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Abstract

Turbulent flows in conduits o f  non-circular cross-sections are often encountered in 
engineering practices. Examples are open channels. The flow in such conduits is accompanied 
by secondary motions in the plane perpendicular to the stream-wise direction; and this 
secondary m otion can be caused by two different mechanisms. First, secondary motion 
caused by centrifugal forces in curved passages. Such (pressure induced) secondary velocities 
are quite large (say 20-30%  o f the bulk stream-wise velocity) and occur equally in laminar 
and turbulent flows. Second, secondary flow produced by turbulence in non-circular straight 
conduits. Although the secondary velocity o f  this kind is only 2-3% o f  the stream-wise bulk 
velocity, it can have important consequences on both the flow hydrodynamics and scalar 
transport. For these reasons, it is important to understand and be able to predict secondary 
flow phenomena in developing flow situations and in the asymptotic developed state.

Within the framework o f  the E.C. L1P2 project, an experiment was performed in the 
tidal flume o f Delft Hydraulics, the Netherlands. The experiment was conducted to study 
mixing m echanism s and momentum exchange (in compound channels) between fast main- 
channel flow and slow flood-plain flow. Although the experiment was performed for both 
hom ogeneous and stratified flows, the homogeneous case only is analysed. Despite the 
limited area accessible by the measuring instruments, which caused loss o f  important 
information near (free and solid) surfaces, the following conclusions could be extracted from 
the experiment. At the upstream measuring section, the splitter plate effect disappears but the 
turbulence is not yet fully developed. The secondary flow at the downstream measuring 
section and its effect on the longitudinal velocity component indicates a fully developed flow. 
However, the position o f  the fully developed section is still open for research. Although the 
point m easurem ent at a single cross section along the flume provides useful information 
regarding the turbulence, it is not sufficient. It is believed that the study o f  turbulence along 
the flume and consequently recognising the coherent structures is important to fully 
understand the (not fully random but "partly" organised) turbulence phenomena.

The flow is numerically modelled using a finite difference 3D scheme. The model 
is explicit using the ULTIMATE QUICKESTscheme to discretise the advection term. The 
scheme is modified so that three grid points are used (instead o f  four) for interpolation. The 
ULTIM ATE QUICKEST suffers from reverting to the diffusive first order upwind when the 
monotonicity condition is violated. Patankar and Spalding algorithm is used to determine the 
pressure Field. The Algebraic Stress Model (ASM) is found to be a reasonable compromise 
com bining the econom y o f the simple eddy viscosity mode! and the accuracy o f  the stress 
transport models. Haque’s ASM is found to be o f limited applicability because it suffers from 
first, solving a set o f  simultaneous equations at each grid point; second, the ill-conditioned 
problem; third, neglecting the stress transport terms. On the other hand, N aot’s ASM is found 
to be a reasonable alternative taking into account surface proximity and overcoming the 
disadvantages o f  Haque’s model. The results obtained from the numerical model are in 
reasonable agreement with the experimental ones.

The model is compared with the large-scale POM model. It is concluded that the 
assumptions underlying large scale models are so different from those underlying small-scale 
m odels that they cannot replace one another, even with any degree o f  approximation.
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Chapter 1

INTRODUCTION

1.1 Flow in Compound Channels

1.1.1 Challenge to environmental engineers

The discharge o f  pollutants into watercourses is becoming an increasing threat 

to our water resources. The pollutants can be thermally or chemically polluted water from 

power stations, industrial plants and households. The threat to the environment is faced 

in the form o f ecological impact on marine life, health hazard to the users o f  the water 

courses and damage to the recreational areas usually settled around the water courses. The 

understanding and control o f the transport and diffusion o f  pollutants are real challenges 

to hydraulic engineers.

Civil engineering projects such as harbors, traffic tunnels, pipelines and storm 

surge barriers often require the dredging o f  trenches or channels in the alluvial bed o f  a 

river or estuary. The siltation o f the dredged trenches and the fluid forces acting on the 

submerged structures are another type of challenge to hydraulic engineers. A third 

challenge to hydraulic engineers is control o f rivers in times of flood.

To find a practical solution for any o f the above-mentioned problems, it is 

necessary to understand the mechanisms which govern both water motion and pollutant 

transport. In general, the mean motion in rivers is three dimensional, where the pollutants 

are convected by the mean fluid motion and diffused by turbulence. Particularly 

complicated flow patterns arise when the boundaries are irregular. Irregular boundaries 

are encountered in many practical situations, e.g. a river channel with flood plains, a canal
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with side berms and a main flow estuariae channel with side storage zones. Under these 

circumstances, the flow-cross-section is compound, consisting o f  a main channel with fast 

flow and (a) flood plain(s) with relatively slow flow. The hydraulic characteristics o f  

compound channels are significantly different from those o f  rectangular channels due to 

interaction between the flow in the main channel and the relatively slow flow on the flood 

p lains. For example, the discharge capacity of a compound channel is lower than the 

combined capacities o f  the individual separate channels and the typical bed shear stress 

on the flood plain is higher than expected for the flood plain considered on its own 

(Thomas and Williams, 1995b). Actually, the primary flow field is considerably modified 

by the lateral and vertical momentum transfer between regions o f different depths (Knight 

and Demetriou, 1983).

1.1.2 Laboratory studies and mathematical models

For a better understanding of the structure o f  (turbulent) flow in compound 

channels, it is necessary lo undertake detailed measurements. Because o f  the difficulty in 

obtaining sufficiently accurate and comprehensive field measurements o f velocity and 

shear stress in compound channels under unsteady flow conditions, considerable reliance 

must still be placed on well focused laboratory investigations under steady flow 

conditions to provide the information concerning the details o f  the flow structures and 

lateral momentum transfer. Attention must be paid to the fact that physical models are 

very expensive, especially when a large number o f influence parameters have to be 

studied. Sometimes, it is impossible to construct a physical model for certain prototypes, 

e.g. the continental shelf. Therefore, an urgent need for economic mathematical prediction 

models is emphasized. A mathematical model must be capable of describing correctly 

both the mean velocity field and the turbulent diffusion characteristics. Unfortunately, 

building a general mathematical model is very difficult because o f  the many phenomena 

involved. Fortunately, a general model is not necessary in most circumstances, for rarely 

are all o f the phenomena simultaneously o f importance and in many cases the flow
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situations can be idealized to make them more accessible to a mathematical description. 

The immediate problem is therefore to develop mathematical models o f various 

com plexity for suitably idealized river and discharge situations and to investigate how 

complex a model is required for any particular situation (Rastogi and Rodi, 1978). For 

example, many turbulence models are available (e.g. k-e model, the algebraic stress 

model, the Reynolds stress model and the large eddy simulation) each of which has its 

own assumptions and hence its own limitations and field of application. Passing through 

calibration and validation procedures, the mathematical model needs reliable data and 

results to compare with. The laboratory experimental results provide such reliable 

information with bounty while field data suffer from both uncertainty and scarcity.

1.2 Objectives and Scope of the Study

Vertical and lateral exchange of momentum and secondaiy circulations in a 

compound channel arc o f  primary importance because o f their direct impact on the flow 

field and consequently on transport and difiusion o f  pollutants. Laboratory experiments 

arc essential in understanding the flow patterns. Mathematical models, on the other hand, 

are vital tools in predicting the flow field. The mathematical model is validated and 

calibrated using reliable laboratory data.

The objectives o f  this study have been set as,

1 The flow field and the turbulence characteristics in a compound channel will be 

analyzed. The limitations, difficulties and uncertainties associated with the experiments 

will be discussed.

2 A numerical model will be developed. The objectives o f  building the model are 

2 -1 to study the performance o f  different turbulence closure models. Special attention 

will be paid to the standard k-e model and the algebraic stress model. While the k-e 

model cannot predict the secondary circulation in compound channels, the algebraic stress 

model predicts it with a reasonable accuracy. The reasons for the different behaviour will
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be discussed.

2-2 to study the scope o f  validity o f  a numerical model. Two mathematical models are 

compared: a large scale model and a small scale model. It will be shown that if  the model 

lim itation, assumptions and scope of application are exceeded the results (if any) are 

physically erroneous and cannot be accepted with any degree o f  approximation.

1.3 Structure o f  the Research

The current research consists mainly of an experimental part and a numerical 

part. The experimental part has been conducted within the framework o f  the E.C. Large 

Installation Plan (LIP2) in the tidal flume o f Delft Hydraulics. In Chapter 2, the 

experiment is explained. The experiment is meant to study the vertical and lateral 

exchange o f momentum and secondaiy circulation in the shear layer region o f  a compound 

channel. The data is analyzed and compared with previous work. The limitations o f the 

experiment and the possible source o f  inaccuracies are discussed.

In Chapter 3, the Reynolds-averaged Navier-Stokes equations are discussed. 

Discretization o f  the advection and pressure terms is explained. The model is applied to 

the LIP2 data and the results arc analyzed.

Chapter 4 is devoted to the turbulence closure problem. The closure problem is 

shown to be endless if exact transport equations arc to be solved. Therefore, it is necessary 

to model higher order correlations. The k-e model is the most popular model. It is 

amended by the Algebraic Stress Model (ASM) to be able to predict secondary circulation 

in compound channels. The numerical solution o f the ASM is explained. A comparison 

between the small scale model, which has been developed in this study and a large scale 

model is carried out in the last section of the chapter. Conclusions o f the thesis and 

recommendations for further work can be found in Chapter 5.
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C h a p te r  2

PHYSICAL MODEL

2.1 Introduction

Environmental hydraulic situations are characterized by complex flow 

geometries and multiple forcing functions and boundary conditions that interact non- 

linearly. Moreover, field data collection is very expensive and cannot provide 

reasonable spatial and temporal resolution. It is carried out under a very large 

variability o f  different parameters and factors. The laboratory experiments provide a 

suitable alternative. In contrast to environmental hydraulic situations, the conditions 

(both geometry and forcing conditions) under which laboratory data are collected, are, 

necessarily, simplified. Such simplified conditions can be controlled so that the results 

are expected to be reliable and o f  high quality. Another important advantage o f 

laboratory models is the possibility o f  collecting data with very dense spatial and 

temporal resolution; a resolution which spans and samples most o f  the variability in 

the laboratory flow and transport field. The above mentioned advantages o f  laboratory 

models help in understanding the physical phenomena and calibrating and validating 

mathematical models (ASCE Committee, 1988).

Turbulent flows in conduits o f  non-circular cross-section are often 

encountered in engineering practices. Examples are open channels (canals and rivers). 

The flow in such conduits is accompanied by secondary m otions in the plane 

perpendicular to the stream-wise direction, and this secondary motion can be caused 

by two different mechanisms (Dcmurcn and Rodi, 1984): first, secondary motion o f  

Prandtl's first kind is produced by centrifugal forces in curved passages. Such
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(pressure-induced) secondary velocities are quite large (say 20-30%  o f the bulk 

stream -w ise velocity) and occur equally in laminar and turbulent flows. Second, 

secondary flow o f Prandtl’s second kind is produced by turbulence in non-circular 

straight conduits. Although the secondary velocity o f  this kind is only 2-3%  o f  the 

stream -w ise bulk velocity, it can have important consequences on both the How 

hydrodynam ics and scalar transport. For these reasons, it is important to understand 

and be able to predict secondary flow phenomena in developing tlow situations and 

in the asym ptotic developed state (Demuren and Rodi, 1984).

W ithin the framework o f  the European Large Installation Plan (LIP), a 

program  for executing experim ents in the Delft tidal flume o f  Delft H ydraulics has 

been performed. The main objectives o f  this second LIP program  (so-called LIP2) 

were to study the vertical and lateral exchange o f  momentum and secondary 

circulations in the shear layer region for a compound channel. The experim ents have 

been executed for homogeneous and stable stratified flow conditions (Shiono et al, 

1994). However, the current study is concerned only with the hom ogeneous case. 

A lthough the general setup depicted in Section 2 is designed to suit the stratified 

experiments, it is used (without change) for the homogeneous experiments. In Section 

3, the measuring instruments and the related measurement precautions and difficulties 

are explained. The data analysis is given in Section 4.

2.2 Experimental Setup

The delft tidal flume o f Delft Hydraulics may be considered as a schematized 

estuary. It is not only "tidal" but it can also be used for uni-directional flow with one 

or two layers. The setup adopted in the current study is suitable for uni-directional 

two-layer flow. The two major sections o f  the facility are a basin with a surface area 

o f  120 m: representing a sea, and a flume with a width o f  1 m, a depth o f  I m, and a 

length o f  130 m, representing a river (Fig. 2.2.1 and Photo 2.2.1). The water level
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which may vary between 0 .10 and 0.90 m, is adjusted through rotation o f  a cylinder 

shaped overflow weir at the downstream end o f the sea (Photo 2.2.2). The inlet o f  the 

measuring section is equipped with a 3 m long and 2 mm thick stainless steel splitter 

plate (Fig. 2.2.1 and Photo 2.2.3). Through elastic bending o f  this plate, the initial 

height at the inlet o f  the lower layer can be adjusted while still m aintaining a smooth 

curvature and thus outflow. After a dust filter, a low turbulence level and uniformity 

o f  the lower layer flow are achieved by three meshes with increasing permeability. 

Upstream o f the inlet section the upper layer passes dust filters. Only a fine screen to 

fix the end o f  the splitter plate removes some turbulence at the inlet o f  the upper layer. 

In case o f  stratified flow, the water o f  both layers can be re-used. This re-circulation 

saves both water and brine. For the purpose o f circulation, the lower layer part o f  the 

flow is removed, at the outlet section, with another splitter plate also adjustable in 

height (Photo 2.2.4). Although the splitter plates are useful only for stratified flows, 

they are m aintained for homogeneous experiments, producing the upstream velocity 

distribution depicted in Section 2.3.2. The water is recirculated through a system o f  

reservoirs and pumps (Delft Hydraulics, 1986).

The m easuring sections are located between the splitter plates which are 64 

m apart. The cross section is shaped using sand-lime bricks (43.5x30x 12 cm) covered 

by plywood 2.5 cm thick. The plywood is fixed to the bricks by screws. The resulting 

cross section is asymmetric (Fig. 2 .2 .1 ) with a main channel 0.50 m deep and 0.55 m 

wide at the right side (observed in downstream direction) and a 0.45-m-wide shallower 

channel with bottom level 0.24 m above that o f  the main channel on the left side. This 

cross section starts at the inlet and goes on under the downstream splitter plate up to 

the outlet. The thickness o f  the lower layer (determined by the upstream splitter plate 

position) is 0.35 m while the upper layer is 0.15 m thick.

For the sake o f  completeness, a summary o f  the four conducted runs is given 

in table 2 .2 .1 although the current study deals only with the hom ogeneous run.
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Photo 2.2.4 Downstream splitter plate
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Table 2.2.1: Flow conditions for different runs

run no. Discharge (//s) velocity

difference

(m/s)

density

difference

(kg/m ’)
upper layer lower layer

HI 60 90 0.00 0.000

11 60 90 0.00 15.000

12 68 82 0.10 15.000

13 60 90 0.00 7.500

2.3 M easurem ents

2.3.1 Instruments

The instruments used are listed in table 2.3.1. The following items can be 

recognized in the table. Five groups o f instruments are used; namely, the discharge, 

the water level, the velocity, the temperature and the conductivity. The last two groups 

(temperature and conductivity) are used to determine the water density in the stratified 

runs. Therefore, they will not be elaborated on in the current study. Table 2.3.1 

contains the position and function o f  each instrument.

