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Several studies in th e  N orth  Pacific O cean have d o c u m en ted  th e  consequences o f rising sea surface tem p era tu res  and  th e  advance­
m en t o f  th e  spring freshet on ocean productivity. The altering o f ocean productiv ity  has also been corre lated  w ith changes in th e  
m arine survival and  geographic occurrence o f som e Pacific salm on populations. Knowledge of th e  m arine survival and  position of 
salm on in th e  Pacific O cean are derived typically from  m ark-recap ture  studies. As a result, th e  m igratory behaviour and  associated 
survival estim ates o f salm on in real tim e are n o t known. M ajor inform ation gaps also exist in term s o f stock-specific m arine behaviour 
and  survival—especially as they  relate to  recen t changes in clim ate. Acoustic telem etry  and  o th e r  m odern  tools enable researchers to  
answ er specific questions a b o u t environm ental, physiological, and  genetic  effects on  individual salm on survival an d  behaviour, which 
had n o t been possible previously. As clim ate tren d s increasingly exceed th o se  found  in historical records, th ere  is an urgen t need  for 
inform ation th a t  will im prove fishery m anagem en t and  conservation  decisions. International, m ultidisciplinary research team s using 
m odern  technologies could  accom plish this.
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Introduction
Pacific salmon (Oncorhynchus spp.) have existed in the North 
Pacific Ocean for more than five million years (Neave, 1958; 
Shedlock et al., 1992; McPhail, 1997). Natural climatic changes 
have caused fluctuations in salmon abundance over several thou­
sand years (Finney et ah, 2000), but an impressive adaptive ability 
(Hendry et ah, 2000) has been one o f the main factors enabling sal- 
m onid survival to this day. However, recent changes in climate are 
unprecedented (Emanuel, 2005; Jouzel et ah, 2007). Scientists have 
declared that the major trends in climate observed in the past 50 
years have been caused by hum an activity, and warn that if 
present emission levels continue, global climate systems could be 
damaged irreversibly (IPCC, 2007).

The great diversity o f Pacific salmon has been attributed to the 
major changes in topography, climate, and glaciations taking place 
on the west coast o f North America during the past five million 
years (Montgomery, 2005). Each species o f Pacific salmon has a 
unique migratory strategy, timing of life stages, rates, and routes 
o f travel, habitat use, and responses to environmental factors 
such as flow rates, temperature, and salinity (French et ah, 1976; 
Groot and Margolis, 1991; Waples et al., 2001; Mueter et al., 
2002). For example, pink salmon (Oncorhynchus gorbuscha) have 
a 2-year life cycle, migrating to the ocean quickly, and returning 
after 18 months to spawn and die (Heard, 1991), whereas 
sockeye salmon (Oncorhynchus nerka) spend the first few years 
o f their life in freshwater before travelling great distances in the

ocean and returning up to four years later (Burgner, 1991). 
Although some pink and coho salmon (Oncorhynchus kisutch) 
spend their entire marine life in coastal waters, juvenile steelhead 
trout (Oncorhynchus mykiss) prefer offshore areas (Pearcy and 
Masuda, 1982; Argue et al., 1983; H artt and Dell, 1986; Fisher 
and Pearcy, 1988). W ithin each species, there are thousands of 
spawning populations, and variation exists among stocks 
co-inhabiting the same river system (Groot and Margolis, 1991). 
For example, in the Fraser River watershed o f British Columbia 
(Figure 1), the timing o f sockeye-salmon outm igration tends to 
depend on the lake system in which the stock originates 
(Burgner, 1991). Therefore, with the high degree of variability 
that exists between species, stocks, and brood years, the task of 
understanding ecosystem effects on Pacific salmonid migratory 
behaviour has been a challenge even without taking climatic 
effects into account.

Interactions between short-term  climate patterns, decadal 
regimes, and long-term climate-change trends are complex. 
Fishery scientists face the challenging task o f distinguishing 
between the influences o f 6 -1 8  m onth weather patterns (e.g. El 
Niño), 20-30-year regimes (e.g. the Pacific Decadal Oscillation), 
and longer term climate change on salmon populations 
(Philander, 1983, 1990; Rasmussen and Wallace, 1983; Kerr, 
1995; M antua et al., 1997). The Pacific Decadal Oscillation, 
a large-scale climate pattern in the N orth Pacific, has had 
direct impacts on salmon populations (M antua et al., 1997;
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Figure 1. The Columbia and Fraser Rivers, the  Strait of Georgia, and 
the Juan de Fuca Strait, off the  west coast of North America.

