 s, die Ghedeelt door 23, gheeft Soomenichmael ende Befluyt, 10 lt 6 (1) 4 (2).

Wy fouden mueghen ander exempelen gheven in alle de ghemeene Reghelen der Telconften in f'Meofichen handelinghen dickimael te vooren commende, als de Reghel des Ghefelfchaps, des Verloops, van Wilfelinge, etc. bethoonende hoe fyalle door heele ghetalen afgheveerdicht connen worden; oock mede defer lichte ge. bruyck doar de Legpenninghen: Macr anghefieu fulexnyther voorgaende openbaer is fullent daer by laren.

Wy fonden oock door verghelijckinghe vande moeyclicke exempelen der ghebroken ghetalen, opentlicker hebbenconnen bethoonen het groote verfchilder lichticheydt van defe buyten die, maer wy hebben fulcx om de cortheydrovergheneghen.

TEn laetten mosten wy noch fegghen van eenich onderfcheyde defes feften Lidts, met de voorgaende vijf leden, welck is, dat yeghelick

8354, giving the product by the fourth proposition (which is also the solution required) 305 lbs 1 (1) 7 (2) 1 (3); as for the 6 (4) and 2 (5), they are here of no estimation.
Suppose again that 2 ells and 3 (1) cost 3 lbs 2 (1) 5 (2), the question is what shall 7 ells 5 (1) 3 (2) cost. Multiply according to the custom the last term given by the second, and divide the product by the first, that is to say: 753 by 325 makes 244725 , which, divided by 23 , gives the quotient and solution 10 lbs 6 (1) 4 (2).

We should like to give other examples in all the common rules of Arithmetic occurring often in man's actions, such as the rule of society, of interest, of exchange, etc., showing how they can be all expedited by integer numbers, as well as by easy use of counters; but we shall leave it at that because it is clear from the preceding ${ }^{15}$ ).

We could also more amply demonstrate by the difficult examples of broker, numbers the comparison and great difference of the facility of this more than that, but we will pass them over for brevity's sake.

Lastly it may be said that there is some difference between this last sixth article and the 5 precedent articles, which is that each one may exercise for

[^39]perfoon voor fijn lèven de thiende declingen van die voorgaende Leden, ghebruycken can fonder ghemeene oirdening door de Overheydt daer af gheftelt te mesten worden; maer fulcx nies foo bequamelick in dit laetfte wandt dexempelen van dien fijnghemeene rekeninghen die ailonoogenblick (om foote fegghen) te vooren commen, inde welcke her voughelick foude fijn, dat ber befluyt alfoo bevonden, by alle man voor goedr gehouden ware: Daerom ghemerct de wonderlicke groote nutbaerheydt van dien, het wate re weinfchen dat enighe, als deghene dier t'meeftegherief door verwachten, fulcx bencerftichden ons ter Daet ghebrocht te worden; Te weten dat beneven de ghemeene deelingher dieder nu der Maten, Ghewichten, ende des Gheles lijn (blijvende clcke Hooftmate, Hoofggẹwicht, Hooftghelr, tot allen plaetfen onverandert) noch Wetelick door de Overheyde veroirdent wierde, de voornocmde thiende declinge, op dat ygelick wie wilde, die mochre ghehruycken.

Het ware oock ter faecken voorderlick, dat de weerden des Ghelts voornamelick des geens nien ghemunt wort, op fecekere Eerffen Tweeden, ende Derden gheweerdicht wierden.

Maer of dital fchoone niet foo haeft int werck gheftelt en wierde, ghelijct wel te wenfchen waer, dacr in fal ons ten eerften vernoughen, dat het ten minften onfen Naercommers voorderlick finn al, want hetis feecker, dat by aldien de Menfchen in toecommenden tijt, van fulcker aert fijn als fy in

$$
\mathrm{C}_{2}
$$

den
themselves the tenth partition of the said precedent 5 articles, though it be not given by the magistrate of the place as a general order, but it is not so in this latter: for the examples hereof are vulgar computations, which do almost continually happen to every man, to whom it were necessary that the solution so found were of each accepted for good and lawful. Therefore, considering the so great use, it would be a commendable thing, if some of those who expect the greatest commodity would solicit to put the same in execution to effect, namely that joining the vulgar partitions that are now in weight, measures, and moneys (continuing still each capital measure, weight, and coin in all places unaltered) that the same tenth progression might be lawfully ordained by the superiors for everyone that would use the same; it might also do well, if the values of moneys, principally the new coins, might be valued and reckoned upon certain primes, seconds, thirds, etc. But if all this be not put in practice so soon as we could wish, yet it will first content us that it will be beneficial to our suc-

