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Abstract:
A fifty year time series of sea surface temperature (SST) and time series on fishery yields are 
examined for emergent patterns relative to climate change. More recent SeaWiFS derived 
chlorophyll and primary productivity data were also included in the examination. Of the 64 LMEs 
examined, 61 showed an emergent pattern of SST increases from 1957 to 2006, ranging from 
mean annual values of 0.08°C to 1.35°C. The rate of surface warming in LMEs from 1957 to 
2006 is 4 to 8 times greater than the recent estimate of the Japan Meteorological Society’s COBE 
estimate for the world oceans. Effects of SST warming on fisheries, climate change, and trophic 
cascading are examined. Concern is expressed on the possible effects of surface layer warming 
in relation to thermocline formation and possible inhibition of vertical nutrient mixing within the 
water column in relation to bottom up effects of chlorophyll and primary productivity on global 
fisheries resources.

1. Background

Large Marine Ecosystems (LMEs) are an important component of a hierarchical 
scientifically-founded marine geographical construct published in 2003 (Watson 
et al., 2003). Since 1995, the LMEs have been designated by a growing number 
of coastal countries in Africa, Asia, Latin America and eastern Europe as place- 
specific assessment and management areas for introducing an ecosystem based 
approach to recover or develop and sustain marine resources. The LME 
approach to the assessment and management of marine resources is based on
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the operationalization of five modules with suites of indicators for monitoring and 
assessing changing conditions in ecosystem: (i) productivity, (¡i) fish and fisheries 
(iii) pollution and ecosystem health, (iv) socioeconomics and (v) governance 
(Duda and Sherman, 2002). As part of an emerging effort by the scientific 
community to relate ecosystem-based management to policy makers, 220 
marine scientists and policy experts released a statement in support of matching 
natural ecological units of ocean space, including LMEs, to scientific studies on 
the structure and function of marine ecosystems in an effort to tighten the linkage 
between applied science and improved management of ocean resources 
(COMPASS, 2005).

A recent paper published in the National Academy of Science Proceedings 
(Essington et al., 2006), along with a growing number of LME case study 
volumes and reports (Table 1), including the recent controversial biodiversity loss 
paper in Science (Worm et al., 2006), have made good use of the LMEs as 
ecologically derived units of ocean space that are directly related to the 
assessment and management of marine resources around the globe.

Since 1995, explicit support has been extended by international financial 
organizations to developing coastal countries for assessing and managing LMEs 
and their goods and services using an LME approach. At present 110 countries 
are engaged in LME projects along with 5 UN agencies, the Global Environment 
Facility and the World Bank. The countries are supported by $1.8 billion in 
financial assistance to 16 LME projects focused on introducing an ecosystems 
approach to the recovery of depleted fish stocks, restoration of degraded 
habitats, reduction and control of pollution and conservation of biodiversity 
(Sherman et al., 2007).

The LME approach advances ecosystem-based management (EBM) with a long
term assessment strategy that measures “core” suites of indicators from primary 
productivity in relation to LME carrying capacity for fish and fisheries to the 
socioeconomic benefits of sustainable development of ecosystem goods and 
services. One of the growing issues in the management of LMEs is the effect of 
global climate change and warming on the fish and fisheries of the LMEs. In this 
report we provide the results of our initial examination of the physical extent and 
rates of sea surface temperature trends, chlorophyll, and primary productivity of 
the world’s 64 LMEs.

2. LME Chlorophyll and Primary Productivity
Daily binned global SeaWiFS chlorophyll a (CHL, mg m'3) and photosynthetically 
available radiation (PAR, Einsteins m'2 d'1) scenes at 9 km resolution for the 
period January 1998 through December 2006) were obtained from NASA OBPG. 
Daily global sea surface temperature (SST, °C) measurements at 4 km resolution 
were derived from nighttime scenes composited from the AVHRR sensor on 
NOAA’s polar-orbiting satellites and from NASA’s MODIS TERRA and MODIS
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AQUA sensors. Daily estimates of primary productivity (PP, gC m'2 d'1) were 
generated using a vertically generalized productivity model (VGPM2) that 
calculates the daily amount of carbon fixed based on the maximum rate of 
chlorophyll-specific carbon fixation in the water column (P^pf, mgC mgChl'1 h'1); 
daily sea surface PAR; the euphotic depth (Zeu, m); CHL; and the number of 
daylight hours (DL, h). The VGPM2 is similar to the Behrenfeld and Falkowski 
(1997) VGPM, but uses an exponential model relating Pbopt (mgC mgChl'1 h'1) to 
SST (Eppley, 1972) as modified by Antoine et al. (1996) Estimates of the 
euphotic depth (1% surface PAR) were derived from CHL according to Morel and 
Berthon (1989). Monthly and annual means of CHL and PP were extracted and 
time series trends plotted for each LME (Figures 1 and 2). A simple linear 
regression of the annual CHL and PP was used to determine the rate of change 
over time. The significance (alpha+0.01 and 0.05) of the regression coefficient 
was calculated using a t-test according to Sokal and Rohfl (Sokal and Rohlf, 
1995). The results were statistically significant for chlorophyll trends in only 8 
LMEs, and in 5 LMEs for primary productivity (Table 2)