Beamish et al., 1999a; Hare and M antua, 2000), and regime shifts 
have been correlated with significant changes in migratory pat­
terns, abundance, and marine-survival rates (Beamish et ah, 
1997a, 2004; Welch et a l, 2000; Hobday and Boehlert, 2001). 
However, these relationships may change during El Niño years. 
Similarly, long-term climate-change trends may counteract 
decadal regime effects over time, which could alter the marine 
environment in unforeseeable ways (IPCC, 2007).

If  the consum ption rate o f Pacific salmon is to continue at 
present levels, improvements in the precision o f fisheries data 
and climate-prediction capabilities are essential (Bardach and 
Santerre, 1981; Cole, 2000). Whereas the freshwater part o f the sal- 
m onid life cycle has been the prim ary focus o f research to date, 
scientific information about estuarine and early marine survival 
for Pacific salmon stocks is lacking (Pearcy and Masuda, 1982; 
Perry et al., 1998; Brodeur et al., 2000; Weitkamp and Neely, 
2002; Beamish et al., 2003). The need for marine-ecosystem assess­
ments o f anadromous salmon has been demonstrated globally 
(Beamish and Mahnken, 1999; DFO, 2000; CEC, 2002; NOAA, 
2002). Moreover, ecosystem-based fishery management that incor­
porates both biotic and abiotic data from an ecosystem rather than 
from solely a target-species perspective is essential to maintaining 
fisheries as sustainable, particularly with the changing marine 
environment (Beamish and Mahnken, 1999). The use o f new 
technologies, combined with the outputs o f environmental 
m onitoring systems, could improve our limited understanding 
o f how climatic changes affect the marine survival and migratory 
behaviour of Pacific salmon. This review outlines current literature 
pertaining to climate effects on Pacific salmon and describes where 
knowledge gaps could be filled by the employment o f electronic 
devices and other advancing technologies.

Pacific climate
Ecological research aimed at the long-term conservation o f natural 
resources is a priority as changes in the environment become more 
extreme (Mote et al., 2003; Stern, 2007). Ice cores in Antarctica 
provide evidence that atmospheric levels o f carbon dioxide 
(C 0 2) are higher now than they have been in the past 800 000 
years and are increasing at a rate never before recorded

(Petit et al., 1999; Jouzel et al., 2007). If current trends continue, 
the average surface air temperature o f the northern hemisphere 
is estimated to rise by more than 3°C by 2050 (M ann et al., 
1999). Elevated levels o f C 0 2 in the atmosphere also increase 
the acidity o f the oceans, which could have major effects on the 
future o f marine ecosystems (Caldeira and Wickett, 2003). The 
earth’s rising surface temperature has resulted in disturbing 
changes in the cryosphere, the frozen areas o f the earth’s surface. 
Ice breakup in spring is happening earlier than it did 50 years 
ago, the area and thickness o f ice sheets are decreasing, and pre­
cipitation patterns are changing (Magnuson et al., 2000; 
Livingstone, 2001; Robertson et al., 2001). The cryosphere is an 
integral part o f the global ecosystem, controlling the water 
supply to many areas, and influencing ocean currents 
(Magnuson, 2002). Rising sea levels attributable to the thermal 
expansion o f the oceans and the increased melting o f ice are alter­
ing coastal habitat (Morris et al., 2002). The disappearance o f the 
polar ice cap and other im portant ice sheets will transform the 
marine environment in ways that can only be speculated upon 
(Alley, 2002). Global temperature increases are positively corre­
lated with zonal wind strength (Kalnay et al., 1996; Emanuel, 
2005; IPCC, 2007), which is a major driver o f oceanic currents 
(Munk, 1950; McGowan et al., 1998; Walther et a l, 2002).