36 Aenhangere
denvoorleden gheweeft hebben, dat fy foodanighen voordeel niet altijt verfwijmen en fullen.
Ten anderen, foo en ift voor yghelick int befonder de vorworpenfte wetenfchap niet, dat hem kennelick is hoe het Menfchelicke Geflachte fonder coft ofe aerbeydr, fijn felven verloffen can van foo vele groote moeyten, als fy maer en willen.
Tenlactfen; hoe wel miffchien de Daet defes feften Lidts voor eenighen Tije lanck niet blijcken en fal, Doch foo can een yghelick de voorte vijve ghenieten, foot kennelick is dat fommighe der felver nu al deghelick int werek gheftelt fijn .

Eynde des Aenuangsels.
cessors, if future men shall hereafter be of such nature as our predecessors, who were never negligent of so great advantage. Secondly, that it is not unnecessary for each in particular, for so much as concerns him, for that they may all deliver themselves when they will from so much and so great labour. And lastly, although the effects of the first article appear not immediately, yet it may be; and in the meantime may each one exercise himself in the five precedent, such as shall be most convenient for them; as some of them have already practised.

THE END OF THE APPENDIX


[^0]:    ${ }^{1}$ ) This was a development typical of the period. E. G. R. Taylor, in The Mathematical Practitioners of Tudor and Stuart England (London, 1954), lists 582 such practitioners active between 1489 and 1715.
    ${ }^{2}$ ) This value is sometimes called that of Mctius through a confusion between Anthonisz and his son, who adopted the name of Metius.

[^1]:    ( ${ }^{18)}$ Translated from the italian "a capo d'anno", or "a capo d'alcun tempo", because compound interest was computed from the beginning of each year, or other term.

[^2]:    (17) Works I, V, XIII,
    ${ }^{(18)}$ C. M. Waller Zeper l.c. ${ }^{9}$ ).
    $\left.{ }^{(20}{ }^{(20}\right)$ Ib. pp. $51-52$.
    (20) C. M. Waller Zeper, ib., p. 53, tentatively ascribes this silence of Stevin to a touch of Dutch chauvinism. But Stevin is usually quite willing to acknowledge his sources. "Toujours nous le voyons hanté par la crainte de s'attribucr une découverte qui ne lui appartient pas", writes Father H. Bosmans (Annales de la Société scientifique de Bruxelles 35 (1910-1911), p. 294). Another possibility is suggested by the name of Trenchant's publisher, Michel Jove, who was an outstanding Catholic, publisher for the Archbishopric of Lyons and for the Jesuits (comm. by Mrs C. B. Davis, Ann Arbor, Mich.). Was Trenchant perhaps himself compromised, in Huguenot circles, as too ardent a Catholic?

