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Abstract. In the northwestern Mediterranean Sea, sperm 
whales, pilot whales and Risso’s dolphins prey exclusively 
or preferentially on cephalopods. In order to evaluate their 
competition, we modelled their habitat suitability with the 
Ecological Niche Factor Analysis (ENFA) and compared 
their ecological niches using a discriminant analysis. We 
used a long term (1995-2005) small boat data set, with vi­
sual and acoustic (sperm whale) detections. Risso’s dolphin 
had the shallowest and the more spatially restricted principal 
habitat, mainly located on the upper part of the continental 
slope (640m mean depth). With a wider principal habitat, 
at 1750 m depth in average, the sperm whale used a deeper 
part of the slope as well as the closest offshore waters. Fi­
nally, the pilot whale has the most oceanic habitat (2500 m 
mean depth) mainly located in the central Ligurian Sea and 
Provençal basin. Therefore, potential competition for food 
between these species may be reduced by the differentiation 
of their habitats.

1 Introduction

The ecological niche of a species is a complex set of variables 
characterized by three principal axes: habitat (influence of 
environmental factors defining the spatial distribution), diet 
(prey species, trophic level) and seasonality (use of resources 
and space according to time) (Lévêque, 2001: Frontier and 
Pichod-Viale, 1998). Theoretically, each species has its own 
ecological niche. Two species sharing close niches, i.e. the 
same prey species and distribution area, will be in competi­
tion. The less efficient species in exploiting these resources
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will be partially or totally excluded from the area (Lévêque, 
2001: Frontier and Pichod-Viale, 1998). Otherwise, special­
ization of both species wifi occur with emergence of different 
seasonality, and/or with a specialization or a diversification 
of the diet (Whitehead et al., 2003).

In the northwestern Mediterranean Sea (NWMS) (Fig. la), 
the sperm whale (Physeter macrocephalum, the long-finned 
pilot whale {Globicephala melas), Risso’s dolphin (Grampus 
griseus) and Cuvier’s beaked whale {Ziphius cavirostris) are 
teuthophageous, i.e. they prey exclusively or preferentially 
on cephalopods (Astruc and Beaubrun, 2005). The three for­
mer species have been shown to be common over the whole 
study area, while the latter displays a more restricted distri­
bution (Gannier, 1999: Azzellino et al., 2003: Podesta et al., 
2006). Our surveys covered most of the NWMS (Fig. la) and 
resulted in only three observations of Cuvier’s beaked whale. 
Consequently, our work did not deal with this species.

The stomach contents of stranded animals in the Mediter­
ranean show an overlap of the diet of sperm whales, pilot 
whales and Risso’s dolphins. Their principal prey are a few 
species of bathypelagic cephalopods of the Histioteuthidae 
and Ommastrephidae families (Astruc and Beaubrun, 2005). 
Furthermore, previous studies highlighted similar trends in 
their distribution. The sperm whale, the most studied species, 
seems to be opportunistic in its habitat use, exploiting ar­
eas with steep slopes, as well as offshore waters featuring 
SST fronts (Gannier and Praca, 2007: Gannier et al., 2002). 
Risso ’s dolphin seems to prefer waters with steep slopes from 
500 to 2000m (Bompar, 1997: Gannier, 1998b), while the 
pilot whale might prefer more oceanic areas, with waters 
deeper than 1000 m (Gannier, 1998b). However, the studies 
on Risso’s dolphins and pilot whales were principally con­
ducted in the Ligurian Sea and/or in the Gulf of Lions and 
did not cover the entire NWMS.
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Fig. 1. The northwestern Mediterranean Sea. (a) Main basins, the 
International Sanctuary for Marine Mammals. Pelagos (grey area) 
and the effort realised during surveys in summer from 1995 to 2005 
(red lines): (b) Topographic and oceanographic features: 200m, 
1000m and 2000m contours (dashed lines), upwellings (Upw), 
currents (black arrows: WCC -  Western Corsican Current. TC -  
Tyrrhenian Current. LC -  Ligurian Current. NMC -  North Mediter­
ranean Current) and fronts (grey lines: LF -  Ligurian Front. NBF -  
North Balearic Front).