Oceanic currents are the circulation system of marine eco­
systems (McPhaden and Zhang, 2002). Cold, nutrient-rich 
waters from the deep are drawn up to the surface, allowing for 
the growth o f phytoplankton, which form the base o f the ocean 
food chain (Pickett and Schwing, 2006). Phytoplankton are extre­
mely sensitive to temperature, nutrient concentrations, and 
sunlight levels, making them good indicators o f climate-pattern 
changes and environmental conditions (Roemmich and 
McGowan, 1995). If the currents change, the depth and concen­
tration o f nutrient layers change, and ocean productivity is 
affected (McGowan et a l, 1998). These effects are manifested in 
Pacific salmon size, abundance, marine survival, and migratory 
behaviour (Bardach and Santerre, 1981; Johnson, 1988; Beamish, 
1993; Beamish et a l, 1999a, b, 2000, 2008; McFarlane et a l, 
2000; Hobday and Boehlert, 2001; Mote et a l, 2003; Tolimieri 
and Levin, 2004).

Correlations between population size and climatic indices have 
been recorded in many species, including Pacific salmon (Beamish 
and Bouillon, 1993; Williams, 1998; Cole, 2000). From the subtro­
pic to the Arctic zones o f the Atlantic and Pacific Oceans, the pro­
ductivity o f the main commercial fish stocks is closely related to 
the atmospheric-circulation index (a measure o f the dom inant 
direction o f air-mass transport) and the earth-rotation velocity 
index (a measure of Earth’s rotational velocity, which affects the 
length o f day; Klyashtorin, 1998). The Aleutian low-pressure 
index, a measure o f the area o f the North Pacific covered by the 
Aleutian low-pressure system <  100.5 kPa, also correlates with 
the catch of Pacific salmon (Beamish and Bouillon, 1993). 
Downtown and Miller (1998) reported that the catch o f sockeye, 
pink, and chum salmon (O. keta) in Alaska was affected by the 
temperature at the time and location o f the return migration, as 
well as environmental conditions during the smolt run. An assess­
m ent o f sockeye salmon along the eastern Bering Sea shelf found 
that the diet, condition, and distribution varied with ocean tem p­
erature (Farley et a l, 2007). Not all salmon stocks appear to be 
affected equally during climate shifts, however. Although salmon 
populations off Oregon and Washington approached all-time 
lows in 1972, abundances in Alaska increased significantly
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Figure 2. Mean annual SST in the Strait of Georgia from 1922 to 
2007. Data from the Race Rocks Lighthouse (48°18'N 123°32'W) in 
the Strait of Juan de Fuca are shown as open circles, and data from 
the Entrance Island Lighthouse (49°13'N 123°48'W) in the Strait of 
Georgia as open triangles (after Environment Canada, 2008).

(Coronado and Hilborn, 1998; Bradford, 1999; Hare et al., 1999; 
Welch et al., 2000; Hobday and Boehlert, 2001). Ocean pro­
ductivity is the main determining factor o f overall marine survival 
for salmon, and northern waters are increasing in productivity 
whereas the biomass in southern waters declines (Nickelson, 
1986; Fisher and Pearcy, 1988; Beamish and Bouillon, 1993; 
Hare and Francis, 1995; M antua et al., 1997; Beamish et al., 2000).