The data collected from all the instruments are saved in ASCII files with a 

sam pling rate o f  5 Hz. This rate is not sufficient for turbulence measurements.

Therefore, the ILDA and conductivity Heads (turbulence measuring instruments) data

are saved in binary files with a frequency o f  200 Hz.

2.3.2 EM S

The EMS, an ellipsoid o f  11 mm height and 33 mm diameter, has a measuring 

volum e o f the order o f  the size o f  the probe. It is used to measure the velocity at the
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upstream  section o f  the flume (just downstream o f the upstream splitter plate). The 

m easuring points are shown in Fig. 2.3.1, The measuring time at each location is 60 

seconds with 5 Hz frequency (i.e. about 300 readings are collected at each location). 

The isolines o f  the longitudinal velocity component are shown in Fig. 2.3.2. Part b o f  

the figure shows the isovels after applying an alignment correction to the measured 

values shown in part a. The alignment correction angle is 2° 10 '40". The alignment 

correction procedure is sim ilar to that explained in section 2.3.3. The effect o f  the 

splitter plate is made clear in Fig. 2.3.2 where the velocity does not have a logarithmic 

distribution. Instead, the velocity contours have a depression around the splitter plate 

and peaks both above and below it. Also, from the figure, it can be seen that the 

correction angle is too small to affect the general distribution o f the velocity field. The 

longitudinal velocity component measured by the EMS is used as a boundary 

condition for the numerical model (as described in chapter 3).



Table 2.3.1 Instruments used in L1P2 experim ent

Instrument Position Function
1) DISCHARGE (I/s)

DEB1ET_1 upstream end o f  the flume discharge o f  the upper layer
DEBIET_2 upstream end o f the flume discharge o f  the lower layer
DEBIET_3 fresh water pump discharge o f  fresh w ater pum ped out o f  the 

system
DEBIET_4 brine pump discharge o f  brine injected in the system
11) W ATER LEVEL

W AVO_! 45.5 m downstream  o f  the upstream

splitter plate
w ater level difference

W A V 0_2 7.5 in downstream  o f  the upstream 

splitter plate
IIDVELOCITY (m/s)
HILDA: Horizontal Immersible Laser 10\40 m downstream  o f  the upstream U and V velocity com ponents

Doppler Anem om eter splitter plate

VILDA: Vertical Immersible Laser 10\40 m downstream  o f  the upstream U and W velocity com ponents

Doppler Anem om eter splitter plate

EMS: Electro-M agnetic Flow-m eter just downstream  o f  the upstream 

splitter plate

U and V velocity com ponents

M
odelling 

flow 
in 

com
pound 

channels



Tabic 2.3.1 Instruments used in LIP2 experiment (cont.)
IV) TEM PERATURE (degree Celsius)
TEMP_1 upstream end o f  the flume temperature o f  the upper layer
TEM P_2 upstream  end o f  the flume tem perature o f  the lower layer
TEM P_3 40 m downstream  o f the upstream tem perature at the dow nstream  measuring

splitter plate section
TEM P_4 IO m downstream  o f  the upstream tem perature at the upstream  measuring

splitter plate section
V) CONDUCTIVITY (mS)

V A Z O J upstream end o f  the flume conductivity o f  the upper layer
V A Z 0_2 upstream end o f  the flume conductivity o f  the lower layer
VAZO_3 40 m downstream  o f  the upstream temperature at the dow nstream  measuring

splitter plate section
VAZO_4 IO m downstream  o f  the upstream tem perature at the upstream  measuring

splitter plate section
Pr.v. Head_l connected to HILDA conductivity at the same position as HILDA
Pr.v. Head_2 connected to VILDA conductivity at the same position as VILDA

2. Physical m
odel
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2.3.3 Turbulence Measurement

The fluctuating quantities are the three velocity components (u, v and w in x, 

y and z directions respectively) for the homogeneous run; for the stratified runs, the 

density which is determined as a function o f conductivity and temperature is also a 

fluctuating quantity. While the temperature fluctuations are so small that 5 Hz 

sam pling rate is adequate, the conductivity is as fluctuating as the velocity 

components. Therefore, at each point in the cross section, both velocity com ponents 

and conductivity are measured simultaneously.

The turbulence measurements are performed at two sections; namely, 10 m 

and 40 m downstream o f  the upstream splitter plate. They are referred to hereafter as 

upstream section and downstream section respectively. It is expected that at 10 m the 

flow is not yet fully developed while at 40 m the flow is fully developed. The distance 

necessary to obtain a fully developed flow is still a matter o f  dispute. For exam ple.
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Dem uren and Rodi (I9S4) were suspicious whether 84 times the hydraulic diam eter 

is enough to obtain a fully developed (low in a duct. Thomas and W illiams (1995a) 

considered measurements at 174 hydraulic radii downstream o f the inlet place o f  an 

asym m etric compound channel insufficient. Nezu and Rodi (1986) reported 240 

hydraulic radii as a sufficient distance. The downstream section o f the current study 

is -2 0 4  hydraulic radii downstream o f the upstream splitter plate. The analysis in 

Section 2.4 shows that the secondary flow at the downstream section can be 

considered as fully developed. However, the coherent structures along the flume arc 

necessary to fully understand the turbulence onset and mechanism and hence predict 

the necessary distance for a fully developed flow. The following description o f 

coherent structures is quoted from Nezu and Nakagawa (1993):

“.4 well correlated spatial, parcel o f  turbulence, known as an 'eddy ’ or 'vortex ", 

appears to have a life cycle including birth, development, interaction and breakdown. 

Such evolutionary relations cannot be described by means o f  conventional 

probabilistic tools. ..In the strict sense, coheren t structures o f  turbulence are identified 

with motions o f  fluid parcels that have a life cycle, i.e., ‘organized motion ' or 'ordered 

motion "

The data are collected at both upstream and downstream  sections 

sim ultaneously using two measuring sets:

- The V1LDA/HEAD system (Photo 2.3.1) measures the longitudinal and vertical 

velocity com ponents and conductivity sim ultaneously at one location.

- The HILDA/HEAD system (Photo 2.3.2) measures the longitudinal and lateral 

velocity com ponents and conductivity sim ultaneously at one location.

The ILD A ’s have short optical paths (avoiding change in refractive indices 

between layers and at the surface), and a small measuring volume (1.8 mm length and 

0.1 mm maximum diameter). Hence, the flow disturbance is minimum. A very 

important precaution is that the laser system must warm up for some 24 hours before
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Photo 2.3.1 VILDA/HEAD system Photo 2*3 *2 HILDA/HEAD system

Photo 2.3.3 Position o f  the conductivity head with respect to HILDA
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conducting m easurements and it should not be switched o ff up to the end o f  the 

measurement campaign (nearly ten days) to avoid signal noise. The conductivity head 

is located 1 mm downstream o f the measuring volume o f the ILDA’s (Photo 2.3.3) so 

that it has no influence on the velocity measurements.

One o f  the most important drawbacks o f  the ILDA’s used in the current study 

is the limitations on the measuring volume. Fig. 2.3.3 shows the measuring area with 

the measuring locations. The hatched area represents parts that cannot be accessed by 

the ILDA/HEAD system because o f  either ILDA limitation or assembly frame 

limitations. For example. HILDA can measure up to 20 mm from the side wall, 40 mm 

from the bottom and 70 mm below the water surface. VILDA, on the other hand, can 

measure up to 60 mm from the side wall, 20 mm from the bottom and 10 mm below 

the water surface. On the other hand, the carrying frame hinders the m easurem ents in 

nearly half o f  the cross section. Although it may be argued that this limitation is not 

im portant while studying the shear layer at the salient com er, it was found that the 

analysis o f  the shear layer is badly hindered by the frame and instrument limitations 

(the limitation effect can be recognized in Sec. 2.4 while analysing the data). The 

m easurem ents are taken at 39 points distributed over the accessed area o f  the 

m easuring cross section. The sampling time at each point is 5 m inutes producing 

nearly 60 000 readings for each m easured variable.

To satisfy the mass conservation, the resultant o f  the secondary velocities (V 

and W) in the m easuring volume should vanish i.e. the total flow coming in the

measuring volume should leave it. The vector V  (Fig. 2.3.4) is projected on two axes

systems: the measuring system and the rotated one with a common origin and an angle 

o f  rotation 0. Knowing that the angle 0 is the angle required to bring W R down to zero, 

one can deduce the following relations, using the geometry o f  Fig. 2.3.4:
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W m
tan 6 = ------- , U„=Um eos 0+  Wm sin 0.

where m stands for measured and R stands for rotated.

The alignm ent correction for VILDA is - ! ° 2 I '54" and that for HILDA is -1 °18 '22" 

(the axes convention is shown in Fig. 2.2.1).

2.4 Data Analysis

2.4.1 Introduction

To be able to analyse the data, it is necessary to perform data processing and 

presentation. Data are normally measured in voltage (in both binary and ASCII files). 

Using calibration equations, the voltage data are converted into physical units (the 

readings o f  each instrument are converted by a unique equation). The physical 

instantaneous values are precessed as follows to obtain time averaged values, 

fluctuations and double correlations (which represents Reynolds shear stresses).

The time averaged values are obtained by the simple arithmetic average o f the 

instantaneous physical values. For example, the average longitudinal velocity is 

determ ined as

N
£ Uj

U = —
N

where U is the mean value, u is the instantaneous value and N total number o f  

readings.

The turbulent fluctuations arc determined as the root mean squares o f  the 

instantaneous values. For example, the fluctuating part o f  u is determined as
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£ ( u r U ):
i * l _ _ _ _ _ _ _ _ _

Ñ

where u ' is the fluctuating part o f  the velocity.

The double correlations are determ ined as shown in the following example. The 

double correlation u' v' is determined as

2 ( u , - U ) ( v r V)
TëTë i* t

The data processing and presentation are performed for all test cases listed in 

table 2.2.1 (see Shiono et al, 1994). However, the homogeneous test case H 1 only is 

analysed in this section,

2.4.2 Mean velocity and secondary circulation

Both circulation patterns at the upstream and downstream sections (Fig. 2.4.1 ) 

show two vortices; flood-plain vortex and main-channcl vortex. At the salient com er 

(the end o f the flood-plain bed near the main channel), the vortices are inclined 

towards the main channel. However, detailed analysis is hindered by the area being not 

measured. The effect o f  the secondary circulation is to move slow moving water from 

the flood plain at the salient com er towards the water surface in the main channel 

causing the typical longitudinal velocity contour bulging (Fig. 2.4.2). On both sides 

o f  the bulge, the isovels bulge towards the walls (i.e. the bed o f  the flood plain and the 

side wall o f  the main channel) due to high momentum transport by the secondary flow. 

At the upstream section (Fig. 2.4,2 a), the splitter plate effect noticed in Fig. 2.3.2 

disappears but the typical fully developed bulging pattern noticed at the downstream
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section (Fig. 2.4.2 b) is not pronounced yet. The secondary flow movement towards 

the bottom at the center line o f  the main channel transfers fast moving water towards 

the bottom causing maximum velocity dip one third o f  the depth below the surface. A 

sim ilar behavior is noticed on the flood plain with the maximum velocity occurring 

nearly at the middle o f  the flood plain depth and closer to the flood-plain-main- 

channel intersection.

Tom inaga and Nezu (1991) reported that the maximum secondary flow 

component (V:+ W ')w was 4%  o f the maximum longitudinal one(U), where V and W 

are the time-averaged velocity components in y and z directions respectively. From the 

available measurements, the corresponding percentage is 2.8%. A Larger percentage 

may be found in the unmeasured area.

The depth-mean velocity (Fig. 2.4.3) has a peak on the flood plain just before 

the salient com er, in agreem ent with the observation o f  Rhodes and Knight (1994). 

However, the depression o f  the depth-mean velocity occurs in the main channel just 

after the salient com er white at the flood-plain-main-channel interface, the depth-mean 

velocity has nearly a constant gradient, Rhodes and Knight (1994) observed the 

depression immediately above the salient corner. Although they perform ed their 

experiments in a closed duct assuming that the symmetry plane corresponds to the free 

surface, it is obvious that the redistributing effect by the free surface which causes the 

bulge to deflect towards the main channel is not reproduced by the sym m etry plane.

2.4.3 K inetic energy and  velocity fluctuations

The three turbulence intensity components show a bulge at the salient com er 

(Fig. 2.4.4,5,6). Also, the kinetic energy (k=l/2(u ':+ v '::+w ,:)) has a sim ilar bulge (Fig. 

2.4.7). The bulging indicates that the turbulence increases in the wall region as well 

as the free shear layer region. Such a turbulence behavior is consistent along the flume
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since it is noticed in both measuring sections (compare parts a and b o f  the above 

m entioned figures). The fluctuation o f  u is always larger than the other two 

com ponents in the shear layer. At the salient com er, both v and w fluctuations are 

nearly equal, v-tluctuations have steeper vertical gradient and m ilder horizontal 

gradient, com pared with w. Thus, v-fluctuations bulge horizontally while w- 

fluctuations bulge vertically. This is in agreement with the explanation o f  Thomas and 

W illiam s (1995a) that the fluctuation o f  a velocity component is enhanced by wall 

parallel to it and damped by wall normal to it. The depression in Fig. 2.4.5 b is 

considered as a measuring error noticed also in the anomalous vectors at (y=65. z=10 

cm) and (y=75, z=5 cm) in Fig. 2.4.1 b. The turbulence drops to a minimum on the 

flood plain at a horizontal distance o f 0.4 flood plain depth from the salient com er then 

starts to increase again. Unfortunately, the turbulence behavior in the side wall region 

o f  the flood plain could not be determined. The corresponding depression near the 

main channel side wall is much less pronounced. From such distribution o f  turbulence 

intensity, it can be concluded that the shear layer extends laterally in the main channel
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while it is limited on the flood plain. A possible interpretation is that near the wall the 

fluctuation o f the velocity component parallel to the Wall is enhanced while that 

normal to the wall is damped. Also, the shear layer can be regarded as an imaginary 

moving separation sheet between two bodies o f  water, namely, the main channel water 

body and the flood plain water body. Hence, the fluctuation o f  the velocity component 

parallel to the imaginary sheet is enhanced and the other one is damped. The damping 

effect o f  both the imaginary sheet and the flood plain bed are in two perpendicular 

directions. Thus, their resultant effect is to reduce the thickness o f  the shear layer over 

the flood plain. M eanwhile, the enhancing effect o f  both the main-channel side wall 

and the imaginary sheet are parallel. Thus, their resultant effect is to increase the 

thickness o f  the shear layer on the main channel side. It is believed that the 

understanding o f  the coherent structure in compound channels will add better analysis 

to the shear layer behavior,

v ' w '
The ra tio s—  a n d  —  are -0 .6  near walls (side wall and bed) at the

u' U

downstream section. The ratios increase towards the middle o f  the main channel. The 

corresponding ratios at the upstream section are larger than those at the downstream 

section.

