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Abstract. Data assimilation into sea ice models designed for 
climate studies has started about 15 years ago. In most of 
the studies conducted so far, it is assumed that the improve­
ment brought by the assimilation is straightforward. How­
ever, some studies suggest this might not be true. In order 
to elucidate this question and to find an appropriate way to 
further assimilate sea ice concentration and velocity obser­
vations into a global sea ice-ocean model, we analyze here 
results from a number of twin experiments (i.e. experiments 
in which the assimilated data are model outputs) carried out 
with a simplified model of the Arctic sea ice pack. Our ob­
jective is to determine to what degree the assimilation of ice 
velocity and/or concentration data improves the global per­
formance of the model and, more specifically, reduces the 
error in the computed ice thickness. A simple optimal inter­
polation scheme is used, and outputs from a control run and 
from perturbed experiments without and with data assimila­
tion are thoroughly compared. Our results indicate that, un­
der certain conditions depending on the assimilation weights 
and the type of model error, the assimilation of ice velocity 
data enhances the model performance. The assimilation of 
ice concentration data can also help in improving the model 
behavior, but it has to be handled with care because of the 
strong connection between ice concentration and ice thick­
ness. This study is first step towards real data assimilation 
into NEMO-LIM, a global sea ice-ocean model.

1 Introduction

In polar regions, the interactions between atmosphere and 
ocean are significantly modified by the presence of sea ice. 
Because of its high albedo and insulating behavior, sea ice 
largely affects the surface radiative balance and the oceanic
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heat budget. In addition, the melting of weakly saline ice 
or the brine rejection occurring during ice formation induces 
variations in the sea surface salinity that affect the mixed 
layer dynamics and the ocean circulation. On the other hand, 
the ice dynamics plays an important part in modulating the 
momentum transfer from the atmosphere to the ocean.

During the past 35 years, the Arctic sea ice concentra­
tion and motion have been widely observed with the aid 
of passive microwave sensors aboard satellites (e.g. Bjorgo 
et al., 1997: Cavalieri et al., 1997: Emery et al., 1997: Parkin­
son et al., 1999: Comiso and Steffen, 2001: Cavalieri et al., 
2003). Analysis of these records indicate that the Arctic 
sea ice extent has shrunk at an annual mean rate of about 
0 .30xl06 km2 with strong interannual variability since the 
early 1970s (Cavalieri et al., 2003). Comparatively, the Arc­
tic sea ice thickness is much less known.

Our knowledge of sea ice thickness in the Northern Hemi­
sphere comes mainly from upward sonar profiling by sub­
marines. Rothrock et al. (1999) compared ice draft data ac­
quired by the Scientific lee Expeditions (SCICEX) program 
in 1993, 1996 and 1997 with data from six cruises during the 
period 1958-1976. They found a decrease in the mean ice 
draft at the end of the melt season of about 1.3 m (i.e. 40%) in 
most of the deep-water areas of the Arctic Ocean. Comparing 
data from single cruises in 1996 and 1976 from Fram Strait to 
the North Pole, Wadhams and Davis (2000) reported a strik­
ingly similar reduction in ice draft. In contrast, ice draft data 
collected during six submarine cruises from Alaska to the 
North Pole in 1991-1997 exhibit almost no change (Win- 
sor, 2001). From nine cruises from 1976 through 1994 on 
the Alaska-to-North Pole section, Tucker et al. (2001) found 
an abrupt thinning between the mid-1980s and early 1990s. 
No similar trend was however observed near the North Pole. 
Recently, a detailed analysis of submarine and modeled ice 
thicknesses (Holloway and Sou, 2002) has demonstrated that 
ice motion and high interannual variability make inference of 
trends from sonar transect data ambiguous, suggesting that
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the available sonar data are insufficient to resolve the vari­
ability of the Arctic ice thickness. Later, the thinning of the 
Arctic ice cover has been reconfirmed. Comparing 8 cruises 
spanning the years 1987-1997 in the Arctic Ocean, Rothrock 
et al. (2003) found a decrease in draft data of about 1 m over 
the 11-year span. Several other studies point towards a thin­
ning of the Arctic ice cover (i.e. Yu et al. (2003); Perovich 
et al. (2003); Rigor and Wallace (2004); Fowler et al. (2004); 
Comiso (2002)). New techniques to measure the sea ice 
thickness from space are now being developed (e.g. Laxon 
et al., 2003; Yu and Lindsay, 2003; Kwok et al., 2004). Nev­
ertheless, an accurate knowledge of past ice thickness vari­
ations remains necessary in order to assess human-induced 
climate changes in the Arctic.

A number of regional or global ice-ocean general circu­
lation models driven by atmospheric reanalysis data fields 
have been used to document the variability of the Arctic 
sea ice over the last few decades (e.g., Maslowski et al., 
2000; Holloway and Sou, 2002; Fichefet et al., 2003; Köberle 
and Gerdes, 2003; Rothrock and Zhang, 2005; Timmermann 
et al., 2005). These models provide very useful information 
regarding the behavior of the ice pack. However, their abil­
ity to simulate the shorter-term variability as well as sum­
mer features of the ice cover remains rather limited. Con­
sequently, hindcast simulations of Arctic sea ice often de­
viate from reality. One way of estimating this might be to 
assimilate the available ice concentration and/or velocity ob­
servations into the models. Assimilating data into numer­
ical models has proven very useful in the atmospheric and 
oceanic modeling communities for many years (e.g. Ghil and 
Malanotte-Rizzoli, 1991). It is however a less common prac­
tice in large-scale sea ice modeling.