[^3]:    ( $\left.{ }^{26}\right)_{1}$ Proportionale, Gbesolveerde Taffen van intrest V an de kustingbrieven ofte Rentebrieven, zy te betalen op terminen op vervolgende iaeren ofte opt eynde des laetsten iaers van de brieven... Tweede Editie Door Marthinum Wentselaum Aquis Graniensis. t'Amstelredam. Ghedruckt by Barendt Adriaensz. 1594, 116 pp.
    Wentzel mentions the following authors on interest: "Gillis van den Hoeck, Niclaes Tartaglia, Pietrus Apianus, Adam Risen, Christoff Rudolf, Valentyn Menher, Symon Iacop van Coburg, Pierre de Sovonue, Nicolaes Pieterszoon van Deventer, Michel Coignet, Hobbe Jacobsz." On these authors, see C. M. Waller Zeper l.c. ${ }^{6}$ ) p. 39. As a writer on tables of interest Wentzel mentions C. I. Broessoon. This Broessoon most likely is the Cornelis Jan Broerszoon van Haarlem, whose tables, written before 1599, are perhaps those printed in Arithmetica, met een tafel van interest van een op 4 hondert ende van ${ }^{1} / 4$ tot $1 / 4$ tot 12 op 't hondert Interest op interest per Jan Belot Dieppois, Haerlem, 1629. This book contains a "tafelken gemaeckt door C. I. Broersz, gesolveerde jaarlykse termijnen van 100 gul. ende ook 100 gul. Die verscheyden jaren teffens verschijnen" (Haarl. Stadsbibl.).
    ${ }_{\left({ }^{27}\right)}$ Van den Circkel Daer in gheleert verdt te vinden. . . Ten laetsten van Interest met alderbande Tafelen daer toe dienende met bet ghebruyck door veel constighe Exempelen gheleerdt. . . door Ludolph van Ceulen .: tot Delf, ghedruckt by Jan Andriesz... 1596.
    ${ }^{(28)}$ Wentzel mentions Stevin, Van Ceulen does not mention him. The reason may be that Van Ceulen already composed these tables before the publication of Stevin's book. See H. Bosmans, Un émule de Viète: Ludolphe van Ceulen, Ann. soc. scient. de Bruxelles 34 (1909-10), 2 e partie, pp. 88-1 39.
    $\left.{ }^{(29}\right)$ Some more information on the controversies on interest computation in this period can be found in M. van Haaften, Het Wiskundig Genootschap (Groningen, 1923, 169 pp .), p. 119. Stevin himself corresponded on these questions with Thomas Masterson, author of Thomas Masterson bis first booke on Arithmeticke..., 1592, followed by a second booke (1592), an addition to his first booke of Arithmetick (1594) and a thirdbooke (1595), all published in London. In the addition of 1594 Masterson, in the preface, takes issue with "Michell Cognet of Antwerpe and Simon Stevin of Bruges": "both teaching (in the appearance of the unskilfull) with great shew of truth, other answers than mine of the aforesaid questions of paiments and interests, and notwithstanding in those answers they are very false: and so their followers (being in great number) wander in those points in danger, error and ignorance...". Masterson had "first given the aforesaid authors (being yet alive) knowledge thereof by my letter, as also received their answers by their letters: then replied unto their answers, and received their conclusions: Then prooved their resolutions to be false, and (to the one of them for the other did answer no more) prooved by demonstration mathematicall, that my solution is only true." Masterson writes that in some other place he will deal with the subject of the controversy, but it seems that he did not publish anything. The reference to Coignet may be to the book Livre d'Arithmétique contenant plusieurs belles questions .. composé par feu Valentin Mennber Allemand: revu, corrigé et augmenté en plusieurs endroits par Michiel Coignet... Anvers, 1573, which in some places deals with interest computation (with reference to Trenchant).
    ${ }^{\left({ }^{30}\right)}$ C. M. Waller Zeper l.c. ${ }^{3}$ ) Ch. IV. Ch. VI deals with Wentzel, Ch. VII with Van Ceulen.

[^4]:    ${ }^{1}$ ) See the Introduction, p. is

[^5]:    ${ }^{1}$ ) This solution with 6 payments of $112,124,136,148,160,172$ does not produce an annuity of constant value. Stevin found this out and gave a correct solution in the French edition of 1585 and the second Dutch edition of 1590 (SeeSupplement, p. 113 ).
    ${ }^{2}$ ) This solution was changed into another one in the editions of 1585 and 1590 . (Sce Supplement, p. 115).

[^6]:    ${ }^{1}$ ) This solution was changed into another one in the editions of 1585 and 1590 (See Supplement, p. it6). The examples 9 and io, as shown in the Introduction (p. 20), happen to have more than one form of solution. Both the solutions of is 82 and 1590 could be accepted at present.

[^7]:    ${ }^{1}$ ) Euclidis Elementorum libri XV,..., accessit XVI. De solidorum regularium comparatione . . . Auctore Christophoro Clavio (Rome, 1574, 2 vols, several later editions). See footnote ${ }^{2}$ ) to the Introduction to $L$ 'Aritbmétique.
    ${ }^{2}$ ) A full description and analysis of the Problemata has been given by N. L. W. A. Gravelaar, Stevin's Problemata Geometrica, Nieuw Archief voor Wiskunde, (2) s (1902), pp. 106-191.