Climate affects salmonids at all life stages. The early marine- 
survival rate o f Pacific salmon is influenced by individual body 
size (Holtby et al., 1990; Beamish et al., 1997b). The num ber of 
juveniles to reach a critical size by a particular time has been 
associated with brood-year survival and abundance (Beamish 
and Mahnken, 2001; Ruggerone et al., 2007). If prey availability 
is low, juvenile salmon may not reach their critical body size 
before winter, and suffer high mortality as a result (Beamish and 
Mahnken, 2001). As adults, shifting currents and higher water 
temperatures may affect the ability o f salmon to return to natal 
streams to spawn (Richter and Kolmes, 2008). Researchers in 
Canada, Japan, Russia, and the United States have found corre­
lations between changes in climate and the migratory behaviour 
o f Pacific salmon populations (Welch et al., 1998; Beamish et al., 
1999b). Transpacific surveys conducted by the Japanese and 
Canadian Governments during the 1990s, in addition to historical 
data collected since the 1950s, found strong sea surface tempera­
ture (SST) limits for sockeye salmon that affected their migratory 
behaviour and could restrict the species to the Bering Sea within 50 
years (Welch et al., 1998). Sockeye salmon in the Columbia River, 
WA (Figure 1), have been migrating upriver more than a week 
earlier on average than they did 50 years ago (Q uinn et ah, 
1997). In the Straits o f Georgia and Juan de Fuca (Figure 1), the 
average annual SSTs have increased by 1°C over the past century 
(Environment Canada, 2008; Figure 2), and adult Fraser River 
sockeye have been returning to rivers on the west coast of 
Vancouver Island to spawn (McKinnell et ah, 1999). Migratory 
routes o f coho salmon in the Strait o f Georgia have altered since 
1995, when most resident juvenile coho salmon left the Strait 
during late autum n (Beamish et ah, 1999b). Moreover, the final 
ocean weight o f Fraser River sockeye decreased with increasing 
SST, potentially affecting their reproductive success (Hinch 
et al., 1995; Pyper and Peterman, 1999). Temperature barriers 
exist not only because o f lethal temperature limits, but also as a 
result o f tight energy budgets faced by salmon during winter 
(Richter and Kolmes, 2008). W hen prey availability is low, 
salmon need to keep their basal metabolism at a minimum,

2197

Figure 3. The April mean daily discharge of the Fraser River at Hope, 
British Columbia, from 1912 to 2006 (after Environment Canada, 
2008).

because metabolism increases exponentially with temperature 
(Brett etal., 1969). Therefore, the migratory behaviour, feeding be­
haviour, and trophic dynamics o f Pacific salmon can be affected 
when the fish are faced with climate-induced changes in water 
temperature and prey resources (Kaeriyama et ah, 2004).

Other effects o f climate, such as an earlier onset o f spring, can 
further affect salmon stocks (Beamish et ah, 1999a). The mean 
daily discharge o f the Fraser River in April has been increasing 
(Environment Canada, 2008; Figure 3), indicative o f an advancing 
spring freshet, and an earlier marine productivity bloom (Beamish 
and Mahnken, 2001). This trend favours smo Its that migrate out 
earlier in spring (Beamish et ah, 1999a; Beamish and Mahnken, 
2001). Therefore, earlier migrating species such as pink and 
chum salmon may have an advantage over later migrating coho 
and Chinook (Oncorhynchus tshawytscha) salmon (Beamish 
et al., 2000). Additionally, as wild smolts migrate downstream 
earlier, hatchery fish generally have a static release time, 
which may contribute to their reduced marine survival (Beamish 
et al., 2008).

Electronic devices as tools to study climatic effects
Marine research on salmon has typically made use o f catch data 
from fishing vessels to estimate population sizes and migration 
patterns (Beamish et al., 2003). Coded-wire tags (CWTs) 
enabled researchers to tag large numbers o f young salmon, with 
each stock given a unique identifier. CWTs and other mechanical 
tags have provided a vast am ount o f stock-migratory data, but the 
technology requires the recapture o f tagged fish. Little detailed and 
accurate information can be gained about a fish’s habitat use, 
swimming speed, small-scale movements, exact timing of 
migration, or residence times from such mechanical tags, so the 
influences of a rapidly changing environment on fish movement, 
survival, and growth are limited to speculation. For a thorough 
review o f the CWT programme and biases in catch-data models, 
see Hankin et al. (2005).

M odern stock-identification methods, such as microsatellite, 
DNA-based, genetic stock-identification technology, and single­
nucleotide polymorphisms (SNPs), could allow any fish caught 
in the ocean to be traced back to a specific stock and brood year 
(Nielsen et al., 1997; Bravington and Ward, 2004; Liu and 
Cordes, 2004). Although these methods may provide a wealth of 
distribution data for individual stocks in time, they still require 
the capture of fish in the ocean and do not allow for the m onitor­
ing o f a live fish w ithin its natural environment. The lack of infor­
m ation regarding the spatial and temporal migratory patterns and
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survival o f individual stocks and how they react to changing 
environmental conditions is the prim ary reason that fisheries 
models provide unreliable estimates o f predicted returns and, as 
a result, are limited in their usefulness to management plans and 
conservation strategies. Moreover, as some salmon stocks 
become more threatened, catch data are in some cases non­
existent, and the removal o f large numbers o f endangered fish 
from the sea for research is controversial. The prim ary knowledge 
gaps in  Pacific salmon biology as it relates to climate include stock- 
specific marine survival and marine migratory behaviour, and eco­
system dynamics. Each o f these will now be examined in tu rn  in 
relation to the use o f new electronic devices.