3. LME Sea Surface Temperatures (SST)

Sea surface temperature (SST) data is the only thermal parameter routinely 
measured worldwide that can be used to characterize thermal conditions in each 
and every LME. Subsurface hydrographic data, albeit important, lack spatial and 
temporal density required for reliable assessment of thermal conditions at the 
LME scale worldwide. The U.K. Meteorological Office Hadley Center SST 
climatology was used in the analysis as the Hadley data set has the best 
resolution, 1 degree latitude by 1 degree longitude globally and, since the project 
goal was to assess thermal conditions over the last 49 years, we needed a data 
set that goes as far back as 1957. The Hadley data set meets this condition. A 
highly detailed, research-level description of this data set has been published by 
(Rayner et al., 2003).

The Hadley data set consists of monthly SSTs calculated for each 1° x 1° 
rectangular cell (spherical trapezoid, to be exact) between 90°N-90°S, 180°W- 
180°E. Our goal was to calculate and visualize annual SSTs for each LME. We 
have calculated annual SST for each 1° x 1° cell and then have area-averaged 
annual 1 ° x 1 ° SSTs within each LME. Since the square area of each trapezoidal 
cell is proportional to the cosine of the middle latitude of the given cell, all SSTs 
were weighted by the cosine of the cell’s middle latitude. After integration over 
the LME area, the resulting sum of weighted SSTs was normalized by the sum of 
the weights that is by the sum of the cosines.

The next step was to calculate annual anomalies of annual LME-averaged SST. 
To this goal, the long-term LME-averaged SST was computed for each LME by a 
simple long-term averaging of the annual area-weighted LME-averaged SSTs. 
Then, annual SST anomalies were calculated by subtracting the long-term mean 
SST from the annual SST. Both SST and SST anomalies were visualized using
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adjustable temperature scales for each LME in order to bring out details of 
temporal variability that otherwise would be hardly noticeable if a unified 
temperature scale were used. The resulting plots of SST and SST anomalies are 
presented in 2 sets of 4 plates, each set containing a total of 63 figures: four 
plates for SST and four plates for SST anomalies (Figures 3 and 4). The Arctic 
Ocean LME was not included in this analysis because of the perennial sea ice 
cover that prevents meaningful assessment of the LME-averaged SST. Other 
Arctic LMEs also feature sea ice cover that essentially vanishes in summer, thus 
making summer SST assessment possible.

The 1957-2006 time series revealed a global pattern of long-term warming 
(Figures 3 and 4). At the same time, the long-term SST variability since 1957 
was neither statistically stationary nor uniform. Most LMEs underwent a 
prolonged cooling between the 1950s and the 1970s, replaced by a rapid 
warming until present. Therefore we re-calculated SST trends using only the last 
25 years of data (Figures 5 and 6), where SST anomalies are calculated relative 
to the 1957-2006 mean SST, for each LME. Net SST change in each LME 
between 1982 and 2006 based on SST trends shown in Figure 5 is summarized 
in Table 3 and Figure 7.

The most striking result is the wide-spread, global pattern of warming, with the 
notable exceptions of two LMEs, the California Current and Humboldt Current. 
These LMEs experienced cooling over the last 25 years. Both LMEs are in the 
largest and most persistent upwelling areas in the Eastern Pacific.

The average warming rate of LMEs (Table 3) is several times the global SST 
warming rate (Yoshida et al., 2006). Since most LMEs are located within the 
coastal ocean realm, our results reveal that the coastal ocean is warming much 
faster than the deep ocean.

Rapid warming exceeding 0.6°C (or roughly 1°F) over 25 years is observed 
almost exclusively in moderate- and high-latitude LMEs. This pattern is generally 
consistent with the model-predicted polar-and-subpolar amplification of global 
warming. Low-latitude LMEs’ warming is several times slower than the high- 
latitude warming. The most rapid warming exceeding 1,0°C over 25 years is only 
observed in the Baltic Sea, North Sea, Black Sea, Sea of Japan/East Sea, East 
China Sea and Newfoundland-Labrador Shelf LMEs.