2.4.4 R eynolds stresses

Fig. 2.4.8 shows the contour lines o f  the difference ( v '" - w ‘: ) which is the 

driving force for the secondary flow (Cokljat and Younis, 1995a). The difference is 

high near the bed o f  the main channel, it can be seen that the zero isolinc divides the 

cross section into three parts: deep part o f  the main channel (below the flood plain), 

shallow  (upper) part o f  the main channel and the flood plain. Comparing Fig. 2.4.8 

with both Figs. 2.4.9 and 2.4.10, it can be seen that at the zero isolines, the Reynolds
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shear stress is maximum, v and w used in this analysis are not measured 

sim ultaneously at the same location causing inaccuracy in the obtained results.

The Reynolds shear stresses - u V  and - u w '  (Fig. 2.4.9 and 2.4. IO) exhibit 

two peaks: one is along a vertical in the shear layer and the other is along a horizontal 

plane dividing the main channel at the flood plain bed level.

2.5 C onclusion

Within the framework o f  LIP2, the tidal flume o f Delft Hydraulics is used to 

study the vertical and lateral exchange o f  momentum and secondary circulation in the 

shear layer region o f  a compound channel. The discussion provided in this chapter 

deals with the homogeneous flow run o f  LIP2. The compound channel structure and 

the measuring instruments arc explained. The limited area, accessible by the 

ILDA/HEAD systems, caused loss o f  important information near the (free and solid)
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surfaces. The misalignment o f  the instruments is corrected so that tiic mass 

conservation is maintained in the cross section.

At the upstream section, the splitter plate effect disappears but the turbulence 

is not yet fully developed. The secondary flow at the downstream section and its effect 

on the longitudinal velocity component indicates a fully developed flow. However, the 

position o f  the fully developed section is still open for research. Although the point 

m easurement at a single cross section along the flume provides useful information 

regarding the turbulence, it is not sufficient. It is believed that the study o f  turbulence 

along the flume and consequently recognizing the coherent structures is important to 

fully understand the (not fully random but “partly” organized) turbulence phenomena 

(Yalin, 1992).

The study o f  the turbulence kinetic energy, the turbulence intensity and the 

Reynolds stresses give a picture o f  the flow pattern in the cross section and the driving 

forces. The cross section is divided by two shear layers into three parts: deep main 

channel, shallow main channel and flood plain.

It is noticed that the shear layer extends laterally in the main channel but has 

a small thickness over the flood plain. A new interpretation is introduced.
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C h a p te r  3

NUMERICAL MODELLING

3.1 In troduction

Physical models are powerful tools to investigate and understand the different 

phenomena controlling the flow. Although this fact holds true, as has been emphasized 

in Chapter 2, physical models have their own limitations and difficulties. Some 

examples are scaling and distortion, cost, inflexibility, being not transportable, and not 

adaptable (Falconer and Cahyono, 1993). The attention is, then, directed, with the 

assistance o f  the physical understanding o f the phenomena, to expressing the physics 

in mathematical form. This new trend is promoted by the great advancem ent in 

numerical methods, programming techniques, and com puter hardware (Song, 1995). 

However, scientists and engineers should be cautious in dealing with numerical 

techniques. When interpreting the output o f  the solution from the numerical models, 

the engineer should be able to judge how far the results represent reality. Given a 

physical problem, one first needs a mathematical model whose solution in some sense 

approxim ates the solution o f  the physical problem. Next, a numerical model o f  the 

m athem atical problem is needed. The solution to the numerical model only 

approximates the mathematical model solution. The final step is to solve the numerical 

model. Again, because o f  the solution method and the finite word length o f  digital 

com puters, the com puter solution only approximates the solution to the numerical 

model (H agcm anand Young, 1981).

In the subsequent sections, the following mathematical issues will be 

discussed: The differential equations representing the hydrodynamic behaviour o f  open
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channel flow are stated in section (3.2); together with the necessary assum ptions 

underlying the governing equations. Section (3.3) explains the difficulties associated 

with discretizing the advection term and the proposed remedies. Section (3.4) deals 

with the pressure term when treated in a full 3D model. Section (3.5) is devoted to the 

difficult problem o f treating the boundaries. The remaining part o f  the governing 

equations is the Reynolds turbulent stress term. The numerical treatment o f  the 

turbulence is elaborated on in chapter 4.

3.2 T he G overn ing  E quations

F o ra  fluid, N ew ton's law (mass times acceleration equals the sum o f forces) 

is better stated per unit volume, with density replacing mass. This produces the 

momentum equations (Cushm an-Roisin, 1994)

<3t dx■j

= - i P + p g . Æ  
0 Xi Pgl dx}

w here tensor notation is used to define repeated variables (see Appendix A); and. 

t time (s).

i j  indices indicating spatial dimensions.

x„ Xj the coordinate axes. Here, x ,. x; , x3 correspond to the Cartesian coordinates 

X ,  y, z, respectively, with x positive eastward (main flow direction), y positive

northward (lateral direction) and z positive upward,

u,, u, tensor notation o f  the components o f  the instantaneous velocity vector, in a

Cartesian system, they take the values u t, u,, u, (or u, v, w) which are the

com ponents in x, y, and z directions respectively (m/s), 

p: the pressure (N /m 2).

g,: acceleration due to gravity (= 9.81 m /s2 in the vertical direction),

p: the fluid density (kg/m 3).
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t ¡¡: the components o f  the viscous stress tensor (N/m2).

The mass conservation is expressed in the form o f  the continuity equation.

+" ( P U ¡ )  = 0 
a t  dX;

The Boussinesq approximation consists o f  neglecting any variation o f  the 

density except in the gravitational term (Currie, 1993). The density can, generally, be 

expressed as,

P * Po + p‘(x,y,z,t)

where pu is a reference density and p is the fluctuating part o f  the density. Applying 

the Boussinesq approximation, the continuity equation becomes

ÖU;
-  ■ o (3.2.1a)

which states that the conservation o f  mass has become conservation o f volume. 

The pressure,

p=p0(z)+pj(x ,y ,z ,t)

and

Po(z> = po -  P 8 z
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where pn(z) is the hydrostatic pressure which is a function o f  z only, P() is a reference 

pressure {e.g. the atmospheric pressure) and pd is the dynamic part o f  the pressure. 

p0(z) has no derivatives with respect to x and y.

The momentum equations are then reduced to

dU: du.u■ j _
dt <5x. Po

¿Pa
âX;

Di
d x A- 'i
axj; (3.2. lb)

or; using the Cartesian notation and combining the local and advective accelerations 

in a total derivative (the so-called the inertial term).

x:
du
dt" Po

¿P,

dx

■i <?T dx  (3t „«  * Î Ï *  «
dx dy dz  ;

dv
y: "57 Po

!
a p ,  a t  a t  a t. “ ti ^  xy  ^ y y  ^ ya

dy d x  dy dz ¡

z: dw
~dT

_L
Po

¿Pd
az

O X x z  - p  g +—  -
dxyz a xa

dx dy dz  ,

Equations (3.2.1) are one particular form o f the well-known Navier-Stokes 

equations.

Most o f  the engineering flows consist o f  randomly fluctuating flow properties. 

The Reynolds’ statistical approach is the best way to express the fluctuating turbulent 

nature o f  the flow. All the quantities are expressed as the suni o f  mean and fluctuating
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pans t.e.

and

Pd= P +P

The momentum and continuity equations are then integrated over a time 

interval which is very long relative lo the maximum period o f  the turbulent 

fluctuations but very shon relative to the time scale characteristic for the mean flow 

variations that are not regarded as belonging to turbulence. The time averaging yields 

the Reynolds averaged Navier-Slokes equations o f motion in conservation form 

(W ilcox, 1993)

au,
(3.2.2a)

a u , + au^Uj = _± 5P__ -
(3.2.2b)at axj p0ax¡ p0

where t,¿ is the viscous stress tensor divided by p0 defined by

where v is the kinematic viscosity and s- is the strain-rale tensor,
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( oUj ÖLÜ

a Xj 5x.
'

Uj is the mean velocity, P is the mean (dynamic) pressure, u¡ is the fluctuation o f  the 

velocity; p ' is the fluctuation o f  the pressure, and u,Uj is the Reynolds’ stress.

It can be easily noticed that the Reynolds’ averaged Navier-Stokes equations

(3.2.2) arc identical to the instantaneous Navicr-Stokes equations (3 .2 .1 ) with the mean 

velocity and pressure replacing the instantaneous ones. The only difference between 

the time-averaged and the instantaneous equations is the appearance o f  the correlations

u,Uj in the tim e averaged momentum equations. This correlation term will be the 

subject o f  Chapter 4.

W hen hydraulic applications are concerned, the m omentum equation in the 

vertical z-dircction is usually reduced to an hydrostatic pressure equation. In the 

following, it will be shown that the hydrostatic pressure assumption is not valid as a 

m athem atical representation o f  the flume experiment explained in chapter 2. Hence, 

the m athem atical model, developed in the current study, consists o f  the continuity 

equation and three full momentum equations besides the turbulence closure model.

The hydrostatic pressure assumption is only valid when there is a strong 

geometric disparity o f  the flow i.e. the horizontal dimensions are much larger than the 

vertical ones as is the case in shallow coastal areas (Cushm an-Roisin, 1994). The 

relative importance o f different terms is expressed in terms o f  their orders o f 

magnitude. The orders o f  magnitude o f  different terms in the governing equations can 

be studied as follows. The horizontal velocity can be scaled by the velocity scale V and
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(he vertical one by IV. The horizontal distances can be scaled by the length scale L and 

(he vertical one by H. The pressure divided by density can be scaled by P. The focus 

will be on the advection and pressure terms. The same conclusion will be obtained if 

other terms arc included. The terms o f  the continuity equation

oU + cN_ + aw _ o
dx dy dz

can be scaled as

Thus

V V W
L L H

V_
I

W
H

(3-2.3)

The momentum equation in the x- and y-dircctions have the same scaling. 

Consider the x-momentum equation

auu + ouv + auw = j^ap
dx dy dz  p <3x

Its terms can be scaled as

V- V2 VW P
L L H L

Substituting from Equation (3.2.3), one gets the following two forms
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L ~ K l
L L 

P _ vw  
L H

(3.2.4)

The term s o f the z-momentum equation

auw + ¿vw  + aw w  = _2£Ü
dx dy dz  p dz

can be scaled as

VW
L

VW W 2 P
L H H

substituting from Equations (3.2.3) and (3.2.4), the scaling will be

W 2 W 2 W 2 W 2 , 2
H H H

M ultiplying by bP and dividing by W2

[//*] [//*] [//•’] [ i 2] (3.2.5)

From Equation (3.2.5), it is clear that the pressure term is scaled by L3 while 

the advective terms are scaled by H'  in the vertical momentum equation. I f  there is a 

geometric disparity o f the flow, then L»H and the pressure term dom inates over the 

advection term, which justifies the hydrostatic pressure assum ption. However, in the 

flume experiment H can be taken as the flow depth (0.5 m) and L can be taken as the 

flume width (1.0 m) which are comparable. Therefore, the hydrostatic pressure 

assum ption contains an intolerable approximation to the flume experim ent and the
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need to full vertical momentum equation cannot be disposed of.

3.3 Advection Term

3.3.1 Introduction

The final target o f  the current study is to simulate and analyse the secondary 

circulations. Secondary circulations are mainly driven by the turbulence (not 

advection). A lthough one would expect to pay all attention to the turbulence model, 

the infamous advection term must be given prime importance in discretizing the 

governing equations. Actually, it seems to make no sense to use sophisticated (and 

expensive) multiple equation turbulence models with advection schemes which omit 

the turbulent transport terms from the momentum and scalar transport equations (and 

from the turbulent transport equations themselves), replacing them by the artificial 

numerical diffusion inherent in the truncation error o f  the modelled convection terms 

(Leonard and M okhtari, 1990).

Guinot (1995) stated that there are two major difficulties associated with the 

numerical (finite differences or finite elements) solution o f  the advection equation. 

First, numerical schemes may produce spurious diffusion and/or dispersion. The 

form er leads to artificial damping of the computed solution; the latter results in 

oscillations "wiggles” in the vicinity of moving fronts. Second, boundary conditions 

should be expressed in a way that is consistent with the numerical scheme used. 

M oreover, Leonard (1988) concluded that no single scheme seems to be totally 

successful under all circumstances. The problems o f the currently available schemes 

can be categorised as follows. The standard second-order central differencing o f  the 

convection terms suffers from the well-known odd-even decoupling and requires the 

addition o f  some higher-ordcr artificial dissipation terms to create the required 

dam ping o f  high frequency errors (Hirsch, 1991). This lack o f  inherent numerical 

convective stability is common to all centrally distributed finite difference methods
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irrespective o f  the order o f  the method (Leonard, 1980). The upstream-weighted 

methods are inherently stable giving oscillation-free solutions. Unfortunately, the first- 

order upwind schem e achieves its stability through the effective introduction o f  an 

artificial diffusion term which is equivalent to a central difference technique to which 

an artificial numerical diffusion coefficient (or viscosity) o f  the form

r  u Ax
nu m  2

has been added. The artificial diffusion corrupts or dominates the modelled physical 

diffusion under high-convection conditions giving highly inaccurate results (Leonard, 

19S0, Sweby, 19S4, Leonard and Mokhiari, 1990, Falconer and Cahyono, 1993). In 

second-ordcr upwind schemes, the leading truncation error term involves a spacial 

third derivative which under some conditions may introduce weak oscillations 

(Leonard, 19S8, Sweby, 1984). Total Variation Diminishing (TVD) schemes and other 

schem es like Hybrid and Power Law Differencing Schemes (PLDS) revert to first- 

order upwinding (Leonard and M okhtari, 1990, Leonard, 1991). The third-order 

upwinding (QUICK and QUICKEST) algorithm is seen to be promising because o f its 

increased accuracy over the difTusive first-order method and oscillatory second-order 

m ethod, its enhanced stability over the oscillatory fourth-order method and its 

com putational sim plicity in comparison with the more accurate but highly complex 

fifth-order method. However, with sharp change o f  gradients, third-order upwinding 

produces some leading overshoots and trailing undershoots. Leonard (1991), in his 

effort to “ inject som e self-confidence (as opposed to self-satisfaction) into 

com putational fluid dynam ics“, introduced the universal limiter. The ULTIM ATE 

QUICKEST scheme is then expected to give better results (Leonard, 1991, Cahyono, 

1992). Cahyono, 1992 has conducted a comprehensive study o f  the advection term.

The ULTIMATE QUICKEST scheme will be explained in the following sub­

section. A comment on the method will be given in sub-section 3.3.3.
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3.3.2 U LT IM A T E  Q U IC K E ST

The ULTIMATE QUICKEST scheme consists o f  two parts: QUICKEST 

stands for Quadratic Upstream Interpolation for Convective Kinematics with 

Estimated Streaming Term, and the monotonicity maintaining part, ULTIMATE which 

stands for Universal Limiter for Transient Interpolation M odelling o f  Advective 

Transport Equations. Although the QUICKEST scheme, when applied to m ulti­

dimensional problems involves transverse curvature terms, the one-dimensional 

QUICKEST formulation can be safety applied neglecting the {practically small) 

transverse curvature terms (Leonard, 19SS). Moreover, the limiting step is locally one­

dimensional in the normal direction for each face o f the control volume. Thus, the one­

dimensional formulation o f the ULTIMATE QUICKEST is applied to the current 3D 

model. Each face o f  the control volume is treated separately.