Thomas and Rothrock (1989, 1993) have applied Kalman 
smoothing to passive microwave ice concentration data. 
They utilized a simple sea ice model, driven by velocities 
optimally interpolated from buoy motions, to form indepen­
dent model-derived concentration estimates that were opti­
mally blended with the concentration data. They then ana­
lyzed seven years of first-year and multiyear ice concentra­
tion data for the Arctic Ocean, which they divided into seven 
regions. Later, Thomas et al. (1996) extended this work to 
the calculation of ice thickness. They used observed ice mo­
tions, winds and ice concentrations plus a thermodynamic 
sea ice model to produce spatially and temporally varying 
ice thickness distribution in the Arctic. By comparing their 
results with submarine ice thickness data, they found that, 
for the whole Arctic Ocean, their estimates agree with the 
observational data but show less spatial and temporal vari­
ability. More recently, Lisaeter et al. (2003) demonstrated 
the assimilation of passive microwave ice concentration data 
into a comprehensive ice-ocean general circulation model of 
the Arctic Ocean using an ensemble Kalman filter. They con­
cluded that the assimilation of ice concentration data is a vi­
able way of controlling the simulated ice cover, but does not 
correct the generally underestimated model ice thickness.

The study of Meier et al. (2000) was the first attempt to 
assimilate observed ice motion data into a large-scale model 
of the Arctic sea ice cover in order to maximize the model 
accuracy. These authors employed an optimal interpolation 
scheme to assimilate ice velocity data derived from passive 
microwave imagery. They found that the assimilation sub­
stantially reduces the error standard deviation and improves 
the correlation of the simulated motions relative to buoy ob­
servations. Nevertheless, they noticed that the assimilation 
induces unrealistic changes in ice thickness near the Green­
land coast and the Canadian Archipelago as well as in the 
outflow of ice mass through Fram Strait. In other studies, 
Meier and Maslanik (2001 a,b) demonstrated the utility of 
a data assimilation approach for improving the model es­
timation of buoy trajectories and for investigating synoptic 
events in the Arctic sea ice drift. Later, Arbetter et al. (2002) 
combined satellite-derived and modeled ice velocities in a 
large-scale Arctic sea ice model to simulate the anomalous 
summer ice retreats observed in 1990 and 1998. For both 
years, the computed ice extent appears in better agreement 
with observational estimates when ice velocity data are as­
similated, but excessive ice melt occurs in the central pack. 
Meier and Maslanik (2003) further investigated the effects of 
local conditions (namely, the proximity to the coast, the ice 
thickness and the wind forcing) on Arctic remotely sensed, 
modeled and assimilated ice velocities. They showed that 
the optimal interpolation assimilation technique improves the 
quality of the ice motion throughout most ranges of wind 
speed and ice thickness both in coastal and non-coastal re­
gions. Their results also suggest that the use of assimilation 
weights optimized for representative environmental condi­
tions would further reduce errors and yield greater benefits 
from assimilation. Very recently, Dai et al. (2006) showed 
that efforts to adjust a sea ice model by altering the frictional 
loss parameter have limited effects in the cases where ob­
served ice motions are assimilated because the assimilation 
essentially bypasses the model dynamics. In parallel, Zhang 
et al. (2003) conducted a hindcast simulation of the Arctic 
sea ice variations over the period 1992-1997 with a regional 
ice-ocean general circulation model in which buoy and pas­
sive microwave ice motion data were assimilated by means of 
an optimal interpolation scheme. Assimilation was found to 
significantly improve the modeled ice motion, with substan­
tially reduced stoppage, which in turn leads to strengthened 
ice outflow at Fram Strait, enhanced ice deformation and ice 
drafts that are slightly closer to those derived from submarine 
measurements. Lindsay et al. (2003) extended this work for 
a 10-month period in 1997 and 1998. Comparisons of ice ve­
locity Radarsat Geophysical Processor System (RGPS) mea­
surements to the modeled velocities showed excellent agree­
ment from the model-with-data-assimilation run but poorer 
agreement for the model-only run. However, the deforma­
tion from the data assimilation run was in modest agreement 
with observations, suggesting that some model aspects need 
improvement.
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Very recently, Lindsay and Zhang (2006) extended the 
work of Zhang et al. (2003) by incorporating in their model 
of the Arctic ice-ocean system a nudging scheme with a non­
linear weighting function to assimilate passive microwave 
ice concentration data. They observed that the assimilation 
of ice concentration alone increases the ice draft bias, espe­
cially in the marginal seas, but improves the correlation with 
ice draft measurements made by upward looking sonars on 
submarines and moorings. When both ice concentration and 
velocity data are assimilated, an improvement in the ice draft 
comparison is obtained, but a significant bias still exists in 
the large-scale ice thickness pattern. It should be noted that 
Lindsay and Zhang (2005) used this experimental set-up to 
investigate the causes of the recent changes of the Arctic ice 
pack.

The studies mentioned above indicate that data assimila­
tion generally improves the model estimate of the assimi­
lated variable (s) but can deteriorate the simulation of other 
variables. So far, no detailed assessment of the impact of 
data assimilation on the global performance of a large-scale 
sea ice model has been performed. This is mainly due to 
our very limited knowledge of both modeling and observa­
tional errors (Weaver et al., 2000). In order to circumvent 
this difficulty, we analyze here results from a number of twin 
experiments (i.e. experiments in which the assimilated data 
are model outputs) carried out with a simplified model of the 
Arctic sea ice pack. This method to approach data assimi­
lation into sea ice models is an interesting first step towards 
real data assimilation into NEMOLIM (Timmermann et al., 
2005), a global sea ice-ocean model. Our aim is to deter­
mine to what degree the assimilation of ice velocity and/or 
concentration data improves the overall performance of the 
model and, more specifically, reduces the error in the com­
puted ice thickness.

The rest of the paper is organized as follows. Section 2 
provides a brief description of the model and forcing. The 
assimilation scheme and experimental design are presented 
in Sect. 3. Section 4 is devoted to the discussion of the re­
sults. A summary and some concluding remarks are finally 
given in Sect. 5.

