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Abstract
Species richness estim ators (SREs) frequently exhibit widely different results w hen applied to  the same data 

set. The lack of inform ation on the true species num ber in an area ham pers assessment of the  performance of 
com peting SREs. Marine invertebrates have been studied for more th an  150 years on Helgoland (North Sea), and 
a fairly complete species list exists for this assemblage, providing a good opportun ity  for such comparisons. We 
evaluated the performance of 12 SREs using data on  intertidal m arine invertebrates of Helgoland. The Ugland 
TS estim ator provided the m ost accurate estimate of total richness, whereas MME, Semilog, and Weibull pro­
duced a m oderate underestim ation. The o ther SREs seriously under- or overestim ated total richness. Although 
the Ugland TS estim ator accounts for changes of species abundance distributions encountered w hen area 
increases, m ost SREs assume a hom ogeneous distribution. Analysis of separate accum ulation curves for rare, 
interm ediate, and com m on species revealed th a t the curvature of the random ized empirical accum ulation curve 
of all the species is determ ined primarily by the occurrence of rare species. Thus, the influence of rare species 
was assessed through sim ulations of the Ugland TS. Linear extrapolation will under- or overestimate total rich­
ness if the occupancy of rare species is unusually low or high, respectively. The true occupancy of rare species 
in  the Helgoland intertidal is likely to  be close to the optim al interval revealed by our simulations, w hich pro­
vide a general framework for assessing the suitability of SREs for a given data set and thus improve the selection 
process of the optim al m ethod.

O btaining com plete inform ation about the com position of 
a given species assemblage is a difficult task. Usually, no 
inventory is so exhaustive th a t all species are recorded, either 
locally or regionally (although exceptions exist for a few taxo­
nom ic groups, e.g., Condit et al. 2005). As such, species rich­
ness estimators (SREs) play a key role in  the m easurem ent of 
biodiversity (Soberón and Llórente 1993; Colwell and Cod-
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dington 1994). These estimators can be used to  standardize 
the effects of uneven sampling effort, providing unbiased 
measures of species richness tha t m inim ize m easurem ent 
errors and improve the analysis of biodiversity patterns (Hor­
tal et al. 2004; Borges et al. 2009).

A num ber of techniques are available to estimate species 
richness from a lim ited collection of samples (see reviews in 
Colwell and Coddington 1994; Gotelli and Colwell 2001; 
M agurran 2004). Most of these techniques fall in to  two cate­
gories: (1) SREs based on  the extrapolation of species accum u­
lation curves and (2) nonparam etric estimators (but see Hortal 
et al. 2006). Species accum ulation curves are plots of the 
cumulative num ber of species recorded w ith increasing levels 
of sam pling effort, frequently m easured as num ber of samples, 
w hich is also a measure of the sampled area. Total richness is 
estim ated by fitting the parameters of a given function to 
these plots and extrapolating the function to  either an infinite 
sampling effort or the total area studied. N onparam etric esti­
m ators, in contrast, are based on particular features of the
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samples, such as the  num ber of rare species found only once 
or twice in  all samples. Analytical expressions of these tech­
niques provide estimates of total richness using either pres­
ence/absence or abundance data.

To evaluate the performance of different SREs, it is crucial to 
have an assessment criterion for the total species num ber from 
a source tha t is independent of the investigation and no t gen­
erated by the models themselves. Such an assessment criterion 
for the total species num ber can be established by, e.g., a 
species reference list. In this case, the comparison of SRE per­
formance can be accomplished by means of a direct com pari­
son of the estimates w ith the richness value determ ined from 
the reference list. In m any studies, however, the actual richness 
values are no t know n and the values used for comparison are 
either expert estimates (e.g., Eiortal et al. 2006) or obtained 
from the asymptote of a model fitted to  the random ized accu­
m ulation curve (e.g., Canning-Clode et al. 2008). These com ­
parisons are conceptually flawed (particularly in the latter case) 
because an estimate is used to  assess the accuracy of others.

Accordingly, the first objective of this work was to  generate 
an independent and convincing estimate of true species n u m ­
ber and compare 12 frequently applied SREs w ith this approx­
im ated true species number. For the intertidal rocky platform  
of the island of Helgoland, a large num ber of recent and his­
torical investigations provided the opportunity  to  establish 
such a reference list. An intense ecological sampling program 
conducted between 2004 and 2006 (Reichert et al. 2008a) 
form ed the database for the  com parison of SRE performance 
w ith the reference list.