The ULTIMATE QUICKEST scheme (Leonard, 1991) can be summarized 

as follows.

Consider the advection equation

+ = o
dt dx

for the quantity 4> in the x-direction 

with velocity u, and consider the 

usual notation o f  n for time 

indexing and i for distance 

indexing.

The target is to evaluate

__cy¡___

i  >:
a) u, > 0 

 ____ Ç V ______
r  <d = !» <*>,., =>

  —

1____4>n_____ j®, 4>c
b) u, < 0

Figure 3.3.1 Advection through the right face 
of control volume CV¡
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the face value <t>r as a function o f  the neighbouring grid-point values i.e. two straddling 

the face value (4>D and (j)c) and one upstream value (4>u) (depending on the direction 

o f  u), Fig. (3.3.1). There are two terms which control the evaluation o f  4>t and its 

limiters. First, the direction o f u; second, the monotonicity, its existence and direction.

The monotonicity exists if  

<t*U><í>c :>tl>D

or <t>u<4>c «t>D

The M onotonicity condition can be better formulated as,

] C U R V I < | D E L | (3.3.1)

where

CURV=<t>D -2<J>C+<1^

D E L ^ - t ^

A total o f  four groups o f  constraints can be constructed which incorporate all 

possible com binations o f  m onotonicity and flow direction; namely, 

group 1: ur > 0 . D E L > 0

group 2: u r > 0, DEL < 0

group 3: ur < 0, DEL > 0

group 4: ur < 0, DEL < 0

Leonard ( 1991 ) explained (briefly) the method. A detailed study over group 

I will be given here. The other groups can be easily derived.
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! ) Evaluate the face value using the QUICKEST scheme

<f>REF = 4 d - c : ) CU R V
2 2 o

where c -  -  —- is the Courant number. It is, in the current case, positive. 
Ax

2) Examine monotonicity,

if  |C U R V |i |D E L j  the variable is non-monotonic and the first-order 

upwinding is good enough

<t>f=<t>c

Otherwise, apply the monotonicity limiters as follows.

3) If DEL > 0  then

The face value should satisfy the following conditions, regardless o f  the flow 

direction.

(3-3-2)

A general discretization o f  the advection equation is

C  = t t f  +c/i>, - c f(t>r (3.3.3)

where subscript I denotes the left face o f  control volume CV,.

Now, require, conservatively, for monotonicity maintenance

j .n*l j."<i>, *<t>M

substituting for (J)" 1 from formula (3.3.3),



4 8 Modelling flow in compound channels

<(>" +c,4>, - c ^ C ,

rearranging

cr<j)r¿((>¡ +0,4), (3.3.4)

but from condition (3.3.2) applied to CV;.,

Then, the worst case for 4>r is (when (J), attains its smallest possible value)

CAiCCl + (K -Cl

or, in terms o f  D, C, U,

CA S c / C  +C  ' C  (3-3.5)

One further condition is

C ‘* Ci*l

Following the same derivation steps,

C  +Cy<t>/ “Cf4>rs C t
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The worst case for <J)r is (when <{>, attains the largest possible value)

(3.3.6)

or, in term s o f  D, C, U,

C$ C  +(t>C (3.3.7)

The face value is determined in step I above. Conditions (3.3.2,5,7) are the 

m onotonicity limiters for the right-face value o f  control volume CV, when uT>0 and 

DEL>0. It is assumed, in the derivation, that c, has the same sign (and direction) as c r 

If c i has a different sign, it may not be appropriate to require persistence o f  

monotonicity.

In the original paper o f  Leonard (1991), condition (3.3.6) was established 

viewing <(>r as the left-face value o f  CV(t| and using a worst-case estimate for the far 

right-face value. Leonard 's approach uses an extra grid point (i+2) to establish the 

constraints. The current approach provides the same result w ith less stencils (grid 

points).

3.3.3 E valuation  o f  the U L T IM A T E  Q U IC K E ST

The problem o f discretizing the advection term does not appear in the large 

scale applications. For example, the POM model developed by the University o f  

Princeton uses a standard second-order central differencing scheme. The model attains 

worldwide acceptance when applied to large scale applications. When the same
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(second-order central differencing) scheme is applied to the L1P2 experim ent, the 

resulting solution suffers from the typical strong oscillations manifesting central 

difference schemes. To damp the oscillations, artificial diffusion must be introduced. 

Introducing artificial diffusion is not suitable for the existing study so long as 

turbulence is concerned. Hence a more accurate (interpolation) scheme is needed. The 

ULTIM ATE QUICKEST, recommended by many researchers (see Cahyono, 1992), 

is applied to the LIP2 experiment.

The momentum equation

au auu A—  + ------------= o
at ax

produced fairly good results, with faithful transport o f  the upstream imposed velocity 

towards the downstream. When the vertical velocity com ponent is included

au auu auw  .  +  +  = 0
a t  ax  dz

(3.3.8)au +aw = Q
d \  dz

the horizontal velocity is diffused at the point where the vertical gradient o f  the U- 

com ponent o f  the velocity is changed (Fig. 3.3.2). The velocity distribution at the 

upstream  open boundary, as m easured by the EMS (see Chapter 2), has a point o f  

changing gradient which is created by the splitter plate. As a matter o f  numerical test, 

the velocity distribution at the upstream open boundary is rearranged as shown in Fig.

(3.3.3). The results obtained by Equations (3.3.8) are again faithful transport o f  U in 

the horizontal direction with zero vertical component. The diffusion starts at the point 

where the monotonicity condition (3.3.1) fails i.e. when the face value is determined
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v e lo c i ty  d i f f e re n c e  (m /s )

5  0.25

v e lo c i ty  (m /s )

0.5

0
"T

v e lo c i ty  (m /s )

Figure 3.3.2 Measured velocity Figure 3.3.3 Velocity re-distribution at the
distribution at the upstream open boundary upstream open boundary.
(solid line) and the difference between the 
upstream (measured) velocity and the 
downstream (calculated) one (dashed line).

by first-order upwinding. Thus, the current scheme shares with other schem es the 

weakness o f  reverting to first-order upwinding with the consequent inherent artificial 

diffusion. Research in this field continues (Falconer and Cahyono, 1993).

3.4 P ressu re  T erm

3.4.1 In troduc tion

The velocity components are governed by the continuity equation and the 

m om entum  equations which are particular cases o f  the general transport equations.
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The real difficulty in the calculation o f  the velocity field lies in the unknown pressure 

field. The pressure gradient forms a part o f the source terms for a momentum equation. 

Yet, there is no obvious equation for obtaining pressure. This difficulty is not 

encountered while solving for the turbulence closure term because it could be 

decoupled from the governing equations (Chapter 4). The difficulty associated with 

the determ ination o f  pressure has ted to methods that elim inate pressure from the 

governing equations. In two dimensions, the stream -function/voriicity method is 

invented to overcom e estimating the pressure. In three dim ensions, the vorticity and 

velocity potential vectors are determined instead o f  the velocity vector and the 

pressure. The disadvantages o f  both methods outweigh their advantages; e.g., the 

variables used involve concepts that are harder to visualize and interpret than the 

meanings o f  the velocity and pressure. Therefore, the current study makes use o f  the 

physically meaningful and illuminating methods that use the primitive variables, 

namely the velocity components and pressure. The general concept o f  these methods 

is as follows. The pressure field is indirectly specified via the continuity equation (as 

explained in the following paragraphs). When the correct pressure field is substituted 

into the m om entum  equation, the resulting velocity field satisfies the continuity 

equation (Patankar, 1980).

The methods using the primitive variables are broadly classified as methods 

applied to unsteady flow and methods applied to steady flow. The unsteady methods 

arc applicable to steady flow by marching in time until the solution no longer changes 

(F letcher, 1991). The tim e steps are. thus, iterations with the unsteady term in the 

equations providing a kind o f  under-relaxation (Patankar, 1980).

Examples o f  the steady methods are the artificial compressibility method and 

the SIM PLE algorithm. The principle o f the artificial com pressibility method is to 

consider the solution o f  the steady equations as the limit when t - «  o f  the solution o f  

unsteady equations obtained by associating the unsteady momentum equation with a
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perturbed divergence equation (Peyret and Taylor, 1983). The perturbed divergence 

equation contains the (so-called) pseudo-speed-of-sound coefficient to whose value 

the method is very sensitive. Unfortunately, the coefficient has to be optimized 

em pirically (Hirsch, 1991).

The SIMPLE algorithm was originally introduced by Patankar and Spalding 

(1972). The method is applicable to boundary layer flow. Patankar and Spalding 

(1972) call a flow a boundary layer, a) if  there exists a predominant direction o f  flow 

(i.e. there is no reverse flow in that direction) b) if the diffusion o f  momentum, heat, 

mass, etc. is negligible in that direction c) if  the downstream pressure field has little 

influence on the upstream flow condition. The advantages o f  the method are the saving 

on computer time and storage. However, the proposed solution introduces errors which 

are not introduced by a fully iterative procedure.

The unsteady methods are usually pressure correction methods. The Marker- 

and-Cell (M AC) method is the prototype o f  such methods. They consist o f  a basic 

iterative procedure between the velocity and the pressure fields. Starting with an 

approximation o f  the pressure, the momentum equation can be solved to determine the 

velocity field. The obtained velocity field does not satisfy the divergence-free 

continuity equation and has therefore to be corrected. Since this correction has no 

impact on the pressure field, a related pressure correction is defined, obtained by 

show ing that the corrected velocity satisfies the continuity equation. This leads to a 

Poisson equation for the pressure correction (Hirsch, 1991). This is the method used 

in the current study. The details o f  the method will be given in the following 

subsection.

3.4.2 T he p ressu re  co rrection  m ethod

The method consists o f  the following steps (see, for example, Peyret and
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Taylor, 1983, Fletcher, 1991, Hirsch, 1991).

The m om entum  equation (3.2.2b), expressed as (for homogeneous flow,

p '= 0 .0)

- i
— 1+ADV =—L ^Ü + D ÍF  

<?t p0 dx,

a i m  d i • -\where A D V = —— — and DIF= —  t ¡+u¡U;
axj dx}  lJ 1 J/

can be split into two parts,

U:’ -U :n
—!   = -(A D V -D IF )n

At

or

U i*»U jn-A t(A D V -D IF )n (3.4.1)

where the superscript * is used to indicate a temporary (transitional) variable 

introduced to help in partitioning the equation.
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(3.4.2)

The continuity equation is

dll V *1 
— ■ = 0 (3.4.3)

substituting from (3.4.2) into (3.4.3), one gets the following (elliptic) Poisson equation 

for the pressure.

The solution sequence is as follows.

1. Solve equation (3.4.1 ) for U ,".

2. Solve equation (3.4.4) for the pressure field, P.

3. Solve equation (3.4.2) for the velocity field U.

The momentum equations (steps 1 and 3) are explained in detail in Section 3.3 

and in Chapter 4. Step 2 will be studied in detail in the following paragraphs.

/. Boundary- Conditions: Because the pressure is determined by the Poisson equation

(3.4.4) w'hich is elliptic, the boundary conditions applied to the (parabolic) momentum 

equations cannot be extended to the pressure equation. A detailed discussion o f  the 

boundary conditions is deferred to subsection 3.5.3.

(3.4.4)
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2. Discretization Grid: A staggered grid is used.

In the staggered grid, the pressure is defined at 

the center o f  each cell and the velocity 

com ponents are defined at the cell faces (Fig.

3.4.1). The use o f  the staggered grid permits 

coupling o f  the U, V, W and P solutions at 

adjacent grid points. This in turn prevents the 

appearance o f  oscillatory solutions, particularly 

for P, that can occur if  centered differences are 

used to discretise all derivatives on a non­

staggered grid. The oscillatory solution is a 

manifestation o f  two separate pressure solutions associated with alternate grid points, 

which the use o f  centered differences on a non-staggercd grid permits. The use o f  

staggered grids has some disadvantages. Generally, boundary conditions are more 

difficult to impose consistently with a staggered grid, since at least one dependent 

variable (e.g. U) will not be defined on a particular boundary.

3. Relative Nature o f  the Pressure: The absolute value o f  the pressure is not relevant 

at ali; only differences in pressure are meaningful and these are not altered by an 

arbitrary constant added to the pressure field. Moreover, since, in properly specified 

problem s, the given boundary velocities must satisfy overall mass conservation, the 

continuity equation for the last control volume docs not convey any information that 

is not already contained in the continuity equations for all other control volumes. Thus, 

even if  one control volume equation is discarded and the value o f  the pressure is 

prescribed there the resulting velocity field would satisfy the continuity for all control 

volumes. One more thing to notice is that, in many problems, the value o f  the absolute 

pressure is much larger than the local differences in pressure (Patankar, 1980).

¡J.k

Figure 3.4.1 Staggered grid in 3D

The above-m entioned observations lead to the following practice. After



3. Numerical modelling 5 7

obtaining the pressure field (Eq. 3.4.4). the minimum pressure value is set to zero and 

the pressure values in the rest o f  the computational domain are accordingly adjusted. 

This way. the pressure field does not acquire a large absolute value. Moreover, the 

next time step (i.e. next iterative solution o f  Eq. (3.4.4)) does not start with a cold start 

(zero pressure field); rather, it starts from the previous pressure estimates, which is 

expected to be a good first guess because the numerical method marches with small 

increments o f  the dependent variables.

4. Solution o f  the Poisson Equation: A direct solution o f  Poisson equation is 

prohibitively expensive in terms o f  computer time and storage, at least with the 

existing computer facilities. One should then resort to iterative methods. The iterative 

methods are applied either by point-by-point approach or line-by-line approach. The 

former approach is explicit. In each step, the pressure is determined at one grid point 

as a function o f  the pressure values at the neighboring points; typical methods o f  this 

type are Jacobi method, Gauss-Seide! method and Successive Over-Relaxation (SOR) 

m ethod (see, for example, Patankar, 1980, Peyret and Taylor, 19S3, Smith, 1985, 

Fletcher, 1991, Hirsch, 1991). The latter approach results in a Tri-Diagonal Matrix 

which can be solved by any o f the well-known Tri-Diagonal Matrix Algorithms 

(TDMA). Patankar (1980) pointed out that while a solution cannot be obtained by the 

TDM A unless a pressure value is set at one end o f  each line, the point-by-point 

solution can be obtained without setting any value. Hence, the convergence o f  the 

point-by-point method is faster because the solution converges to a certain level 

obtained by iteration rather than approaching a level controlled by defining a value at 

a particular grid point. In more than one dimension, the line-by-line approach 

converges to a solution with a fixed error of convergence. The error o f convergence 

is attributed to the value needed at the end o f  each line which can be seen as over- 

specification o f  the boundary conditions or decoupling o f  the sweeps in different 

directions. However, the iterative solution o f  the algebraic equations need not be taken 

to com plete convergence because the values at any intermediate stage are just
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tentative. Peyret and Taylor (1983) mentioned 12 as a good number o f  iterations at 

each time step, whereas Patankar and Spalding (1972) recommended 3 executions o f  

the double sweeps. In the current numerical experiment, it is found that the 

convergence error after 12 iterations is -3 0 %  different from that after 3 iterations. 

Hence, it can be concluded that 12 iterations are appropriate provided that the 

convergence error is reduced as the num ber o f  iterations increases. The convergence 

error is determined as the difference between the pressure values obtained at the same 

grid point in two consecutive iterations.