As possible competition between these species may oc­
cur, it was interesting to improve knowledge of their ecolog­
ical niches and in particular of their habitats. The present 
study focuses on the influence of environmental factors, in 
the whole northwestern basin and for a ten year time scale. 
We modelled the three species’ habitat suitability with the 
Ecological Niche Factor Analysis and compared their niches 
with a discriminant analysis.

2 Material and methods

2.1 Study area

The NWMS (between 2.5° E and 9.5° E, 39.5° N and 
44.5° N) has complex topographic and oceanographic fea­
tures (Fig. lb). Both steep and narrow slopes (Provence, 
Balearic and north-eastern Corsican coasts) and large smooth 
continental shelves (Gulf of Lions, western Sardinian coast) 
are encountered (Biju-Duval and Savoye, 2001). The to­
pography and wind regime lead to a cyclonic circulation of 
modified Atlantic waters from the Ligurian to the Balearic 
Sea. The Ligurian front (LF) and the North Balearic front 
(NBF) are permanent, seasonally fluctuating fronts. By con­
trast, the presence of fronts between waters of the North- 
Mediterranean current (NMC) and cold upwelled waters 
from the Gulf of Lions depends on the occurrence of Mis­
tral and Tramontane winds (Lopez-Garcia et al., 1994: Mil­
lot, 1999: Millot and Wald, 1990: Le Vourch et al„ 1992). 
Although an oligotrophic basin, and generally unproduc­
tive, the NWMS features an important phytoplankton bloom 
with chlorophyll concentrations peaking between 0.8 and 
2.5 mg m- 3 , usually occurring in March (Morel and André, 
1991). In the Gulf of Lions, the Rhone river exports high 
quantities of nutrients and particles (Conan et al., 1998), 
which increase the turbidity. This phenomenon leads to an 
overestimation of chlorophyll concentrations in satellite data 
(>0.8 m gm -3 even in summer) and the Rhone panache can 
be classified as turbid case 2 water (Antoine et al., 1996). 
Consequently, the area influenced by the panache of the 
Rhone was removed from our analysis.

2.2 Data collection and standardisation

Dedicated surveys were conducted on a motor-sailing boat 
every summer from 1995 to 2005. The protocol combined 
visual searching and systematic discrete acoustic sampling 
(for details see Gannier, 1998a: Gannier et al., 2002). In 
brief, the visual searching was conducted by three observers 
scanning continuously with naked eyes, from abeam forward 
on both sides of the vessel. The acoustical sampling used a 
towed hydrophone and consisted of listening for 1 min ev­
ery 2 nm (3.7 km) along the cruise track. Sperm whales were 
recognized by their typical signal composed of regular clicks 
(Teloni, 2005). For pilot whales and Risso’s dolphins, only 
visual detections were used. Their acoustic signals could be 
confused with each other and with other delphinids. For each 
listening or visual sighting, we recorded sea state, position 
of the boat and of the cetaceans, visual conditions (V, vary­
ing between 0 and 6), background acoustic noise (U, vary­
ing between 1 and 5) and the bio-acoustic signal levels (S L , 
varying between 0 and 5). V , U and SL  were subjectively 
estimated by experienced observers. Data with V <4, U > 3 
or SL < 2 were removed from the data set.
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In order to avoid autocorrelation in the analysis, data were
©merged into observation sequences in ArcGIS 8.3 . For 

sperm whales, all acoustical or visual successive observa­
tions obtained without a minimum of one hour time-lag be­
tween them were considered to be from the same animal or 
group (Gordon et al., 2000). For positioning the observation 
sequence, we chose either the location of a visual sighting or 
of the acoustic detection with the best SF. For pilot whales 
and Risso’s dolphins, the location of the first visual sighting 
was chosen.

