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Abstract Monitoring of Phaeocystis since 1948 
during the Continuous Plankton Recorder survey 
indicates that over the last 5.5 decades the distri
bution of its colonies in the North Atlantic Ocean 
was not restricted to neritic waters: occurrence 
was also recorded in the open Atlantic regions 
sampled, most frequently in the spring. Appar
ently, environmental conditions in open ocean 
waters, also those far offshore, are suitable for 
complete lifecycle development of colonies (the 
only stage recorded in the survey).

In the North Sea the frequency of occurrence 
was also highest in spring. Its southeastern part 
was the Phaeocystis abundance hotspot of the 
whole area covered by the survey. Frequency was 
especially high before the 1960s and after the
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1980s, i.e., in the periods when anthropogenic 
nutrient enrichment was relatively low. Changes 
in eutrophication have obviously not been a 
major cause of long-term Phaeocystis variation in 
the southeastern North Sea, where total phyto
plankton biomass was related significantly to river 
discharge. Evidence is presented for the sugges
tion that Phaeocystis abundance in the southern 
North Sea is to a large extent determined by the 
amount of Atlantic Ocean water flushed in 
through the Dover Strait.

Since Phaeocystis plays a key role in element 
fluxes relevant to climate the results presented 
here have implications for biogeochemical mod
els of cycling of carbon and sulphur. Sea-to-air 
exchange of C 0 2 and dimethyl sulphide (DMS) 
has been calculated on the basis of measurements 
during single-year cruises. The considerable 
annual variation in phytoplankton and in its 
Phaeocystis component reported here does not 
warrant extrapolation of such figures.

Keywords Annual variation • North Sea hotspot • 
North Atlantic-wide • Phaeocystis

Introduction

In the North Atlantic and the North Sea seasonal 
variations in marine phytoplankton composition are 
well known, but annual variations in abundance
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have hardly been described, with only a few excep
tions. Monitoring has been maintained for several 
decades close to British (Russell etal. 1971), 
Dutch (Cadée and Hegeman 1991), German 
(Hickel et al. 1996) research institutes, off Belgium 
between 1988 and 2000 (Breton et al. 2006). 
Observed changes in plankton have been related 
to shifts in ocean current patterns (Russell 1935, 
1973; Lindley et al. 1990; Taylor et al. 1998; Reid 
et al. 2003) that are assumed to be governed by 
large-scale meteorological phenomena (Beaugrand 
et al. 2002; Edwards et al. 2002; Reid and Edwards 
2001; Drinkwater etal. 2003; Leterme etal. 2005; 
Breton et al. 2006), to climate (Radach 1984; 
Seuront and Souissi 2001; Reid et al. 1998), or to 
increased coastal eutrophication (Richardson 
1989,1997; Greve et al. 1996), but the response of 
plankton to anthropogenic interference (Cadée 
and Hegeman 2002; Beaugrand 2004) has not 
always been demonstrated in a convincing way.

The Continuous Plankton Recorder survey is 
the longest-running monitoring programme in the 
North Atlantic and the North Sea, with a remark
ably wide coverage (Fig. la), based on one stan
dard sampling method (Glover 1967; Colebrook 
1975; Warner and Hays 1995). Since the time 
series spans several decades, it has been tempting 
to interpret striking changes in abundance of the 
plankton caught on the nets (‘silks’) of Hardy’s 
recorders as the consequence of long-term 
environmental change because variations often 
took place simultaneously over very large areas 
(Colebrook and Robinson 1964; Edwards et al. 
2002). Actually, it has often been taken for 
granted that hydroclimatic forcing in relation to 
global warming must have controlled the long- and 
short-term plankton variability. The northward 
shift in subtropical and temperate Zooplankton 
groups and the gradual disappearance of cold- 
adapted copepod species in the eastern North 
Atlantic (Beaugrand et al. 2002) has indeed been 
quite conspicuous. However, trends in ocean 
water temperature, in the Atlantic multidecadal 
oscillation, or in the state of the North Atlantic 
oscillation and related hydrographical features 
(e.g., vertical stratification: Martin and Haii 1975; 
Fromentin and Planque 1996, Reid et al. 2001) 
could often only be related to the abundance of 
plankton components and transitions in taxonomic

composition after sophisticated statistical treatment 
(Beaugrand et al. 2000,2003; Beaugrand 2004) or 
on assumptions involving differential lags in the 
response of ecosystem components (Drinkwater 
et al. 2003; Kane 2005).