Comparison of LME SST levels versus global SST warming

Warming was observed in 61 LMEs, whereas slight cooling was only observed in 
two LMEs located in the Eastern Pacific. We divided the 61 warming LMEs into 
four groups according to their warming rates (Table 3; Figure 7):

(a) Super-fast warming LMEs (red), with D(SST)>0.9°C;
(b) Fast warming LMEs (pink), with D(SST) between 0.6-0.9°C;
(c) Moderate warming LMEs (yellow), with D(SST) between 0.3-0.6°C;
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(d) Slow warming LMEs (green), with D(SST) between 0.0-0.3°C.

The LME warming rates were compared to in situ SST global data of the Japan 
Meteorological Society and their estimate of a global ocean warming rate of 
+0.5°C/100 yr (Yoshida et al., 2006).

The “red” LMEs were warming with an average rate exceeding 1°C over 25 
years, equivalent of 4°C over a century. This rate is eight times the global SST 
warming rate of 0.5°C over the last century determined from in situ data (Yoshida 
et al., 2006). Even the moderate-rate “yellow” LMEs were warming with a rate of 
0.45°C over the last 25 years or approximately four times the global SST 
warming rate over the last century.

It must be stressed that the above comparisons are warranted since (a) the 
global SST warming rate was determined from in situ  data, thus being 
completely independent from satellite SST data that are sometimes questioned; 
and (b) the global SST warming since 1910 is well-described by a linear trend, 
unlike the global surface a ir temperature trend; the latter having distinct 
breakpoints, including a sharp acceleration since 1976-1977 (Yoshida et al., 
2006).

4. .Fish and Fisheries
Examination of the fish and fisheries of the Red Zone LMEs revealed that 
considerable ecological stress has been reported for all six LMEs. Two of the 
semi-enclosed LMEs—the Baltic and the Black Sea—are in degraded condition 
from overfishing and eutrophication. Ecosystem effects of overfishing are 
reported by Daskalov (2003) for the Black Sea LME who also describes the 
impact of non-indigenous coelenterates and eutrophication on the ecosystem. 
Both stressors are considered secondary to the overfishing depletion of top 
predators causing a cascading change in dominance of the pelagic food web 
after 1970 (Daskalov, 2003).

In the case of the Baltic Sea, large scale decreases in cod, herring, eel, and 
salmon biomass and an increase in sprat are cause for concern (Jansson, 2003), 
as is the frequency and extent of coastal eutrophication events (HELCOM, 2001). 
The effects of relatively rapid increase in SST on the ecosystem are being 
studied and will undoubtedly be addressed by the GEF supported projects in 
both LMEs, with oversight by the Black Sea Commission, and HELCOM and 
ICES for the Baltic LME.

Temperature increases in the North Sea LME are of concern based on earlier 
reports of northward extensions of North Sea Zooplankton (Beaugrand and 
Ibanez, 2004; Beaugrand et al., 2002) and fish species and incursions of 
southern Zooplankton species and fish species advancing northward (Perry et al.,
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2005), and the continuing decline in the abundance of demersal fish species. In 
the Northeast Atlantic SST warming leads to increasing phytoplankton 
abundance in nutrient-rich cooler areas and decreasing phytoplankton in warmer 
areas (Richardson and Schoeman, 2004). Their findings raise the question of 
the relative importance of stratification in the annual biological production cycle of 
plankton in the North Sea LME, suggesting that warmer waters may lead to 
stratification that will inhibit nutrient missing and thereby limit plankton 
production. The argument is brought forward further by Schmittner, who argues 
based on projections with climate models that a disruption of the Atlantic 
meridional overturning circulation could lead to a collapse of North Atlantic 
plankton to less than half of their initial biomass, owing to rapid shoaling of winter 
mixed layers and their subsequent discontinuity from nutrient-rich deeper waters 
(Schmittner, 2005). Examination of LME chlorophyll and primary productivity 
SeaWiFS time series showed no significant differences for waters of the North 
Sea (Table 2). At this point in time our observations suggest that further 
investigation of the seasonal nutrient cycle will need to be closely examined to 
test the Schmittner hypothesis.

