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A bstract. Coral reefs are am ong the m ost diverse and productive ecosystem s on our planet. Scleractinian corals function 
as the prim ary re e f  ecosystem  engineers, constructing the fram ew ork that serves as a habitat for all o ther coral reef- 
associated organisms. H owever, the co ra l’s engineering role is particularly susceptible to global clim ate change. O cean 
w arm ing can cause extensive m ass coral bleaching, w hich triggers dysfunction o f  m ajor engineering processes. Sub-lethal 
bleaching results in  the reduction o f  both prim ary productivity and coral calcification. This m ay lead to changes in  the 
release o f  organic and inorganic products, thereby altering critical biogeochem ical and recycling processes in  re e f 
ecosystem s. Therm al stress-induced bleaching and subsequent coral m ortality, along w ith ocean acidification, further lead 
to long-term  shifts in  benthic com m unity structure, changes in  topographic re e f  com plexity, and the m odification o f  
re e f functioning. Such shifts m ay cause negative feedback loops and further m odification o f  coral-derived inorganic 
and organic products. This review  em phasises the critical role o f  scleractinian corals as re e f ecosystem  engineers and 
highlights the control o f  corals over key ree f ecosystem  goods and services, including h igh biodiversity, coastal protection, 
fishing, and tourism . Thus, clim ate change by im peding coral ecosystem  engineers w ill im pair the ecosystem  functioning 
o f  entire reefs.

A dditional keywords: bleaching, ecosystem  goods and services, ocean w arm ing and acidification.

Scleractinian corals as reef ecosystem  engineers

Ecosystem  engineers are organism s that m odulate the avail
ability o f  resources to other species by causing physical state 
changes in  biotic or abiotic m aterials (Jones et al. 1994, 1997). 
Scleractinian corals act as key ree f ecosystem  engineers in  two 
m ain ways: first, they are autogenic engineers, because through 
their calcification and ensuing ree f accretion, they change the 
physical, chem ical, and biological environm ent and thereby 
provide habitats for associated ree f organisms. The generation

o f com plex, hard, and stable substrates by scleractinian corals 
underpins the h igh biodiversity characteristic o f  tropical coral- 
ree f ecosystem s (Bellw ood and H ughes 2001).

Second, corals also act as allogenic ecosystem  engineers 
because they intensively generate and transform  inorganic 
and organic m aterials. C oral-derived inorganic calcareous 
skeletons are transform ed into calcareous ree f sands by reef- 
associated bio-eroding organism s (such as m olluscs, echino- 
derm s, and sponges) and by other biological, physical, and
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chem ical erosion processes (G lynn 1997; H allock 1997), so that 
corals, through the production o f  inorganic m aterials, control 
adjacent sediments. These highly perm eable biogenic sediments 
w ith  generally large grain sizes allow  intense advective coupling 
betw een the w ater colum n and the seafloor (H uettel et al. 2003; 
R asheed e t al. 2003; W ild et al. 2005a). Calcareous ree f sands 
support abundant associated heterotrophic m icrobes (W ild e t al. 
2006). C oral-generated calcareous sedim ents thereby act as 
biocatalytic filter system s that facilitate rapid processing and 
recycling o f  organic m atter (W ild et al. 2004a, 2005a, 2005b,
2008). Corals also continuously release large am ounts o f  d is
solved and particulate organic m aterials, w hich m ay function as 
energy carriers and particle traps (W ild et al. 2004a; Huettel 
et al. 2006; N aum ann et al. 2009). This release o f  organic 
m aterial prom otes the form ation o f  m ucus-particle aggregations 
in  the w ater colum n that increase the sedim entation and recy
cling rates by w hich essential elem ents are retained (W ild et al. 
2004b, 2005b; H uettel et al. 2006). Consequently, a w ide range 
o f  biogeochem ical processes, im portant in  coral re e f  function
ing, are directly controlled by scleractinian corals acting as the 
principal ecosystem  engineers.

This review  sets out to expand our understanding o f  the 
im pacts o f  global clim ate change on coral re e f  ecosystem s 
ow ing to the direct im pedim ent o f  the r e e f s  prim ary ecosystem  
engineer -  the scleractinian corals. R ather than focusing on the 
plight o f  corals p er  se, we chose to explore how  the im pacts o f 
ocean w arm ing and acidification m ay affect the corals ’ ability to 
act as engineers w ith in  this com plex ecosystem . W e discuss the 
im pact o f  clim ate change on scleractinian corals at the organism  
level and how  this translates into responses at the re e f  ecosystem  
level.