The Continuous Plankton Recorder survey has 
provided a tremendous data set on the occurrence 
of Phaeocystis sp. Phaeocystis was already known 
to vary as much as any other group of plankton in 
the North Atlantic (Owens et al. 1989) and the 
North Sea, in a way apparently independent of 
the phytoplankton in general or of other microal- 
gal species groups such as dinoflagellates and dia
toms (Gieskes and Kraay 1977a), for reasons not 
known at the time. We present here an overview 
of the occurrence of Phaeocystis throughout the 
North Atlantic. In our discussion we will focus on 
its presence in the North Sea, where it is most 
abundant. We offer an attempt to link occurrence 
to the pattern of long-term change in hydro- 
graphic events in the eastern North Atlantic. We 
end the presentation of our analysis by highlight
ing the biogeochemical implications of the long
term changes in the abundance of this species, 
which is known to affect profoundly the cycling 
and sea-to-air exchange of climate-relevant ele
ments, especially carbon and sulphur, components 
in the greenhouse gases C 0 2 and dimethyl sulphide 
(DMS; see review by Schoemann et al. 2005).

Materials and methods

The Continuous Plankton Recorder

The Continuous Plankton Recorder (CPR) survey 
consists of a dense network of transects across the 
North Atlantic and the North Sea. Plankton 
recorders are towed on a monthly basis at a depth 
of 8-10 m from ships-of-oppportunity that travel 
at 10-18 knots. The sampling mechanism inside 
the recorders consists of a narrow band of filtering 
silk (mesh 270 pm) that is driven by an impeller at 
the rear of the recorder at a speed adjusted 
according to the speed of the ship. The silk 
catches particles entering the 12 mm2 aperture 
while it passes (at a rate of 10 cm per 10 nautical 
miles, 18.5 km) through the end of a wide tunnel 
behind the narrow opening in front. About 3 m3
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Fig. 1 (a) Standard areas 
of the continuous 
plankton recorder survey. 
(b)Distribution of 
Phaeocystis colonies over 
the North A tlantic and the 
North Sea over the years 
1948-2003. Annual 
variations: see Fig. 2

of seawater is filtered every 18.5 km. Clogging of 
silks is an exception, but it happens.

Phaeocystis colonies are recorded visually as 
present or absent on lengths of 10 cm of silk (a 
sample). From this information a time series from 
all the CPR samples for a given region can be 
used to create maps of the frequency of occur
rence (the percentage of samples with Phaeocystis 
presence). 0% means that for a given month not a 
single sample contained Phaeocystis, 100% that it 
was present (no matter how much) in every single 
sample taken in that month. Each section covered 
by the CPR constitutes a variable number of sam
ples. Total coverage of a section is determined as 
an average of all percentages.

Details of the sampling procedure have been 
described by Warner and Hays (1995). Total phy
toplankton biomas’ is assessed in four categories

by comparing the colouration of the silks (mostly 
caused by algal pigments) with a colour chart. The 
colour values [Phytoplankton Colour index 
(PCI)] are related to chlorophyll concentration 
on the silks and in the field (Gieskes and Kraay 
1977a; Batten et al. 2003).

Standard regions of the CPR survey are shown 
in Fig. la; each consists of smaller rectangles; 
rectangle ‘O w \ located in the southeastern part of 
the Southern Bight of the North Sea just off The 
Netherlands where major rivers of the continent 
(Rhine, Scheldt) discharge, has received particu
lar attention in the present study.