[^8]:    ${ }^{3}$ ) This terminology is a Latin translation of Greek terms used by Nicomachus in his Introduction to Arithmetic and passed into the language of the regular quadrivium of the Medieval and Renaissance schools, primarily through the study of Boetius, who used it in his Arithmetica and in his Musica; see A.M.T. S. Boetii De Institutione Aritbmeticae libri duo. De Institutione Musicae libri quinque... edidit G. Friedlein (Leipzig, I 867, VIII + 492 pp.$)$, esp. Lib. I of the Arithmetica; T. L. Heath, A Manual of Greek Mathematics (Oxford, 193 I), p. 69 . English translation of Nicomachus' Arithmetica by M. L. D'Ooge, New-York, 1926.

[^9]:    magis generali, Simon Stevinius Brugensis: sed in qua aliquid desiderari videatur, ut omnibus superficiebus rectilineis (quod ipse velle videtur) convenire possit, quod facile iudicabant, qui illius problemata Geometrica attente perlegerint . . . Deinde superficiarum rectilinearum divisionem aggrediemur, insistentes eiusdem Stevinii vestigiis, nisi quando generalius rem oportebit demonstrare."
    ${ }^{12}$ ) Meetdaet, p. 144. These cases, though new to Stevin, had already been treated by Euclid and Leonardo Pisario, see R. C. Archibald, l.c. ${ }^{\circ}$ )
    ${ }^{13}$ ) On the regula falss, see J. Tropfke, Geschichte der Elementar-Mathematie III (BerlinLeipzig, 3 e Aufl., 1937), p. 152; D. E. Smith, History of Mathematics II (Boston, 1925), p. 437.
    ${ }^{16}$ ) La Pratique D'Aritbmetique, p. 122.

[^10]:    ${ }^{15}$ ) A. Dürer, Underweysung der Messung mit dem Zirckel und Richtscheyt (Nuremberg, 1525). Latin edition: Albertus Durerus Nuremburgensis . . . adeo exacte quatuor bis suarum Institutionum geometricarum libris (Paris, 1533), 2nd German edition: Underveysung der Messung . . . Nurenberg 1538).
    ${ }^{10}$ ) Problemata, p. 46. On the possibility of constructing closed polyhedra from plane patterns by paper-folding and on convex polyhedra in general, see A. D. Aleksandrov, Vypuklye mnogogranniki (Convex Polyhedra, Moskow-Leningrad, 1950, 428 pp.). German: Innere Geometrie der konvexen Flächon (Berlin, 1954). The main theorem is: To every closed, directable, plane diagram with given identification of edges and vertices, for which the sum of the angles at the same vertex is at most $2 \pi$ and which satisfies Euler's condition on the vertices, angles, and faces, there exists one convex polyhedron. See also W. Blaschke, Griechische und anschauliche Geometrie (München, 1953), p. 22.

[^11]:    ${ }^{17}$ ) Pappi Alexandrini mathematicae Collectiones, ed. F. Commandinus. (Venice, 1588, reissucd Pcsaro, 1602)
    ${ }^{18}$ ) see footnote ${ }^{23}$ )

[^12]:    ${ }^{19}$ ) J. Kepler, Harmonices mundi libri V (Linz, 1619), Lib. II. (Gesammelte Werke, herausg. von Max Caspar, Band VI).