Marine survival o f Pacific salmon
Advances in hydroacoustic telemetry during the past 30 years 
allow for marine-survival data to be obtained independent of 
fish harvest. Fish as small as 11 cm can be tagged without 
adverse effects on growth or survival (Chittenden et ah, 2009), 
making field studies o f Pacific salmon species with smaller 
smolts possible (Chittenden et ah, 2008). Reviews o f early 
acoustic-telemetry work are provided by Ireland and Kanwisher 
(1978), M itson (1978), and Stasko and Pincock (1977). Later 
studies are summarized in Baras (1991), Arnold and Dewar 
(2001), and Jepsen et al. (2002). Coded acoustic transmitters 
have also been developed that contain an electromyograph 
(EMG) to record heart rate, feeding activity, breathing activity, 
swimming speed, and acceleration and movement patterns o f indi­
vidual fish as they pass through different environments (e.g. 
Armstrong et al., 1989; W hitney et al., 2007). A comprehensive 
review of the applications of EMG tags is given by Cooke et al. 
(2004a). Additionally, archival and coded tags that m onitor tem p­
erature, depth, oxygen, pH, and light levels experienced by the fish 
are available (e.g. from VEMCO Ltd, Halifax, NS, USA, or Thelma 
AS, Trondheim, Norway).

Earlier work correlating climatic indices to the catch and return 
rates o f Pacific salmon stocks provide little detail in  terms o f the 
mechanisms o f environmental effects on salmon populations, 
the location o f high marine-mortality areas, or how individual 
fish respond to environmental changes. Acoustic telemetry has 
been used to study the early marine survival o f steelhead trout 
(Welch et al., 2004; Melnychuk et al., 2007) and sockeye salmon 
(Cooke et al., 2005a), using listening lines o f hydrophone receivers 
moored on the seabed (the Pacific Ocean Shelf Tracking project, 
POST; Welch et al., 2003). These studies are good examples of 
how acoustic telemetry can be employed to fill the knowledge 
gaps in stock-specific, marine-survival rates, bu t they do not incor­
porate climate data. Only one published report could be found 
regarding climate effects on the marine survival o f Pacific 
salmon using acoustic telemetry. Crossin et al. (2008) examined 
the relationship between exposure to high temperature during 
spawning migration and the survival, behaviour, and physiology 
of adult sockeye salmon. They found that fish exposed to higher 
temperatures during their homing migration had significantly 
less survival to the spawning site and higher infection levels of 
Parvicapsula minibicornis. EMG tags m onitoring heart beat, 
feeding rate, depth, or swimming speed can indicate metabolic 
rates, or whether a fish has died (Cooke et al., 2004a), if detected 
by a manual-tracking device or autonom ous underwater vehicle/ 
glider (Webb Research Company, Falmouth, MA, USA). 
Telemetry data can be analysed in conjunction with environmental 
data (e.g. water temperature, pH, salinity, current, dissolved

oxygen, pollutants) recorded by archival tags or sensors located 
near the detected fish. Correlations and detailed behaviour pat­
terns can then be discovered.