3.5 Boundary Conditions

3.5.1 Introduction

The boundaries o f  the computational domain are actually nothing but a 

m athematical trick to isolate the area o f  interest from the intinite surrounding physical 

environment. Hence, it can be easily expected that no physical law that prescribes the 

boundaries can be established. However, to give the problem an engineering solution, 

boundaries are divided into solid boundaries and open boundaries. Solid boundaries 

are real physical boundaries. They do not constitute a problem, except perhaps in cases 

o f  movable boundaries e.g. those used in modeling Hooding and drying (Lorenzzetti 

and Wang. 1986). No-normal-flow condition, no-slip condition or slip condition can 

be applied at solid boundaries. The no-slip condition is the one adopted in the current 

study. On the other hand, the open boundaries have an obscure physical interpretation, 

i.e. the lack o f  knowledge o f  the numerical behav ior o f  the environment in the region 

outside the computational domain and the interaction between that environment and 

the com putational domain. Thus, some kind o f  extrapolation o f  knowledge obtained 

in the interior o f the domain must be used. The extrapolation is ad-hoc to the problem 

under consideration. An Open Boundary Condition (OBC) could probably be tailored 

to fit the desired behavior. The specification o f the OBC depends on, among others, 

the character o f  the equations to be solved i.e. hyperbolic, parabolic or elliptic
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(O rlanski, 1976). in subsection 3.5.2, the OBC for the momentum equation will be 

explained. In subsection 3.5.3, it will be seen that OBCs o f  subsection 3.5.2 are not 

suitable for the elliptic Poisson equation and the suitable OBC will be introduced.

3.5.2 R ad iation  B oundary  C ondition

Unfortunately, there is no numerical treatment o f  open boundaries which is 

generally applicable. Consequently, it has been suggested that approximate ad hoc 

OBCs may be the most reasonable approach to the problem at this time. For flow 

problems dominated by advection and/or wave motion, the OBC should be transparent

i.e. it should allow propagating waves which are generated within the computational 

domain to pass through with minimum reflection and/or distortion. Once a reflected 

w ave has been generated , it will remain in the interior domain either until bottom 

friction damps it out or until it encounters another open boundary where some o f  the 

w ave energy may be transm itted through the boundary and some may be reflected 

(Chapm an, I9S5). M oreover, the OBC must be used to input some external forcing 

representing the interaction o f  the modeled region with the exterior environment 

(Lorenzzetti and W ang, 1986 and Orlanski, 1976).

The (zero) gradient BC, clamped (constant value) BC and sponge layer BC 

(Chapman, 1985)are perfectly reflecting boundary conditions; a criterion which is not 

suitable for the existing flow conditions. The sponge layer BC has one more 

disadvantage. It wastes a significant num ber o f  grid points close to the boundary 

(Orlanski, 1976 and Chapman, 1985).

The Sommerfeld radiation condition is stated as (Chapman, 1985)
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The prescription o f  the phase speed {or advection velocity) c, determ ines the type o f  

the boundary. For the (zero) gradient BC c = “> and for constant value BC c f = 0 . 

Chapm an (1985) surveyed other methods, e.g. when cr has a fixed value (the gravity 

w ave speed) or when an extra friction-like term is added to the right hand side o f  

Equation (3.5.1 ). All these methods reflect some part o f  the generated waves. Instead 

o f  fixing the value o f  cf, the BC introduced by Orlanski (1976) calculates a 

propagation velocity from the neighboring grid points. If the propagation direction is 

outw ard from the domain, a boundary value is extrapolated from the interior values 

close to the boundary. Otherwise, the boundary value is either specified or unchanged 

(Roed and Smedstad, 1984). In practice, large values o fc r may occur when derivatives 

in Equation (3.5.1) are very small. This source o f  error is controlled by requiring

Chapm an (1985) stated the Orlanski BC as follows. Considering that

evaluate

n - l
'B-2

set

I i f  C L¿1 

p = ‘C L if  0 < C L<1 

0 i f  C LsO
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calculate

. n * l _  O  " I í )  +  2 h 4 » b . [
<Pb ¡----------------

where the subscript B represents the boundary grid point and the superscript n 

represents the time leve!.

Israeli and Orszag (1981) interpreted the radiation BC as requiring that the 

am plitude o f  waves entering from infinity be zero while no condition be placed on 

outgoing waves propagating to infinity.

3.5.3 B oundary  C onditions for Poisson Equation

Peyret and Taylor (1983) stressed that the open boundaries pass through the 

points where the velocity component is normal to the boundary and that the pressure 

is not defined on the boundary. Fletcher (1991) reported that in some applications it 

is useful to specify velocity components at inflow and pressure and zero gradient o f  

the stream wise velocity component at outflow.

In the current study, the following boundary conditions are adapted.

1. At upstream , the U-component is specified (as measured by the EMS, see section

2.3.2) and Orlanski BC is used as an extrapolation technique for V and W which is 

needed in the QUICKEST scheme. This technique replaces the boundary conditions 

suggested by Leonard (1980).

2. At downstream, the velocity components are determined by Orlanski BC.

3. At the surface, the rigid lid assumption is imposed. The surface slope is assumed to 

be zero. This approximation introduces a certain error into the calculation which is, 

however, negligible when the variation o f  the surface elevation is small compared with 

the water depth. The effects o f  the surface slope arc still accounted for in the
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mom entum  equation by the pressure term (Rastogi and Rodi, 1978)

3.6 C onclusion

The Navier-Stokes equations are considered. It is shown that the full 3D form 

is necessary to simulate the LIP2 experiment. The Boussinesq assum ption and the 

Reynolds’ averaging are the only simplifications done for the Navier-Stokes equations.

A full 3D finite-difference model is built to find a numerical solution to the 

governing equations. The advection term is discretized using the ULTIM ATE 

Q UICKEST scheme. The scheme has been modified to reduce the number o f  grid 

points being involved in the solution (Eq. 3.3.6). Although the scheme performs 

reasonably well in most o f  the cases, it shares with other schem es the weakness o f  

reverting to first-order upwinding with the consequent artificial diffusion.

After determining the three velocity com ponents using the three momentum 

equations, the pressure is determined using a M AC-type method. The Poisson 

equation, thus formed, is solved using an iterative technique. It is shown that the line- 

by-line method is not suitable. Hence the point-by-point method is adopted. As a 

further developm ent, the relative nature o f  the pressure is exploited to avoid large 

absolute values o f  the pressure field. At each time step, the pressure, as evaluated from 

the previous time step, is used as a first guess for the solution o f  the Poisson equation.

The Orlanski BC is used as both OBC at the downstream and extrapolation 

method at the upstream to replace the extrapolation suggested by Leonard ( 1980).

The model, with the above-m entioned features, is ready to insert the 

turbulence term s and thus investigate the calculated secondary circulations.
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C h a p te r  4

TURBULENCE CLOSURE

4.1 In troduction

The Reynolds-averaged Navier-Stokes equations (3.2.2) cannot be solved for 

the mean values o f  velocity and pressure unless the turbulence correlations u,Uj are 

determ ined (the closure problem). Exact transport equations can be derived for 

(Sec. 4.2); but these equations contain correlations o f  the next higher order. Therefore, 

closure o f  the equations cannot be obtained by resorting to equations for correlations 

o f  higher and higher order; instead, a turbulence model must be introduced which 

approxim ates the correlations o f  a certain order in terms o f  lower order correlations 

and/or mean-flow quantities (Rodi, 1980).

M odeling o f  higher order correlations u,Uj ranges from a simple constant 

eddy viscosity model to as highly sophisticated models as the Direct Numerical 

Simulations (M arkatos, 1986). In section 4.3, a short review o f the available closure 

m odels will be given. The section will include some criteria according to which a 

closure model is chosen.

The k-e model will be discussed in Section 4.4, The importance o f  the k-e 

model is two-fold. First, it is the most popular turbulence closure model, so far. 

Second, The Algebraic Stress Model (ASM ), to be used in the current study, is an 

extension to the k-e model. The ASM will be explained in Section 4.5.

In Section 4.6, the numerical solution method for the turbulence closure
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model will be explained. The section includes both the discretization and the ever­

lasting problem o f  boundary conditions.

Section 4.7 is devoted to the simulation results and their analysis. Section 4.8 

contains algorithmic comparison between the current model and the large-scale model, 

POM . Section 4.9 highlights the main features o f  the program, developed in this 

research to code the mathematical model described in both chapters 3 and 4. Finally, 

Section 4.10 will conclude the chapter.

To highlight the size o f  the closure problem, it is interesting to quote the 

following paragraph from the ASCE Committee (1988):

“A typical team working on the development o f  a turbulence model-based 

code may consist o f  two or more senior researchers, two or more junior 

researchers and often graduate students. A balance in the experience o f  the 

senior researchers is desirable, with at least one having a good grasp o f  the 

physics o f  turbulence and another one with a strong background in 

computational flu id  mechanics. The duration o f  a code development project 

may be from  two to four years"

4,2 Reynolds Stress Equations

The exact transport equations for the Reynolds stresses may be derived by 

taking the moments o f  the Navier-Stokes equations i.e. averaging (over time) the set 

o f  nine equations arising from a m ultiplication o f  each o f  the three Navier-Stokes 

equations (3 .2 .lb ) by the three turbulent velocity fluctuations, u, (Leschziner, 1990 

and W ilcox, 1993). Taking the moment can be expressed as

UjNiup + UjN(Uj) = 0
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w here N(Uj)=0 is a symbolic expression o f the Navier-Stokes equation for the j Ih 

velocity component.

Using tensor notation (Appendix A), the full Reynolds stress equation 

becomes, (Rodi, 1980 and W ilcox, 1993)

rate o f  change + C y = Dy + «D- + I1(J + e y (4.2.1)

where

rate o f  change = — —  (4.2.2a)
<3t

ÔUjU:
C : convective transport = U fc   (4.2.2b)

J 5 x k

D ,:  diffusive transport =  -----
a x t

—:—;—; du U
UiU u + V— —

k J a x t Po

¿ V '  c u .p '

8 x i +  8 x J /

(4.2.2c)

— au¡ — au¡
<P : stress production = -u ,u k— i _ u¡uk-----

‘ a Xt ‘
(4.2.2d)

l í  : pressure strain correlation  = •£-
Po

au, aUj
axj d x .t

(4.2.2e)
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dUj <3u¡
e i:: v iscous d issipation  = - 2 v    (4 .2 .20

,J dxk c?xk

The above equation states that the rate o f  change o f  the Reynolds stress is 

balanced by the advection transport due to the mean motion, the diffusive transport by 

both turbulent fluctuation (o f both velocity and pressure) and viscosity, the turbulence 

production by mean-flow-turbulent-stress interaction, prcssure-strain redistributing 

effects and the dissipation by the viscous action into heat. The rate o f  change, 

convection and production are exact and need no modeling. On the other hand, 

diffusion, pressure-strain and dissipation terms contain higher correlations which can 

be determined by taking higher moments o f  Navier-Stokes equations. Unfortunately, 

new unknown correlations are generated at each level. However, such operations are 

strictly mathematical in nature, and introduce no additional physical principles. The 

function o f  turbulence modeling is to device approxim ations for the unknown 

correlations in terms o f  flow properties that are known so that a sufficient num ber o f  

equations is obtained, in making such approximation, the system  is closed (W ilcox, 

1993).

4.3 Turbulence M odels

To model the unknown correlations, hypothesis must be introduced for their 

behavior which are based on empirical information; hence turbulence m odels always 

contain empirical constants and functions. Further, turbulence models do not describe 

the details o f  the turbulent fluctuations but only the average effects o f  these terms on 

the mean quantities (ASCE Committee, I9S8).

M arkatos (1986) divided turbulence models into five groups:
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1- Analytical turbulence theories.

2- Sub-grid scale closure models.

3- Direct Numerical Simulation.

4- Turbulence transport models.

5- Two-fluid models o f  turbulence.

M odeling o f  most practically relevant turbulent flows will continue to be 

based on the solution o f  the turbulence transport models (Leschziner, 1995). Although 

Younis and his co-workers (e.g. Basara and Younis, 1995, Cokljat and Younis, 

I995a,b) directly solved the Reynolds stress transport equations after modeling the 

h igher order correlations, they admit that these models are still so com plex and 

computationally expensive that they are impractical for every day engineering use. The 

available alternative (from among the turbulence transport models) is the m odels 

which apply the eddy viscosity concept. Lakshminarayana (1986) divided these 

models into:

1- Eddy viscosity models which include the zero- one- and two-equation models.

2- Pseudo-eddy viscosity models which include the modified two-equation models and 

the Algebraic Stress Models (ASM).

The level o f  turbulence model necessary to obtain accurate predictions o f  the 

mean flow quantities depends on the relative importance o f  the turbulent transport 

terms. In certain flows or tlow regions, the inertial terms (= rate o f  change+advective 

term s) o f  the momentum equations are balanced mainly by the pressure gradient 

and/or buoyancy terms even if the flow is turbulent. In such cases, for exam ple in 

predom inantly horizontal flows in large shallow water bodies, the turbulence 

sim ulation is not important because it is ineffective and an effective eddy viscosity 

term is sufficient (see Sec. 4.8). In most flows, however, the turbulent transport terms 

are o f  significance, and in some situations, they are the only terms to balance the 

inertial terms so that their proper simulation is essential for the prediction o f  the flow
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(Rodi, 1980, ASCE Committee, 1988).

The current study is concerned mainly with sim ulating secondary flow in 

com pound channels. The turbulence driven secondary motion can be obtained only 

with a turbulence model which adequately describes the partitioning o f  the normal 

stresses. Therefore, the eddy viscosity models are incapable o f  predicting the required 

phenom enon (see e.g. Rodi, 1980, Naot and Rodi, 1982, Markatos, 1986, ASCE 

Committee, 1988). The full transport models, on the other hand, provide the necessary 

prediction with the desired accuracy but are still com putationally expensive. 

Therefore, the current study does not use them. The pseudo-eddy viscosity models are 

the remaining alternative, from which the ASM is chosen for application.

4.4 T w o-E quation  M odels

Boussinesq approxim ation for turbulent flows is based on the analogy 

betw een the molecular and turbulent motion. Thus, in analogy with the m olecular 

viscous stress, the Reynolds turbulent stresses are modeled according to (M arkatos, 

1986, W ilcox, 1993)

<3U:
-U ¡U j =  V,

<9x¡ dx 1

where ôtJ is the Kronecker delta (Appendix A), v, is referred to as the turbulence eddy 

viscosity which, in contrast with the molecular viscosity, is not a fluid property but 

depends on the local state o f  turbulence. The symbol k denotes the kinetic energy o f 

the turbulent motion expressed as
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This, being a measure o f  the normal turbulence stresses, is also the turbulence 

equivalent o f  the static pressure o f  the molecular motion.

Prandtl’s m ixing length hypothesis is based on the analogy between turbulent 

m otion and kinetic theory o f  gases. Thus, v, can be determined, to a good 

approxim ation, by writing

v(«V  L

where L is a length scale characteristic o f  the large turbulence eddies and V is a

velocity scale characteristic o f  the fluctuating velocities (o f the large eddies) (Rodi, 

1980, M arkatos, 1986, W ilcox, 1993).