[^13]:    ${ }^{20}$ ) On regulat and semi-regular solids see further M. Brückner, Vielecke und Vielflache, Tbeorie und Geschichte (Leipzig, 1900, VIII +227 pp.); H. S. M. Coxeter, Regular Polytopes (London, 1948, XVIII + 321 pp.).
    11) Fra Luca Pacioli Divina Proportione. Die Lebre vom Goldenen Scbnitt. Nach der venezianischen Ausgabe vom Jabre 1509 neu berausgegeben, übersetzt und erläutert von $C$. Winterberg (Wien, 1896), VI + 367 pp .
    ${ }^{22}$ ) D. Barbaro, La pratica della perspettiva (Venice, 1568 ; there is also an edition Venice 1569, 195 pp .).
    ${ }^{28}$ ) There were other authors of the sixteenth century who shared Pacioli's and Barbaro's interest in truncated and augmented bodies and who seem to have remained unknown to Stevin. Pre-eminent among them is the Nuremberg goldsmith Wenzel Jamnitzer, whose Perspectiva corporum regularium (Nuremberg, 1568 ) contains beautiful illustrations. The solids $\left\{G_{4}, 8_{3}\right\}$ and $\left\{20_{3}, 12_{5}\right\}$ appear in the French Euclid translation by Bishop François de Foix, comte de Candala (1566, 2nd ed., 1578). Moreover, R. Bombelli, in a chapter of his Algebra, which remained unpublished until 1929, also discussed some of these bodies and their plane schemes: L'Algebra Opera di R. Bombelli di Bologna Libri IV e $V \ldots$. publ. a cura di E. Bortolotti (Bologna, 1929). - On the further history of star-polyhedra see Kap. I of S. Günther, Vermischte Untersucbungen zur Geschichte der mathematischen WFissenschaften (Leipzig, 1876, VII $+35^{2} \mathrm{pp}$.), pp. 1-92. The modern theory of these polyhedra opens with Poinsot, Mémoire sur les polygones et les polyedres, Journ. Ec. Polytechnique, 1oe cah., tome 4 (1810), pp. 16-46.
    ${ }^{21}$ ) Arcbimedis opera quaequidem extant omnia, nunc primum et graece et latine in lucem edita; adjecta sunt Eutocii Ascalonitac in cosdem Archimedis libros commentaria, item graece et latine (Basel, 1 544); editor was Thomas Gechauff (Venatorius).

[^14]:    ${ }^{\text {}}$ ) Stevin means Definition 13: A boundary is that which is an extremity of anything.

[^15]:    .) This is due to the general way in which Stevin has defined transformed ratio if $a: b$ is a given ratio, and $p, q, \ldots \ldots$ are given numbers, then any ratio ( $k_{1} a+$ $\left.l_{1} b+m_{1} p+n_{1} q+\ldots \ldots.\right):\left(k_{2} a+l_{2} b+m_{2} p+n_{2} q+\ldots \ldots.\right)$, where $k_{1} \ldots \ldots . n_{2}$ are positive or negative numbers, is a transformed ratio.

[^16]:    *) Euclid V Prop. 23: If there be three magnitudes, and others equal to them in multitude, which taken two and two together are in the same ratio, and the proportion of them be perturbed, they will also be in the same ratio at the corresponding places.

[^17]:    *) When $a: b=b: c$, then $a: c$ has the duplicate ratio of $a: b$; when $a: b=b: c=c: d$, then $a: d$ has the triplicate ratio of $a: b$; hence $a / c=(a / b)^{2} ; a / d=(a / b)^{3}$. As to Clavius, see Introduction, footnote 1.

[^18]:    -) See Introduction to the Meetdaet.

[^19]:    *) It has not been possible to trace any biographical details about this musician.

[^20]:    ${ }^{\circ}$ ) To construct a segment of a sphere similar to a given segment of a sphere and equal to another given segment of a sphere.

[^21]:    -) Stcvin indeed returned to this subject in Book IV of the Meetdaet.

[^22]:    ") In the sequel the usual term segment of a sphere will be used.
    ".) Stevin, in his Meetdaet, PP. 93, 187, speaks of ",halfmiddellijnsne" and "clootcoordsne".

[^23]:    ${ }^{-}$) If two similar areas $A_{1}$ and $A_{2}$ are to each other as the squares of homologous lines $p_{1}$ and $p_{2}$, or $A_{1}: A_{2}=p_{1}^{2}: p_{2}{ }^{2}$, then $A_{1}:\left(A_{1}+A_{2}\right)=p_{1}^{2}:\left(p_{1}{ }^{2}+p^{2}{ }^{2}\right)$. The third proportional $c$ to two lines $a$ and $b$ satisfics the equation $a: b=b: c$.

[^24]:    If two similar solids $S_{1}$ and $S_{2}$ are to each other as the cubes of homologous

[^25]:    - In the bibliographical quotations, (H) means: Harvard Library; (Hu) means: Huntington Library.
    (i) On the use of these counters see A. Nagel, Die Rechenpfennige und die operative Arithmetik. Numismatische Zeitschrift (Wien) 19 (1887) pp. 309-368; F. P. Barnard, The Casting Counter and the Counting Board, Oxford, 1916; C. P. Burger, ABC penningen of rekenpenningen, Het Boek 18 (1929), pp. 193-202, also ib. 19 (1930), p. 222; L. C. Karpinski, Tbe History of Arithmetic, Chicago-New York 1925, pp. 33-37.