The Eco-Geographical Variables (EGVs) were classical 
data used in cetacean habitat modelling (e.g. Hamazaki,
2002), related to topography, temperature, salinity and pri-

©mary production. Depth was obtained from the GEBCO 
Digital Atlas (IOC-IHO-BODC, 2003). It was used to calcu­
late the slope and the distance to the 200 m contour, which 
was shown to be more relevant than the coastline contour 
for these species (Mangion and Gannier, 2002). Sea Sur­
face Temperature (SST) data were downloaded, depending 
on their availability, from the websites of the Pathfinder sen­
sor for 1995 to 2002 data (PO.DAAC) and of the Modis sen­
sor for 2002 to 2005 data (OceanColor). The front detec­
tion maps were computed on the basis of SST maps using

©a Sobel filter available in Idrisi Andes . Salinity data from 
1889 to 2002 were obtained from the MEDAR/MEDATFAS 
II database (MODB) and chlorophyll concentration data for 
the 1998 to 2005 period from the SeaWifs sensor website 
(OceanColor).

For the hydrological and biological EGVs, we used 
monthly maps to compute average situations for two periods: 
the summer (June, July and August) and the phytoplankton 
bloom period (February, March and April). These yearly sea­
sonal maps were then averaged over all years of the survey 
period, resulting in two seasonal maps for each EGV. Salin­
ity and chlorophyll concentration were not available for all 
years, but available data overlapped 80% of the survey period 
and were considered to be representative of average condi­
tions.

The study area was modelled as a 9*9 km grid cell in Idrisi
©Andes and both species presence and EGV grids were com­

puted using it. This resolution was chosen to correspond with 
the available monthly chlorophyll concentration data.

2.3 Habitat modelling

Classical habitat modelling techniques (e.g. Generalised Lin- 
ear Model -  GLM or Generalised Additive Model -  GAM) 
are based on presence-absence data (Guisan and Zimmer- 
mann, 2001: Redfern et al., 2006). “True” absence data 
(when animals are actually absent) are not easy to collect 
for mobile or inconspicuous species such as cetaceans which 
are able to spend long periods underwater. Biases may be 
caused by “false” absence data, when animals are present 
but not detected. For pilot whales and Risso’s dolphins, such

biases could not be avoided by the use of acoustic data col­
lected along the survey track, as they were for sperm whales. 
Furthermore, this method was not applicable because of the 
smaller data sets for these two species. The goal of this 
work was to compare the habitats of three species, using a 
method that can be implemented for each species’ data set. 
We therefore choose to use a new presence-only method: 
the Ecological-Niche Factor Analysis (ENFA) (Hirzel et al., 
2 0 0 2 ).

A detailed description of the ENFA and its mathematical 
computations are given in Hirzel et al. (2002, 2006b). The 
ENFA is a presence-only multifactorial analysis, comparing 
the distribution of species to the global available environment 
in the hyperspace defined by the EGVs. The transformation 
of EGVs into a set of uncorrelated factorial axes introduces 
ecological significance. Marginality (how much a species’ 
habitat differs from the mean available conditions) is repre­
sented in the first factorial axis and specialization (breadth of 
the ecological niche) is maximised in the subsequent axes. 
The factorial axes’ coefficients give the importance of each 
EGV in the different axes and the relative range of the EGVs 
preferred by the species. They are also used to compute 
global marginality (M, varying generally between 0 and 1) 
and specialization (S , indicating some degree of specializa­
tion when greater than 1). Finally, a Habitat Suitability (HS) 
map is built with the median algorithm. It compares the posi­
tion of each cell of the study area to the distribution of pres­
ence cells on the different factorial axes. HS values range 
from 0 to 100: a cell adjacent to the median of an axis would 
score 100 and a cell outside of the species distribution would 
score zero. All the ENFA analyses were conducted using 
Biomapper 3.2® software (Hirzel et al., 2006a).

2.4 Model validation

The evaluation of a model incorporates both the evaluation 
of its statistical accuracy and the ecological meaning when 
compared to previous studies on the species’ distribution. A 
“good” model should be statistically significant and coherent 
to what is known on the ecology of the species studied. As 
we used a presence-only modelling technique, the classical 
study of the confusion matrix (counting how many presence 
and absence validation cells occur in predicted suitable and 
unsuitable areas) was not possible. The model validation was 
therefore achieved with a £-fold cross-validation (Boyce et 
al., 2002: Hirzel et al., 2006b: Fielding and Bell, 1997), as 
explained below.