Two Asian LMEs have experienced high temperature increases—the East China 
Sea and the Sea of Japan/East Sea. The fisheries of the East China Sea have 
undergone a major shift from dominance of herring, croaker, cuttlefish and 
jellyfish in the 1960s and 1970s to a shift in species dominance of shrimp, crab, 
mackerel, filefish and hairtail in the 1980s (Chen and Shen, 1999) and 1990s 
coincident to the major shift in SST anomalies from a cooling period from the 
1960s to 1980s followed by positive anomalies in the 1990s.

In the Sea of Japan/East Sea, a major shift in biomass yields occurred in the late 
1970s with a reduction of anchovy, and increases of herring (Terazaki, 1999). 
The SST temperature anomalies following a negative period in the mid 1980s, 
turned positive in the late 1980s through the early 1990s coincident with 
increases in yields of yellowtail, herring and anchovy (Terazaki, 1999).

The collapse of the cod stocks in the Newfoundland-Labrador Shelf LME is well 
documented. Rice (2002) reports on the importance of excessive fishing 
mortality as a primary cause, and considers that “harsh environmental 
conditions” including extreme cold also contributed “in some manner” to the 
population collapses” (Rice, 2002). It is not clear at present what effect the SST 
warming trend may have on the altered structure of the LME.

In the case of the Iceland Shelf LME, it has been argued that during periods of 
incursions of warm Atlantic waters, the ecosystem responds positively with 
increased Cod growth and yield; whereas in years of polar water incursions, cod 
growth and yield are reduced (Astthorsson and Vilhjalmsson, 2002). The onset 
of SST positive increases since 1999 does not appear to be reflected by 
significant increasing trends in mean annual chlorophyll or primary production 
levels (Table 2).
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In the Norwegian Sea LME, Skjoldal and Saetre (2004) report that since 1995 the 
warming trend is related to the dominant presence of warm-high salinity Atlantic 
waters. This has been accompanied by an increase in the abundance of the 
zooplanktiverous blue whiting, with recruitment pattern and landings of nearly 1.6 
million metric tons in 2002 (Skjoldal and Saetre, 2004), and northward spatial 
increases in herring abundance during the late 1990s beginning with a strong 
1983 year class which coincides with the SST increase in mean annual 
temperature from 8°C following a relatively cold period in the 1970s and a shift in 
the NAO index from low to high (Skjoldal and Saetre, 2004). Increases in 
biomass of the Northeast Atlantic mackerel stock have also been reported). The 
SeaWiFS chlorophyll and primary productivity time series for the Norwegian Sea 
were not significantly different (Table 2).

The response to temperature increases observed in the Faroe Plateau LME is 
not known at this time. Earlier studies suggest a close coupling between 
increases in primary productivity and cod, haddock, and marine bird biomass, 
productivity (Gaard et al., 2002). SeaWiFS mean annual Chlorophyll and 
primary productivity levels for the Faroe Plateau LME, over the nine year time 
series (1998-2006) were not significantly different (Table 2).

In the West Greenland Shelf LME (Pedersen and Rice, 2002), reported catch 
levels of cod, redfish, Greenland halibut and shrimp have been related to 
excessive fishing mortality. Cod and redfish landings declined from the 1960s to 
the early 1970s. In contrast, catches of Greenland Halibut increased from the 
early 1970s through the 1990s. No significant mean annual differences in 
chlorophyll or primary productivity levels were detected in the SeaWiFS time 
series (Table 2).

In the case of the Scotian Shelf LME, the reports by Choi et al. (2004) and Frank 
et al. (Frank et al., 2005) document the collapse of the cod and other demersal 
fish components of the ecosystem as viable economic resources. The effect of 
temperature on the decline of the Cod and other demersal stocks appears as 
secondary to overfishing and the trophic cascade effects on the ecosystem. The 
increases in SST temperatures have not resulted in a significant positive 
feedback in the SeaWiFS chlorophyll levels or in primary productivity over the 
nine year time series.

The warming trend in the Biscay Bay subarea of the Celtic-Biscay Shelf LME 
were investigated by Valdes and Lavin (2002). They relate surface warming to 
increased thermal stratification and in turn link this focus to a “linear decreasing 
relationship to the number of copepod species observed in the Bay of Biscay, 
due to a reduction in nutrients to the surface layers. However, the effects of 
temperature increasing the important anchovy stocks of the Biscay subarea are 
not included in the Valdez and Lavin report. They do note, however, increased
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presence of tropical fish species in the southeast shelf area of the Bay of Biscay; 
along with a subtropical copepod, Temora stylifera.