The im pact o f  global clim ate change on  
the coral engineer

As stenotherm ic and calcifying organism s, corals are particu
larly sensitive to both  ocean acidification and warm ing. There 
are several indications that carbon pollution-induced increases 
in  ocean acidity and tem perature are im pacting the m etabolism  
and grow th o f  reef-building corals (Langdon and A tkinson 
2005; D e’ath et al. 2009; Tanzil et al. 2009; M anzello 2010).

O cean acidification and  coral calcification
Increasing acidity o f  oceanic w aters represents a direct threat 
to reef-building scleractinian corals, w ith  various im plications 
for their role as ecosystem  engineers. O cean acidification is the 
consequence o f  global oceanic uptake o f  increasing anthro
pogenic atm ospheric C 0 2 (e.g. K leypas e t al. 1999). Such 
uptake increases C 0 2 partial pressure (p C 0 2) in  the w ater col
um n, decreases seaw ater pH, increases concentrations o f  total 
dissolved C 0 2 ( [C 0 2] and [H C 0 3]), and reduces concentrations 
o f  [C O i- ] in seaw ater (Caldeira and W ickett 2003; Feely e t al. 
2004). Physiological processes (e.g. calcification) in  corals m ay 
respond to these changes in  ocean chem istry (Langdon and 
A tkinson 2005).

The reduction in  [CO 3 - ], at constant seaw ater calcium  
concentration [Ca2+], consequently results in  the decrease o f 
the saturation state o f  aragonite (Oarag), the polym orph o f 
CaCC>3 produced by coral calcification. Presently, tropical

surface w aters, w ith the exception o f  the eastern Pacific Ocean, 
are about 4-fold supersaturated w ith  respect to aragonite 
(H oegh-G uldberg et al. 2007). H owever, Qarag is expected to 
significantly decrease to levels o f  2 .5 -3 .0  by the year 2100 
(Feely et al. 2009). Scleractinian corals generally require sea
w ater that is super-saturated in  aragonite for efficient aragonite 
accretion. In acidified seawater, low ered external Í2arag im pedes 
the essential increase o f  Í 2arag w ithin the internal calcifying 
fluid, and causes a corresponding decrease in  calcification rate 
(review ed in  C ohen and Holcom b 2009). This decrease in 
skeletal grow th perform ance, caused by ocean acidification, 
directly translates to a decline in  the engineering capacity o f 
scleractinian corals to  construct essential re e f  habitats.

V arious studies have docum ented the negative effect o f 
ocean acidification and the consequential reduction in  seaw ater 
Qarag on coral calcification in  both the laboratory (e.g. A nthony 
e t al. 2008; Jokiel e t al. 2008) and the field  (Bak et al. 2009; 
D e’ath e t al. 2009; Tanzil et al. 2009). H owever, a very recent 
study (Jury et al., in press) presents significant differences in 
calcification rates at equal [CO 3 - ] and further suggests [HCOjT] 
as a potentially m ore im portant driver for coral calcification, 
thereby questioning the reliability  o f  Í2arag or [CO 5 - ] as sole 
predictors o f  the effect o f  ocean acidification on coral calcifica
tion. A nother recent study argues that deleterious effects caused 
by elevated [C 0 2], as a result o f  ocean acidification, m ay be 
am eliorated by inorganic nutrient enrichm ent (H olcom b et al. 
2010). These authors conclude that naturally elevated inorganic 
nutrient levels m ay thus support increased prim ary and second
ary production, consequently facilitating coral calcification in 
environm enst w ith naturally h igh concentrations o f  C 0 2. H ow 
ever, species-specific differences in  sensitivity to ocean acid
ification and therm al stress m ay occur (M anzello 2010). This 
could have trem endous effects on the structure o f  com m unities 
in future coral reefs (Loya e t al. 2001).

O cean acidification can also affect coral reproduction by 
reducing sperm m otility (M orita e t al. 2009) or settlem ent and 
post-settlem ent developm ent o f  planula larvae and coral recruits 
(A lbright et al. 2008; Cohen e t al. 2009). A t experim entally 
reduced aragonite saturation states (Í2arag), the early skeleton o f 
coral recruits show ed progressive changes in  aragonite crystal 
m orphology and a decline in  crystal grow th rate (Cohen e t al.
2009). This im plies that ocean acidification m ay significantly 
affect recruitm ent rates and the com petitive capacity o f  coral 
populations, and m ay consequently lead  to a shift in  coral 
com m unity structure. In addition, a recent study show ed that 
spawning fem ale corals o f  the tem perate species Astrangia  
poculata  are m ore susceptible to the negative effects o f  ocean 
acidification than spawning m ale corals (Holcom b e t al., in 
press). This gender discrim ination m ay be a result o f  the 
energetically expensive egg production process, leaving only 
lim ited resources to com pensate for the effects o f  acidification 
on calcification. O n a longer tim e-scale, this lack  o f  energy 
and grow th m ay reduce recruitm ent success for gonochoric- 
spawning coral species.