The model is evaluated by the trend of the predicted-to- 
expected ratio curve (p/e curve) and the continuous Boyce 
index (B ) (Hirzel et al., 2006b). A perfect model would have 
a strait increasing line p/e curve. B is a Spearman rank cor­
relation between F¡ (predicted-to-expected ratio) and the HS 
values. It varies between —1 and 1, a perfect model having 
a B=1. However, Hirzel et al. (2006b) compared the accu­
racy of different validation methods and found that a B ^ 0.6
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Table 1. Continuous Boyce index (B, varying between —1 and 1), 
global marginality (M , varying generally between 0 and 1) and spe­
cialization (S , indicating some degree of specialization when supe­
rior to 1) for the sperm whale, the pilot whale and Risso’s dolphin.

Species B (meaniSD) M 5

sperm whale 0.6Ü 0.50 0.77 1.40
pilot whale 0.58T0.19 0.85 3.31
Risso’s dolphin 0.39T0.21 1.03 1.89

corresponds to an Area Under the Receiver Operating Char­
acteristic (ROC) curve >0.9 (ROC evaluates the proportion 
of correctly and incorrectly classified predictions over a con­
tinuous range of presence-absence thresholds. The closer the 
Area Under the Curve is to 1, the more the model fits well. 
See Boyce et al. (2002) for details).

In practice, the presence data set is partitioned into k in­
dependent subsets, and k —l partitions are used in the cali­
bration data set, leaving the last partition as the validation 
data set. The number of partitions k was chosen following 
Huberty’s rule for the pilot whale (k=A) and Risso’s dolphin 
(£=3) (Fielding and Bell, 1997). For the sperm whale, k was 
fixed at 10, which seems to be the best number of partitions 
when there are more than 100 cells with observed presence 
(Hirzel et al., 2006a).

The predicted-to-expected ratio F¡ is calculated as:

P i

E i
(D

O i

Y . O i
(2)

A í

T A i
(3)

In Eqs. (1), (2) and (3), Pi is the predicted frequency of eval­
uation cells, with Oi the number of presence validation cells 
falling in an HS window i and Oi the total number of 
presence validation cells. £) is the expected frequency of 
evaluation cells, with A; the number of all cells belonging to 
the same HS window i and A í the total number of cells in 
the whole study area.

We define an HS window as a range of HS values with a 
constant span of 20 units. f)  is first computed in the HS win­
dow ranging from zero to 20 units ([0: 20]). The window is 
then shifted upward one HS unit and F¡ is computed again. 
This operation is repeated until the moving window reaches 
the last possible range [80: 100]. It provides the p/e curve, 
which plots Fi against the HS values. For a random model, 
Fi is equal to one for every window i. If a model prop­
erly predicted the suitable areas of one species, then F¡< 1 
in windows with low HS values and F¡ > 1 for windows with 
high HS values, and it features a monotonically increasing

p/e curve. B is then computed between F¡ and the average 
HS values of the different windows. The p/e curves and B 
are produced k  times, each time leaving out another valida­
tion partition, allowing the assessment of their central trend 
and variance (here we present the mean ±SD). Using the p/e 
curve, a threshold between unsuitable and suitable areas was 
estimated following Hirzel et al. (2006b), and is the point 
where F¡ becomes clearly >1 and from which the p/e curve 
stops to oscillate around this limit. This permits us to de­
termine a suitable area for each species and to compute its 
environmental characteristics.

2.5 Niche differentiation

In addition to the habitat suitability models, a discriminant 
analysis was undertaken to compare the ecological niches of 
the sperm whale, the pilot whale and Risso’s dolphin (Feg- 
endre and Fegendre, 1998). This technique is a multivari­
ate analysis using the space defined by the EGVs and the 
species’ distributions simultaneously. It computes discrimi­
nant factors that maximise the interspecific variance and min-

©imize the intraspecific variance. In Biomapper 3.2 , the dis­
criminant factors are used to compute indices quantifying the 
niches’ breadth and overlap. The Hurlbert index (B') mea­
sures the breadth of the niches. It varies between 0 (corre­
sponding to specialized species) and 1 (corresponding to gen­
eralist species) (Hurlbert, 1978). Floyd’s asymmetric overlap 
index (Z) evaluates the overlapping of species niches two by 
two. Zx(j) is the part of the niche of X, which is also shared 
by Y . In other words, it is the overlapping of the niche of Y 
on the niche of X  (Hurlbert, 1978).