2 Model formulation and forcing

The model used in this work is a simplified two-level, 
thermodynamic-dynamic sea ice model. This model takes 
into account the most relevant sea ice processes while being 
inexpensive in CPU time. As mentioned above, this model is 
used to have a first-guess estimate on data assimilation into a 
sea ice model. Therefore, it is not meant to reproduce exactly 
the sea ice features and should be taken as a “toy-model”.

The main model variables are the ice thickness, h i , the ice 
concentration, A;, and the ice velocity, u¡. The presence of 
snow on top of sea ice is neglected. However, a prescribed, 
monthly varying surface albedo that takes into account the

presence of snow is used (Semtner, 1976). Local changes 
in ice thickness and concentration are calculated from the 
following conservation laws:

dAjhj , .
—f-i- =  - V x  {uiAihi) + Sh (1)

ot

d A í
— -  =  - V  X (uiAi) + SA (2)
at

where t is the time and Sf¡ and Sa are thermodynamic sink 
or source terms computed as in Hibler (1979). The vertical 
growth/decay rate of the ice is determined by the zero-layer 
model proposed by Semtner (1976). When ice is present in a 
grid cell and the heat budget of the open-water area becomes 
negative, ice of thickness Ao=0.5m  (Hibler, 1979) is accu­
mulated onto the side of the existing ice. The thickness of 
the newly formed ice is then averaged with that of the older 
ice to obtain a single value. Furthermore, a minimum open- 
water fraction of 0.5% is prescribed to simulate the fact that 
cracks or leads are always present inside the pack owing to 
unresolved dynamical effects. Ice dynamics is computed by 
assuming that sea ice behaves as a two-dimensional contin­
uum in dynamical interaction with atmosphere and ocean. A 
first estimate of the sea ice velocity is obtained from the so- 
called free-drift equation:

-  m f k  X  Ui + r a +  t w = 0 (3)

where m is the ice mass per unit area, ƒ  is the Coriolis param­
eter, k  is a vertical unit vector and r a and r w are the forces 
(per unit area) due to air and water drags, respectively. Note 
that the force (per unit area) associated with the tilt of the sea 
surface is neglected. The computed velocity is then corrected 
to avoid excessive ice build-up in regions of convergent ice 
motion due to the neglect of internal ice forces. Following 
Kreyscher et al. (2000), the ice velocity is set equal to zero 
where (1) the ice thickness exceeds 3 m and (2) the ice would 
be transported into an area with thicker ice. Applied as it is, 
this correction causes a velocity gradient that is too steep and 
causes problems when assimilating data into the model. To 
prevent those troubles, it is necessary to smooth the transi­
tion by applying a hyperbolic tangent reduction factor to the 
ice velocity as a function of h¡.

An upstream scheme with anti-diffusion is used for ad- 
vection (Smolarkiewicz, 1983). First the thermodynamical 
equations then the dynamical ones are solved on a Cartesian 
grid covering the Arctic Ocean and adjacent seas, with a spa­
tial resolution of about 100 km (Fig. 1). A time step of one 
day is employed.

Daily 2 m air temperatures and 10 m winds from the Na­
tional Centers for Environmental Prediction/National Cen­
ter for Atmospheric Research (NCEP/NCAR) (Kalnay et al., 
1996) are utilized to drive the model. The other atmospheric 
input fields consist of climatological monthly surface rela­
tive humidities (Trenberth et al., 1989) and cloud fractions 
(Parkinson and Washington, 1979). The surface fluxes of
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Fig. 1. Model domain and grid.
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Fig. 2. Schematic representation of the experimental design.

heat are determined from these data using empirical param- 
eterizations described by Goosse (1997). The oceanic heat 
flux at the base of the ice layer, Fb, is given by:

Fb  — P w c p w h m lY t  (7obs Tm i) (4)
where pw is the density of seawater, cpw is the specific heat 
of seawater, hmi is the mixed-layer depth (30 m), yt is a time 
constant (6 x l0 - 8 s-1), Tmi is the model mixed-layer tem­
perature and T0bs is the monthly mean observed mixed-layer 
temperature given by the Polar Science Center Hydrographic 
Climatology (PHC, Steele et al., 2001). When sea ice is 
present in a grid cell, Tmi is set equal to the freezing point 
of seawater (271.2 K according to Semtner, 1976). Ice is not 
allowed in grid cells where Tmi is greater than the freezing 
point of sea water. In ice-free grid cells, Tmi is determined 
from the heat budget of the mixed layer. It is worth men­
tioning that Fb is included in this heat budget to implicitly 
account for the advection of heat by oceanic currents. If Tmi 
reaches the freezing point, then a new ice layer of thickness

h0 forms at the ocean surface. The momentum fluxes at the 
various interfaces are obtained from standard bulk formulas 
described by Goosse (1997). For the quadratic drag coeffi­
cients between air and ice and between ice and water, we use 
constant values of 1 .2x l0 -3 (McPhee, 1980) and 5 x l0 -3 
(Timmermann et al., 2005), respectively. The ocean is as­
sumed to be motionless.

Results of data assimilation are assumed to be somewhat 
model dependent. Hence, it would be appropriate to intro­
duce physical processes, like among other things, deforma­
tion from shear, brine pocket release or ocean feedbacks in 
the model. However, for a more complete understanding of 
model results, for CPU time reasons and because we plan to 
later test data assimilation with NEMOLIM (a more compre­
hensive global ice-ocean model), we decided to run experi­
ments with the model described above.

3 Experimental design and assimilation scheme

3.1 Experimental design

As mentioned in Sect. 1, the major problem when assimi­
lating data into large-scale sea ice models comes from our 
rather poor knowledge of both model and observation errors. 
To overcome this problem, we build an idealized “observa­
tional” dataset with the model and perform so-called twin 
experiments (Fig. 2).