The two-equation models determine the length and velocity scales ( L and V ) 

via transport equations; k is used as the dependent variable for the V -equation. A

A A (I

combination o f  k and L , having the form km L is chosen as the dependent variable

for the L-equation. From among the two-equation models, the standard k-e model will

be applied. In that model, the dissipation rate o f  the turbulent kinetic energy (e) 

defined as (M arkatos, 1986)

3

k 2 e « —

L

is the dependent variable for the L -equation.
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The exact equation for k, derived by taking the trace o f  the terms in Eq. 4.2.1 

(see Appendix A), reads

d k
—  = production(3>) + D iffusion(D ) -  D issipation(e) 
d t

ín this equation, the convection term is exact; the production term, which is exact in 

the Reynolds stress models, should be modeled. It is modeled as (Haque, 1994)

=  V,
a i r  ö l t  

dx; dx,j 1 /

au,
3X:

The diffusion term is modeled as (W ilcox, 1993)

D -  A
dX:

-ÏL Ü  
o k axi;

where o k is the Prandtl num ber for energy.

Recalling that e is defined by Eq. 4.2.2f, the exact equation for e is derived 

by taking the following moment o f  the Navier-Stokes equation (W ilcox, 1993)

aU: A , ,
2 v  A [ n (u ,)]= 0

where N(u,)=0 is a symbolic expression o f  the Navier-Stokes equation for the i,h 

velocity component.

This exact equation is far more complicated than its k-counterpart. Its 

m odeled form is obtained either by tuning it into a tractable form by model
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assum ptions or by conceiving a heuristic model. Both methods produce sim ilar 

models; in fact all equations possess a common form {Rodi, 1980, W ilcox, 1993).

Compiling the above-mentioned modeling assumptions, the standard k-e 

model takes the form (see e.g. Rodi, 1980, W ilcox, 1993, Haque, 1994)

k 1
V  CM

Ü Í  * u  —  = —
c?t 1¿)x: dx

l i  Ü i

°k öx ,/
+ <t> -e

(4.4.1)

(4.4.2)

i i  + lí i l  = j L
dt 1 dX: d x ;

\  de
o, dx- 

V * ‘I
(4 .4 .3 )

The closure constants (cM, c4l, ceî, o^, o j  may have different values in the literature 

(see Table 4.4.1). Nevertheless, they are almost universal. The current study adopted 

the following values, which are found (by numerical experiment) the suitable constants 

for com pound channel simulation.

c =0.09, c(1= l .44, ct3=1.92, o k= l.225 , o=1225

The k-e model is robust, economic, easy to apply, and accurate enough for 

thin turbulent shear flow problems. However, the model cannot predict the secondary 

flow in non-circular conduits. Many authors (Patel et al, 1984, Lakshminarayana, 

1986, Markatos, 1986, Speziale. 1987, Leschziner, 1990, C okljatand Younis, 1995a) 

discussed the reasons o f  the incapability o f the model as follows. The secondary 

circulation is induced mainly by the inequality between the normal stresses (Naot and 

Rodi, 1982). The k-e model predicts that the normal Reynolds stresses arc all equal 

-a result which is in substantial contradiction o f experiments. Thus, the k-e model 

yields unidirectional mean turbulent flows. Moreover, the model prediction o f  the low- 

Reynolds-number flow in the near wall vicinity is poor. There arc low-Reynolds-
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Table 4.4.1; k-e model constants reported in the literature.

c. c.i source

0.09 1.44 1.92 1.0 1.3 ASCE Committee (1987), Wilcox (1993), 
Pezzinga (1994)

0.09 1.45 1.90 1.0 1.3 Basara & Younis (1995)

0.09 1.44 1.92 1.225 1.225 Naot & Rodi (1982), Naot et al (1993), 
Lin &. Shiono (1995)

0.09 1.43 1.92 1.0 1.3 Rastogi & Rodi (1978)

0.09 1.55 2.0 1.0 1.3 Jones & L aunder(1972)

num ber versions o f  the model. However, the high near-wall resolution needed by these 

versions makes the computation expensive. The wall-function (Sec.4.6.2) is used to 

overcom e the low-Reynolds-numbcr problem. However, as shown in Sec. 4.6.2, the 

wall-function tends to mask the m odel's performance. Finally, the production term in

the k-e model must be modeled because are unknowns. This drawback disappears 

autom atically in the ASM.

4,5 A lgebraic S tress M odel

4.5.1 In troduction

Algebraic Stress Models combine, at least to some extent, the economy o f  the 

isotropic eddy viscosity models with the universality o f  the stress/flux models (Rodi, 

1980).

In the Reynolds stress equation (4.2.1 ), gradients o f  the dependent variables 

appear only in the rate o f  change, convection and diffusion terms. Hence, when these 

gradients can be eliminated by model approximations, the differential equations can 

be converted into algebraic expressions. The simplest model is to neglect the rate o f
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change and the transport terms, and this appears to be a sufficiently accurate 

approxim ation in many cases (e.g. Haque’s model. Sec. 4.5.2). However, a more

generally valid approximation is to assume that the transport o f  u,Uj is proportional

U i U :
to the transport o f  k, the proportionality factor being the ratio — - , which is not a

k

constant (Rodi, 1980, ASCE Committee, 1988) (e.g. N aot’s model. Sec. 4.5.3). 

Neglecting the rate o f  change and the transport terms gives rise to an inconsistency in 

the normal stresses when e is not equal to $  because then the resulting normal stresses 

do not sum up to 2k as they should. Rodi (1980) reported two possible solutions. The 

first is proposed by Hossain (1980). He solved for the normal stresses using the 

proportionality approximation for the transport terms, and solved for the shear stresses 

neglecting the transport terms. The second solution assumes local equilibrium , in 

which case e can be replaced by i>.

4.5.2 H aq u e ’s model

Haque (1994) adopted the second o f the solutions reported by Rodi (19S0)

(see Sec. 4.5.1). Two more assumptions are adopted by Haque (1994). The first

assum ption is Launder’s model (1975) for the pressure-strain term. The second

assumption is that the dissipation is isotropic, with each normal stress dissipated at the 
2

same rate, —e (Leschziner, 1990). Hence the model took the form (Haque, 1994)

—  k I - c 2
u Uj = ------------

e c.

-TÔU,
)  _ -(SU ;

rix.
UjUk

rixL

■)
- - k -

3
<4.5.1 )

where c,=2.2 and c 2=0.55 are the constants o f  the pressure-strain model as reported by 

Haque (1994).
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The ASM, seen as a redistribution o f  the eddy viscosity determined by the k-e 

model, has overcom e the first weakness o f  the k-e model mentioned in section 4.4 

(namely, the weakness that the k-e model predicts that the normal stresses are equal,

i.e., the turbulence is isotropic). However, the high-Reynolds-number ASM (Eq. 4.5.1 ) 

cannot solve the problem o f  the near-wall low-Reynolds-number flow. The law-of-the- 

wall (Sec. 4.6.2) is used to (partly) overcome this problem. Furthermore, the model 

fails when the transport o f  the turbulent stresses in the flow is too large to neglect.

4.5.3 N ao t’s m odel

On applying Haque’s model to simulate the LIP2 experim ent, the model 

showed limited applicability. First, the 3D form o f the model (see Appendix B) needs 

the solution o f a system o f simultaneous equations with the consequent ill-conditioned 

problem (see Sec. 4.6.1). Haque (1994) tried to simplify the equations. However, the 

resulting expressions are still far from simple and could not solve the ill-conditioned 

problem . Second, as the model neglects the transport terms, it is not capable o f  

adequately predicting the secondary circulation in compound channels which are 

characterized by strong turbulence level and transfer o f  momentum in the lateral shear 

layer. Naot et al (1993) used an ASM which was developed by Naot and Rodi (19SI, 

1982, 1983). The model will be referred to, hereafter, as N aot's model. The model is.

with

w ith V v. (4.5.2b)
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V w =

M c>)
—  I  U V —  + u  w — \1 ' av + aw^v[k dz dy ) (4.5.2c)

W W = ■
(c4 +2c3)

'n „ i \ pf^^au — âuï“ (a  - - P  + c4 -  1 ) + — u w -  u V ——
3 2 € \  dz dy j

-2 v , aw 
' az

(4.5.2d)

—  k
V V =  —

c.,
| ( a - i p + c 4 - l )  + ¿ - ^ a u  — au

U V  u w -----
I ay az + c

w w
3 k

- 2 V .ÍX
l a y

(4.5,2e)

u u  = 2 k - ( v v  + w w ) (4 .5.20

where the model constants are

a = 0.7636-  0.06 f, 

P = 0.1091 +0.06 f, 

c4 = 1.5-0.5 f,

Cj =0.1 f.

(4.5.3a) 

(4.5.3b) 

(4.5.3c) 

(4.5.3 d)

f, and f, are functions accounting for the distance from solid walls and open surface, 

respectively. They are expressed as
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' ± y
(4.5.4a)

f ,=
, ± \ 2  

A ,
(4.5.4b)

where / is a dissipation length defined by

/ =

/  \  
3/4 . 3/2

(4.5.4c)

ya and haare the root mean squared reciprocal distances from the solid walls and open 

surface, respectively.

(4.5.4d)

ha =/— !—-V'2 + 0 .3 1 6 2 / (4.5.4c)

is defined as

where S is the distance to the boundary segment that occupies the angle differential d0 

(Fig. 4.5.1).
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Naot et al (1993) explained that 

adjacent to the surfaces, both f, and /  

become equal to one since I becomes equal 

to y near solid walls and I is finite near free 

surface. Away from the surfaces, both ft 

and f: vanish due to the quadratic formula 

(4.5.4a,b) and the numerical factor introduced into Eq. (4.5.4e) for ha.

The model is simple and overcomes the ill-conditioned problem because the 

six equations (4.5.2) are mutually independent and all coefficients are functions o f  f, 

and f, whose values lie always in the range (0 -t). Moreover, by introducing the 

functions f, and f, the model takes into account the wall effect everywhere within the 

com pound-channel cross-section.

4.6 N um erical M odel

4.6.1 Discretization and Solution Algorithm

I. General; To minimize the 

interpolation involved in evaluating 

the stress difference required for the 

Navier-Stokes equations, the stresses 

are divided into two groups (Fig. 

4 .6 .1). The normal stress U;u¡ group is 

located so that no interpolation is 

needed. The shear stress u¡ Uj group is 

located so that the interpolation is only 

between two grid points.

Leschziner ( 1990), Naot et al

U iU j(ij.k+l U iU j(«+lj.k+l>

Figure 4.6.1 distribution of the variables on 
the finite difference mesh

-a

sm  \
Figure 4.5.1 Sketch explaining mean 
distance from a point to a surface.
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(1993) and Rocabado (1994) reported on the need to refine the mesh size in order to
Ax

have a grid-size independent solution. Moreover, Naot et aí (1993) recommended tliat —  <1 .25
Ay

to avoid large errors in the secondary flow prediction.

Rocabado ( 1994) pointed out that negative or zero values o f  k or e (which are 

due to mathematical operations and have no physical significance) cause solution 

divergence. He suggested that k and 6 be limited to a certain m inimum non-zero 

positive value. This limitation has effects only at the early stages o f  the solution 

iterations. Once the solution progresses towards a convergent stage, the approach 

becomes redundant. The approach is used by other modelers e.g. POM model, and is 

found useful in the current study.

It is found that the convergence to a steady solution is accelerated, when the 

initial conditions for the stream-wise velocity (U) are not zero. The initial cross 

sectional distribution o f  U is given the same distribution as the upstream boundary.

2. Haque 's model: It can be seen that each normal stress equation contains one 

nonnal stress component and two shear stress com ponents i.e. each normal stress 

com ponent can be expressed as a function o f  the shear stress. If the normal stress is 

substituted for in the shear stress equations, one gets three shear equations containing 

only three (unknown) shear components. Hence, the ASM is reduced to solving three 

simultaneous equations for the shear stresses and three mutually independent equations 

for the normal stresses (see Appendix B).

When the system o f  equations is singular or ill-conditioned (very close to 

singular) the above-m entioned method (splitting method) fails to give satisfactory 

results. As an alternative, the so-called Singular Value Decomposition technique 

(Press, et al, 1986) can be used to diagnose the problem and give a useful numerical 

answer. The singular Value Decomposition technique could (partially) solve the ill-
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conditioned problem. However, when the model is applied to the LÍP2 experim ent 

w ith a total o f  700 computational grid points per cross section using an IBM-SP2 

machine a reasonable time (up to one week) was too short to reach a steady solution. 

H aque’s model is still computationally too expensive to be applied for LIP2 

experim ent using the current computer facilities.

3. N ao t’s model: Naot et at (1993) used the Patankar and Spalding (1972) 

algorithm. The algorithm  is applied in the current study with a m inor modification. 

In the boundary layer flow (defined in Sec. 3.4.1), the pressure term in the x- 

m om entum  equation can be expressed as a function o f  the total flow rate at any cross

(3P (3Psection, i.e., —  is assumed constant over the cross section and is replaced by —
dx dx

where P is space-averaged pressure over a cross section. To maintain continuity, the 

mass flow rate at any cross section, p at time step n+1 ( £ p 0 U p 1 Ay Az) must be equal 

to the true mass flow rate applied at the open boundary (m -)- Using Eq. 3.4.2:

(3.4.2)

to substitute for U p ' 1, one gets

Hence can be determined as
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At each new time step, the upstream open boundary condition is updated by 

the velocity values at the section immediately downstream to it. Consequently, the 

algorithm  does not take into account the actual flume length: instead, it takes into 

account only a small portion o f  the channel and moves it towards downstream  as it 

marches in time.

The channel portion considered by Patankarand Spalding (1972) consists o f  

two sections. Ax apart. To be able to apply the ULTIMATE QUICKEST (which uses 

at least five grid points) and Orlanski radiation open boundary conditions (discussed 

in chapter 3), the channel section should not be smaller than 10 Ax. The true mass flow 

rate (n r )  is the flow rate applied as initial condition at the upstream section.

4.6.2 B oundary  C onditions

The boundary conditions, especially near free and solid surfaces, have strong 

influence on the whole domain and may mask the real performance o f  the closure 

model (M arkatos, 1986).

At inflow and outflow boundaries, Orlanski boundary conditions arc applied 

for the differential equations o f  k and € (see Sec. 3.5.2).

At the free surface, turbulent fluctuations normal to the plane and normal 

derivatives o f  other variables are set to zero except for the turbulence energy 

dissipation, e. The fact that the free surface reduces (and re-distributes) the turbulence 

(Naot and Rodi, 1982, Haque, 1994) can be taken into account by the following 

m odification for the energy dissipation (Lin and Shiono, 1995)

( 4 . 6 . 1 )
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where y ' is the distance from the solid wall, H is the total water depth, and k is von 

K árm án's constant=0.41±0.015 (Patel et al, 19S4)

Near solid wall (viscous sub-layer), the viscous stress and the m olecular 

diffusion are so important that the high Reynolds number models described above are 

not valid. Mean-flow equations and turbulence models are available that account for 

these effects, but since the gradients o f  most quantities are very steep in the viscous 

sub-layer, the numerical resolution o f this region is very expensive and therefore not 

desirable. Although Launder ( 1992) criticized it and recommended looking for a better 

approach, the common practical approach (up till now) is to bridge the viscous sub­

layer with semi-empirical wall functions which relate the values at the first numerical 

grid point placed outside the viscous sub-layer to conditions at the wall (Ferziger, 

1987, ASCE Committee, 1988). The most common function is the logarithmic law-of- 

thc-wall.