Finally, and possibly m ost alarm ingly, ocean acidification 
has been identified as a potential trigger for coral bleaching 
(A nthony e t al. 2008). A ccording to this study, branching and 
m assive coral species experience an increase in  bleaching w ith 
decreasing seaw ater pH  (8 .4 -7 .6 ) at low  (25-26°C ) and high
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Fig. 1. Relative potential of key physiological functions and resulting ecosystem engineering capacity of corals 
under pre-, during and post-bleaching conditions (foreground, organism level; background, ecosystem level). Left 
columns: physiological functions (black to white, coral-dinoflagellate symbiosis stability, primary productivity, 
calcification, reproductive output, immune defence). Right columns: coral-generated reef ecosystem engineering 
(blue, facilitation of associated biodiversity via habitat differentiation; red, generation of biocatalytical filter 
systems via inorganic sediment production; yellow, impact on particle trapping and conservation of essential 
elements via organic matter release). Scale: 0-3, none, low, medium, high. Coral photographs are modified from 
Manzello et al. (2007) whereas reef photographs are copyright of M. S. Naumann, except that of bleached reef 
(copyright: R. Berkelmans; www.reefbase.org).

(28-29°C ) seasonal tem peratures. These findings suggest that 
ocean acidification m ay be another prim ary bleaching-trigger, 
causing sim ilar and/or other deleterious consequences for scler
actinian corals as re e f  ecosystem  engineers.

O cean warming and  coral bleaching  
R eef-build ing  corals form  a prim ary hab ita t for zooxanthellae 
(endosym biotic d inoflagella tes) o f  the genus Sym biodinium , 
w hich are crucial to the physio log ical in tegrity  and  ecological 
function  o f  reef-bu ild ing  corals w ith in  trop ica l-reef system s.
C oral-zooxan thellae  in teractions reflect a close evolutionary 
relationship  betw een host and sym biont, w ith  tem poral and 
spatial variab ility  allow ing the coexistence o f  diverse sym 
bionts w ith in  the coral host (R ow an e t a I. 1997). In  the eastern  
Pacific O cean, P ocillopora verrucosa  colonies inhabiting  
shallow -w ater hab ita ts contained  d ifferent c lades o f  zoo
xanthellae than  Pavona gigantea  colonies liv ing in  deeper 
w ater and m ore shaded habitats (Iglesias-Prieto e t al. 2004).
S im ilarly, Sym biodinium  spp., w ith in  A cropora  tenuis appear 
to be d istribu ted  according to  light exposure, w ith  tw o d if
ferent types o f  Sym biodinium  spp. found in  sunny and shady 
parts o f  the colony, respectively  (V an O ppen e t al. 2001).
Such tigh t in teraction  leads to  the conclusion  that the two 
organism s cannot be considered  separately (Iglesias-Prieto 
e t al. 2004).

One o f  the m ost dram atic im pacts o f  ocean w arm ing on coral 
reefs is m ass coral bleaching, w hich is the breakdow n o f  the 
sym biosis betw een corals and zooxanthellae. B leaching is 
associated w ith a pronounced loss o f  colour from  affected corals 
caused by the expulsion o f  the photopigm ent-rich zooxanthellae 
(Fig. 1). M ass coral bleaching is strongly associated w ith 
anom alously high sea-surface tem peratures (G lynn 1993), but 
it can also be triggered by a range o f  other environm ental stress 
factors (e.g. altered salinity, light, sedim entation, and toxins). 
Since the early 1980s, m ass coral bleaching events have 
increased in  extent and frequency in  response to steadily w arm 
ing ocean-w ater tem peratures (FIoegh-Guldberg 1999).

Coral bleaching is a reversible process (Fig. 1 ) i f  the stressful 
conditions are relatively m ild and short-term , w ith zooxanthel
lae populations inside the host tissues returning to pre-bleaching 
levels after 2 -6  m onths depending on the coral species (FIoegh- 
G uldberg and Sm ith 1989; B row n 1997; FIoegh-Guldberg and 
Jones 1999). B leached corals, how ever, are physiologically 
com prom ised because o f  the reduction in  the abundance o f  
zooxanthellae and/or their pigm ents. U nder norm al conditions, 
zooxanthellae translocate up to  95%  o f  their photo synthetically 
fixed carbon to the coral host (M uscatine e t al. 1984). They also 
cover 30% o f  the host’s nitrogen requirem ents for growth, 
reproduction and m aintenance (Bythell 1988) from  dissolved 
nutrient uptake (Bythell 1990). D uring bleaching, the photo
synthetic ability o f  reef-building corals is greatly reduced
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(Porter e t al. 1989; Suzuki and K awahata 2003; Rodrigues and 
G rottoli 2006), leading to the depletion o f  energy stores, w hich 
results in  ‘food shortage’ and starvation (Porter e t al. 1989; Fitt 
e t al. 1993).