A control run from 1977 to 2000 is first conducted. The 
model is initialized with a 3 m-thick and 99.5%-compact ice 
cover over the entire domain. Outputs for years 1995 and 
1996 are regarded as the “reality” or true state (hereafter
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Table 1. Acronyms of the twin experiments performed with the model. XX and YY represent the values of the weights for ice velocity and 
concentration assimilation, respectively.

Thermodynamical 
model perturbation

Dynamical model 
perturbation

Without data assimilation WA_T WA_D
Concentration data assimilation CA_T_XX CA_D_XX
Velocity data assimilation VA_T_YY VA_D_YY
Velocity and concentration data assimilation VCA_T_YY_XX VCA_D_YY_XX

referred to as TS) for those years (i.e. as observations without 
any error). Then, to account for model errors in estimating 
the TS, the model is perturbed and new experiments are car­
ried out over the years 1995 and 1996. In order to introduce 
errors that remain consistent with the model physics, pertur­
bations are applied to the model forcing. Two types of dis­
turbance are considered. First, we use the surface air temper­
atures of years 1992 and 1993 instead of those of years 1995 
and 1996. In this case, the dynamic component of the model 
is regarded as perfect and the thermodynamic component as 
a source of errors. Second, the surface winds employed to 
compute the air-ice stress are replaced by those of years 1992 
and 1993. This time, it is the thermodynamic component of 
the model which is considered as perfect and the dynamic 
component as a source of errors. The chosen perturbations 
are fairly strong. However, we also forced the model with 
weighted mixes of forcings from two different years. We ran 
several tests combining different years (not only 1992-1993 
and 1995-1996). We also tested several weights. Neverthe­
less, all experiments pointed towards the same conclusions. 
In this paper, we focused on the 1995-1996 period because 
it gives a good summary of all the experiments we have run. 
For the thermodynamic and dynamic perturbations, we as­
sess how the assimilation of ice velocities and/or concen­
trations from the TS improves the model behavior. Table 1 
summarizes the various types of experiments made with the 
model.

The observation data sets are compiled from control ex­
periment outputs. No noise is added. The impact of the data 
set quality on the assimilated results is not studied here, al­
though it would be an interesting work to carry out.

Twin experiments are common practice in atmospheric 
and oceanic modeling (e.g. Lin et al., 2001; Fox et al., 2000). 
However, to our knowledge, it is the first time that simula­
tions of this kind are performed with a sea ice model. Usu­
ally, twin experiments are carried out in a forecasting per­
spective, and thus the model is perturbed by changing initial 
conditions. Here, as the purpose is rather oriented toward re­
analysis, we find more appropriate to alter the thermal and 
dynamical forcings.

3.2 Assimilation scheme

At each time step, an optimal interpolation scheme is used 
to assimilate ice concentration and ice velocity data into the 
model according to:

Aass =  A +  ¡Ca ( A0bs — A) (5)

^ass = U -\- ku (w0bs (6)

where the subscripts “ass” and “obs” stand for assimilated 
and observed data. While the ice velocity is updated at the 
end of the model velocity computation (before ice transport), 
the ice concentration update is done at the end of the model 
iteration. and ku are the weights for ice concentration 
and ice velocity data assimilation, respectively, and are usu­
ally determined through a least squares minimization of the 
error variance of the assimilated value compared to a statisti­
cal true value (Meier et al., 2000; Lindsay and Zhang, 2006). 
However, the present experimental design provides one ob­
servation per model grid cell with zero error. The weight 
should then be set to one, and observed data would directly 
be inserted into the model. Nevertheless, as shown in Sect. 4, 
a weight equal to 1 does not systematically give the best re­
sults.

The assimilation technique used in this paper is simple but 
accurate enough for the purpose of our study. In particular, as 
shown in Sect. 4, it allows to underline a number of problems 
posed by the assimilation of ice concentration and/or velocity 
data into large-scale sea ice models.

4 Results

4.1 Control run

The model ice circulation averaged over 1979-1999 (Fig. 3a) 
exhibits many of the recurrent or permanent features of the 
observed ice motion (e.g. Emery et al., 1997). In particu­
lar, the clockwise Beaufort Gyre, the Transpolar Drift Stream 
and the East Greenland Drift Stream are all reproduced. Note 
that the model has no river runoff and a motionless ocean. 
The magnitude of the ice velocity appears globally under­
estimated. On average, the simulated ice drift tends to thin 
the ice off the Alaskan and Siberian coasts while increasing
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(a)
3 cm/s

Fig. 3. Annual mean ice velocities (a) and March ice thicknesses (b) 
for ice velocity is 3 cm s-  F  Selected contours for ice thickness are 0.

the ice thickness by convergence and concomitant ridging off 
the Canadian Archipelago and the north coast of Greenland 
(Fig. 3b). The shape and magnitude of the simulated ice 
thickness contours are in general agreement with those de­
rived from submarine sonar measurements (e.g. Bourke and 
Garrett, 1987). The most significant departure from current 
estimates is observed along the Canadian Archipelago and 
the north coast of Greenland, where the model generates too 
thin of an ice cover. This feature together with the gener­
ally too weak ice velocities mainly result from the simplistic 
treatment of the effect of internal ice forces in the model.

Figure 4 compares the March and September mean ice 
concentrations computed by the model to the corresponding 
observations of Comiso (1999). In March, the modeled loca­
tion of the ice edge agrees relatively well with the observed 
one. One notes, however, that the ice cover protrudes slightly 
too far southward in the Barents, Greenland and Tabrador 
Seas. In September, the simulated ice edge is somewhat 
south of the observed one in the Barents and Kara Seas, and 
ice persists in Baffin Bay, whereas observations show that 
this area is totally free of ice during that month. A detailed 
inspection of Fig. 4 also reveals that the percentage of open 
water within the summer pack is somewhat overestimated. 
However, it is worth noting that passive microwave observa­
tions underestimate the ice concentration, particularly during 
summer where surface melt is seen by the algorithms as re­
duced concentration (Steffen and Schweiger, 1991).