The mean annual catches of the fisheries of the Mediterranean Sea LME since 
the mid 1980s have remained at a level of one million metric tons through 2003; 
however, since 1985 a decline has been observed for the mean annual trophic 
level of the catch (SAUP, 2007). The period of trophic level change is coincident 
to the post 1980s doubling of the “other” taxa category of species that are 
apparently dominated by lower trophic level species. During the past 9 years, 
however, there have been no concomitant significant increases in mean annual 
chlorophyll levels. However, primary productivity levels in the Mediterranean 
appear to be in a declining trend (Table 2).

In the Red Sea annual average catches have been increasing since the mid 
1970s as in the Mediterranean, the mean annual biomass yields of unidentified 
taxa increased from 1990 through 2003 coincident with the SST mean annual 
warming accompanied by significant increases in chlorophyll (P< 0.01; Table 2) 
but not in primary productivity. The post 1993 unidentified species are likely to 
include smaller species lower in the food chain as the mean trophic index 
declined from 3.8 in 1993 to 3.6 in 2000 (SAUP, 2007).

The fisheries of the Iberian Coastal LME underwent a shift in species 
composition in the 1970s. The principal shift from cold to warming of SST was 
initiated in 1984. During the period 1984 through 2003, the mean annual level of 
catch ranged between 400,000mt and 500,000 mt. Approximately 50% of the 
catch is listed as “other” taxa (SAUP, 2007). During this period, chlorophyll and 
primary production Sea WiFS time series levels were not significantly different.

Around the margins of the North Pacific, two LMEs are in the Red Zone of SST 
change: the Chukchi Sea and the Yellow Sea. The important living marine 
resources of the Chukchi Sea LME are salmon and herring, halibut and pollock. 
The warming trend depicted in figure 5 is not accompanied by any significant 
recent evidence of SeaWiFS derived chlorophyll or primary productivity increases 
(Table 2). It is likely that with increasing ice melt, that the biomass of renewable 
resources within the LME will undergo significant growth.

The Yellow Sea LME has undergone major changes in fisheries biomass yields. 
Important demersal species were depleted by the mid 1970s and replaced by 
fast growing smaller pelagic herring and anchovies in the 1990s (Tang, 2003). 
Since 1984, the LME has been in a warming period, that has not, as yet, resulted 
in any significant increase in chlorophyll or primary productivity (Table 2). In an 
effort to recover depleted demersal fish stocks, China has closed the Yellow Sea 
to fishing by Chinese registered vessels to protect juvenile stages (Tang, 2003).
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5.. LMEs in yellow and green zones in relation to Changing Ecological 
Conditions
The high rate observed of SST warming of LMEs in the Red Zone indicates that 
the deeper waters of the ocean basins are responding more slowly to climate 
change. The global extent of the Red, Yellow, and Green Zones where SSTs are 
increasing are all areas of LMEs with relatively higher chlorophyll and primary 
productivity levels than open ocean areas, and where 95% of the world’s annual 
marine fisheries are produced, coastal habitats are seriously degraded, 
biodiversity is stressed, and coastal pollution is concentrated (Figure 7).

It is important for marine resource scientists, policy experts, and managers to 
maintain close monitoring of ecological conditions effecting an estimated $12.6 
trillion in annual value to the global economy (Costanza et al., 1997). Although 
we found a limited number of significant trends in examination of SeaWiFS 
chlorophyll and primary productivity changes (Table 2), it is important to maintain 
cognizance of possible temperature responses affecting primary productivity as 
in the cases of the Flumboldt Current and California Current LMEs where values 
are increasing in contrast to the Bay of Bengal, Caribbean Sea, Kuroshio Current 
and Mediterranean Sea LMEs where mean annual primary productivity levels are 
decreasing. The Flumboldt Current chlorophyll is also in an increasing trend, as 
are the chlorophyll levels of the Barents Sea, Fludson Bay and Red Sea LMEs. 
Negative correlations in the chlorophyll time series were observed for the East 
Siberian Sea, the East China Sea, and the Bay of Bengal, where primary 
productivity values were also decreasing. It is interesting to note that primary 
productivity increases in the Flumboldt Current and California Current where 
mean annual SST values were negative. Both LMEs are in the world’s strongest 
marine upwelling areas suggesting that strong vertical mixing reduces 
thermocline discontinuities and promotes nutrient enrichment of biologically 
active photic zone surface layers. The Red Zone LMEs, in contrast, are at risk of 
greater thermal stratification of surface waters inhibiting nutrient exchanges with 
deeper layers and thereby limiting chlorophyll and primary production (Li, 2002; 
Roemmich and McGowan, 1995)(Richardson and Schoeman, 2004; Schmittner, 
2005).