3 Results

3.1 Habitat suitability models

All global marginality, specialization and Boyce indices are 
presented in Table 1. Boyce indices decreased with the 
number of presence cells from 0.61 for the sperm whale to 
0.39 for Risso’s dolphin. All three species displayed a high 
marginality, from 0.77 to 1.11, but specialization coefficients 
were more variable (from 1.40 to 3.31).

3.1.1 Sperm whale

The total number of presence cells was 175 for the sperm 
whale. The model of this species was highly fitted as 
shown by a B =0.61±0.50 and a quasi-monotonic p/e curve 
(Fig. 2a). This species had an overall marginality of 0.77 and 
an overall specialization of 1.40, indicating that its habitat is 
different from the mean environment available, but still quite 
wide.

The marginality factorial axis indicated a strong relation­
ship for cells with a steep slope (coefficients of 0.49) and 
close to the 200 m contour (—0.42). This axis also showed
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the importance of high chlorophyll concentrations in summer 
(0.42) and low SST for summer (—0.38) and for the phyto­
plankton bloom period (—0.31). Specialization axes high­
lighted the restriction of the species to the lower SST (co­
efficients varying between 0.61 and 0.71 in spring), lower 
salinity (0.32 for the summer and 0.37 for the phytoplankton 
bloom period) and higher chlorophyll concentrations (0.72 
in summer). Bottom depth did not seem to be an important 
variable for this species (Table 2). The suitable area cor­
responded to HS values greater than 56 and showed a core 
habitat on the continental slope of the whole area, including 
the Balearic and Corsica islands, and in closer offshore wa­
ters (Fig. 3a). The characteristics of the suitable area of this 
species were: mean depth of 1748 m, mean slope of 2.1° and 
mean summer SST of 21.9° C.

3.1.2 Pilot whale

The total number of presence cells for the pilot whale was 
33. This model had a B of 0.58T0.19 i.e. a well fitted model. 
Its p/e curve increased quasi-monotonically between 39 and 
90 HS values, but decreased between 0 and 39, and between 
90 and 100 (Fig. 2b). The strong global marginality of 0.85 
and the high total specialization of 3.31 indicated that pilot 
whales have a restricted habitat in comparison with the mean 
environment of the study area.

Both marginality and specialization axes highlighted 
a strong relationship with the colder SST for summer 
(marginality of —0.57 and specialization of 0.42) and phyto­
plankton bloom period (—0.49 for the marginality, 0.42 and
0.82 for the specialization), and higher chlorophyll concen­
trations in summer (marginality of 0.51 and specialization 
of 0.77). The first specialization axis also showed a restric­
tion to deep waters (coefficient of 0.37) (Table 3). For this 
species, the threshold between unsuitable and suitable areas 
was estimated to the HS value of 49. This highlighted a prin­
cipal habitat in oceanic waters of the central Figurian Sea 
and Provençal basin (Fig. 3b). This species preferred an area 
with a mean depth of 2511 m, a mean slope of 0.55° and a 
mean summer SST of 21.7° C.

3.1.3 Risso ’s dolphin

The total number of presence cells for Risso’s dolphin was 
23. The ENFA typically requires a number of EGVs less 
than 1/2 to 1/3 of the number of presence cells (Alexandre 
Hirzel, pers. comm.), which limits the number of EGVs for 
this species. We therefore carried out a step-by-step descend­
ing exclusion of the EGVs and chose the model with the best 
validation.

The model for Risso’s dolphin was less meaningful than 
for the two other species, with a Z?=0.39±0.21 and a more 
variable p/e curve.