SREs are used to  estimate total species richness from a lim ­
ited num ber of subsamples of the  studied assemblage and/or 
territory. However, these subsamples often constitute a surpris­
ingly small fraction of the total area studied, even w hen the 
level of sampling effort is high (Hortal et al. 2007). In general, 
only a tiny  fraction of the  territory is surveyed, fractions in the 
range lO ^-lO -4 being typical; thus an extremely disproportion­
ate ratio between sampled and unsam pled area frequently 
exists. This sampling effect interacts w ith the spatial distribu­
tion of individuals in determ ining survey success. Because the 
m ajority of species are rare, m ost will no t appear in  the sam­
pled area and will be surveyed only w ithin larger areas (see e.g., 
Preston 1948; Storch et al. 2003). Therefore, differences in 
species distributions may compromise the reliability of the 
SRE. Additionally, heterogeneity, in terms of spatial distribu­
tion of habitats, and spatial population dynamics of species 
related in  turn  to the distribution of species and their abun­
dances in an area may result in unrealistic estimates of species 
richness. In previous studies, however, the focus is usually on 
the sampling strategy (e.g., num ber of samples, grain size) and 
how  it affects the estimators' performance w ithout incorporat­
ing spatial patterns of variation in  species abundance distribu­
tions (e.g., Hortal et al. 2006; Canning-Clode et al. 2008).

Thus, a second objective of this study was to  further 
explore the  influence of species abundance distributions, in

terms of the rarity of species, on the best-perform ing estim a­
tor of the intertidal data set. For this purpose, a simplified data 
set was developed m odeling the empirical intertidal data set to 
show how  different occurrence probabilities of rare species 
m ay influence the bias of this SRE.

Materials and procedures
Study location and biological data set—Helgoland is a small 

North Sea island system located 60 km off the German coast 
(54°1TN, 7°55'E). The island is approxim ately 1 km 2 and has a 
coastline composed m ainly of rocky outcrops. The rocky lit­
toral is surrounded by soft sediments, geographically isolated 
by hundreds of kilometers from other hard substrates in the 
N orth Sea.

Our analysis focuses on the intertidal zone of the rocky plat­
form at the island's northern  shore. This zone is characterized 
by a series of channels extending northw est toward the open 
sea, separated by ridges. The ridges and channels alternate in 
the alongshore direction, and the substratum is mostly rela­
tively soft natural red sandstone. For more details of the site, 
see Reichert et al. (2008a,b) and Bartsch and Tittley (2004).

We used data from a recent intensive survey of marine 
invertebrates at the north  shore (Reichert et al. 2008a) to test 
the accuracy of the different SREs. Invertebrates were sampled 
at 3-m onth intervals from summer 2004 to  spring 2006 (in 
total eight samplings in  time). Five replicated 0.25 m 2 quadrats 
(-1 m eter apart) were placed random ly at each of 11 plots. The 
plots, separated by tens of meters, were chosen at random  
from a larger pool of plots exam ined during a previous study 
(Reichert et al. 2008b). Fifty-five quadrats were sampled at 
each sam pling time, yielding a total of 440 samples and 60 
species. Given a total area of 32,909 m 2 (based on geographic 
inform ation system [GIS] data) and th a t these quadrats cover 
110 m 2, it follows th a t the survey covered 0.33% of the total 
area of the intertidal rock platform  of the  island's northern  
shore (the actual focus of the survey).

Analysis 1: Calibration o f SREs with reference lists—Species 
reference list: Helgoland has a long history of environm ental 
and taxonom ic m arine data collection, particularly since the 
establishm ent of the Biologische Anstalt Helgoland in  1892 
(see Franke et al. 2004). This allows us to  establish a com pre­
hensive species reference list and, therefore, determ ine total 
richness w ith accuracy.

A literature search was carried ou t to establish a species ref­
erence list tha t reflects the  total species num ber of inverte­
brates on  the northern  shore intertidal system at Helgoland. 
Hoffm ann (1829) conducted the first investigation of in ter­
tidal m acrozoobenthos, followed by 17 further works during 
the 19th century (e.g., Heincke 1894). More recently, Reichert 
and Buchholz (2006) carried out com prehensive surveys of 
intertidal invertebrate assemblages. The latest investigation of 
intertidal invertebrates was undertaken by Reichert et al. 
(2008a,b), and this data set is stored in  a database developed 
by LargeNet, a responsive m ode project of the MarBEF (Marine
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Biodiversity and Ecosystem Functioning) EU Network of 
Excellence (Vandepitte et al. 2010). In total, 36 studies refer­
ring to the  area under investigation and published between 
1829 and 2008 were consulted to  create the species reference 
list. All m acrobenthic invertebrates m entioned in these stud­
ies for the no rthern  shore in tertidal system have been 
included in the reference list.

After the literature search, we used the EU Register of 
Marine Species (Costello et al. 2004) to  identify the valid 
species names, solving all synonymies and taxonom ic prob­
lems. This resulted in  a list of 249 species. In addition, all 
species th a t could no t be sampled through the sam pling pro­
cedure used in  Reichert et al. (2008a) were excluded, following 
three criteria:
(1) All vagile species were excluded, as these were no t sampled 

by Reichert et al. (2008a). Tiere, vagiles are defined as 
species able to  move relatively fast (e.g., amphipods). This 
criterion reduced the list to  158 species, leaving only ses­
sile and slow-moving invertebrates (e.g., snails).