In the Yellow and Green Zones, where the SST changes are less than in the Red 
Zone, policy and management experts should be aware that changes affecting 
fish and fisheries are already being reported for the areas of significant 
oceanographic regime shifts. In the Yellow Zone, oceanographic regime 
changes have been reported as important drivers of biomass variability within the 
Guinea Current LME (Koranteng, 2002a; Koranteng, 2002b; Roy et al., 2002).

In the Green Zone of the North Pacific for the Gulf of Alaska LME, biomass 
increases have been reported for Zooplankton, related to an oceanographic 
regime shift in the North Pacific in the mid 1970s (Brodeur et al., 1999). More 
recently, changes have been reported for the East Bering Sea LME, where 
fisheries are increasing in biomass yields for salmon and Alaska Pollock
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(Overland et al., 2005). The major oceanographic shift occurred in the mid 
1970s as can be seen in the shift in SST trends from a cooling period from the 
1960s to the warming from 1975 through 2006 (Figure 7).

In the Atlantic Green Zones, changing oceanographic conditions in the Benguela 
Current have been reported (Ungen et al., 2006). Recently, a southward shift in 
clupeid distribution has severely impacted the fisheries of Namibia by separating 
fish processing plants in Namibia from pilchard biomass moving south along the 
coast of South Africa and toward the east in the vicinity of the Agulhas Banks off 
southeast South Africa The southward moving pilchard are an important food 
species for penguins inhabiting the Islands off Namibia. In search of the 
pilchards, penguin colonies are also moving southward in the Benguela LME, 
leaving the protection of the islands where they are less exposed to predation to 
occupy coastal areas of South African coast where they are more vulnerable to 
predation (Koenig, 2007).

From a trophodynamic perspective, two of the Asian LMEs—the Yellow Sea LME 
(YSLME) and the Gulf of Thailand LME (GoTLME) are in a stressed ecosystem 
condition. In both cases, evidence of “fishing-down-the-food-web” has been 
brought forward. For the YSLME, Tang has demonstrated the loss of important 
demersal stocks and the subsequent dominance of small fast-growing pelagic 
species (Tang, 1989; Tang, 1993; Tang, 2003). Pauly and Chuenpagdee (2003) 
provide a comprehensive time series analysis of the seriously overfished 
GoTLME, and recommend a “drastic reduction of fishing” effort to recover 
depleted stocks. As noted previously, China has taken measures to reduce 
fishing effort by Chinese fishermen in the YSLME (Tang, 2003). In both cases, 
the influence of increasing temperatures on the management efforts to recover 
depleted fish stocks should be taken into consideration in stock rebuilding plans.

We express concerns over the accelerated rate of SST increases that can lead to 
increased productivity at the base of the food web in vertically mixed cool 
upwelling waters. However, in shoal warm coastal waters, the influence of 
surface water heating results in a strengthened pycnocline, thermoclyne and 
reduced nutrient mixing within the water column. This can lead to a reduction in 
plankton-zooplankton population growth (Li, 2002; Richardson and Schoeman, 
2004; Roemmich and McGowan, 1995; Schmittner, 2005). Current LME and 
reproductive leading to secondary limits in fish growth and survival.

The next phase of our investigation is directed to an examination of the effects of 
warming on the entire water column within each of the LMEs in an effort to 
monitor and assess the effects of warming on chlorophyll and primary 
productivity in relation to bottom up effects on fish and fisheries stock recovery 
and sustainability.
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TABLES:

Table 1| List of Large Marine Ecosystems, volumes in which case studies have appeared, and 
principal authors of those studies.

LM E Vol. Author(s)
Barents Sea 2 Skjoldal & Rey

4 Borisov
5 Skjoldal

10 Dalpadado et al.

12 Matishov

Norwegian Shelf 3 Ellertsen et al.

5
Blindheim & 
Skjoldal

North Sea 1 Daan

9 Reid

10 McGlade
12 Hempel

Iceland Shelf 10
Astthorsson & 
Vilhjálmsson

Faroe Plateau 10 Gaard et al.

Antarctic 1 Scully et al.

3 Hempel

5 Scully et al.

California Current 1 MacCall

4 Mullin

5 Bottom
12 Lluch-Belda et al.

Pacific American
Coastal 8 Bakun

Humboldt Current 5 Bernai
12 W olfi et al.