As calcification strongly depends on the photosynthetic 
efficiency o f  the zooxanthellae w ith in  the tissues o f  corals 
(Gattuso e t al. 1999; A llem and et al. 2004; C olom bo-Pallotta 
e t al. 2 0 1 0 ), b leached and/or therm ally stressed corals have 
low er grow th rates (Jokiel and Coles 1977; Leder et al. 1991) 
and tissue regeneration capacities (M eesters and B ak 1993). 
In M ontastraea fa veo la ta , one o f  the m ajor reef-builders o f 
the Caribbean, bleaching reduced photo synthetic efficiency by 
4.6-fold and capacity by up to 4 .8 -fold (R odríguez-R om án e t al. 
2006). These changes in  photosynthetic activity translate 
directly into a decline in calcification. C alcification rates o f 
bleached M. annularis colonies w ere only 37%  o f the m ean 
annual calcification observed before bleaching (Leder et al. 
1991). Laboratory experim ents revealed that calcification rates 
in  M ontastraea fa veo la ta , im m ediately after bleaching, can 
be as low  as 22%  o f  unbleached control corals (F. Colom bo- 
Pallotta, pers. comm.).

The physiological consequences o f  bleaching and the tim e 
required to return  to norm al conditions is species-specific. M any 
branching corals o f  the genus A cropora  die w ithin 10 to 14 days 
after bleaching, w hereas some m assive species m ay show 
greater resistance and recover after several m onths (Rodrigues 
and G rottoli 2006; Rodrigues et al. 2008). Early life stages o f 
corals seem to be particularly vulnerable to clim ate change 
stressors (Edm unds 2007), thus affecting the dem ographics o f 
coral reefs. B leaching m ay im pact the reproductive output 
and planula larvae developm ent o f  corals (Baird and M arshall 
2002) for up to several years (W ard et al. 2002). The observed 
reduction in  reproductive output o f  scleractinian corals that 
survived bleaching indicates that recovery to form er levels is 
slow (Baird and M arshall 2002), suggesting that sub-lethal 
bleaching leads to long-term  effects on corals and associated 
ecosystem  functioning. R e-establishm ent o f  re e f  corals after 
m ajor disturbance events w ith  m ass coral m ortality usually  takes 
years to decades (e.g. Loya 1976, 2004; Done 1992; Loch et al. 
2004).

The effect o f  light
For corals under therm al stress, am bient light conditions can 
significantly affect the onset and severity o f  bleaching events. 
Low  or reduced irradiance during tim es o f  high w ater 
tem perature reduces photoinhibition and suppresses coral 
bleaching (Iglesias-Prieto e t al. 1992; M um by et al. 2001; 
Brow n et al. 2002; Takahashi e t al. 2004). By contrast, reduc
tions in  cloudiness exacerbate therm al stress. N onetheless, the 
response o f  clouds to clim ate change rem ains one o f  the largest 
sources o f  uncertainty in m odelling clim ate at regional and local 
scales. Some studies show that w arm ing oceans could reduce 
upper-level cloudiness, particularly in  the tropics, because the 
higher tem peratures increase turnover efficiency (M um by et al. 
2001 ; Lau and W u 2003 ; Lau e t al. 2005). A  cause for concern is 
the m odelled simulations o f  doubled atm ospheric C 0 2 that 
predict reductions in  total cloudiness, leading to greater 
absorption o f  shortwave and long-wave radiation by the oceans 
(Sud et al. 2008).

Coral im m unity  and  diseases
Several studies have correlated clim ate change, in  general 
(Flarvell et al. 2001), or tem perature anom alies, in  particular 
(W illis eta l. 2004; M iller et al. 2006; Bruno et al. 2007; M uller 
e t al. 2008), to the increased prevalence o f  coral disease, and 
disease incidence has been show n to increase follow ing coral 
bleaching (Brandt and M cM anus 2009). Invertebrate im m unity 
can be reduced under starvation conditions (Feder et al. 1997; 
M oret and Schmid-FIempel 2000; Seppälä et al. 2008) sim ilar 
to those induced during coral bleaching. Com prom ised coral 
im m unity during and follow ing a bleaching event (Fig. 1) 
(M ydlarz e t al. 2009; Reed e t al. 2010) w ill therefore lim it the 
activation and efficacy o f  a response to invading organism s or 
physical injury (M eszaros and B igger 1999; R inkevich 1999; 
Stedm an 2000), leading to an increase in  disease prevalence 
follow ing coral bleaching (Flarvell e t al. 2001; M iller e t al. 
2006).