(2) M orphologically similar species com bined in to  a species 
complex by Reichert et al. (2008a) were also grouped into 
species complexes in  the  reference list. This further 
reduced the list to 137 species/complexes.

(3) Habitat specialists (e.g., species only occurring in  the 
supralittoral zone or living in  dead wood) were also 
excluded from the reference list, as they were no t sampled 
by Reichert et al. (2008a).

This resulted in a list of 134 species or species complexes of 
sessile and slow-moving m acrobenthic invertebrates in the 
north  shore area. We double-checked this list to  ensure tha t 
no  species currently extinct from the island and/or unable to 
appear in the rocky intertidal no rth  shore was included. All 
species were recorded in  the 1990s and/or later, and none of 
the listed invertebrates is a specialist of a habitat no t present 
in  the studied area. Thus, given the exhaustive nature of all 
historical and recent investigations at Helgoland and the strict 
application of all criteria, we assume th a t the final reference 
list presents an accurate picture of the  species living in  the 
north  shore. As a consequence, we conclude th a t the adapted 
reference list (134 species) is the  "true" richness of the studied 
area and can thus be used as a baseline for tests of the accu­
racy of the different SREs.

Species richness estimators: We assessed the performance of 
12 different SREs. Five were nonparam etric estim ators th a t use 
presence/absence data: Chao2 (Chao 1984, 1987), ICE (inci­
dence-based coverage estimator; Lee and Chao 1994; Chao et 
al. 2000), Jackknifel and Jackknife2 (both developed by Burn­
ham  and Overton 1978, 1979), and Bootstrap (Smith and van 
Belle 1984). Quantitative descriptions of these SREs can be 
found in  Colwell (2006), M agurran (2004), and the original 
papers. These SREs were calculated using the Estimates soft­
ware developed by Colwell (2006). Evaluations of their per­
formance and their com parability are available in, for exam ­
ple, the review from W alther and Moore (2005), Hortal et al.

(2006), and references therein. In these comparative works 
(among others), nonparam etric estimators, particularly the 
two from Chao and the two Jackknives, perform adequately in 
m any cases, in  terms of estim ation bias, precision, and accu­
racy. However, these estimators have also been reported to  fail 
in providing reliable estimates, for, e.g., terrestrial p lant com ­
m unities (Chiarucci et al. 2003) or m arine assemblages (Chap­
m an and Underwood 2009). Such assemblages are character­
ized by num erous rare species. Therefore, it seems apparent 
tha t nonparam etric estim ators perform poorly under these cir­
cumstances.

Six curve-based SREs were estim ated from the sm oothed 
observed species accum ulation curve, obtained using an ana­
lytical expression for the random ization of the samples 
(Ugland et al. 2003). Two of these estim ators were non-asymp- 
totic species accum ulation curves: Power (the original Arrhe­
nius' power law; Arrhenius 1921) and Semilog (the semiloga- 
rithm ic plot of Gleason 1922). A nother four were asymptotic 
species accum ulation curves: M ichaelis-M enten (established 
originally for enzyme kinetics by Michaelis and M enten 1913 
and first used as an SRE by Clench 1979), Negative Exponen­
tial (also described by Arrhenius 1921; Soberón and Llórente 
1993), Weibull (1951), and Morgan-Mercer-Flodin (MME) 
(Morgan et al. 1975; Lambshead and Boucher 2003). The six 
curve-based SREs (either asym ptotic or non-asym ptotic) were 
fitted to  the sm oothed observed accum ulation curve by use of 
the com prehensive curve fitting program CurveExpert (Hyams 
2005), and total species richness was calculated by extrapolat­
ing to  either the asym ptote of the fitted curve or the total area 
of the no rth  shore. The original references and Tjorve (2003) 
give the form ulations of these curve-based SREs; Tjorve 
(2003), Hortal et al. (2006), Jiménez-Valverde et al. (2006), and 
Melo et al. (2007) provide analyses of their performance.

Finally, we also evaluated the Ugland TS estim ator (Ugland 
et al. 2003), w hich accounts for the  degree of environm ental 
heterogeneity (e.g., depth  or sedim ent properties) and the size 
of the whole area by partitioning the data set of the sampled 
area in to  several subsets—a step no t required for the other esti­
m ators. Total species richness is here estim ated in  a semiloga- 
rithm ic plot by extrapolating the linear regression through the 
end points of the nested accum ulation curves.

We assessed accuracy for the 12 different SREs by measuring 
prediction errors (see Walther and Moore 2005). Because we cal­
culated a single estimate per SRE and the "true" num ber of 
species was already known (134), we used absolute error, stan­
dard error, and percentage error as measures of accuracy. 
Absolute error is the difference between the "true" and predicted 
species richness, and percentage error is the absolute error 
divided by the "true" species richness (e.g., Hortal et al. 2006).