Gulf o f Thailand 5 Piyakarnchana

11
Pauly & 
Chuenpagdee

South China Sea 5 Christensen

Indonesian Sea 3 Zijlstra & Baars
Northeast Bradbury &
Australian Shelf 2 Mundy

5 Kelleher
8, 12 Brodie

Gulf o f Mexico 9 Shipp

9
Gracia & Vasquez 
Baden

Southeast U.S.
Shelf 4 Yoder
Northeast U.S.
Shelf 1 Sissenwine

4 Falkowski
6 Anthony

10,12 Sherman
13 Dyer & Poggie

LME Vol. Author(s) cont.
13 Edwards et al.
13 Cho et al.
13 Grigalunas et al

Scotian Shelf 8 Zwanenburg et al.

Caribbean Sea 3
Richards & 
Bohnsack

Patagonian Shelf 5 Bakun

South Brazil Shelf 12 Ekau & Knoppers

East Brazil Shelf 12 Ekau & Knoppers

North Brazil Shelf 12 Ekau & Knoppers

Baltic Sea 1 Kullenberg
12 Jansson

Celtic-Biscay
Shelf 10 Lavin

Iberian Coastal 2 Perez-Gandaras

10 Wyatt & Porteiro
Mediterranean
Sea 5 Caddy

Canary Current 5 Bas

12 Roy & Curry

Guinea Current 5 Binet & Marchai

11
Koranteng & 
McGlade

11 Mensah & Quaatey

11 Lovell & McGlade

11 Cury & Roy
11 Koranteng

Benguela Current 2 Crawford et al.

12 Shannon & O'Toole

14 Ahanhanzo

14 Shillington et al.

14
Monteiro & van der 
Plas

14 Hutchings et al.
14 Pitcher & Weeks

14 van der Lingen et al.

14 Fréon et al.

14 Reason et al.

14 Jarre et al.
14 Bernard et al.
14 Monteiro et al.
14 Gründlingh et al.
14 Brundrit et al.

Black Sea 5 Caddy
12 Daskalov
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7 1998. Large marine Ecosystems of the Indian Ocean: Assessment, Sustainability and
Management. Sherman, Okemwa and Ntiba, eds. Blackwell Science, Malden, MÁ.
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Table 2. Tests results of chlorophyll and primary productivity regression analysis

LM E Chi PPD
Humboldt Current + *
Barents Sea + *
Red Sea
Bay of Bengal _ ** _ *
NE Australian Shelf _ *
East China Sea _ *
East Siberian Sea _ *
Hudson Bay + *
Caribbean Sea _ *
Mediterranean Sea _ *
Kuroshio Current _ *

Significance of T test on chlorophyll (Chi) and primary productivity (PPD) regression 
coefficients. Only cases where p<05 are listed. All other comparisons were non
significant. Plus and minus signs are used to designate the direction of the slope of the 
trend line. * Indicates P<05 ** Indicates P<01
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Table 3. SST change in each LME, 1982-2006 (sorted in descending order)