There is also grow ing consensus that m icrobes interact 
strongly w ith corals, form ing an  integral part o f  a symbiosis 
that includes coral, zooxanthellae, and associated microflora. 
This has been referred to as the ‘holob ion t’ to connote a 
b iological ‘u n it’ that operates as one, w ithin both ecological 
and evolutionary tim e fram es (Rohw er et al. 2002). The concept 
o f  the coral holobiont em erged follow ing several research 
advances using culture-based and culture-independent m olecu
lar techniques. C oral-associated bacterial com m unities show 
greater sim ilarity betw een distantly-separated colonies o f  the 
same host species than betw een adjacent colonies o f  different 
host species (Rohw er e t al. 2002), im plying that bacterial 
com m unities are host-coral specific. Flealthy and diseased 
corals show distinct differences in  m icrobial com m unity com 
position (Cooney e t al. 2002; Frias-Lopez et al. 2002, 2004; 
Ritchie 2006), including the apparently healthy tissues rem ote 
from  the disease lesion o f  infected corals (Pantos e t al. 2003; 
Pantos and Bythell 2006). This indicates that in  a changing 
clim ate, there w ill be pronounced changes in  com m unity com 
position and diversity o f  m icrobes associated w ith corals.

Such m icrobial associates m ay perform  several different 
functions, including that o f  N -fixation (W illiam s e t al. 1987; 
Shashar et al. 1994; Lesser e t al. 2004), and as an antibiotic 
agent in  the case o f  bacteria associated w ith coral m ucus 
(Ritchie 2006). The experim ental evidence on selective proper
ties o f  antibacterial substances in  the m ucus o f  the coral 
A cropora palm ata  (R itchie 2006) indicates a probiotic role o f 
bacteria in corals (K nowlton and R ohw er 2003; Pantos et al. 
2003; R eshef e t al. 2006; Rypien et al. 2010), w hereby the 
norm al m icrobial flora inhibits the colonisation and grow th o f 
potential pathogens via com petition and release o f  antim icrobial 
com pounds (Ritchie 2006; R ypien et al. 2010).

R eef ecosystem -level responses

Habitat provisioning b y  corals and  effects 
on associated organisms
Clim ate change has the capacity to change ree f landscapes 
and benthic com m unities. C oral-generated production o f  fra
m ew ork structures w ill substantially decrease w ith clim ate 
change-induced bleaching and subsequent reduction o f  coral
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calcification. Such declines w ill influence associated organism s 
and significantly alter the r e e f s  biogeochem ical functioning
(Fig. 1).

O n a larger scale, im peding coral ecosystem  engineers m ay 
cause phase shifts from  scleractinian corals to other inverte
brates such as gorgonians, soft corals, ascidians and sponges 
(Bak et al. 1996; M aliao et al. 2008) or even benthic algae 
(Hughes 1994; M cCook 1999; D iaz-Pulido and M cCook 2002; 
B ellw ood et al. 2006) w ith obvious negative effects on prov i
sioning o f  three-dim ensional surfaces and habitats for asso
ciated h igh  biodiversity. C lim ate change w ill contribute to such 
‘phase shifts’ and potentially to  long-term  destruction o f  ree f 
fram ew ork and changes in  ree f functioning (G lynn 1993; 
A ronson and Precht 1997; D iaz-Pulido and M cCook 2002; 
A ronson et al. 2004). D ead corals are rapidly colonised by a 
diverse com m unity o f  algae (D iaz-Pulido and M cC ook 2002), 
and living corals are directly overgrow n or dam aged by m acro
algae (Sm ith e t al. 2006;H aas et al. 2010). A lgal colonisation o f  
surfaces o f  dead or im paired corals therefore likely influences 
the recovery o f  neighbouring corals from  clim ate change- 
induced stress such as bleaching o f  the coral engineer. This 
m ay also include dram atic changes o f  biogeochem ical processes 
such as the fixation o f  nitrogen via coral-associated cyanobac
teria. O n a reef-w ide scale, w ithin w eeks o f  a m ajor bleaching 
event and m ass coral m ortality, the production o f  new  nitrogen 
can be 30-fold greater than  that associated w ith living corals 
under undisturbed conditions (D avey e t al. 2008). Therm ally- 
induced m ortality  o f  the coral engineer therefore has the 
potential to significantly alter the re e f  system s’ overall 
dynam ics and integrity. In addition, the loss o f  live tissue w ill 
affect natural recycling o f  nutrients w ithin the system.