Standard error of the Ugland TS estimator: There are cur­
rently no  measures of the dispersion of the estimates of the 
Ugland TS estimator. Here, we applied a m odification of the 
bootstrap technique (Efron 1979) to  estimate the standard 
error of the Ugland TS estimator. Our procedure is best
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explained by referring to  the Helgoland data set, where the 
samples were subdivided into 10 subsets: 1-40 (a), 41-80 (b), 
81-120 (c), 121-160 (d), 161-200 (e), 201-240 (f), 241-290 (g), 
291-340 (h), 341-390 (i), 391-440 (j). W ithin each of these 10 
subsets we made a new subset of samples by sampling w ith 
replacement. Take, for example, subset (f): a new representa­
tion of this subset is obtained by selecting 40 samples w ith 
replacem ent from the 40 integers {201, 202,..., 240}. Repeating 
this technique for all the 10 subsets gave a new data m atrix of 
the resampled original data set. We then  ran the Ugland TS 
m ethod on this new data m atrix to  obtain the first bootstrap 
estimate. We repeated this process 100 times and calculated the 
standard error from these 100 bootstrap estimates.

Analysis 2: Model development for testing the influence o f 
species rarity—Analysis 1 revealed the Ugland TS estim ator as 
the best-performing SRE (see "Results"). Therefore, the influ­
ence of rare species occurrence on  estim ator bias was investi­
gated for this SRE only.

Parameters of model data set: To test w hether the  occur­
rence of rare species has an im pact on the bias of the Ugland 
TS estimator, we developed a simplified model system com pa­
rable in  basic parameters to  the  empirical invertebrate data set 
of the northern  intertidal of Helgoland and calculated 21 
alternative values of the average fraction tha t a rare species 
occupies in the total area.

The following assumptions for the model data set were made:
1. The total area has the same size as the w hole northern  

intertidal of Helgoland (32,909 m 2) and thereby comprises 
A = 131,636 samples of 0.25 m 2.

2. The total area is hom ogenous and exhibits only one type 
of community.

3. The subsets have the same sample size as the subsets of the 
invertebrate data set (i.e., 40, 80, 120,... 440).

4. The spatial distributions of species are no t correlated w ith 
each other.

5. All rare species occur in exactly the  same num ber of sam­
ples and, therefore, exhibit the  same p  values.

6. The total num ber of species STotal = 150.
7. The total num ber of rare species SRaje = 100.
8. The total num ber of com m on and interm ediate species 

Sr + S, = 50.Com Interm

Note th a t assum ptions 2, 4, and 5 are simplified assumptions 
and do no t represent the  situation of the  empirical data set, 
w hich is more com plex (several com m unities, correlated 
occurrence of species, and different p  values for the occurrence 
of rare species).

As shown by Ugland and Gray (1982), species in  an assem­
blage m aybe classified as (1) rare, (2) interm ediate, or (3) com ­
m on. Classification boundaries are norm ally set by expert 
judgm ent. For the empirical invertebrate data set, we used the 
following definitions:
1. Species observed in  fewer th an  six samples (i.e., less than  

1.3% of the 440 samples) were classified as rare. There were
S Rare =  2 6  Species.

2. Species observed in m ore than  44 samples (i.e., m ore than  
10% of the  440 samples) were classified as com m on. There 
were SCom = 1 3  species.

3. All other species were classified as interm ediate; in  total 
înterm = 2 ' species were recorded.

It is essential to  note tha t the distribution of 26 rare, 21 
interm ediate, and 13 com m on species in  the empirical data set 
is based on a small collection of 440 samples in  an area tha t 
would need 131,636 samples to  be fully covered. Thus, to esti­
m ate species richness in the whole area, it is necessary to  per­
form an extrapolation for each of these subgroups to  a huge 
unsam pled area. The extrapolation relies on  exhaustive field 
evidence com ing from a large num ber of recent and historical 
investigations, representing almost the  entire area of the 
northern  intertidal of Helgoland. Such evidence was already 
integrated in the species reference list.

Thus, we assume th a t the  assum ption for STotal, SRam, and 
Scom + Sinterm in  t l̂e m °del data set presents an accurate picture 
of the  num ber of rare, interm ediate, and  com m on species in 
the  w hole no rth ern  intertidal. The observed num ber of com ­
m on and  in term ediate species (i.e., 13 + 21 = 34) is likely 
close to  the  true num ber of com m on and  interm ediate 
species for the  w hole no rthern  intertidal. In the  sim ulations, 
the  num ber of com m on and  in term ediate species, SCom + SIn_ 
term = were chosen to  allow for a possible occurrence of 16 
m ore com m on or in term ediate species (i.e., approxim ately 
50% m ore species in  these two groups) in  the w hole area. 
Further, the observed 26 rare species is likely quite far from 
the  true num ber of rare species in  the  w hole no rth ern  in te r­
tidal, and thus in  to tal 100 rare species were chosen in  the 
m odel data set.