[^26]:    ${ }^{(5)}$ S. Gandz, The Invention of the Decimal Fractions and the Application of the Exponential Calculus by Immanuel Bonfils of Tarascon (c. 1350), Isis 25 (1936), pp. 16-35.
    (7) In Quadripartitum numerorum (c. 1325), see L. C. Karpinski, The Decimal Point, Science, 25 (1917), pp. 663 - 665 . The quotation is from Vienna Ms. 4770 , fol. $224^{2}$. This method of decimal magnification is much older, see J. Tropfke l.c. ${ }^{2}$ ) p. 173. On this method see also J. Ginsburg, Predecessors of Magini, Scripta Mathematica (1932), Pp. $168-169$.
    $\left.{ }_{(8)}{ }^{8}\right)$ Exempel Buchlin Rechnung belangend darbey. . . durch Cbristoffen Rudolf, Augsburg, 1530, Aufg. 71. Reproduced in G. Sarton, l.c. ${ }^{2}$ ) p. 225 and in D. E. Smith l.c. ${ }^{2}$ ) p. 24r, see also J. Tropfke $\cdot . c^{2}{ }^{2}$ ) p. 177, where we also find a quotation from another book by Rudolff: Bebend und brusch Rechnung durch die kunstreichen regeln Algebre, Strassburg is 25.

[^27]:    ( ${ }^{9}$ ) Viète's book is a treatise on plane and spherical trigonometry entitled: Canon mathematicus seu ad triangula cum adpendicibus, Lutetiae, 1579 (H). The explanatory text of $6+$ 75 pp, entitled Francisci Vietae Universalium inspectionum ad canonem matbematicum liber singularis, has five appendices, all tables. Our examples are on p. is and p. 64 . See also K. Hunrath, Zur Gescbichte der Decimalbrüche, Zeitschr. f. Mathem. u. Physik 38 (1893), Hist. lit. Abt, pD. 25-27.
    ${ }^{\left({ }^{10}\right)}$ Sce e.g. H. E. Timerding, Die Kultur der Gegenvart III, Erste Abteilung, Die mathematischen Wissenschaften, Zweite Lieferung, Leipzig-Berlin, 1914, p. 92A.

[^28]:    ${ }^{(11)}$ R. Bombelli, L'Algebra, Bologna 15 72, is 79. On Bombelli's symbolism see E. Bortolotti, Sulla rappresentazione simbolica della incognita e delle potenze di essa introdotta dal Bombelli, Archivio di Storia della Scienza 8 (1927) pp. 49-63. On the Coss-notation see F. Cajori l.c. ${ }^{2}$ ), Ch III, and J. Tropfke, Geschichte der Elementar-Mathematik III, BerlinLeipzig, 3 e Aufl., pp. 3 I- 32.
    (12) L', Arithmétigue, see e.g. p. 28. At other places Stevin uses his o-notation to indicate sexagesimal fractions: Weereltschrift I p. 59, III p. 18.
    $\left.{ }^{(13}\right)$ Meetdaet, sec e.g. p. 32.
    ( ${ }^{14}$ ) For this he was rebuked - posthumously - by A. Tacquet, in Arithmeticae theoria et praxis, Lovani, 1646 (pp. 177-179 of the $2^{\text {d }}$ ed., Antwerp, 1665): "Mais (Stevin) n'a pas exposé son invention avec toute l'exactitude, ni l'ampleur nécessaire et il ne l'a pas démontrée, car, ce qu'il nomme démonstration ne consiste qu' à donner un example". French transl. of H. Bosmans, André Tacquet (S.J.) et son traité d'Arithmétique théorique et pratique, Isis 9 (1927), pp. 66-82. - For a modern introduction to decimal fractions see e.g. G. H. Hardy - E. M. Wright, An Introduction to the Theory of Numbers, Oxford, $2^{\text {d ed., }}$ 1945, Ch. IX.