Although we have identified a certain number of short­
comings in the results of the control run conducted with 
the model, the discussion above demonstrates that the model 
shows acceptably good agreement with enough aspects of the

from the control run averaged over the period 1979-1999. Scale vector 
5, 1, 1.5, 2. 2.5 and 3m.

seasonal behavior of the Arctic sea ice cover to permit a re­
liable study of the effect of the assimilation of ice velocity 
and/or concentration data through twin experiments.

4.2 Thermodynamic perturbation

4.2.1 Assimilation of ice velocity data

In this section, we examine the impact of assimilating ice 
velocities from the TS on the model behavior when the model 
is thermodynamically perturbed (see Sect. 3.1).

Tables 2 and 3 compare the annual mean results obtained 
without and with assimilation foryear 1995 to the TS for dif­
ferent values of the weight £„ (0.3, 0.5 and 0.9). Clearly, the 
assimilation of ice velocity data is a good way to improve 
the simulation of the ice motion. The higher £„, the bet­
ter the assimilated ice velocities. The correlations between 
the computed ice concentrations and thicknesses and the TS 
ones are also enhanced when assimilation is performed and 
when £„ increases. Taken together, the error in ice thickness 
averaged over the entire area occupied by the pack and the 
standard deviation of this error are minimum for £„=0.5. As 
can be seen from Fig. 5, the standard deviation of the ice 
thickness error is slightly smaller for £„=0.9 than for £„=0.5 
during the first five months of 1995 and becomes signifi­
cantly larger afterwards. According to Thorndike (1975), 
the dynamics seek the mean and the thermodynamics the ex­
tremes. When the thermodynamic perturbation is applied to 
the model, thermodynamics seek an anomalous extreme in 
ice thickness. The model ice dynamics act to reduce this 
anomaly, but data assimilation defeats this process. For in­
stance, if the ice is too thick in a region because of too low
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Model
September

Observations ...
March

0 . 1  0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  0 . 7  0 . 8  0 . 9

l e e  c o n c e n t r a t i o n

Fig. 4. March (left) and September (right) ice concentrations averaged over the period 1979-1999 from the control run (top) and as observed 
(Comiso, 1999; bottom). The pole hole in the observations is due to lack of satellite coverage in that area. Contour interval is 0.10.

an air temperature, convergence will weaken in this area via 
the Kreyscher et al. (2000) correction. When higher ice ve­
locities are assimilated, convergence becomes larger and ice 
thickens, thus defeating to lower the ice thickness error. This 
is especially true during summer melt and autumn freeze up.

Figure 5 suggests to take ku equal to 0.5 in experiments 
longer than five months. However, such a choice leads to

another problem. Table 3 indicates that the area-averaged, 
annual mean ice concentration bias is enhanced compared to 
the no-assimilation case with ku= 0.5. By contrast, the error 
in ice thickness is reduced, but not due to the enhancement 
of the ice transport. When velocity data are assimilated with 
£m=0.5, the velocity field after assimilation is the arithmetic 
average of the model and TS velocity fields. This average
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Table 2. Area-averaged, annual mean correlations between the ice velocity components from experiments WA_T, VA_T_0.3, VA_T_0.5 and 
VA_T_0.9 and the TS ones, and area-averaged, annual mean errors in the ice velocity components and standard deviations of these errors for 
experiments WA_T, VA_T_0.3, VA_T_0.5 and VA_T_0.9.

Correlation Bias (10 4m / s ) Error std (m/s)

U V U V U V

WA-T 0.38 0.36 2.48 -2 .1 5 0.028 0.023
VA-T-0.3 0.69 0.68 1.12 -1 .0 9 0.018 0.015
VA-T-0.5 0.84 0.83 1.25 -0 .9 1 0.012 0.010
VA-T-0.9 0.98 0.98 0.39 -0 .2 2 0.002 0.002

Table 3. Area-averaged, annual mean correlations between the ice thickness and concentration from experiments WA_T, VA_T_0.3, 
VA_T_0.5, VA_T_0.9, VCA_T_0.5_0.15 and VCA_T_0.9_0.15 and the TS ones, and area-averaged, annual mean errors in the ice thick­
ness and concentration and standard deviations of these errors for experiments WA_T, VA_T_0.3, VA_T_0.5, VA_T_0.9, VCA_T_0.5_0.15 
and VCA_T_0.9-0.15. In experiments VCA_T_0.5_0.15 and VCA_T_0.9_0.15, ice thickness conservation is imposed near the ice margin and 
where the thermodynamic error is larger than the indirect dynamic one, and ice volume conservation is imposed everywhere else.

Correlation Bias Error std

hi A/ hi(  10 2m) A ;(1 0 -2) hi(m) A/

WA-T 0.75 0.32 8.77 1.81 0.142 0.078
VA-T-0.3 0.79 0.56 6.23 2.27 0.125 0.072
VA-T-0.5 0.82 0.73 6.48 2.22 0.121 0.067
VA_T_0.9 0.87 0.93 8.82 1.82 0.132 0.062
VCA_T_0.5_0.15 0.85 0.87 -2 .9 4 0.41 0.114 0.029
VCA_T_0.9_0.15 0.90 0.97 2.82 0.38 0.100 0.023
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Fig. 5. Temporal evolutions over year 1995 of the standard devi­
ations of the ice thickness error for experiments WA_T (solid line), 
VA-T-0.9 (dashed line) and VA_T_0.5 (dashed-dotted line).

globally smoothes the ice advection. Therefore, the ice cover 
experiences less divergence, which yields an enhanced ice 
compactness and less convergence, resulting in less ice build­
up. This problem fades away as ku increases.