On the bias o f the Ugland TS estimator—Model deduction: 
Exact expressions for the expected num ber of species in  any 
sample of a square from the whole area (A = 131,636 squares) 
may be obtained from the hypergeometric distribution (Ugland 
et al. 2003). For large sample sizes, however, the binomial dis­
tribution provides good approximations, i.e., the expected 
num ber of species in a random  sample of k quadrats is

*(*)=s ™ * [i -  ('-pyi
In our m odel data set, we assume three subgroups w ith 

three different p  values. This gives the following three models 
for the expected num ber of species of each abundance group 
in  k samples:

W )  = U ' - ( 1  - A J ‘]

-  (! -  P,nteJk]

SCom«  = SCoJ l - ( l  -PcJFl
where SRaje, SMerm, and SCom are the expected num ber of rare, 
interm ediate and com m on species, respectively, and pRare, 
Pinterm' and Pcom rePresent the average fraction of squares in  the 
whole area where respectively a rare, an interm ediate, and a 
com m on species is found.
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The random ized accum ulation curves for rare, interm edi­
ate, and com m on species are shown in Fig. 1A-C. It is seen 
th a t there is a perfect model fit in all three groups. However, 
if we try  to  fit this type of model, S(k) = STgtal x [1 -  (1 - p)k], to 
the whole empirical data set, the  theoretical expression devi­
ates substantially from the empirical curve (Fig. 2A). This is 
because the binom ial model is no t additive; i.e., different cur­
vature of the three accum ulation curves leads to  a different 
type of functional form. Therefore, the three groups should be 
treated individually w hen calculating the expected num ber of 
species in  k samples:

sw = w i  - d -p«Jkï + sMej i - d - Plntem,n + sCoj i  - d - Pcj*\
Note th a t this sum m ation gives a perfect fit (Fig. 2B) simply 
because each of the three groups exhibits a perfect fit on its 
own (Fig. 1A-C).

A closer look at Figs. 1 and 2 provides the key to  a trem en­
dous simplification. Because the sample size (440) of the 
empirical invertebrate data set is relatively large and covers the 
whole environm ental gradient and all seasonal aspects, it is 
assumed tha t m ost of the interm ediate and com m on species 
have been detected in  the investigation. Almost all (if no t all) 
of the new  species found beyond the already observed 60 
species will be rare species, i.e., species w ith a narrow spatial 
or seasonal distribution and/or low densities and therefore dif­
ficult to  sample. Looking at the single curves again (Fig. 
1A-C), we m ay infer from the rapid asym ptotic behavior of 
the interm ediate and com m on group th a t the  accum ulation 
curve beyond 440 samples (i.e., extrapolation to  the whole 
population w ith its 131,636 quadrats) will be dom inated by 
the occurrence of rare species and will rapidly converge in 
functional form to the accum ulation of the rare species. This 
is a strong argum ent for using the binom ial model for each of 
the three subgroups w hen studying the performance of the 
Ugland TS extrapolation. Thus, w hen the sampled num ber of 
quadrats is large, the expected num ber of species m ay be cal­
culated by the following approxim ation:

M) = Sa J l  - d  ~ P c J k] + W 1  - d - /W ) ‘] + - d  ~PRJ k]

J 1 ~PRJ k

“Ais
This m odel for the empirical accum ulation curve has only 

three parameters: the  num ber of observed species (Sohs), the 
num ber of observed rare species (SRar) ,  and the average frac­
tion  of samples where a rare species is observed. From Fig. 3 
we see th a t the performance of this approxim ation is very 
good w hen the num ber of samples passes 40. This surprisingly 
low boundary for a good approxim ation is due to  the  rapid 
detection of interm ediate and com m on species.

On the basis of the success of the approxim ation formula 
for the accum ulation curve of the empirical data set (see Fig. 
3), we applied the same formula to  the whole intertidal area of
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Fig. 1 .  The ran d o m ized  em pirical accu m u la tio n  curve an d  th e  th e o re ti­
cal ex p ec ta tio n  of 26 rare species (defined  as rep re sen ta tio n  in few er th an  
six sam ples) (A), 21 in te rm e d ia te  species (defined  as rep re sen ta tio n  in 
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sam ples on  th e  n o rth e rn  rocky in tertidal of H elgoland. N o te  th a t  th e  tw o  
curves in each  g rap h  (A-C) are  a lm o st identical.

131,636 squares using the sim ulation data set. Thus, the 
expected num ber of species in  k samples from the whole 
northern  intertidal of Helgoland will be

S(k): ~Pf,

where STotd is the total num ber of species in  the whole n o rth ­
ern intertidal of Helgoland, SRaje is the total num ber of rare 
species in  the  same area, and p  is the average fraction of 
squares where a rare species exists. The approxim ative model 
rests on the assum ption th a t the accum ulation of new species
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Fig. 2. The ran dom ized  em pirical accu m u la tio n  curve an d  th e  th e o re ti­
cal ex p ec ta tio n  o f all 60 species o b served  in 4 4 0  sam ples on  th e  n o rth ern  
rocky in tertidal of H elgoland. (A), N o te  th a t  th e  m odel is n o t ab le  to  fit 
th e  em pirical curve. (B), This m odel is th e  sum  of th e  m odels of th e  th ree  
g ro u p s  (rare, in te rm ed ia te , co m m o n ); n o te  th a t  th e  perfec t fit to  th e  
em pirical curve  is a c o n se q u e n c e  of th e  perfec t fit of th e  se p a ra te  g ro u p - 
m odels in Fig. 1A-C.