[^29]:    ( ${ }^{29}$ ) Mirifici Logaritbmorum Canonis Constructio . . . una cum Annotationibus aliquot doctissimi D. Henrici Briggii.... Authore et Inventore Ioanne Nepero... Edinburgi $1619,68 \mathrm{pp}$. On p. 6: 'In numeris periodo sic in se distinctis, quisquid post periodum notatur fractio est, cuius denominator est unitas cum tot cyphris post se, quot sunt figurae post periodum'. There exists an edition printed in Lyons, 1620,64 Pp. in which Briggs' notation by mistake is rendered 2511886 s. There also exists an English translation: The construction of the wonderful canon of logaritbms by Jobn Napier, translated by W. R. Macdonald, Edinburgh and London, 1889 , XIX +169 pP , with bibliography.
    ${ }^{(30)}$ Tivede deel van de Nieuve Telkonst, ofte wonderliucke konstighe tafel, Inboudende de Logaritbmi, voor de getallen van I af tot 100.000 toe . . door Ezechiel De Dekker. . . Ter Goude, P. Rammaseyn, 1627 . Vlacq computed those tables which Briggs had not yet published. The book was followed by Arithmietica Logaritbmica, sive Logaritbmorum Chiliades Centum, pro Numeris naturali Serie crescentibus ab Unitate ad roo.000.- aucta per A. Vlacq, Goudae, P. Rammasenius, 1628 ; also in a French version of the same year. See M. van Haaften, $C e$ n'est pas Vlacq, en 1628, mais De Decker, en 1627, qui a publiéle premier une table de logarithmes itendue et complette, Nieuw Archief v . Wiskunde (2) is (1928), pp. 49-54, see also ibid. 31 (1942), pp. 59-64.
    ${ }^{(11)}$ ) See l.c. ${ }^{(16)}$ ) and ${ }^{(30}{ }^{30}$. This Eerste Deel contains the Dutch translation of the Rabdologia.

[^30]:    $\left.{ }^{(55}\right)$ The Dutch text of the 1585 edition has been reproduced in fascimile in De Thiende de Simon Stevin. Fat-simile de l'édition originale Plantinienne de 1585. Avec une introduction par H. Bosmans, Ed. de la Soc. des Bibliophiles Anversois Nr 38, Anvers et la Haye, 1924, $4 \mathrm{x}+36+(\mathrm{I}) \mathrm{pp}$. The French text of the edition of 1585 of $L a$ Pratique d'Aritbmetique is reproduced in facsimile in G. Sarton l.c. ${ }^{2}$ ) pp. 230-244.
    The Sanford translation can be found on Pp. 20-34 of D. E. Smith, Source Book of Mathematics, New York-London, 1929.
    Here are some other publications in which $D e$ Thiende is discussed: H. Bosmans, La Thiende de Simon Stevin, Revue des Questions Scientifiques, Louvain 77 (1920), pp. $109-$ 139; M. van Haaften, De Thiende van Stevin, De Verzekeringsbode, 4 Dec. 1920, pp. 7377; V. Sanford, The Disme of Simon Stevin, Mathematics Teacher, New York, 14 (1921), pp. 321-333; F. Cajori L.c. ${ }^{2}$ ) pp. 154-156; R. Depau, Simon Stevin, Bruxelles, 1942, pp. 58-70; E. J. Dijksterhuis, Simon Stevin, 's Gravenhage, 1943, pp. 6ṣ-69.

[^31]:    ${ }^{1}$ ) This English translation of DeTbiende was prepared by Richard Norton and published in I608; for the title see footnote ${ }^{18}$ ) of the Introduction. The booklet contains a literal translation, almost certainly from the French version, with some additions: a) a short preface "to the courteous reader", b) a table for the conversion of sexagesimal fractions into decimal ones, and c) a short exposition on integers, how to write them, to perform the main species and to work with the rule of three. This exposition is taken from Stevin's L'Aritbmétique and we deal with it in the proper place. In using Norton's translation we have modernized the spelling and corrected some misprints.
    The translator, Richard Norton, was the son of the British lawyer and poct Thomas Norton (1532-1584) and a nephew of Archbishop Cranmer. The father is remembered as the co-author of what is said to be the first English tragedy in blank verse, Gorboduc (acted in is6I) and as a translator of psalms and of Calvin's Institutes. The son, according to the Dictionary of National Biograpby 41 (I895), was an engineer and gunner in the Royal service, became engineer of the Tower of London in 1627 and died in 1635 . He wrote several texts on mathematics and artillery, supplied tables of interest to the 1628 edition of Robert Recorde's Grounde of Arts and seems to have been the author of the verses signed Ro: Norton, printed at the beginning of Captain John Smith's Generall bistorie of Virginia, Nens England and the Summer Isles, London, 1624.
    On Norton see also E. J. R. Taylor, The Mathematical Practitioners of Tudor and Stuart England. Cambridge, Un. Press 1954, XI +442 pp.