O n a sm aller scale, this involves changes in  the scleractinian 
coral com m unity. Branching, fram ew ork-building scleractinian 
corals including the genera Acropora, Seriatopora , Pocillopora, 
and Stylopora  are exam ples o f  m orphologies that are more 
sensitive to therm al stress than  m assive and encrusting grow th 
forms (M arshall and B aird 2000; Loya e t al. 2001 ; M cClanahan 
et al. 2002). In  addition, large colonies o f  these genera were 
more susceptible to therm al stress than sm all colonies (Loya 
et al. 2001; M um by e t al. 2001; N akam ura and van W oesik 
2001; Bena and van W oesik 2004). Therefore, clim ate change 
w ill reduce the fram ew ork-building and habitat-generation 
capacity o f  reef-coral comm unities.

Calcifying activities o f  reef-building corals ultim ately result 
in a three-dim ensional m atrix  that provides space, shelter, and 
food for a m ultitude o f  organism s (Srinivasan 2003; Sale e t al. 
2005; Raes et al. 2007). H igh ree f rugosity, for exam ple where 
large m assive Porites coral colonies dom inate the seascape, is 
associated w ith h igh abundances o f  re e f fishes (M cClanahan 
and Shafir 1990). Similarly, a high abundance o f  m icro
structures w ith in  coral colonies is strongly and positively 
correlated w ith h igh fish and invertebrate diversity (Nanami 
and N ishihira 2004; N anam i et al. 2005). R eduction in  rugosity 
reduces the availability o f  habitat space at a variety o f  scales 
and leads to a considerable reduction in re e f  biodiversity 
(M cClanahan and Shafir 1990). In the Caribbean, the architec
tural com plexity o f  reefs has already declined non-linearly over 
the last 40 years (A lvarez-Filip et al. 2009) as a com bined result 
o f  clim ate-change effects and local disturbances.

The fate o f  re e f corals and their com m unity com position is 
not only fundam ental for future reefs to  m aintain their ability 
to accrete and form  coastal barriers, but also in  determ ining 
w hether or not they w ill continue to support the plethora o f  
coral-associated diversity through time. Loss o f  corals and shifts 
in  species com position reduces the variety o f  habitats available 
at m acro- and m icro-scales, w hich likely leads to subsequent 
losses o f  habitat com plexity and associated biodiversity o f  
invertebrates and fish (Reaka-K udla 1997; Loya e t al. 2001; 
W ilson e t al. 2006). This includes obligate associates such as 
corallivorous fishes in  the short term , but also subsequent 
reductions in  overall fish diversity 3 -4  years follow ing a therm al 
stress event (Pratchett 2007; M unday et al. 2008).

Control o f  biocatalytical sand filters
The com m only observed phase-shifts from  the dom inance o f  
corals to that o f  fleshy algae w ill additionally decrease the 
production o f  inorganic m aterial in  the long term , but w ill 
increase sedim ent-form ing erosion processes in  the short term , 
because o f  the breakdow n o f  the re e f fram ew ork (Fig. 1). The 
extent o f  this ree f degradation is obviously dependent on the 
functional group o f  algae involved in phase shift. In areas 
dom inated by crustose coralline algae, fragm entation o f  the re e f 
fram ew ork can be m itigated by cem entation and binding o f  
sedim ents and loose coral fragm ents (K ennedy e t al. 2002; 
Payri 1988). Some coralline algae species can even induce coral 
larval settlem ent, thereby facilitating new  recruitm ent and ree f 
recovery (Fabricius and D e’ath 2001; H arrington e t al. 2004; 
G olbuu and R ichm ond 2007). This beneficial effect may, 
how ever, depend on the extent o f  clim ate change, as crustose 
coralline algae are particularly sensitive to ocean w arm ing 
and acidification (A nthony et al. 2008). C alcareous green and 
articulated corallines contribute less to sediment binding, 
although their sedim ent production, in  particular by calcareous 
green algae (e.g. H alim eda  spp.), can be high (B ach 1979; D rew  
1983; Payri 1988).

Carbonate production by H alim eda  spp. is likely quantita
tively low er than that by scleractinian corals (Bosence 1989). In 
addition, sand and coralline sedim ents derived from  H alim eda  
spp. are different in  density and chem istry from  coral-derived 
sedim ents (Borow itzka and Larkum  1977; Braga e t al. 1996; 
Bosence and W ilson 2003). Therefore, these algae-generated 
sedim ents w ill very likely have shorter residence tim es, and 
therefore w ill m ost likely not function as biocatalytical filter 
systems as described for coral-generated sedim ents (W ild e t al. 
2005a, 2009; W erner e t al. 2006).