Rijkswaterstaat-RIKZ survey

The chlorophyll concentrations of the monitoring 
programme run by Rijkswaterstaat-RIKZ off The
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Netherlands since the early 1970s and analysed 
here (Fig. 4) have been measured by fluorometry 
and later by high-performance liquid chromatog
raphy (HPLC). These data, also those of Rhine 
river discharge, are available free of charge to the 
public on the internet because Rijkswaterstaat is 
a government agency funded by taxes; waterbase 
is the keyword for access. Briefly, samples are 
taken near the surface; they are considered to be 
representative for the whole water column 
because normally Dutch coastal waters are mixed 
from the surface to bottom by tides and wind. 
Information on the frequency of sampling, the 
station network, numbers of samples taken, and 
other details of the sampling procedure are 
implicit in the data set that can be extracted by 
using waterbase. We have chosen section Noo- 
rdwijk (N) of this programme because it starts 
just north of the Rhine outflow and samples taken 
there are likely to be influenced most by this river. 
The numbers (N2, N10, etc.) refer to the number 
of kilometers from the coast.

Data presentation

The monthly mean phytoplankton and Phaeocys
tis plots presented here (months versus years, 
1948-2003) are so-called Hovmöller diagrams, 
two-dimensional (2D) plots are often used to dis
play large amounts of data in a readily under
standable way (Hovmöller 1949); the computing 
and statistical analysis has been presented by 
Leterme et al. (2005). In order to reveal anoma
lies in the trends in the North Sea more clearly, 
the Phytoplankton Colour index (PCI) (chloro
phyll) and Phaeocystis colony percent frequency- 
of-occurrence data were also standardized to zero 
mean and unit variance in the North Sea survey 
regions D l, D2, Cl and C2 together (refered to 
herein as ‘the North Sea’), the cumulative sums 
method (fbañez et al. 1993). The calculation con
sists of subtracting a reference value (here the 
mean of the series) from the data. The residuals 
are then successively added, forming a cumulative 
function. Cumulative sum plots have been intro
duced into the SAHFOS data set interpretation 
(Beaugrand et al. 2000) to summarise major 
changes and identify transitional periods in phy
toplankton time series. The cumulative function

results in the smoothing of high-frequency inter
annual variability and highlights changes in mean 
values along the time series.

Results

The distribution of Phaeocystis colonies over the 
North Sea and the North Atlantic (Fig. lb) seems 
to support the notion of an ocean-wide species 
with peak abundance in spring everywhere 
(Fig. 2). The centre of abundance over the study 
period, spanning five decades, was restricted 
nearly entirely to the North Sea, with the south
eastern part clearly being a hotspot. In the open 
and central Atlantic regions the long record sug
gests low (cf. Owens et al. 1989) but persistent 
occurrence (Fig. 2). Abundance was also low (but 
equally persistent) in the northern North Sea 
(regions Cl and C2) where Atlantic water flows in 
from the northwest and dominates the water bud
get. Low colony frequencies were seen (only until 
1985) in the front between the North Atlantic cur
rent in the frminger Sea and the East Greenland 
current, south of Greenland (Figs. lb  and 2); the 
season of highest occurrence was spring also 
there.

Annual variation of Phaeocystis colony abun
dance did not at all resemble the variation in phy
toplankton biomass [the chlorophyll-related 
Phytoplankton Colour index (PCI)] anywhere, 
certainly not in the bloom period, i.e. the spring 
(see Fig. 3). Year-month plots of true chlorophyll 
concentrations, derived from the Dutch monitor
ing programme, in CPR rectangle ‘Ow’ (see 
Fig. lb) are presented in Fig. 4. Notice the gradu
ally earlier chlorophyll spring bloom over the 
monitoring period at all stations (2, 10, 20 and 
70 km off the coast of Noordwijk, The Nether
lands).