The long-term monitoring o f every Pacific salmon stock, 
including yearly baseline health assessments, would be ideal. 
However, there are many limitations to this type of work and, in 
particular, the cost and time involved. Transmitters and receivers 
are expensive; perhaps with time the cost o f this equipm ent will 
decrease, but as with most new technologies not yet widely used, 
considerable funding is required for acoustic- and satellite- 
telemetry studies. Deploying receiver equipment, manual tracking, 
and analysing telemetry data are time-consuming and require 
expertise, although perm anent listening arrays, gliders, and data­
bases that automatically edit and animate telemetry data may 
help cut down on time costs. There is also a possibility that the 
tags affect the fish. Although tag-effect studies have been done 
on Atlantic salmon Salmo salar (Greenstreet and Morgan, 1989; 
Moore et al., 1990; Lacroix et al., 2004), Chinook salmon 
(Anglea et al., 2004), coho salmon (Moser et al., 1990; 
Chittenden et al., 2009), sockeye salmon (Steig et al., 2005), and 
steelhead trout (Brown et al., 1999; Welch et al., 2007), every 
stock is unique and it is advisable to conduct a tag-effect trial 
with each project. Some fish are too small to tag; pink and 
chum salmon, for example, have smolts that cannot be implanted 
with the available sizes o f acoustic transmitters. Therefore, those 
species would need to be caught at sea (e.g. with a purse-seine) 
once they have grown to a more adequate size, for studies of 
early marine survival. Finally, causal relationships are difficult to 
determine in these types o f open-field experiment. Laboratory 
studies investigating individual and multiple environmental 
stressors on the physiology and health o f tagged stocks are 
proposed as a complement to fieldwork.

Marine migratory behaviour o f Pacific salmon
Coded acoustic transmitters and archival tags have been developed 
that can be used to study the marine migratory behaviour o f indi­
vidual fish over several years (Moore and Potter, 1994; Johnstone 
et al., 1995; Voegeli et al., 1998; Thorstad et al., 2004; Finstad et al., 
2005). In  addition to the marine-survival studies mentioned pre­
viously, these technologies have been used to track the marine 
migratory behaviour o f coho (Moser et al., 1991; Ogura and 
Ishida, 1992; Miller and Sadro, 2003; Chittenden et al., 2008), 
sockeye (Crossin et al., 2007), Chinook (Candy et al., 1996), and 
chum salmon (Yano et al., 1997). Acoustic telemetry can take a 
multidisciplinary approach, integrating physiological, environ­
mental, and behavioural parameters in hypothesis-driven field 
experiments (Cooke et al., 2008). Temperature and light levels 
experienced by pink, coho, and chum salmon and steelhead 
trout in the North Pacific were analysed by Walker et al. (2000), 
who found that the offshore distribution o f salmon may be 
more linked to prey distribution than SST. Teo et al. (2004) 
used light-level and SST data recorded by electronic tags to vali­
date geolocation estimates. There is also ongoing m onitoring of 
returning Fraser River sockeye salmon to test the hypothesis that 
as river temperatures increase annually, disease and parasite 
levels are rising, and the timing of the return migration and the 
reproductive success o f this species are being affected (Cooke 
et al., 2004b; Crossin et al., 2008).

W ith the num ber and variability o f Pacific salmon stocks in 
existence, the gap in stock-specific, marine-migratory-behaviour 
research, especially as it relates to climate, is significant. The
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generalized home ranges of the Pacific salmonids have been 
described (Groot and Margolis, 1991). However, as the marine 
climate changes, the migratory behaviours o f some populations 
are changing (McKinnell et al., 1999; Beamish et al., 2008), and 
stock-specific migratory ranges remain a mystery. 
Climate-induced changes in the migratory behaviour o f coho 
and Chinook salmon in the Strait of Georgia (Figure 1) were inves­
tigated by Chittenden et al. (in press), in collaboration with the 
POST project. That study required the use o f acoustic tags to 
answer specific questions about migration timing and marine- 
mortality rates, possible size effects on migratory behaviour and 
survival, and differences between early- and late-summer groups. 
M anual tracking, though time-consuming, can provide a continu­
ous stream o f information about the migratory behaviour o f an 
individual fish within its environment. For example, the migratory 
behaviour o f Atlantic salmon post-smolts tagged and manually 
tracked with acoustic-depth-sensing transmitters was enhanced 
with information about light intensity (Davidsen et al., 2008) 
and temperature (N. Plantalech Manel-la, unpublished data) 
recorded from the tracking vessel. A relevant bu t non-salmonid 
study in South Africa examined environmental factors (turbidity, 
salinity, temperature, tidal phase) that may influence the move­
m ent o f spotted grunters (Pomadasys commersonnii) in an 
estuary (Childs et al., 2008). Using coded EMG transmitters (e.g. 
monitoring feeding, swimming, or heart rates) and environment- 
sensing transmitters (e.g. depth, temperature, salinity) in manual- 
tracking studies expands the possibilities o f analysing the physical 
responses o f fish to environmental cues. Mooring arrays of fixed 
hydrophone receivers with attached environment-monitoring 
devices to track tagged fish, though not as data-rich as manual 
tracking, are likely to be less time-consuming and could provide 
a larger and more representative sample o f fish populations. 
Moored listening stations can relay telemetry and environmental 
data to satellites, which in turn  can send the real-time data directly 
to the offices o f fishery managers. Therefore, as temperatures and 
current patterns change in areas o f prime Pacific salmon habitat, 
fishery managers can observe how tagged fish are reacting, and 
adjust their management decisions accordingly. This could be 
especially effective for restricting fishing when the adults o f an 
endangered salmon stock are migrating through an area. The 
topic o f combining telemetry with other new technologies will 
be further discussed below. Satellite tags (recording depth and 
temperature, for example) attached externally to migrating 
species can be programmed to pop-off and transmit when the 
fish has remained at one depth for an extended period (e.g. 
from Microwave Telemetry Inc., Columbia, MD, USA). This tech­
nology is being used by researchers studying the marine migratory 
behaviour o f Atlantic salmon (A. H. Rikardsen et al., unpublished 
data), European eels (Anguilla anguilla; K. Aarestrup et al., unpub­
lished data), and many other species [e.g. the Tagging of Pacific 
Predators (TOPP) project; Weng et al., 2005; Shillinger et al., 
2008], As yet, no results o f studies using satellite tags to follow 
the open-ocean migratory behaviour o f adult Pacific salmon 
have been published. This new tool is a key to an uncharted area 
o f Pacific salmon behaviour.