Generation and  fate o f  coral-derived organic material
U nder undisturbed conditions, scleractinian corals release 
particulate organic carbon (POC) in  quantities o f  0.3-7.1 mg 
POC m ~ 2 coral surface h _ 1  (W ild etal. 2004a, 2005b; N aum ann 
et al. 2010). To date, there are no available studies on the effect 
o f  acidification on coral-derived organic m atter release. H ow 
ever, during therm al-induced bleaching, two different kinds o f  
organic m atter are released in  increased quantities: ( 1 ) zoo
xanthellae, and (2 ) coral-derived particulate organic m atter 
(POM ) (Niggl et al. 2009). D egradation o f  these substrates by 
ree f m icrobes differs considerably, w ith  very low  rates observed
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for sym biotic dinoflagellates ( < l% h _1), and high rates for 
coral-derived POM  (>5%  h _1) (W ild et al. 2005a). This could 
indicate that a m ajor fraction o f  the sym biotic dinoflagellate- 
com posed POM  does not rem ain in  the re e f  system  long enough 
to be recycled, and thus likely involves a considerable loss 
o f  essential nutrients. In  contrast, the coral-derived POM  m ay 
function as an  energy carrier and particle trap (W ild e t al. 2004a; 
H uettel e t al. 2006). This m aterial potentially stays w ithin the 
system  and is recycled, particularly by the benthic com m unity. 
A  short-term  pulse o f  labile organic m atter can result, and 
studies have dem onstrated that this organic m atter can be 
recycled by the planktonic and benthic re e f com m unity w ithin 
two w eeks (W ild e i al. 2004c, 2008; Eyre eta l. 2008; G lu d eta l. 
2008).

H istological analyses (Fitt e t al. 2009), how ever, indicate 
that internal m ucus reservoirs in  the coral tissue are depleted 
during bleaching, so that m ucus-PO M  release by corals is most 
likely only stim ulated during the early phase o f  bleaching, 
dropping to low  levels the longer the bleaching event lasts 
(Fig. 1). This dynam ic flux o f  POM  w as confirm ed by Piggot 
e t al. (2009), who dem onstrated that the num ber o f  m ucus- 
producing cells (m ucocytes) in  the coral tissue increases w ith 
increasing sea-surface tem peratures, but declines to low levels 
after the initial bleaching response.

C oral bleaching thereby largely reduces the m etabolic 
exchange betw een corals and associated organism s, as w ell as 
reducing the capacity o f  corals to trap organic matter. This m ay 
lead to further loss o f  POM  from  the re e f  system. Therefore, 
not only are corals affected by therm al stress, but the entire reef 
system  changes and functions differently during and after a 
bleaching event, particularly w hen bleaching results in  exten
sive coral m ortality. Corals can  recover from  bleaching, w hich 
allows for the return  o f  the described re e f  engineering functions 
through production o f  organic m atter by the coral engineer 
(Fig. 1). The respective recovery tim e scales range from  weeks 
to m onths (Gates 1990; Jokiel and Coles 1990), so that short- to 
m id-term  effects on biogeochem ical processes can be expected 
from  a b rie f im pedim ent o f  the coral engineer. H owever, these 
effects m ay include long-term  changes in  the r e e f s  recycling 
capacity.

V alue o f  coral engineer-driven reef ecosystem  goods  
and services

Reef-building corals act as ecosystem  engineers because they 
provide the physical structure as w ell as biotic and biogeo
chem ical services to reefs (M oberg and Folke 1999). Such ser
vices are functionally sim ilar to other ecosystem  engineers such 
as rainforest trees, m angroves or seagrasses (G uitierrez et al., in 
press), but usually  m uch m ore persistent because o f  the calcar
eous m aterial o f  the coral skeleton. However, corals w ill most 
likely be the ecosystem  engineers m ost affected by climate 
change because they are com paratively slow-growing, steno- 
therm ic and calcifying organism s, and therefore particularly 
susceptible to ocean w arm ing and acidification. G lobal climate 
change, especially ocean w arm ing that includes coral bleaching, 
im pedes the engineering capacity o f  scleractinian corals (Fig. 1). 
This also includes the loss o f  re e f ecosystem  services for coastal 
protection, tourism , and productivity.

Protection o f  coastal areas and their h igh associated 
b iodiversity strongly depend on the production o f  inorganic 
m aterial by scleractinian corals. These ree f structures can absorb 
70-90%  o f  w ind-generated w ave energy (W ells e t al. 2006) and 
differentiate habitats and physical environm ents that influence 
b iological diversity at all scales. The attraction o f  coral reefs 
for tourism  is probably a reflection o f  such coral-driven 
biodiversity.