The marginality axis indicated a strong relationship with 
a steep slope (coefficient of 0.64), short distance to the

8

O ?
6"O

£s  5
Cl

UJ 4

TJ -,
(U 4
O-a
£ 2
û_

1

0
0 10 20 30 40 50 60 70 80 90 100

Habitat suitability
13 -, 
12

O
£ 10 -

T>0)oœ
Q .
X

UJ

CL

0 10 20 30 40 50 60 70 80 90 100

Habitat suitability
60

o  50

5
® 40 
o
CD
Cl
X  30 

LU ou

~oa)
Ö  20

0
0 10 20 30 40 50 60 70 80 90 100

Habitat suitability

Fig. 2. Predicted-to-expected ratio curve (mean±SD) and threshold 
between unsuitable and suitable areas (arrow) for (a) sperm whale, 
(b) pilot whale and (c) Risso’s dolphin models (the limit of random 
models, predicted-to-expected ratio F/ =  l, is indicated by the dotted 
line).

200 m contour (—0.63) and a certain affinity for shallow areas 
(depth coefficient of —0.30). The affinity for cells close to 
the 200 m contour was important in each specialization axis 
(coefficients from 0.43 to 0.61). These axes also indicated 
an affinity for higher chlorophyll concentrations in summer 
(0.77) and steeper slopes (0.73) (Table 4).

The suitable area for Risso’s dolphin corresponded to HS 
values above 49 (Fig. 2c). Due to a very high marginality >1 
and an important specialization (1.89), the principal habitat 
of this species was restricted. It was located on the upper part
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Table 2. Relevant axes (with their eigenvalues) and the EGV coefficients of the sperm whale model (sum: summer period, i.e. June, July 
and August: phy: phytoplankton bloom period, i.e. February, March and April). The positive or negative sign is relevant for the first axis 
coefficients, but in the following axes only the absolute value of coefficients is considered.

Axis 1 (0.18) Axis 2 (0.20) Axis 3 (0.13) Axis 4 (0.11)

Depth -0 .03 0.11 0.05 0.17
Chlorophyll Concentration sum 0.42 0.17 -0.72 -0 .05
Chlorophyll Concentration phy -0.02 -0.02 0.11 -0.01
Distance to the 200m contour -0.42 0.22 -0.12 0.19
Salinity sum -0 .23 0.32 -0.05 0.12
Salinity phy -0 .29 -0 .37 -0.02 -0 .24
Slope 0.49 0.11 0.09 0.18
SST Front detection sum 0.01 -0.01 -0.02 -0 .10
SST Front detection phy -0 .18 -0 .06 -0 .24 0.13
SST sum -0 .38 -0 .39 0.11 0.57
SST phy -0.31 0.71 -0.61 -0 .69

Table 3. Relevant axes (with their eigenvalues) and the EGV coefficients of the pilot whale model (sum: summer period, i.e. June, July 
and August: phy: phytoplankton bloom period, i.e. February, March and April). The positive or negative sign is relevant for the first axis 
coefficients, but in the following axes only the absolute value of coefficients is considered.

Axis 1 (0.33) Axis 2 (0.31) Axis 3 (0.15)

Depth 0.18 -0 .37 -0 .03
Chlorophyll Concentration sum 0.51 0.77 -0 .30
Chlorophyll Concentration phy 0.16 -0 .14 -0 .03
Distance to the 200m contour -0 .09 0.06 -0.05
Salinity sum 0.01 -0 .06 -0 .18
Salinity phy -0.01 0.14 0.12
Slope 0.22 -0 .20 -0 .07
SST Front detection sum 0.01 0.03 0.03
SST Front detection phy -0 .24 0.04 -0 .07
SST sum -0 .57 0.07 0.42
SST phy -0 .49 0.42 -0.82

Table 4. Relevant axes (with their eigenvalues) and the EGV coefficients of Risso’s dolphin model (sum: summer period, i.e. June, July 
and August: phy: phytoplankton bloom period, i.e. February, March and April). The positive or negative sign is relevant for the first axis 
coefficients, but in the following axes only the absolute value of coefficients is considered.

Axis 1 (0.46) Axis 2 (0.25) Axis 3 (0.17) Axis 4 (0.08)

Depth -0 .30 -0 .16 -0 .09 -0 .44
Chlorophyll Concentration sum 0.26 0.77 0.29 0.28
Distance to the 200m contour -0 .63 0.48 -0.61 0.43
Salinity sum -0 .14 -0.01 0.05 -0 .45
Slope 0.64 0.18 -0 .73 0.15
SST sum -0 .16 0.34 0.08 0.57
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Fig. 4. Distribution of cells of the study area and of observations of 
the sperm whale, the pilot whale and Risso’s dolphin along the first 
discriminant factor.
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Fig. 3. Habitat suitability maps for (a) sperm whale, (b) pilot whale 
and (c) Risso’s dolphin models (the grey area was removed from the 
analysis). Black dots represent the location of presence cells used 
in the model of each species.

of the continental slope of the whole study area (Fig. 3c), 
with mean characteristics of: 638 m for the depth, 3.6° for 
the slope and 22.2°C for the summer SST.