Table 1 .  Bias of  t h e  U gland  TS e s t im a to r  for t h e  m o d e l  d a ta  set.
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Fig. 3. The random ized  em pirical accu m u la tio n  curve  an d  th e  ap p ro x i­
m ation  to  th e  theore tica l ex p ec ta tio n  of all 60 species o b served  in 440  
sam ples on  th e  n o rth ern  rocky in tertidal of H elgoland. This m odel is 
defined  as S(k) = Sob! -  5fiore(1 -  p Rar) k w h ere  50te is th e  o b served  species 
n u m b e r  in all th e  sam ples an d  is se t to  60 . The tw o  o th e r  p a ram eters , SRare 
(n u m b er of rare species) an d  p Rme (average  p robab ility  of a rare species 
occurring  in a sam ple), are  reg a rd ed  as unknow n  an d  e s tim ated  by  least 
sq ua res in co m parison  w ith  th e  ran d o m ized  em pirical accum ulation  curve 
of all species.

p Squares Ugland TS estim ate Bias, %

0 .0 0 5 0 0 658 315 110

0 .0 0 4 0 0 52 7 300 100

0 .0 0 3 0 0 395 273 82

0 .0 0 2 0 0 263 228 52

0 .0 0 1 5 0 197 197 31

0 .0 0 1 2 0 158 175 17

0 .0 0 1 1 0 145 167 11

0 .0 0 1 0 0 132 158 5

0 .0 0 0 9 5 125 154 3

0 .0 0 0 9 0 118 149 0

0 .0 0 0 8 5 112 145 - 4

0 .0 0 0 8 0 105 140 - 7

0 .0 0 0 7 5 99 135 -10
0 .0 0 0 7 0 92 130 - 1 3

0 .0 0 0 6 5 86 125 - 1 6

0 .0 0 0 6 0 79 120 - 2 0

0 .0 0 0 5 0 66 110 - 2 7

0 .0 0 0 4 0 53 99 - 3 4

0 .0 0 0 3 0 39 87 - 4 2

0 .0 0 0 2 0 26 75 - 5 0

0 .0 0 0 1 0 13 63 - 5 8

T w enty-one alternative  values for th e  p a ra m e te r  p, i.e., th e  av erag e  frac­
tion  of squa res w h ere  a rare species exists an d  th e  co rre sp o n d in g  n u m b er 
of sq ua res of th e  w h o le  area , i.e., of th e  possible 1 3 1 ,6 3 6  squares. The 
co rre sp o n d in g  U gland TS es tim a te  an d  its bias [(estim ate  -  15 0 ) /1 50] is 
show n for each  of th e  21 a lternative  values.

is predom inantly  determ ined by the addition of rare species 
w hen passing 40 samples.

To study how  the occurrence of rare species influences the 
performance of the Ugland TS estimator, we studied 21 alter­
native values for the param eter p  (average fraction of squares 
tha t a rare species occupies) given in  Table 1. The difference 
between the given expected num ber of species in the model 
data set (STotal = 150) and the calculated num ber of species 
using linear extrapolation of the regression line through the 
10 end points S(40), S(80), ..., S(440) gives the bias of the 
Ugland TS estimator.

Assessment
Estimator results and predictive accuracy—Richness estimates 

and accuracy for the 12 different m ethods are shown in 
Table 2. Only the Ugland TS estim ator provided a highly accu­
rate estimate. W ith a predicted richness of 141 (± 5.9 SD), it 
was the sole SRE yielding less than  10% error (the actual over­
estimate was 5.2%). In fact, the 95% confidence interval of the 
Ugland TS estimates is [129, 153], w hich incorporates the 
"true" species num ber 134. The next m ost accurate estimates, 
the MME, Semilog, and Weibull curves, underestim ated "true" 
species richness by 10%-16%. The rem aining eight SREs were 
subject to  between 31% and 76% prediction error.
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Table 2 . Pred ic ted  spec ie s  r ichness a n d  a cc u ra c y  fo r  t h e  12 spec ie s  r ichness  e s t im a to rs  (SREs) e v a lu a te d  in th is  study.