As “perfect” data are assimilated into our model, one was 
expecting to obtain the best results with the highest weight. 
Our results show that this is not necessarily the case. On time 
scales less than five months, it seems preferable to use a large 
ku, while over longer time scales, a smaller ku must be used, 
which generates too smooth an ice transport.

4.2.2 Assimilation of ice concentration data

Here, we evaluate the effects of the assimilation of ice con­
centrations from the TS when a thermodynamic perturbation 
is applied to the model. In each grid cell, the sea ice volume, 
Vi, can be diagnosed from:

V i= A ih iS  (7)

where S is the grid cell area (constant). When the ice concen­
tration varies owing to assimilation, one may either conserve 
ice volume or ice thickness. The first solution appears more 
appropriate given the huge effort put in recent years into de­
veloping energy-conserving sea ice models. Nonetheless, it 
can create serious problems. Indeed, if the ice concentration 
in a grid cell is too large (small) due to the use of an er­
roneously low (high) surface air temperature, there is every 
chance that the ice thickness is also overestimated (underes­
timated). This is at least true during the winter and during 
summer melt. The autumn freeze-up case would probably be
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Fig. 6. Differences (in absolute value) in annual mean ice thickness for year 1996 between experiment WA_T and the TS (a), and between 
experiment CA_T_0.15 and the TS when we impose ice volume conservation everywhere (b), ice thickness conservation everywhere (c) and 
ice thickness conservation near the ice margin and where the thermodynamic error is larger than the indirect dynamic one, and ice volume 
conservation everywhere else (d).

different. The assimilation will then tend to reduce (increase) 
the ice concentration. If the conservation of ice volume is 
imposed, this will lead to an increase (decrease) in ice thick­
ness, thus enhancing the initial thickness bias. Figures 6a and 
b display the changes (in absolute value) in annual mean ice 
thickness between the experiments without and with assim­
ilation of ice concentration data and the TS for year 1996. 
In the case with assimilation, ice volume conservation is im­
posed and jfcA=0.15. It can be seen from these figures that

the assimilation deteriorates in many places the simulation 
of the sea ice thickness, especially near the ice edge where 
the thermodynamic error can be quite large due to the high 
interannual variability of the air temperature.

The second solution is to conserve ice thickness. Over­
all, this solution improves the ice thickness estimate com­
pared to the no-assimilation case (Fig. 6c). However, 
the thickness bias is observed to increase along the north 
coast of Alaska. In several grid cells there, the applied
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Fig. 7. Temporal evolutions over year 1996 of the area-averaged 
correlations between ice thicknesses from experiments WA_T and 
CA_T_0.15 and the TS ones (a), the area-averaged ice thickness er­
rors for experiments WA_T and CA_T_0.15 (b), and the standard 
deviations of the ice thickness errors for experiments WA_T and 
CA_T_0.15 (c). In the experiment with assimilation, ice thickness 
conservation is imposed near the ice margin and where the ther­
modynamic error is larger than the indirect dynamic one, and ice 
volume conservation is imposed everywhere else.

thermodynamic perturbation produces so large ice accumu­
lations that there is no longer ice convergence (because of 
Kreyscher et al. (2000) correction) into the grid cells. Only 
ice divergence is allowed, which tends to decrease the ice 
compactness. At this stage, the dynamic error has become 
larger than the thermodynamic one. The assimilation of 
ice concentration data corrects the too low concentration by 
adding an ice block of thickness equal to that of the pre­
existing ice, which has no effect on the ice thickness. Fur­
thermore, as ice volume is not conserved in the assimila­
tion process, during ice divergence episodes, the grid cells 
affected by this problem act as a source of ice volume for the 
neighboring ones. Clearly, in those specific cases, it would 
be better to impose ice volume conservation.

Given these results, we propose to combine the two solu­
tions. Basically, the thermodynamic perturbation introduces 
direct thermodynamic errors into the model as well as in­
direct dynamic and thermodynamic ones, due to ice thick­
ness and concentration biases. Near the ice edge and in ar­
eas where thermodynamic errors are greater than dynamic 
ones, ice thickness conservation is imperative. Elsewhere, it 
seems more appropriate to conserve ice volume. The prob­
lem now is to draw a distinction between thermodynamic and 
dynamic errors. We observed that, when ice concentration in 
a grid cell is corrected through data assimilation, if the er­
ror is of thermodynamic (dynamic) nature, the model con­
centration remains close to (strongly deviates from) the TS 
one during the next time step. Therefore, we assume that the 
magnitude of the ice concentration error is an indicator of the 
model error type. When the difference between modeled and 
TS concentrations is smaller (greater) than a certain thresh­
old, the error is assumed to be thermodynamic (dynamic). 
Figure 6 d reveals that this technique further improves the 
simulation of the annual mean ice thickness pattern for year 
1996 compared to the case where ice thickness conservation 
is applied everywhere. On the other hand, Fig. 7 shows that 
the monthly values of the area-averaged ice thickness bias 
and thickness error standard deviation are significantly re­
duced in comparison with the no-assimilation case and that 
the correlation between the modeled and TS ice thicknesses 
is slightly enhanced.

Figure 6d indicates that, in some places, the assimilation 
slightly deteriorates the ice thickness estimate. This feature 
is mostly due to the use of thresholds in the model, such as 
the thickness of newly formed ice in leads, the maximum al­
lowable ice concentration or Kreyscher et al. (2000) correc­
tion threshold. Owing to those thresholds, small differences 
in the sea ice state can have noticeable effects. These effects 
are particularly visible during the first couple of years of sim­
ulation. Afterwards, when the ice thickness error caused by 
the perturbed forcing grows, they become negligible and the 
improvement brought by data assimilation to the model be­
comes clearer.