The Phytoplankton Colour (PCI) cumulative 
sum plot showed a (single) shift (Fig. 5) in the mid 
1980s. This was very different from the two shifts 
in the Phaeocystis plot (mid 1960s and early 
1990s, see Fig. 5), which shows again that Phaeo
cystis does not reflect the variation observed in 
phytoplankton biomass. Between 1970 and 1985, 
low phytoplankton abundance (PCI) in the North 
Sea coincided with a late spring bloom. This
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Fig. 2 H ovmöller diagrams (years 1948-2003 versus 
months) of Phaeocystis frequency in different regions of the 
North Sea and the A tlantic Ocean (see Fig. lb  for the loca
tion of the regions). Rectangle ‘Ow’ is the southeastern 
part of the Southern Bight of the North Sea, directly off the
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the regions A8, B7 and B8 (see Fig. 1). W estern A tlantic re
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Fig. 3 H ovmöller diagrams (years 1948-2003 versus 
months) of the Phytoplankton Colour index (PCI) in the 
N orth Sea. For region location see Fig. lb . Rectangle 'Ow'

pattern is in contrast with a high frequency of 
occurrence of Phaeocystis and its long season of 
presence before 1955. After 1995 the Phaeocystis 
season was again longer, an observation con
firmed by Breton et al. (2006) who described the 
Phaeocystis record since 1988 off the Belgian 
coast, and by the Phaeocystis record of Philippart, 
Cadeé and van Iperen (not published) that covers 
the period 1975-2006.

Discussion

The distribution map of Phaeocystis presented 
here can hardly be improved, not even by ocean 
colour remote sensing: the frequent cloud cover 
over the North Atlantic hinders satellite-borne 
observations, but not the CPR survey. Also, the 
pigment signature of Phaeocystis is not very spe
cific (Antajan et al. 2004) so the absorption spec
trum and therewith the light reflectance hardly 
differs from that of other fucoxanthin- and 
fucoxanthin-derivative-containing phytoplankton

is the southeastern part of the Southern Bight of the North 
Sea, directly off The Netherlands

groups, frustrating remote distinction of this par
ticular species group. Without the survey it would 
not have been possible to construct the detailed 
year-month diagrams spanning many decades; 
those of low but persistent Phaeocystis occur
rence in spring far offshore in the mid-Atlantic 
regions (Fig. 2) and in the Atlantic water of the 
northern North Sea, in areas Cl and C2 (Fig. 2) 
are probably the most unexpected. Not only in 
neritic water but apparently also in the open 
Atlantic, far away from anthropogenic nutrient 
sources (eutrophication), environmental condi
tions are clearly quite suitable for lifecycle devel
opment from single cells to colonies (the only 
stage recorded during the CPR survey).

Even so, changes in eutrophication have often 
been invoked to explain variation in Phaeocystis 
abundance and length of the season of blooming 
and occurrence, but this interpretation has not 
been satisfactory in view of the restricted number 
of stations, often limited to just one (Hickel et al. 
1996; Cadée and Hegeman 2002). Breton et al. 
(2006), who also used observations at a single
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Fig. 4 H ovmöller diagrams of chlorophyll-a concentration 
on a section perpendicular to the D utch coast starting from 
the city of Noordwijk (just north of the river Rhine

outflow), at 2, 10, 20 and 70 km from the coast. Notice the 
gradual shift of the start of the vegetative season to an ear
lier date at all four stations

station (off Belgium), drew attention to the influ
ence of larger-scale phenomena, namely the 
North Atlantic Oscillation that governs climate. 
Much earlier, an analysis of CPR survey results 
obtained in the same area had revealed trends of 
Phaeocystis (Gieskes and Kraay 1977a) that did 
not simply follow the eutrophication trend (Phil- 
ippart et al. 2000): a decrease of Phaeocystis fre
quency of occurrence in the 1960s and early 
1970s, a period when anthropogenic nutrient 
input in the southeastern North Sea increased.