3.2 Niche differentiation between the three species

For the discriminant analysis, we limited the number of 
EGVs to those highlighted as important by the ENFA. The 
first and second discriminant factors had eigenvalues of 
36.53 and 12.49 respectively, showing that they discrimi­
nated between the species niches very well. As the two 
discriminant factors highlighted the same trends and as the 
eigenvalue of the first factor was three times higher than that 
of the second, we only used the first. The distribution ranges 
of species observations along the axis showed that habitats of 
Risso’s dolphins and pilot whales were well separated, while 
that of sperm whales was more extended and overlapped the 
two others (Fig. 4). EGVs with positives values seemed to 
favour Risso’s dolphin and showed a more coastal habitat, 
with the influence of an important slope, relatively warm 
waters with high chlorophyll concentrations and a short dis­
tance to the 200m contour (Table 5). On the contrary, the 
observations of pilot whales were linked to EGVs with neg­
ative values and highlighted an offshore habitat with greater 
depth and relatively high salinity (Table 5). The distribution 
of sperm whale observations had a principal peak in the neg­
ative values, but there were numerous observations with pos­
itive values as well. The discriminant analysis was not able 
to highlight a particular trend for the habitat of this species.

The Hurlbert’s niche breath index indicated that the sperm 
whale had the wider niche (R '=0.62), followed by the pi­
lot whale (R '=0.55) and Risso’s dolphin that seemed very 
specialized for its habitat (R '=0.02). Lloyd’s asymmetric 
overlap indices (Table 6) confirmed that the sperm whale 
niche overlapped an important part of both niches of the pilot 
whale and Risso’s dolphin (respectively Z=18.45 and 3.00), 
while the reciprocal overlaps were small (Z=3.47 for the pi­
lot whale and Z =0.37  for Risso’s dolphin). Furthermore,
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Table 5. Coefficients of the EGVs along the first discriminant factor 
(sum: summer period, i.e. June, July and August: phy: phytoplank­
ton bloom period, i.e. February, March and April).

EGVs Coefficient values

Depth -0.339
Salinity sum -0.129
Slope 0.103
Distance to the 200m contour 0.132
SST sum 0.538
Chlorophyll Concentration sum 0.742

the niche overlap indices of pilot whales and Risso’s dolphin 
were nil, meaning their niches were totally separated.

4 Discussion and conclusion

4.1 Model evaluation

ENFA produced meaningful habitat predictions for three 
species with variable amounts of presence data: using 175 
cells of presence for the sperm whale and 33 for the pi­
lot whale, we obtained well fitted models. For Risso’s dol­
phin, the validation was less satisfactory, probably as a con­
sequence of the limited number of presence cells of this 
species. Nevertheless, the HS map produced for this species 
is in general agreement with studies on its distribution (Gan­
nier, 1998b: Azzelino et al., 2001). While GLM or GAM 
seem to be more accurate than ENFA (e.g. Brotons et al., 
2004), this later is a useful tool when absence data are not 
reliable enough, or when species are rare. As suggested by 
our results, this method seemed to be quite robust to model a 
first attempt to estimate the suitability of an area with a small 
data set.

The habitats highlighted here were not strictly feeding 
grounds. Indeed, the visual observations used, in particu­
lar for pilot whales and Risso’s dolphins, did not concern 
only feeding behaviour. The use of passive acoustic or tags 
suggested that sperm whales feed during the day (Drouot et 
al., 2004: Watwood et al., 2006), while pilot whales seem 
to be predominantly night feeders (Baird et al., 2002). The 
daily feeding pattern of Risso’s dolphin is still unclear, but 
this species seems to be a night feeder too (Gannier, unpub­
lished data). Pilot whales and Risso’s dolphins often seem to 
rest and socialize during daytime. Nevertheless, at the spatial 
scale of our models, it is an acceptable assumption that they 
are close to the locations where they feed during the night.