All the experiments that we conducted with the model 
point to the fact that choosing J<a equal to 0.15 gives the
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best model improvement while preventing the appearance of 
model instabilities. They also suggest that, because of the 
strong connection between ice concentration and ice thick­
ness, assimilation of concentration data has to be handled 
with care. The best solution we found is to conserve ice 
thickness after assimilation near the ice margin and where 
the thermodynamic error is larger than the indirect dynamic 
one, and to conserve ice volume everywhere else. To be com­
plete, the ice thickness correction should depend on the phys­
ical mechanisms involved. However, ice thickness errors are 
seldom fully corrected and they influence the next physical 
mechanism errors. According to this feedback, the correc­
tion suggested in this paper is one possible correction to be 
applied. This solution is therefore retained in the experiments 
discussed in the following section.

4.2.3 Assimilation of ice velocity and concentration data

The model performance can be further enhanced by assimi­
lating simultaneously ice velocities and concentrations from 
the TS. But, here again, the choice of the weights appears 
crucial.

In Table 3, we compare the annual mean results obtained 
without and with assimilation for year 1995 to the TS for two 
sets of weights: ku= 0.5 and &a=0.15; ku=0.9 and &a=0.15. 
For ku=0.5 and &a=0.15, the correlations between the esti­
mated ice concentrations and thicknesses and the TS ones 
are significantly increased, and the standard deviations of the 
errors in ice concentration and thickness are markedly re­
duced. Nevertheless, as a result of the assimilation-induced 
smoothing of the ice velocity field discussed in Sect. 4.2.1, 
the simulated ice pack is slightly too thin and too compact. 
When ku=0.9 and &a=0.15, the model results seem further 
improved. However, for the same reason as the one given in 
Sect. 4.2.1, when time goes by, the simulation of ice thick­
ness progressively deteriorates. In summary, the assimilation 
of ice velocity and/or concentration data is able to weaken 
the effect of the thermodynamic perturbation applied to the 
model. Nonetheless, given the sensitivity of the improve­
ment brought by assimilation to the weights, their value must 
be selected carefully as a function of the characteristic time 
scale of the assimilated variable, the type of model error and 
the model integration length.

4.3 Dynamic perturbation

4.3.1 Assimilation of ice velocity data

Here, we assess the impact of the assimilation of ice veloci­
ties from the TS on the model performance when the model 
is dynamically perturbed (see Sect. 3.1). Several values of kv 
have been tested. Table 4 shows that, for ku=0.5, the corre­
lations between the simulated ice concentrations and thick­
nesses and the TS ones increase notably in 1995 compared 
to the no-assimilation case, and that the standard deviations
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Fig. 8. Error in h¡m versus error in A¡ times h¡ at the end of the 
first time step of experiment WA_D. The diamonds correspond to 
the grid cells where either the modeled or TS ice concentration is 
equal to Amax and the crosses correspond to the other grid cells. 
The 1:1 line is also plotted.

of the errors in ice concentration and thickness decrease sig­
nificantly. However, once again, because of the ice velocity 
smoothing caused by assimilation, the model ice field be­
comes somewhat too thin and too compact. The situation is 
much improved when ku=0.9. Actually, the best way to get 
rid of this problem would be to use a weight equal to 1.

4.3.2 Assimilation of ice concentration data

In this section, we try to find the best way to assimilate ice 
concentrations from the TS into the model in order to im­
prove the ice thickness estimate when a dynamic perturbation 
is applied to the model.

As already mentioned, the ice concentration is tightly 
linked to the ice thickness and volume. To avoid error feed­
backs, we analyze ice concentration and thickness errors just 
after the first time step of the experiment without assimila­
tion. We define the mean ice thickness in a given grid cell 
as him=Aihi. Figure 8 reveals that, for most grid cells, the 
error in him is quasi-equal to the product of hi and the error 
in A /. As Vi=hjmS, this suggests that the ice volume should 
be corrected by adding or removing an ice block of thickness 
hi and of concentration equal to the error in A /. In other 
words, the in-situ ice thickness should be conserved after as­
similation of ice concentration data. This also suggests that 
liA should be taken equal to 1. If this technique is used, the 
error in him is reduced to almost zero in the majority of grid 
cells (crosses in Fig. 9a). Nonetheless, in grid cells where 
either the modeled or TS concentration is equal to the max­
imum allowable value A max (diamonds in Fig. 9a), the bias 
remains large. During the second time step, the assimilation 
of ice concentration data lowers the error in him in most grid 
cells (crosses in Fig. 9b). By contrast, the mean ice thickness

www.ocean-sci.net/3/321/2007/ Ocean Sei., 3, 321-335, 2007

http://www.ocean-sci.net/3/321/2007/


332 V. Dulière and T. Fichefet: Data assimilation into sea ice modeling

Table 4. Same as Table 3, but for experiments WA_D, VA_D_0.5, VA_D_0.9, CA_D_0.3 and VCA_D_0.9_0.3. In experiments CA_D_0.3 and 
VCA_D_0.9-0.3, we impose ice volume conservation within the ice pack and ice thickness conservation close to the ice edge.