    Norton calls Stevin's method both Dime and The Art of Tenths in the title, but in the text only uses the term Dime.
    We reproduce this translation of De Thiende through the courtesy of the Houghton Library of Harvard University, Cambridge, Mass.

[^32]:    ${ }^{3}$ ) This is a translation of the Dutch "roersouckers", after Stevin's French version: "chercheurs de fort mouvements". It probably stands for people who start moving things. take initiative, comp. the archaic Dutch expressions "roermaker", "rocrstichter" (information from Prof. Dr. C. G. N. De -Vooys). The Dutch has' "vonden der roersouckers", where "vonden" stands for "findings, inventions", and the whole expression for something like "widely proclaimed innovations".
    ${ }^{\text {4 }}$ ) Such "expert land-meters" may have been Dou and Sems, see the Introduction, pp. 379, 382.

[^33]:    5) L'Arithmétique ( 1589 ) Work V p. 8 I .
[^34]:    ${ }^{6}$ ) See the Introduction to De Tbiende, esp. footnote ${ }^{5}$ ) and to the Driebouckhandel. Johannes Montaregio, or Ian van Kuenincxberghe, Iehan de Montroial, is best known under his latinized name Iohannes Regiomontanus (1436-1476). This craftsman, humanist, astronomer and mathematician of Nuremberg, born near Königsberg in Franconia (hence his name), influenced the development of trigonometry as an independent science for more than a century by his tables and his De triangulis omnimodis libri quinque (first published in 1533). The sines, for Regiomontanus as well as for Stevin, were half chords, not ratios. On Regiomontanus see E. Zinner, Leben und Wirken des Johannes Müller von Königsberg genannt Regiomontanus, Schriftenreihe zur bayr. Landesgesch. 31, München, 1938, XIII +294 pp .

[^35]:    7) The English "perch" or "rod" and the Dutch "roede" are both measures of area and of length. For information on the precise meaning of the many measures mentioned in Stevin's book one may consult the Oxford Dictionary of the English language.
[^36]:    ${ }^{8}$ ) The Dutch rechtcruys, in Stevin's French version croix rectangulaire, translated crossstaff, was an instrument used by surveyors for setting out perpendiculars by lines of sight, crossing each other at right angles. It was also known as surveyor's cross. The cross was horizontal and supported by a pole, the yard of our text, on which Stevin wants to measure off a decimal scale. A variant of this cross was a graduated horizontal circle with a pointer (alhidade) along which sighting could be performed, but even in the variations the basic rectangular cross remained.
    Surveyors also used chains for measuring distances, or setting out perpendiculars, in which case they used the so-called 6,8 and io rule, a popular application of Pythagoras' theorem.

    The surveyor's cross is mentioned in many books on surveying. In N. Bion, Traite de la construction et des principaus usages des instruments de mathématique, Nouvelle édition, La Haye 1723 , p. 133 we find it referred to as "équerre d'arpenteur", with a picture (information from Dr. P. H. van Cittert).

[^37]:    ${ }^{10}$ ) Euclid, in Elements VI 17, shows geometrically that when $a, b, c$ are in geometrical proportion, $a c=b^{2}$, and conversely.

[^38]:    ${ }^{12}$ ) On this see the Introdúction $\S 6$, and footnote ${ }^{40}$ ).
    ${ }^{13}$ ) Concerning the use of German in the sense of Dutch, see Vol. I, p. 7, note.
    ${ }^{19}$ ) Stevin here refers to his Dialectike, Work III (cf. the bibliography in Vol. I, p. 26). - Norton, at this place, introduces a table "for the reducing of minutes, seconds, etc. of the 6oth progression into primes, seconds, etc. of the tenth progression", with an explanation.

[^39]:    ${ }^{15}$ This paragraph is omitted by Norton.