Ecosystem dynamics
New molecular and genomic techniques are revolutionizing 
marine microbiology by perm itting the study o f marine ecosys­
tems from the microbe up, in efforts to understand the complex 
interactions between organisms within their changing

environment (Doney et al., 2004). This new interdisciplinary 
science will include information gained from marine fisheries 
research and will help to improve the understanding o f Pacific 
salmon marine biology. Telemetry and other observational tools 
can contribute in a m ultitude o f ways. The ecosystem effects of 
the annual release o f billions of hatchery-reared salmon into the 
Pacific Ocean by the United States, Canada, Russia, and Japan 
are relatively unknown (Beamish et al., 1997b), but differences 
in performance, survival, behaviour, and physical condition 
between wild and hatchery-reared salmon have been found 
(Fleming and Gross, 1993; Shrimpton et al., 1994; Berejikian 
et a l, 1996; Nielsen et al., 1997; Weber and Fausch, 2003; Hill 
et al., 2006; Araki et al., 2007; Chittenden et al., 2008). If hatchery 
programmes continue to be used as a mitigative strategy, their eco­
logical effects must be understood and best-practice strategies 
should be created. In addition to the use o f electronic devices, 
the possibility o f using otoliths and scales to distinguish between 
salmon of wild and hatchery origin would allow any fish captured 
in the ocean to be a source of data and could further the study of 
hatchery fish in the Pacific ecosystem (Hartt and Dell, 1986; 
Schwartzberg and Fryer, 1993; Zhang and Beamish, 2000).

Interspecific studies using electronic devices are not yet 
common. Telemetry was used in the study of an Oregon estuary 
that found harbour seals (Phoca vitulina) to be preying heavily 
on returning adult salmon (Wright et al., 2007). In Norway, the 
interaction between Atlantic salmon smolts, Atlantic cod ( Gadus 
morhua), and saithe (Pollachius virens) is being studied in an 
estuary and fjord system (E. B. Thorstad et al., unpublished 
data). Acoustic technologies were also used to m onitor fish aggre­
gations in Marine Protected Areas (e.g. O’Dor et al., 2001; Cooke 
et al., 2005b; Meyer et al., 2007), at aquaculture sites (e.g. Begout 
Anras and Fagardere, 2004; Cubitt et al., 2005; Conti et al., 2006), 
and around fish-aggregating devices (e.g. Ohta et al., 2001; Dagorn 
et al., 2007). Most o f these studies dealt with one or two species, 
however, and did not examine environmental influences on 
behaviour.