SRE Predicted richness Absolute error Standard deviation Percentage error

Pow er 236 102 9 .6 76.1

Sem ilog 116 18 7.5 13 .4

M ichaelis-M enten  m ean 61 73 24 .0 54 .5

N egative ex ponen tia l 55 79 41.1 59 .0

Weibull 113 21 2 .6 15 .7

MMF 120 14 2 .7 10 .4

C hao2 93 41 17.3 30.6

ICE 77 57 6 .4 42 .5

Jackknifel 74 60 3.4 44 .8

Jackknife2 85 49 6 .8 36.6

B ootstrap 66 68 3.0 5 0 .7

U gland TS 141 7 5 .9 5 .2

C alculations are  based  on  d a ta  from  a su rvey  of sessile an d  slow -m oving in v erteb ra tes in th e  in tertidal of n o rth e rn  H elgoland (Reichert e t  al. 2008a). 
A ccuracy is m easu red  as p red ic tion  erro r from  th e  " tru e"  species richness of 1 34.

Influence o f rare species on the bias o f the Ugland TS estima­
tor—The sim ulation of the Ugland TS m ethod  to  the model 
accum ulation curve S(k) = STotal -  SRare( 1 - p ) k for k = 40, 80, 120, 
160, 200, 240, 290, 340, and 440 is given in Table 1. The 
expected total num ber of species in  the model data set is 150, 
and the param eter p  is the average probability of observing a 
given rare species in each of the 131,636 quadrats of 0.25 m 2 
needed to  cover the  whole northern  intertidal area of Hel­
goland. For each of the 21 alternative p  values, the bias of the 
Ugland TS estimate has been calculated.

To explain how  the bias for the TS estimator has been calcu­
lated, we provide an example w ith actual numerical values. Let 
us choose p = 0.0008, which corresponds to  an average occu­
pancy of pA = 0.0008 X 131,636 = 105 samples am ong the rare 
species. Hence, the randomized accumulation curve, correspon­
ding to these parameters, will be S(k) = 150 -  100 x (1 -  0.0008)^ 
= 150 -1 0 0  x 0.9992L We may now  calculate the expected num ­
ber of species in the 10 subsets we use for the Helgoland data 
set, i.e., k = 40, 80, 120, 160, 200, 240, 290, 340, 390, 440.

For example, S(40) = 150 -  100 x 0.999240 = 53.2, S(80) = 
150 -  100 x 0.999280 = 56.2, etc. In this way we get the fol­
lowing empirical species accumulation:

5 3 .2  5 6 .2  5 9 .2  62 .0  64 .8  67 .5  70 .7  73 .8  76 .8  79 .7

The corresponding Ugland TS estimate is 140, w hich is an 
underestim ate of 10 species, as our m odel includes 150 species 
as the  total species number. For this example, the correspon­
ding bias is calculated as (140 -  150)/150 = -7%.

The Ugland TS m ethod  overestimates by more than  30% 
(50 species) if the rare species on average occupy more than  
195 squares, i.e., >0.15% of all squares, and underestim ates by 
more than  30% if the rare species on average occupy less than  
55 squares, i.e., <0.04% of all squares. Between these values, 
there is a w indow  ranging from an occupancy of 92-145 
squares (P = 0.0007 to  P = 0.00110) where the Ugland TS 
m ethod  produces a bias of ±13% or less.

Discussion

The performance and statistical properties of SREs have 
been addressed by several authors (e.g., Palmer 1990; Walther 
and Moore 2005; Hortal et al. 2006; see references therein and 
above for more com prehensive lists of works). However, com ­
parative analyses often provide contradictory results (com­
pare, e.g., Keating and Q uinn 1998 and Chazdon et al. 1998), 
and there is no  consensus on the best SRE for general use. We, 
as previous authors, have shown contradictory results of 12 
SREs. Assessment of SRE performance strongly depends on 
how  the "true" species richness (against w hich the estim ations 
are compared) is obtained. Importantly, our estim ations were 
com pared to  a com plete species list serving as the  "true" rich­
ness of the area studied. This is in  direct contrast to  the  m ost 
com m on m ethod  for calculating the "true" richness, w hich is 
to  fit the asym ptote of a certain model to  the random ized 
accum ulation curve calculated from the samples themselves 
(e.g., Foggo et al. 2003; Lambshead and Boucher 2003; Can­
ning-Clode et al. 2008). The justification of this approach usu­
ally relies on the R2 values close to  1 obtained while fitting 
these curves; the  assum ption being that, if the model approx­
imates the observed accum ulation curve, its extrapolation 
m ust be quite close to  the "true" species richness. However, 
despite a perfect model fit to  a specific data set, extrapolation 
of the random ized accum ulation curves will in  general no t 
provide inform ation on the true species richness (Ugland et al. 
2003). It is therefore difficult to  reliably assess w hich estim a­
tor m ight perform best, (i.e., best represent the underlying 
assemblage and/or territory by its specific assum ptions and 
statistical properties, alone). Although it is rarely available, it 
is a great advantage to  assess the  performance of SREs against 
a com plete species list.