The higher frequency of occurrence and longer 
growing season of Phaeocystis before 1965, when 
eutrophication was still quite low (Philippart et al. 
2000), is particularly striking (Figs. 2 ,5). Actually, 
colony abundance was already reported to be 
extensive more than 80 years ago (Savage 1930). 
This also suggests that Phaeocystis abundance is 
not determined by anthropogenic nutrient input 
only. On the other hand, phytoplankton biomass 
in general has always suggested a direct relation 
with eutrophication (Cadée and Hegeman 2002). 
Also in our study a relationship can be estab
lished between chlorophyll concentrations mea
sured off the Dutch coast (Fig. 4) and river run-off

(not shown), which confirms previous findings by 
Schaub and Gieskes (1991); recently Breton et al. 
(2006) have also pointed out this link. Increased 
nutrient availability of North Sea coastal waters 
after high freshwater fluxes following periods of 
heavy rainfall (a response to the North Atlantic 
Oscillation, cf. Breton et al. 2006) in the catch
ment area of the continent’s rivers clearly sets the 
stage for phytoplankton abundance in the south
eastern North Sea. Such a batch culture-like 
response to nutrient enrichment (light is appar
ently not limiting primary production here) can 
be observed to the present day (Fig. 4). It can 
readily be explained by nutrient flushed out from 
the agricultural lands along the continent’s rivers, 
and probably also resuspension of nutrient-rich 
bottom sediment when river flow is rapid after 
heavy downpours upstream; Schaub and Gieskes 
(1991) stated that phytoplankton biomass near 
the Dutch coast can be predicted on the basis of 
meteorological data on precipitation, which has 
now also been suggested for Belgian coastal 
waters by Breton et al. (2006). There is a sugges
tion of a gradual shift of the start of the growing 
season to an earlier date in the southern North
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Sea (Fig. 4). Whether or not this is the consequence 
of a slight but gradual warming of southern North 
Sea waters remains to be shown.

The Phaeocystis component of the phytoplank
ton is not necessarily related to river-induced 
eutrophication: long-term changes of Phaeocystis 
are quite different from those of the phytoplank
ton (as Phytoplankton Colour index PCI, i.e. 
chlorophyl, in the “Materials and methods” sec
tion) in general (Fig. 5). As we have seen above, 
environmental conditions in open ocean water, 
not necessarily those of coastal waters, promote 
colony development from single cells. Atlantic 
water inflow into the North Sea may therefore 
well be an important factor for the development 
of Phaeocystis in the southern North Sea, a sug
gestion made earlier for phytoplankton in general 
by De Jonge et al. (1996) and De Jonge (1997). 
The inflow of Atlantic water into the North Sea 
through the Dover Straits has unfortunately 
never been monitored over longer periods; it has 
usually been no more than deduced, e.g. from the 
potential induced in submarine cables by the 
water flow (Prandle 1978), most often by con
structing hydrodynamic models that simulate cur
rents on the basis of tides, wind stress over the 
North Sea and freshwater input (Salomon et al. 
1993; Laane et al. 1996; Skogen and Spiland 1998; 
Siegismund 2001). Rather sudden changes in cli
mate—ocean interactions that influenced regime 
shifts in North Sea ecosystem components took 
place in the late 1970s, late 1980s and late 1990s 
(Weijerman etal. 2005). The long-term changes 
in Phaeocystis described here (Fig. 5) do not cor
respond well with these regime shift periods, 
probably because both variability in the mix of 
nutrient sources in the southern North Sea and in 
the sampling route of the plankton recorders do 
not allow corresponding biological and hydrog
raphical observations.

Phaeocystis has been reported to accumulate 
preferentially far offshore, not on the coast, in the 
southern North Sea in the 1920s (Savage 1930). 
Later, Gieskes and Kraay (1977b) also described 
preferential abundance offshore. According to 
Brunet et al. (1996) accumulation on French 
beaches of the British Channel is the effect of 
eastward transport of offshore Phaeocystis 
blooms, not of in situ growth. The line of

increased abundance off the southern coasts of 
Greenland, in the region of the front between the 
extension of the North Atlantic current in the 
Irminger Sea and the East Greenland current 
(Fig. lb), may be explained in these terms. In 
view of the current system the Phaeocystis distri
bution here suggests advection from the Den
mark Straits or even from the west coast of 
Iceland (regions not covered by the CPR survey), 
where Phaeocystis has been reported to be abun
dant (Thordardottir and Astthorsson 1986; Ste- 
fansson and Olafsson 1991). The total absence of 
colonies since 1985 can be explained simply 
(albeit speculatively) by assuming a shift in the 
front to an area outside the plankton recorder 
routes.