(4.6.2)

where

U, resultant velocity parallel to the wall

U. shear velocity = —
N P

wall shear stress

non-dimensional wall distance =
V

E roughness parameter (=9 for hydraulically smooth walls)
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The domain o f  validity o f  Eq. 4.6.2 is a point o f  controversy. Rastogi and Rodi ( 1978), 

Rodi (1980) and the ASCE Committee (1988) recom m ended the range 30<y*<100. 

Patel et al (1984) recommended 30<y*<200. Haque (1994) reported the range 

30<y*<400. Thom as and W illiams (1995a) recom m ended a maxim um  value o f 

y+=600. Rocabado (1994) stated that the distance o f  the first grid point from the wall 

represents a percentage o f  the domain that is elim inated out o f  the calculation. It has 

to be large enough to overcome the laminar sub-layer but as small as possible to avoid 

the introduction o f  errors originated by a too rough approximation. Naot et at (1993) 

suggested that the grid refinement should guarantee y* value at the first grid point next 

to the wall in the range o f 65-100. The value o f  y* = 100 is adopted in the current study 

by numerical experiments.

In the logarithmic sub-layer, the shear stress is nearly constant and equal to 

the wall shear stress (p U .') ; and the local equilibrium assumption (e=<í>) is valid.

Hence, the boundary values o f  k and e at the first grid point near the wall are (ASCE 

Com m ittee, 1988)

It should be noted that the current grid structure (Fig. 4.6.1) provides the

velocity gradients near the wall calculated from the law-of-the-wall (Cokljat and 

Younis, 1995a)

k = -----  and e = —
Ky

possibility o f  determining the shear and normal stresses using the ASM with the
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4.7 N um erica l Results

The secondary circulation (Fig. 4.7. la) is in good agreem ent with the 

experim ental results at the salient com er (Fig. 4,7.1b). Near the bottom o f the main 

channel, the secondary circulation is not properly simulated. Tominaga and Nezu 

(1991) reported that the main-channel vortex (the vortex on the main-channel side o f  

the salient com er) spans a lateral distance o f  about 0.9 o f  the main channel depth and 

the flood plain vortex (the vortex on the flood plain side o f  the salient com er) spans 

a lateral distance o f  about 0.5 o f  the main channel depth. They reported on a bottom 

vortex in the main channel spanning a latera! distance < 0.8 o f  the main channel depth. 

The three vortices are simulated by the current model as can be seen in Fig. 4.7.1. In 

Fig. 4.7 .1 , one more vortex is formed near the wall o f  the flood plain. It has no 

interaction with the flood plain vortex. The main channel vortex is stronger than the 

flood plain vortex. Contours for the longitudinal velocity component are shown in Fig. 

4.7.2a. The isolines in Fig. 4.7.2a have the main features o f  flow in compound channel 

as depicted by Tominaga and Nezu (1991): A bulging at the salient com er towards the 

surface and two velocity dips (on both sides o f  the bulge), one on the flood plain and 

another on the main channel. The velocities in the lower part o f  the main channel are 

not properly simulated (see, for example, the 0.75 contour. Fig. 4.7.2a). The improper 

sim ulation is extended to the upper part o f  the main channel m eanwhile the velocity 

on the flood plain is properly simulated.

W hen comparing the isolines o f  U as determined by the model (Fig. 4.7,2a) 

with the isolines o f  U as produced by the experim ent (Fig. 4.7.2b), the following 

points can be noted. First, the general structure in both cases is similar. Second, the 

isolines o f  the experimental results are usually o f  higher values than those o f  the 

numerical model. The reason is attributed to the initial conditions at the upstream open 

boundary. The numerical grid points are much denser than the measuring points o f
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EMS. Therefore, it is needed to interpolate between the m easured values. A linear 

interpolation is used. Consequently, the total numerical discharge is 124.5 I/s while the 

total experim ental discharge is 150.0 lis. Although the discharge is not properly 

simulated the velocity profile at the upstream open boundary is reasonably simulated. 

Simulating the velocity profile (rather than the discharge) is necessary to investigate 

the splitter plate effect.

4.8 Model Comparison

The code employed in this study is a result o f  a gradual refinem ent o f  the 

large-scale hydrodynamic model POM o f the University o f  Princeton to be applicable 

to the small-scale example o f  LIP2. From the refinement procedure, it was possible to 

conduct the following comparison.

The POM model uses the boundary fitting (a-) coordinates. The o-coordinates 

are suitable to resolve complicated topographic features in large-scale shallow water 

bodies where large bathymetric irregularities often exist. The transform ation to o- 

coordinates introduces new terms in the governing equations, w ith some o f  the 

additional terms involving cross derivatives. M elior and Blumberg (1985) tried to 

simplify the o-transformed ASM. However, although the o-transformation o f  the ASM 

is not impossible, it is far more complex than that o f  the Navier-Stokes equations and 

needs further investigation. For large bathymetric variations, D eleersnijder and 

Beckers (1992) and Stelling and van Kester (1994) proposed two different solutions. 

The sudden depth change o f  the LIP2 experiment can be modeled by any one o f  them. 

However, when the rigid lid assumption is used, the coefficients o f  the o-transformed 

equations become 1 orO reducing the o-transfonncd equations to the Cartesian form. 

Therefore, the o-transformed equations are not needed for the current application and 

the current application cannot be used to check the applicability o f  the o-transformed 

equations.
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The large-scale models use some smoothing filters e.g. POM model uses 

A sselin’s (1972) time smoothing filter and adds a correction to the vertical structure 

o f  the velocity to have its average equal to the (calculated) depth average velocity. 

Such filters cannot be used in small-scale modeling because the diffusive effect o f  the 

filters usually overrides the effects o f  the closure model.

The central difference discretization o f  the advective term is sufficient for the 

large-scale model because the diffusive effect due to the mesh size attenuates the 

oscillations produced by the central differencing. On the other hand, small-scale 

m odels need better interpolation methods which are neither diffusive nor oscillatory 

(e.g. ULTIM ATE QUICKEST, Sec.3.3).

For large-scale shallow-water flows, the hydrostatic pressure assumption is 

adequate because the horizontal scale is much larger than the vertical one. In the 

current sm all-scale flow, the lateral and vertical scales are comparable. Therefore, a 

full vertical momentum equation is necessary (see Sec. 3.2)

In large-scale flows, the zero-gradient open-boundary condition is enough 

because the numerical waves are much smaller than the water surface fluctuations (due 

to e.g. tidal waves, wind waves.,.), in the unidirectional flume flow, the numerical 

wave should be disposed o ff out o f the computational domain by e.g. Orlanski (1976) 

radiation open boundary conditions (see Sec. 3.5.2).

For large-scale flows, the turbulence terms in the momentum equations are 

unim portant so that the closure model has no influence anyway; and when the 

turbulence terms are important and determine the flow behavior, the model is mostly 

too coarse to describe this behavior correctly. Therefore, large-scale models apply an 

effective horizontal diffusivity which is due only in part to turbulence and in general 

also accounts for: numerical diffusion, convective sub-grid scale motion and (in the
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case o f  depth averaged calculation) dispersion i.e. the horizontal diffusivity choice is 

a m atter o f  numerical model calibration rather than a turbulence model problem. On 

the other hand, small-scale models need a full turbulence model which is able to 

reproduce the secondary currents effected by normal stresses difference (see Sec. 4.3).

The impact o f  the roundoff error on the final results is different in the case o f  

large scale m odels from that o f  small scale models. The roundoff error is directly 

linked to the word length used by the computer. While roundoff errors produced by 

single precession word length is acceptable for large scale models, (at least) double 

precession is a must for small scale models.

4,9 Program Structure

The mathematical model, discussed in chapters 3 and 4, has been executed in 

a FORTRAN program (3DHYD). The program has a modular structure. The modular 

structure o f  POM was useful as a guide to have the 3 DU YD structure. However, the 

two programs arc completely different from each other and 3DHYD is a new 

independent code.

The input to the program consists o f  the following data elements.

1. Mesh size.

2. The structure o f  the canal cross-section; or, in general, the bathym etry o f the 

domain.

3. Velocity distribution at the upstream boundary.

4. Time step and total simulation time (time is used, for steady flow, as an iterative 

variable).

5. Expected limits for the dependent variables.

After reading the input and initializing the variables, the iterative solution is
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carried out as follows.

1. Transition values o f  the three velocity components are determined from the 

momentum equations taking into account only advection and diffusion (or Reynolds 

stress) terms (Eq. 3 .4 .1 ).

2. Open boundary conditions are applied to the transition values determined in step 1 

above (Sec. 3.5.2).

3. The longitudinal velocity component U is detennined in terms o f  the cross-sectional 

average pressure (Sec. 4 .6 .1, point no. 3).

4. The Poisson equation is solved, iteratively, to obtain the pressure field (Eq. 3.4.4)

5. The secondary velocity components (V and VV) are determined from their 

momentum equations taking into account only the pressure term (Eq. 3.4.2).

6. Open boundary conditions are applied to the three velocity components (Sec. 3.5.2).

7. Transitional values for turbulence kinetic energy (k) and dissipation (e) are 

determined from the k-e model taking into account only advection and diffusion, i.e., 

the following two equations are solved.

d k  + u  d k  =  J _ (  \  d k '

<3t 1 (3x¡ o k <9xi;

i £  + U —  = —  Í —  — 'at 1 ax¡ axi(ot axi;

8. Open boundary conditions are applied to k and e (Sec. 4.6.2).

9. Turbulence kinetic energy (k) and dissipation (e) are determined from the k-e model 

taking into account only the production and dissipation terms, i.e., the following 

equations are solved.
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de e ^  e 2 
—  = c , , — O - c , - ,—  
a t et k e2 k

in this subroutine, the near surface conditions, discussed in Sec. 4.6.2 are taken into 

consideration.

10. Open boundary conditions are applied to k and e (Sec. 4.6.2).

11. Eddy viscosity is determined as a function o f  k and e (Eq. 4.4.1 ).

12. N aot’s model is applied to determine the Reynolds stresses (Eqs. 4.5.2 to 4.5.4).

The output includes the dependent variables, i.e., the three velocity 

components, pressure, turbulence kinetic energy and dissipation and Reynolds (shear 

and norm al) stresses.

4.10 C onclusion

The Reynolds stress equation (4.2.1) is the closure to the Navier-Stokes 

equations. It contains terms which must be modeled in order to have it solved for the 

Reynolds stresses. The different turbulence m odels are reviewed in Sec. 4.3. It is 

concluded that the turbulence transport models are the most appropriate models. The 

ASM is the model which combines the economy o f the eddy viscosity model and the 

universality o f  the stress transport models. It redistributes the length and velocity scale 

param eters (k and e) o f  turbulence which are calculated by the standard k-e model. 

The full 3-D form o f  the ASM developed by Haque (1994) is discussed. Although the 

splitting method, discussed in Sec. 4.6.1, was not successful in determ ining the 

variables with the distribution o f  Fig. 4.6.1, it is believed that it can be improved to a 

workable level. However, it is replaced (for the time being) by the Singular Value 

Decomposition technique applied to the same distribution. Nevertheless, the model is 

still too expensive to be handled with the available hardware. It is replaced by N aot’s 

model which is simple, economic and numerically robust. The model takes into
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consideration the wall proximity. The numerical solution applied a modified form o f  

the Patankar and Spalding algorithm. The initial and boundary conditions are 

discussed in Sec. 4.6.2, It is seen that when the initial conditions for U are identical 

with the open boundary conditions, the solution converges faster to the steady case and 

it provides better simulation o f  the secondary circulation.

The model results presented in Sec. 4.7 show the ability o f the model to 

sim ulate the flow in compound channels.

The current model is compared with POM. It is concluded that the 

assum ptions underlying large-scale models are so different from those underlying 

sm all-scale models that they cannot replace one another, even with any degree o f  

approximation.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

Within the framework o f  LIP2, the tidal flume o f  Delft Hydraulics has been 

used to study the secondary circulation in compound channels. The analysis is limited 

to the steady homogeneous case. The limitations and uncertainties o f  the experiment 

are discussed. However, the data are representative o f  typical turbulent flow in 

compound channels.

A numerical full 3D model is built to simulate the LIP2 experiment. The 

pressure is calculated by solving a Poisson equation obtained by substituting for the 

velocity from the momentum equation into the continuity equation. The advection 

term is discretized using the ULTIM ATE QUICKEST scheme. The rate o f  change 

term is used as an iterative term to reach the steady solution.

The turbulence closure problem is addressed. The k-e model is proven to be 

insufficient to reproduce the secondary circulation in a compound channel because o f 

the assumption that the eddy viscosity is isotropic. The ASM provides a remedy to the 

isotropy problem by modelling the Reynolds stress equations into algebraic equations. 

The ASM com bines the simplicity o f  the k-e model and the anisotropy o f  the full 

Reynolds stress equations.
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5.2 Conclusions

The following conclusions can be drawn out o f  the research.

5.2.1 The experiment

1. The measuring area is so limited that a full analysis o f  the flow characteristics 

in the cross section is hindered.

2. The laser instruments have to be warmed up for 24 hours before starting 

measurem ents and are not turned o ff up to the end o f  the experim ent to avoid signal 

noise.

3. The vertical profile o f  the longitudinal velocity com ponent, next to the 

upstream  splitter plate, is not parabolic. Rather, the profile has two peaks, separated 

by a depression located at the plate (Fig. 2.3.2). The above-mentioned profile 

disappears at the upstream (measuring) section, but the flow is still developing. At the 

downstream  (measuring) section, on the other hand, the flow is fully developed.

4. The alignm ent (orientation) error is the largest experim ental error. It is 

corrected by applying the mass conservation law.

5. The lateral distribution o f the depth-averaged longitudinal velocity is different 

from that obtained for a closed duct. Hence, the free surface in open channels does not 

correspond to the sym m etry plane in closed ducts.

6. The distribution o f  the Reynolds stresses demarcate three zones in the 

com pound channel: the deep main channel (below the flood plain bed), the shallow 

main channel and the flood plain.

5.2.2 The numerical model

1, In the LIP2 experiment, the horizontal (lateral) and vertical length scales arc 

comparable. Hence, the hydrostatic pressure assumption is not applicable and a full
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vertical momentum equation is needed.

2. The numerical mode! developed in this study is fully 3D. It can simulate flows 

that are governed by Eqs. 3.2.1. However, for typical 2D (lows, where the vertical 

dimension is small compared to the horizontal dimensions, the model is not economic 

com pared to the available models which apply the hydrostatic pressure assumption 

(e.g. shallow water flow in coastal areas). On the other hand, the model cannot be 

disposed o f  for flows which are 3D in nature (e.g. mixing behaviour in open channels 

and rivers especially when having over-bank flow, water and sewage treatment 

plants...).

3. The advective term is discretized using the ULTIMATE QUICKEST scheme.

A new condition is applied (Eq. 3.3.6). The new condition provides the same result 

with less grid points.