■m E23='BALTIC SEA'] 1.35
I m E22='NORTH SEa I 1.31
I m E47='EAST c h in a  s ea J 1.22
LME50-SEA OF JAPAn T 1.09
lME(Morgan)='NE WFOUNDLAND-LABRADOR SHELF| 1.04
Bm E62='BLACK SEAP 0.96
|ME(Morgan)='SCOTIAN SHELF| 0.89
LME59-ICELAND SEA; 0.86
LME21 ='NORWEGIAN SEA ; 0.85
LME49'KUROSHIO CURREN1 0.75
LME60-FAROE PLATEAU'; 0.75
■ m E33='RED SEA'] 0.74
Bm EI8-W EST GREENLAND SHELF'] 0.73
Bm E24='CELTIC-BISCAY SHELF'P 0.72
| m E26='MEDITERRANEAN SEA'] 0.71
LME54='CHUKCHI SEA' 0.70
LME25='IBERIAN COASTAL' 0.68
LME48-YELLOW SEA'; 0.67
LME 17='NORTH BRAZIL SHELF'; 0.60
LME51-OYASHIO CURRENT■'!. 0.60
LME 15-SOUTH BRAZIL SHELF'; 0.53
LME2 7 - CANARY CURRENT ? 0.52
LME 12='CARIBBEAN SEA'; 0.50
LME(Morgan)='EAST GREENLAND SHELF'; 0.47
LME28-GUINEA CURRENT'; 0.46
LME 10='INSULAR PACIFIC HAWAIIAN'; 0.45
LME36-SOUTH CHINA SEA': 0.44
LME53-WEST BERING SEA'; 0.39
LME2='GULF OF ALASKA'; 0.37
LME40-NE AUSTRALIAN SHELF-GREAT BARRIER REEF'; 0.37
LME56}='EAST SIBERIAN SEA’; 0.36
LME41='EAST-CENTRAL AUSTRALIAN SHELF'; 0.35
LME55-BEAUFORT SEA'; 0.34
LME46='NEW ZEALAND SHELF'; 0.32
LME4-GULF OF CALIFORNIA’; 0.31
LME5-GULF OF MEXICO'; 0.31
LME52-SEA OF OKHOTSK'; 0.31
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LME16-EAST BRAZIL SHELF'; 0.30
LME63-HUDSON BAY'; 0.28
LME(Morgan)='EAST BERING SEA'; 0.27
LME32='ARABIAN SEA; 0.26
LME29='BENGUELA CURRENT'; 0.24
LME34-BAY OF BENGAL'; 0.24
LME38=TNDONESIAN SEA'; 0.24
LME45-NORTHWEST AUSTRALIAN SHELF'; 0.24
LME7-NORTHEAST U.S. CONTINENTAL SHELF'; 0.23
LME37-SULU-CELEBES SEA'; 0.23
LME30='AGULHAS CURRENT'; 0.20
LME42-SOUTHEAST AUSTRALIAN SHELF'; 0.20
LME31-SOMALI COASTAL CURRENT'; 0.18
LME39-NORTH AUSTRALIAN SHELF';" 0.17
LME6='SOUTHEAST U.S. CONTINENTAL SHELF'; 0.16
LME35-GULF OF THAILAND';! 0.16
LME58-KARA SEA'; 0.16
LME 11 ='PACIFIC CENTRAL-AMERICAN COAST'; 0.14
LME20-BARENTS SEA'; 0.12
LME57-LAPTEV SEA'; 0.12
LME43-SOUTHWEST AUSTRALIAN SHELF'; 0.09
LME44='WE ST-CENTRAL AUSTRALIAN SHELF'; 0.09
LME 14-PAT AGONI AN SHELF'; 0.08
LME61 ='ANTARCTIC' r 0.00
LME3='CALIFORNIA CURRENT'; -0.0'7
LME 13-HUMBOLDT CURRENT'; -0.K3
LME64='ARCTIC OCEAN';
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FIGURES:

Figure 1. Trends of mean annual chlorophyll levels derived from 1998 to 2006 data
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Figure 2. Trends of primary productivity levels derived from 1998-2006 data
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Figure 3. SST trends in Large Marine Ecosystems, 1957-2006
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Figure 4. SST anomalies in Large Marine Ecosystems, 1957-2006
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Figure 5. SST trends in Large Marine Ecosystems, 1982-2006
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Figure 6. SST anomalies in Large Marine Ecosystems, 1982-2006
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Large Marine Ecosystems of the World 
SST Trends, 1982-2006

1, East Baring Sea 14, Patagonian Shelf 27. Canary Current 40. Northeast Australia 53. West Bering Sea
2. Guff o f AJaska 15. South Brazil Shelf 28. Guinea Current 41. East-Central Australia 54. Chukchi Sea
3. California Current 16. East Brazil Shelf 29. Benguela Current 42. Southeast Australia 55. Beaufort Sea
4. Guff o f California 17. North Brazil Shelf 30. Agulhas Current 43. Southwest Australia 56. East Siberian Sea
5. Guff o f Mexico 18, West Greenland Shelf 31. Somali Coastal Current 44. West-Central Australia 57, Laptev Sea
6. Southeast U.S. Continental Shelf 19. East Greenland Shelf 32 Arabian Sea 45. Northwest Australia 58. Kara Sea
7. Northeast U.S. Continental Shelf 20. Barents See 33. Red Sea 46. New Zealand Shelf 5®. Iceland Shelf
8 Scotian Shelf 21. Norwegen Sea 34. Bay of Bengal 47. East China Sea 60. Faroe Plateau
9. Newfoundland-Labrador Shelf 22. North Sea 35. Guff o f Thailand 48. Yellow Sea 61, Antarctic
10 Insular Pacrftc-Hawaiian 23. Baltic Sea 36. South China Sea 49. Kuroshio Current 62. Black Sea
11 Pacific Central-American 24. Celtic-Biscay Shelf 37. Sulu-Celebes Sea 50. See of Japan 63. Hudson Bay
12 Caribbean Sea 25. Iberian Coastal 38. Indonesian Sea 51. Oyashio Current 64. Arctic Ocean
13 Humboldt Current 26 Mediterranean 39. North Australia 52. Sea o f Okhotsk

Figure 7. Net SST change in Large Marine Ecosystems based on a linear trend 
between 1982-2006.
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Figure 8. Regime Shift of 1976-1977 in the West Bering Sea
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