The total annual econom ic value o f  coral reefs via ecosystem  
services has been estim ated at least U SD100 000-600  000 km ~ 2 
(W ells e t al. 2006). The im pedim ent o f  corals as re e f engineers 
w ill drastically reduce these econom ic values, even w ithout 
consideration o f  the ecological values (e.g. h igh biodiversity) if  
reefs are further degraded under clim ate change.

Coral engineer-controlled ree f biodiversity also has an 
increasing econom ic im portance for the delivery o f  new  bio lo
gically active m olecules (e.g. Fung et al. 1997; Fung and Ding 
1998) that are being developed as pharm aceuticals. R eef 
productivity and ensuing fishery biom ass largely depend on 
the production o f  scleractinian corals, but also on their reef- 
engineering functions including the initiation o f  biogeochem 
ical processes, leading to rapid  recycling, and conservation o f 
essential elem ents, such as nitrogen and phosphorus.

C onclusions

This review  indicates that anthropogenic clim ate change has the 
potential to drive m ajor changes across the entire re e f  ecosystem  
and indeed is already doing so (Fig. 1). These fundam ental 
changes have the ability to cause both  reversible and irreversible 
changes to re e f ecosystem  functioning. A s part o f  these inter
actions, several related  aspects are likely to feed back on the role 
that corals play as ecosystem  engineers. B leaching-induced 
death o f  the coral engineers includes the generation o f  bare 
skeletons that are particularly sensitive to physical, chem ical 
and biological erosion processes (Stoddart 1969). In  addition, 
colonisation o f  these stable surfaces by m icrobial biofilm s, 
algae or other invertebrates m ay not only reduce recruitm ent 
success (e.g. W ebster e t al. 2004), but also change the b iogeo
chem ical processes such as nitrogen fixation (Davey e t al. 
2008).

The initiation o f  carbon and nutrient cycles by coral-derived 
organic m atter w ill likely be significantly reduced in  w arm er 
oceans (Fig. 1), w hich m ay alter nutrient dynam ics to favour 
other organism s such as cyanobacteria rather than corals.

Production o f  calcareous ree f sands w ill probably increase 
im m ediately after bleaching-induced m ass coral m ortality  as a 
result o f  increased erosion. H owever, this is a short-term  effect 
lasting only until the carbonate supply dim inishes. A t large 
scales, a net loss in carbonate accretion w ill hypothetically 
influence the biocatalytic filter system s so that the processing 
o f  im ported organic m atter, for exam ple via eutrophication 
or river discharge, is reduced (Fig. 1). This m ay ultim ately 
decrease ree f resilience and increase vulnerability o f  coral-reef 
ecosystems.

Sim ilar, but not as pronounced, feedback effects on the coral 
engineer can be expected during and after sub-lethal bleaching 
(Fig. 1). A s the energetic status o f  corals w ill be affected, less 
energy m ay be invested in  the production o f  inorganic and
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organic m atter, including carbonates, secondary metabolites, 
and antibiotic substances (Ritchie 2006) that prevent over
grow th by other organism s and prom ote resistance against 
pathogens. Such reductions m ay change the diversity and 
activity o f  coral-associated organism s, w hich consequently 
m ay overgrow  or infect corals so that recovery from  bleaching 
is suppressed.

The im pacts o f  global clim ate change on fundam ental 
physiological processes such as scleractinian coral growth, 
calcification, defence, m aintenance and reproduction result in 
broad-scale consequences for ecosystem  functions and services 
provided by the reef-building coral engineers. Reduced grow th 
and reproduction translate directly to a reduced resilience o f  
coral-dom inated re e f  com m unities. Similarly, com prom ised 
im m une systems and reduction in  com petitive abilities (M ydlarz 
et al. 2009; R eed e t al. 2010) lead to fundam ental changes in  the 
com m unity structure o f  tropical benthic assem blages (Hoegh- 
G uldberg e t al. 2007). The consequences o f  reduced calcifica
tion  rates as a result o f  ocean w arm ing and acidification w ill 
m anifest as a reduction in  skeletal extension (Jokiel et al. 2008), 
changes in  skeletal crystal m orphology (Cohen et al. 2009) or, 
hypothetically, the form ation o f  less dense skeletons that are 
highly susceptible to rapid  physico-chem ical and biological 
erosion.

Such deleterious im pacts o f  clim ate change w ill thereby 
m odify the ability o f  scleractinian corals to m aintain their 
engineering roles in  coral-reef ecosystem s. G lobal influences 
w ill also interact w ith  m ore local and direct disturbances to 
exacerbate the adverse effects o f  overfishing and declining 
w ater quality (Hughes et al. 2007) that additionally im pede 
the functioning o f  corals as ree f ecosystem  engineers.
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