As m echanism s driving the performance of SREs itself, fac­
tors related to  the particular sampling protocol used (e.g., sam­
ple size) and the spatial distribution of species and their abun-
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dances (e.g., population dynamics) have been proposed (e.g., 
Magurran 2004; King and Porter 2005; W alther and Moore 
2005). The effect of these factors on a given SRE should be 
understood before em barking on a study aim ing to  extrapo­
late total species richness in  an area. However, this is difficult 
to  achieve w ithout an unrealistically detailed knowledge of 
the system. SREs w ith the m ost appropriate assum ptions about 
the underlying species abundance distribution in  the  unsam ­
pled area will produce the m ost reliable estimates. N onpara­
metric estimators and asym ptotic species-accumulation curves 
assume almost hom ogeneous species abundance distribution 
characterized by a m ajority of com m on species and a small 
num ber of rare species. Although some estimators may be rel­
atively robust to  m oderate violations of the underlying species 
abundance distribution, larger departures are likely to  result in 
increasingly unrealistic estim ations (Ugland and Gray 2004, 
2005). This poor performance is no exception, particularly in 
m any m arine assemblages w hich are extremely patchy at 
small spatial scales (e.g., Fraschetti et al. 2005) and are charac­
terized by high num bers of rare species—m uch like the situa­
tion  on the northern  shore of Helgoland (see Reichert et al. 
2008a). For exam ple, C hapm an and U nderw ood (2009) 
describe serious underestim ates of true species richness in 
three different rocky shore m arine assemblages. Inadequate 
performance of nonparam etric estimators is also reported for 
terrestrial p lant com m unities th a t are characterized by m any 
rare species, i.e., species w ith a very low probability of 
encounter (e.g., Chiarucci et al. 2003).

Our approach to separately analyze the species-accumula­
tion  curves for rare, interm ediate, and com m on species 
revealed th a t the curvature of the random ized empirical 
species-accumulation curve of all species is determ ined prim a­
rily by the occurrence of rare species. We have shown for the 
first time, using sim ulations of the Ugland TS estimator, how  
the underlying structure of a data set (here the proportion of 
rare species) can influence the outcom e of a prediction. If the 
probability of encountering a rare species is relatively high, 
the accum ulation of rare species will be too large and the lin ­
ear extrapolation from the sampled area to  the entire unsam ­
pled area will overestimate, or vice versa. In contrast, the  lin ­
ear extrapolation will be little biased if the probability of 
encountering rare species is neither high nor low. For the 
model data set exam ined here, the sim ulations of the Ugland 
TS m ethod  will give a reliable estimate if rare species occupy a 
fraction between 1.1/1000 and 0.7/1000 of the available area 
(i.e., the num ber of squares of size 0.25 m 2 occupied by a rare 
species is between 92 and 145).

In our empirical data set, m ost of the 26 rare species 
occurred in  only one of the 440 samples. For such a singleton, 
this m eans an occupancy rate of 1/440 = 0.2% of all sampled 
squares. Because we do no t know  the true average num ber of 
the occupancy of a rare species over the total area of 131,636 
squares, we simulated alternative values between 13 (i.e., 
0.01%) and 658 (i.e., 0.5%) squares. In our simulations, the

optim al performance of the Ugland TS m ethod  occurred when 
a rare species on average occupied between 92 (0.07%) and 
145 (0.11%) squares. It should be kept in m ind, however, tha t 
the sampled area represents only 0.33% of the  total area. It is 
therefore likely th a t the  estimate of the occupancy of rare 
species is highly biased. For example, if the sam pling intensity 
were twice as high as in  the  empirical sam pling program (i.e., 
880 instead of 440 samples), bu t w ith the same occurrence 
rate for a rare species (i.e., a species still occurs only once), the 
data set would have contained a rare species w ith 1/800 = 
0.1%. It is well know n from large sampling programs th a t a 
large num ber of species are observed in  only one or two sam­
ples (Gaston and Blackburn 2000; Ellingsen and Gray 2002; 
King and Porter 2005; Ugland et al. 2007; Fontana et al. 2008), 
so the true average occupancy of rare species in  the rocky 
intertidal of Helgoland is likely to  be close to  the optim al 
interval revealed by our sim ulations of the  Ugland TS m ethod.

Because we have clearly dem onstrated tha t the probability 
of encountering a rare species strongly influences the per­
formance of the Ugland TS estimator, the influence of rarity 
on the performance of other estim ators should also be exam ­
ined. For this purpose, it would have been possible to  extend 
our simulations. In addition, further tests using other data sets 
would improve our understanding of the influence of rare 
species in different habitats. However, despite the potentially 
crucial role SREs play in biodiversity m easurem ent, a sampling 
regime tha t detects all rare species is a formidable endeavor. 
These results also emphasize the difficulty of choosing an 
appropriate estim ator a priori, w ithout a detailed knowledge 
of the  ecosystem concerned and, in turn, the structure of the 
data set used for the estim ation. Nevertheless, our sim ulations 
provide a general framework for assessing the suitability of 
SREs for a given data set, and thus improve the selection 
process of the optim al m ethod.
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