4. The available upstream open boundary conditions unveil one o f  the

limitations o f  the ULTIMATE QUICKEST. The ULTIMATE QUICKEST shares with 

other schemes the weakness o f  reverting to first order upwinding with the consequent 

inherent artificial diffusion. The ULTIMATE QUICKEST reverts to the first order 

upwinding when the m onotonicity condition is violated.

5. The point-by-point approach is used to solve (iteratively) the Poisson equation

for the pressure. It is better than the line-by-line approach because o f two reasons. 

First, in 1D models, the point-by-point approach converges faster than the line-by-line 

approach because the solution seeks its own level rather than insisting on a definite 

value at a particular grid point. Second, in more than one dimension, the line-by-line 

approach converges to a solution with a fixed error o f  convergence while the point-by- 

point approach converges asymptotically to a solution with a zero error o f 

convergence.

6. The relative nature o f  the pressure makes it possible to work with small

pressure values avoiding that the pressure field acquires a large absolute value. 

Moreover, the next time step docs not start with a cold start; rather, it starts from the 

previous pressure estimates, which are expected to be a good first guess because the
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numerical method marches with small increments o f  the dependent variables.

6. The radiation boundary condition is the appropriate open boundary condition

for parabolic differential equations in steady flow. The rigid lid assumption is used to 

avoid solving an extra equation for the w ater elevation. The assum ption is good 

enough for steady flow.

5.2.3 The turbulence closure

1. The two-equation (k-e) model is not able to predict the secondary circulation 

in a compound channel because it is based on the assumption that the eddy viscosity 

is isotropic.

2. The ASM is used to redistribute the stresses anisotropically.

3. The full 3D ASM developed by Haque (1994) is based on just neglecting the 

partial differential terms in the Reynolds stress equations and assum ing local 

equilibrium . However, neglecting the transport terms is not suitable for the flow in 

com pound channels.

4. N ao t's  model, as an alternative to H aque’s model, is sim ple, economic and 

numerically robust. It is designed to take into account wall proxim ity and compound 

channel structure.

5. The numerical solution o f  the ASM o f Haque (1994) using the splitting 

method has two advantages. First, the ASM is reduced to solving three sim ultaneous 

equations for the shear stress and three mutually independent equations for the normal 

stress. Second, it suits the variable distribution shown in Fig. 4.6.1. The proposed 

distribution minimizes the need for interpolation between Reynolds stress values and 

hence reduces the error arising from linear interpolation.

6. H aque’s model is too expensive and cannot deal with the ill-conditioned 

problem. N aot’s model, on the other hand, overcomes these two shortcomings. The 

results obtained showed that Naot’s model could simulate flow in compound channels.
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5.2.4 Model comparison

I . Comparing the current model with the large scale POM model, it is concluded 

that the assum ptions underlying the large scale models are so different from those 

underlying the small scale models that they cannot replace one another with any 

degree o f  approximation,

5.2.5 New contributions by the current research

1. It is noticed that the shear layer extends inside the main channel more than on 

the flood plain. A new (qualitative, physical) interpretation is proposed (Sec. 2.4.2).

2. Leonard (1991) developed the ULTIMATE QUICKEST scheme using two 

adjacent control volumes. Therefore, he used four grig points to determine each 

(interpolated) face value. One condition (Eq. 3.3.6) is modified to allow for using only 

one control volume and hence only three grid points. Such a saving on the grid points, 

needed for interpolation, is very useful, especially at the downstream open boundaries.

3. The current research highlights one o f  the limitations o f  the ULTIM ATE 

Q UICKEST scheme. The scheme reverts to the diffusive first-order upwind scheme 

when the m onotonicity condition is violated (Sec. 3.3.3).

4. The Patankar and Spalding algorithm is modified. First. Patankar and 

Spalding (1972) used only two consecutive cross sections. The current research uses 

few (-1 0 ) cross sections, which allows for applying sophisticated schemes, e.g., 

ULTIM ATE QUICKEST (Sec. 4.6.1). Second, while Patankar and Spalding (1972) 

suggested the first guess in solving the Poisson equation for the pressure, the current 

research applied the pressure field estimated from the previous time step as a first 

guess. Such a guess accelerates convergence to the solution (see Relative Nature o f  the 

Pressure under Sec. 3,4,2).

5. The staggered distribution o f  the variables over the grid points (Fig, 4.6.1) 

reduces the need for interpolation.
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6. H aque’s turbulence closure model is solved using the Splitting M ethod 

explained in Appendix B. Both the model the Splitting method need further 

consideration.

5.3 Recommendations

1. The limited measuring area shown in Fig. 2.3.3 must be avoided by changing

the carrying frame structure and using other instruments that can measure closer to the 

boundaries (than the ILDA's). This will help to perform detailed analysis and 

discussion o f  the flow behavior in the cross section.

2. Turbulence is not regarded today as a completely random process. It contains

a certain sequence o f  events (Yalin, 1992). Studying turbulence behaviour at a single

location lacks the general view point necessary to cope w ith the abovem entioned 

concept o f  turbulence. To be able to study the coherent structure developed along the 

flume, it is necessary to study the turbulence development right from the inlet dow n 

to the outlet o f  the measuring reach. Hence new instruments are needed, e.g. high 

speed video camera, laser light sheet and laser induced fluorescence.

3. The main target o f  studying the flow dynam ics is to study its effect on 

pollutant transport. It is recommended to run similar (LIP) experim ents in compound 

channels with suspended sediments added to study sediment (or generally speaking, 

pollutant) interaction with the flow in both homogeneous and stratified flows.

4. The ULTIMATE QUICKEST scheme is diffusive under non-m onotonic 

conditions (reverting to first order upwinding). It is recommended to find a suitable 

interpolation method to be used when the dependent-variable distribution is non­

m onotonic.

5. There must be a consistent check on the diffusivity o f  the scheme (especially 

the turbulence closure schemes). The numerical scheme must not redistribute the 

velocity (or momentum) deficit over the cross section.

6. The buoyancy term should be added to the current numerical model to be able
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to predict stratified flow.

7. Faster numerical methods can enhance the performance o f  the code, e.g. using 

im plicit methods, using parallel computation (either by partitioning the code or 

partitioning the domain), using over-relaxation methods.

8. The current logarithmic law o f the wall applied at solid boundaries for the 

ASM has strong influence on the stresses in the interior o f  the domain. It is 

recom m ended to use more elaborate models, e.g. near wall low Reynolds num ber 

m odels to reduce the degree o f  empiricism involved in the law o f  the wall.

9. It is recommended to improve the splitting method for solving the ASM when 

the system  o f equation is ill-conditioned.

10. With the fast development in computer hardware, it is recommended to apply 

more accurate turbulence closure models (e.g. large eddy simulation, direct numerical 

sim ulation, Reynolds stress transport equation). It is recommended, also, to express 

the coherent structures in a mathematical form.

11. The effect o f  the hardware accuracy and the numerical method to be used may 

lead to erroneous interpretation o f  the numerical results as long as turbulence and 

secondary circulation is concerned. It is recommended to establish certain standards 

for the specifications o f  the hardware needed and the error arising front the 

discretization techniques (e.g. mesh size, truncation error, round o ff error).
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appendix A

T E N S O R  N O T A T IO N

Tensors are described in detail in books on linear algebra. However, for the 

sake o f  com pleteness, the most important features o f  tensor notation which are used 

in this work will be reviewed (see W ilcox, 1993).

The components o f  an n-dimensional vector x are denoted as x,, x: ,-,x„. For 

example, in three-dimensional space, the coordinate vector x= (x, y, z) is rewritten as 

x= (X(, x : , x3). Now consider an equation describing a plane in three-dimensional 

space, viz.,

a t x t + a-,x2 +a3x3 =c (A .I)

where a, and c are constants. This equation can be written as

3
Ea - x .  = c  (A .2)I t
i-l

In tensor notation, the Einstein summation convention is introduced and Eq. A.2 is 

rewritten in the shorthand form

= c (A.3)

A nother exam ple is introduced by Eq. 3.2.1b. it is repeated here for clarity.

The m omentum equations in Cartesian coordinates arc
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x: du
dt

duu duv duw
dx dy dz

dv 
y: ¥

duv
dx

dvv
dy

dvw
dz

Po

dp. dr d t dxríl XX xy

dx dx dy dz

JL
Po

3p j

dy

dt... dx.... dt.__*y
dx

y y . 
dy

'
~y? 

dz ;
(A.4)

z:
dw
IT

duw
dx

dvw
dy

dww
dz Po

fop

dz *P S
d t„  dt.„ dt

Ï 1 .

dx dy dz

In tensor notation, Eqs. (A .4) are rewritten in short-hand form as

du¡ dU|Uj 

dt dx.
_1_

Po
+P S i+- ^

¿Pd
dx. dxi j

(A.5)

The Einstein summation convention is as follows.

Repetition o f  an index in a term denotes summation with respect to that index 

over its range.

The range o f  an index i is the set o f  n integer values I to n. An index that is 

summed over is called a dummy index, one that is not summed is called a free  index.

Since a dummy index simply indicates summation, it is immaterial what 

symbol is used. Thus a¡ x¡ may be replaced by a; x f  which is obvious if  it is noticed that

3 3

E a:X: = E a;xj j
(A .6)

i-1 j"1

A matrix is denoted by using two subscripts (indices). The first subscript 

(index) corresponds to row number while the second subscript corresponds to column 

number. For example, consider the 3x3 matrix [A] defined by

( A . 7 )

An A,2 A ,,

[A] = A;. A22 A23

A31 Ají A33
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In tensor notation, the matrix [A] is represented as Ag.

The product o f  a square matrix and its inverse is the unit matrix, i.e.,

1 0 0

[A] [A ] '1 = 0 1 0  (A.8)

0 0 1

Eq. (A.6) is rewritten in tensor notation as follows.

A ik(A _ , )kj = ô ij ( A . 9 )

where ô g is the Kronecker delta defined by

U i=J (A. IO)

Tensors are classified in terms o f  their rank. The number o f  the subscripts 

(indices) determine the rank o f  a tensor. The lowest rank tensor is rank zero which 

corresponds to a scalar, i.e., a quantity that has magnitude only. Therm odynam ic 

properties such as pressure and density are scalar quantities. Vectors such as velocity, 

vorticity and pressure gradient are tensors o f rank one. They have both magnitude and 

direction. Matrices are rank two tensors. The stress tensor is a good exam ple for 

illustrating physical interpretation o f  a second rank tensor. It defines a force per unit 

area that has a magnitude and two associated directions, the direction o f the force and 

the direction o f  the normal to the plane on which the force acts. For a normal stress, 

these two directions are the same; for a shear stress, they are (by convention) normal 

to each other.

The physical interpretation o f  tensors o f  rank three and beyond is difficult to 

ascertain. This is rarely an issue o f  great concern since virtually all physically relevant 

tensors are o f  rank two or less.

A tensor ag is symmetric if a,j=aj¡. Many important tensors in mathematical
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physics are sym m etric, e.g., stress, strain and strain-ratc tensors.

The trace o f  a second rank tensor a,; is defined by

( A l l )

The trace o f  the direct product is defined by

t r u v  = u.v (A .12)

The trace function seems to be genuinely more algebraic than geometric.

Possible R eferences:

1- D odson, C .T .J . and  T . Poston (1977) "Tensor Geom etry", Pitman, London, 

598pp.

2- S im m onds, J .G . (1982) “A Brief on Tensor Analysis", Springer Verlag, New 

York, 92pp.

3- W ilcox, D.C. (1993) “Turbulence M odeling for CFD”, DCVV Industries, Inc., 

USA, 460pp.

4- W ylie, C .R . (1975) "Advanced Engineering M athem atics” , 4 lh edition, 

M acGraw-Hill, New York, 937pp.
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A ppendix  B

SPLITTING METHOD FOR THE ASM

The splitting method used in section 4.6.1 to discretize the ASM developed 

by Haque (1994) is described in detail in this appendix. However, it should be noticed 

that the method still needs refinement to take into account ill-conditioned system o f  

equations.

For simplicity, the stresses will be expressed in lower case letters (omitting over-bars 

and primes)

A ssum e that

K 2 j  c  i , '  v i and F = — k -------
e  c. 3 c ,

The ASM (Eq. 4.5.1) can be written in Cartesian coordinates as

uu = 2 A. -u u  —M j .. j . (B. l )
dx dy  dz t

(B.2)
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. aw aw aww w  = 2 A l - u w  - u v  - u w -----ax ay dz
-F

uv  = A l
av au av au au—  + —  -u w  —  -v v  —  - v w -----
ay dx ) d z  d y  dz  ¡

aw aw i aw au au auuw  = A , - u u  u v  uw  ------ + —  -v w  — -w w  —
k{ dx  dy  { d z  dx  J d y  d z )

. aw aw aw av'lvw = A k - u v  - v v  -v w  ----- + —
 ̂ dx  d y  d z  d y ,

av av- u w  w w ----
dx  dz

The augm ented matrix for this set o f  equations can be written as

uu vv ww uv uw vw absolute term

row 1 Q 0 0 R S 0 -z.
row 2 0 T 0 U 0 V -z,
row 3 0 0 W 0 X Y -Z ,
row 4 A B 0 C D E
row 5 F 0 G H I J -Zi
row 6 0 K L M N P -Z6

(B .3)

(B.4)

(B .5)

(B .6)

(B.7)

where



Appendix B: Splitting method for the ASM 113

W = l + 2 A k — , X = 2 A k— , Y = 2 A k— , Z 3 = F,
dz dx dy  J

A = A k- ^ ,  B = A k| y ,  C = 1 + A t 
ox dy

' a v +au'
k dy d x ,

D = Ak^ ,  E = Ak^ ,  Z4 = 0, 
dz dz

F=A‘f -  GsA‘f -

. . . , aw dui * . du y n
'■'^-âTâT - j ' a‘¥ ’ Z î ' 0 ’

„ . aw , . a v  . . .  a wK = A . ——, L = A k——, M = A k—- ,  
dy dz  dx

dV
N = A k^ - ,  P = 1 + A k - r - +- r — * Zfi = 0,

dx
dW  dV
dz dy

It is clear from Eq. (B .7) that the first three rows o f  the matrix represent a diagonal 

matrix if  the shear stresses are known. Also, it can be noticed that each row o f the last 

three rows (4 to 6) contains coefficients for two o f  the normal stresses.

The idea o f the splitting method is to substitute from rows 1-3 into rows 4-6
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for the normal stresses. For exam ple, substitute from rows 1 and 2 into row 4 for the 

normal stresses uu and vv, respectively. The result is the following matrix for the shear 

stress

uv

C R U  
Q T

M - - U

uw

D - - S

Q W

VW

E -  — V 
T

W

N -  — X P - - V - - Y
W  T W

absolute term

V A  7  B  ry-Z ,  + — Z. + — Z- 4 q  ! t  '

7 F 7  G 7-Z , + — Z, + —  Z
5 Q 1 W

Z , - - Z ,  + —  Z 
6 T - W

(B .8)

2q. (B .8) is solved for the shear stresses, uv, uw, vw. By back substitution into the 

normal stress equations one gets the normal stresses

u u  = —-[Z . +R.UV +S .UW]
Q 1

(B.9)

vv = —-[Z , + U .uv + V.vw] 
T  2

(B. IO)

w w  = —  [Z, + X . U W  +Y .vw ] 
W 3

(B .l 1)
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