W hen advanced technologies are combined, the benefits are 
great. Sonar and light detection and ranging (lidar) technologies 
allow for the study of salmon-aggregation behaviour in the 
ocean (Gauldie et al., 1996; Misund, 1997; Tollefsen and Zedel, 
2003; Churnside and Wilson, 2004). M onitoring stations could 
be positioned on the bottom  of the ocean scanning upwards, or 
on the surface scanning downwards, at im portant migratory pas­
sageways to observe groups o f fish passing (Doksæter et al., 
2009; Johansen et al., 2009). Environmental sensors could be 
attached to the stations to m onitor climate conditions in the 
area (e.g. including the levels o f marine productivity). These 
observatory nodes could also be fixed to ocean platforms or to 
the bottom  of slow-moving vessels. Combining acoustic telemetry 
with these other imaging technologies would effectively enable 
researchers to study individual fish o f known stock, size, and phys­
ical condition within aggregations, as well as their inter- and 
intraspecific behaviours.

Sea-floor sensor arrays allow the observation o f oceanic con­
ditions and ecosystem productivity in real time. Examples of 
large-scale, sea-floor arrays include the American National 
Science Foundation’s Ocean Observatories Initiative (OOI), 
Japan’s Dense Ocean Floor Networking system for Earthquakes 
and Tsunamis (DONET), and the European Multidisciplinary 
Seafloor Observatories research infrastructure (EMSO). Data 
from these underwater-monitoring systems as well as other
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governmental environmental recording stations could be used by 
fisheries scientists in conjunction with marine survival and 
migratory data from acoustic technologies.

International telemetry projects aimed at studying marine eco­
systems have governments and scientists working in collaboration. 
The TOPP and POST projects, as parts o f the Census o f Marine 
Life, have extended the boundaries o f marine science in the 
Pacific (Welch et a l, 2003; Shillinger et a l, 2008). Marine 
animals from squid to salmon smolts have been tracked across 
the Pacific with satellite tags and acoustic arrays, including some 
mammals that have collected vast amounts o f environmental 
data along their journeys (Weng et a l, 2005). These projects 
allow for the study o f inter- and intraspecific interactions within 
ecosystems. New technologies that enhance the observation o f eco­
system dynamics are being developed: a “chat” tag, for example, 
designed to upload and download information from nearby chat 
tags so that interactions are recorded and can be passed onto a 
receiver later (VEMCO Ltd). Moreover, there are plans for recei­
vers attached to vessels, floats, marine mammals, or gliders that 
can record data from any other tagged animal in their vicinity, 
as well as environmental data, before relaying the information to 
satellites from the surface. Dalhousie University’s Ocean 
Tracking Network (OTN) is developing a global infrastructure to 
integrate projects collecting data on marine animals in relation 
to the changing ocean environment. International collaborations 
such as the examples described here contribute vital information 
about marine life to the United Nations Intergovernmental 
Oceanographic Commission’s Global Ocean Observing System 
(GOOS). Although progressive and necessary to deal with existing 
knowledge gaps, however, these initiatives have limitations that 
include the challenge of dealing with the vast quantities o f data 
produced and gaining enough buy-in from researchers, govern­
ments, and funders to support the infrastructure required for 
long-term studies.

Conclusion
Salmon have adapted to changes in climate over millions o f years, 
but literature on the mechanisms of environmental effects on 
salmon productivity in the Pacific is limited. Although most 
Pacific salmon research has focused on freshwater survival 
(Pearcy and Masuda, 1982; Beamish et a l, 2003), recent declines 
in the marine-survival rates o f many stocks add urgency to the 
need for information about their ocean phase (Beamish et a l, 
2008). Very little is known about current stock-specific marine 
survival and migratory behaviour. Therefore, the mechanisms of 
short- and long-term changes in survival and behaviour attribu­
table to environmental factors and ecosystem dynamics rem ain a 
mystery. Such knowledge gaps are a serious challenge to fishery 
managers trying to predict accurately how salmonid populations 
will be affected by harvesting and a changing climate. 
Coordinated international research efforts using advanced elec­
tronic technologies to investigate the consequences o f short- and 
long-term climate trends on ecosystem dynamics and individual 
salmon populations are vital to the predictive ability o f fishery 
managers and the conservation o f Pacific salmon.
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