Correlation Bias Error std

hi A í h¡ (10- 2 m) A í (IO- 2 ) hi (m) A í

WA-D 0.78 0.29 0.21 0.05 0.106 0.066
VA-D-0.5 0.90 0.72 -3 .1 8 0.63 0.079 0.043
VA-D-0.9 0.98 0.98 -0 .8 0 0.14 0.027 0.014
CA-D-0.3 0.55 0.68 1.17 0.05 0.119 0.029
VCA-D-0.9-0.3 0.92 1.00 -0 .01 0.02 0.055 0.006
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Fig. 9. (a) Error in hjm before assimilation versus error in hjm after 
assimilation for the first time step of experiment CA_D_0.3. The 
ice thickness is assumed to be conserved during the assimilation 
process. (b) Same as (a), but for the second time step of experiment 
CA-D-0.3. The diamonds correspond to the grid cells where either 
the modeled or TS ice concentration is equal to Amax. The triangles 
correspond to the grid cells where, during the previous time step, 
either the modeled or TS ice concentrations were equal to Amax. 
The crosses correspond to the other grid cells. The 1:1 line is also 
plotted.

worsens in grid cells where a significant bias was observed 
during the first time step (triangles in Fig. 9b). This behav­
ior is mainly due to ice piling. The model piles the ice to 
prevent A¿>Amax. If ice piling occurs in the perturbed ex­
periment but not in the TS, assimilation of ice concentration 
data is only able to partly correct the simulated ice concen­
tration. On the other hand, as we suppose that hi is con­
served after assimilation, the error in hi remains, as well as 
part of the error in him. Later, this error weakly perturbs the 
thermodynamic component of the model and strongly affects 
the dynamic one, which leads to error amplification. Note 
that this is also true for grid cells where A; < Amax while TS 
shows A i= A max. The proposed solution therefore seems to 
work on short time scales, with initial conditions very close 
to reality. However, on longer time scales, it is inappropri­
ate because, in problematic grid cells, it leaves errors which 
grow afterwards. It is worth noting that a smaller lowers 
the error amplification process without erasing it.

Another possible solution might be to impose, after assim­
ilation, ice volume conservation within the ice pack and ice 
thickness conservation close to the ice edge, where the mean 
ice thickness is less than say 0.5 m. This solution would be 
consistent with the best solution found for the thermodynam­
ically perturbed model. However, as shown in Table 4 for 
&a = 0.30, it deteriorates the ice thickness simulation com­
pared to the no-assimilation case. This is caused by the fact 
that, during a particular time step, the perturbed wind forcing 
greatly modifies the ice circulation and the geographical dis­
tribution of ice thickness. Consequently, the next time step, 
the ice melt/growth rate and transport can be very different 
from the TS.

In conclusion, when the model is dynamically perturbed, 
assimilation of ice concentrations from the TS is one way to 
improve the estimated ice concentrations but not always the 
estimate of ice thickness. As a matter of fact, for short-term 
studies (a few days), the best model improvement is observed 
when in-situ ice thickness is conserved. For longer-term 
studies, one should rather conserve the ice volume than the 
in-situ ice thickness, unless the mean ice thickness is lower 
than 0.5 m.
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4.3.3 Assimilation of ice velocity and concentration data

When both ice velocities and concentrations from the TS are 
assimilated into the model, the abovementioned problems re­
main and the model improvement is not always straightfor­
ward. The best results are obtained with ku= 0.9 and k&=0.3 
(a ku equal to 1 would correct most of the errors without giv­
ing the chance to the concentration assimilation to operate) 
and when the ice volume is forced to be conserved every­
where except near the ice margin. Results for year 1995 of 
this experiment are summarized in Table 4. The model per­
formance is overall enhanced compared to the velocity-only 
assimilation case. Even if the average correlation between 
the computed ice thicknesses and the TS ones is slightly re­
duced, the average ice thickness bias and the standard devia­
tion of this error are drastically diminished.

5 Conclusions

Twin experiments have been conducted with a simplified 
model of the Arctic sea ice cover in order to determine to 
what extent the assimilation of ice velocity and/or concen­
tration data improves the model behavior and, in particular, 
the simulation of ice thickness. Such experiments are ideal­
ized and do not allow tackling all the problems encountered 
when assimilating real observations into more complex mod­
els. Likewise, the data assimilation results are assumed to be 
model dependent and the model used here is simplified (no 
shear deformation, no ocean feedbacks, ...). However, this 
study is a first step towards real data assimilation into a more 
complex sea ice-ocean model and permits a detailed analysis 
of the way the model reacts to the data assimilation scheme.

Our results show that the assimilation of ice concentra­
tion data can easily lead to a deterioration of the model per­
formance if it is not handled with care. This is mostly due 
to the strong connection between ice concentration and ice 
thickness. The best way to estimate the sea ice state through 
concentration assimilation in the sea ice model is to make 
the distinction between model thermodynamic and dynamic 
errors. When the model error in a grid cell is mainly ther­
modynamic or near the ice edge, the assimilation must add 
or remove an ice block of thickness equal to that of the pre­
existing ice to better fit the observed ice concentration, which 
means that ice volume must not be conserved in the process. 
On the contrary, when the model error is mainly dynamic, 
the assimilation must preserve the ice volume. For our ex­
perimental design, the most appropriate value for the weight, 
kA, is 0.15-0.3.

Assimilation of ice velocity data is found to significantly 
improve the overall ice model estimation if the model dy­
namics is wrong, especially when a high weight is utilized. 
When the model error is thermodynamic, the improvement 
brought by assimilation is not as clear. The results obtained 
in the present study also reveal that the assimilation of ice

velocity data and the assimilation of ice concentration data 
are very complementary, so that assimilating simultaneously 
ice velocity and concentration data into the model seems to 
be the best means to enhance the ability of the model to re­
produce the observed features of the sea ice field.

Data assimilation is surely a suitable method for improv­
ing simulations of the sea ice pack made by large-scale sea 
ice models. Nevertheless, it is worth stressing that a better 
estimate of one model variable does not automatically yield 
better estimates of the other model variables. In addition, 
thresholds in the sea ice model can increase errors when data 
are assimilated. Finally, a good knowledge of both model 
and observation errors is also essential to apply consistent 
corrections.
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