Offshore accumulation of Phaeocystis along 
frontal zones as suggested here may well be a 
more general phenomenon; in the southern North 
Sea it would explain an apparent dependence on 
the inflow of Channel/Atlantic water through the 
Dover Straits, a source of nutrients in this region 
that can be more important than local river 
sources of nutrients (Radach and Lenhart 1995; 
Laane et al. 1996; De Jonge et al. 1996; De Jonge 
1997). The high Phaeocystis abundance far off the 
Netherlands, all the way between Holland and 
England in 1925 and 1926 (Savage 1930), can be 
understood in this light. The Atlantic Ocean 
water mass entering the North Sea from the 
southeast forms a front with the coastal water off 
the coasts of Belgium and the Netherlands. Inter
estingly, part of the decrease of Phaeocystis abun
dance in the CPR record in the 1960s and 1970s 
may be explained by a change of the position of 
the front, in line with the suggested front shift 
south of Greenland that may have brought P hae
ocystis out of the reach of the CPR survey in that 
region. In the southeastern North Sea the sam
pling route of the CPR survey has remained the 
same geographically while the coastal water/ 
ocean water front has shifted up to 20 km east
ward to shallow Dutch coastal waters since the 
gradual man-made closure of the estuaries in the 
south-estern Netherlands following the cata
strophic storm surge of 1953 (J. de Kok and L. 
Villerius, Rijkswaterstaat-RIKZ, pers. comm.).

Wind forcing may of course broaden the Rhine 
plume considerably, especially when winds from
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the east persist (Gieskes 1974). Wind forcing, 
later often suggested to be a dominant factor in 
setting the stage for water mass distribution and 
flow in the North Sea (Salomon et al. 1993; Laane 
et al. 1996; Smith et al. 1996; Pingree 2005), is a 
parameter with a long-term measurement record 
at many meteorological stations along the coasts. 
Exploitation of such data to hindcast and predict 
large-scale current patterns would enhance and 
improve existing models to estimate inflow of 
Atlantic Water through the Dover Straits. These 
models currently produce contradictory results, 
and no trend has so far been revealed (Otto et al. 
1990). Low phytoplankton abundance in the 
North Sea and a late spring bloom and changes in 
other ecosystem components between the mid 
1970s and the late 1980s have been ascribed to a 
cold-water period considered to be the conse
quence of low Atlantic water inflow into the 
North Sea (Corten and van de Kamp 1992, 1996; 
Lindeboom et al. 1995; Taylor et al. 1998; 
Edwards et al. 2002; Weijerman et al. 2005). It is 
well known that biological responses may mag
nify changes in the physical or chemical environ
ment, and the annual variation of Phaeocystis 
colony occurrence in the southeastern North Sea 
may well be an example of this concept.

Phaeocystis plays a key role in element fluxes 
relevant to climate (reviewed by Schoemann et al. 
2005) and therefore the results presented here 
have implications for biogeochemical models of 
cycling of carbon and sulphur. Sea-to-air exchange 
of carbon dioxide (C 02) and dimethyl sulphide 
(DMS) has been calculated on the basis of mea
surements made during cruises in a single year. 
Manizzi et al. (2005) already issued a warning to 
prevent this practice. Thomas etal. (2004) pre
sented C 0 2 fluxes in the southern North Sea based 
on measurements from August 2001 to May 2002 
only. They concluded that coastal seas would take 
up 0.4 Pg C per year. In view of the large annual 
variation both in phytoplankton and in Phaeocys
tis abundance presented in this paper such extrap
olations cannot be correct. Discrepancies noted by 
Thomas et al. (2004) with results obtained in the 
same area by Borges and Frankignoulle (2003) 
may well have been the consequence of differ
ences in plankton activity between the years in 
which the cruises were carried out.
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