The use of data compiled and averaged over a large spatial 
and temporal scale seemed to attenuate the accuracy of our 
models in some areas. For example, Gannier (1998b) found 
that sperm whales could have a deeper habitat, using only 
the observations done in the Figurian sea. Similarly, Gannier

Table 6. Lloyd’s asymmetrical overlap indices (Zx ŷ')) between the 
niches of the sperm whale, the pilot whale and Risso’s dolphin.

X sperm whale
Y

pilot whale Risso’s dolphin

sperm whale - 3.47 0.38
pilot whale 18.42 - 0.00
Risso’s dolphin 3.00 0.00 -

and Praca (2007) showed that thermal fronts, and in particu­
lar the North Balearic front (NBF), seemed to be favourable 
to sperm whales. However, they used smaller spatial and 
temporal scales (depths greater than 2000 m and a weekly 
time scale respectively).

There is still a difference of effort between continental 
slope areas and offshore waters. This difference is due to 
the difficulty of surveying offshore waters in relation to the 
autonomy of the boat used and to the availability of good 
weather conditions during extended periods. The distribu­
tion of cetaceans in offshore waters will only be clarified with 
more survey effort in those areas.

The possibility of weighting the presence data with the ef­
fort was considered during the modelling process. For the 
pilot whale and Risso’s dolphin, it introduced more bias than 
having no weighting in relation to the small size of the data 
set. For the sperm whale, it did not highlight the potential 
offshore habitat and only decreased the statistical accuracy of 
the model. This weighting was therefore not used. However, 
sperm whales seemed to be influenced by both topographical 
and hydrological variables. The continental slope is a fixed 
spatial variable where observations of sperm whales are more 
concentrated. On the contrary, movements of fronts, such as 
the NBF, lead to a spatial spread of observations of sperm 
whales. Even if we could use frontal characteristics synchro­
nized with sperm whales’ positions, the consequence of hav­
ing a NBF moving over the years would be an “unfocused” 
spatial picture of the offshore habitat.

As we pooled variables over a ten year period, the ef­
fect of inter-annual variations on our models was trouble­
some. Little is known about cephalopods’ spatial distribution 
and movements at a large scale in the NWMS, but they are 
susceptible to following their prey and being influenced by 
inter-annual changes. Teuthophageous cetaceans certainly 
have the ability to detect and track moving prey. For ex­
ample, their écholocation pulses can be heard several kilo­
metres away (delphinids) or more (sperm whales) (Drouot et 
al., 2004). Successful feeding by individuals or groups can 
be consequently detected by conspecifics in the surround­
ing areas. From place to place, this “eavesdropping“ effect 
might help to concentrate these predators in the locations 
where the prey availability is higher. However, our modelling
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strategy was to attempt a global description in a temporally 
and spatially heterogeneous area, the entire NWMS, instead 
of modelling the habitat in restricted and more homogeneous 
regions, as proposed by Cañadas et al. (2002) for odonto­
cetes or Panigada et al. (2005) for fin whales (Balaenoptera 
physalus). The influence of inter-annual variations of envi­
ronmental variables should be studied at a smaller scale.

4.2 Comparison of the ecological niches

The summer habitat niches of pilot whales, Risso’s dolphins 
and sperm whales seemed to be segregated and differ in their 
habitat characteristics. The pilot whale presented the most 
oceanic habitat with a strong relationship with the lowest 
SST, the highest chlorophyll concentrations and depth of the 
study area. Risso’s dolphin has the shallowest habitat, on 
the upper part of the slope, and is mainly influenced by the 
proximity of the 200 m contour. The sperm whale has the 
wider habitat, over the entire continental slope, and slightly 
offshore, and seems to be influenced by both topographical 
and hydrological factors.

In the Alboran Sea, southwestern Mediterranean, the three 
species seem to have closer habitats. Risso’s dolphin and 
the long-finned pilot whale are found in waters deeper than 
600 m and the sperm whale in waters deeper than 700 m 
(Cañadas et al., 2002; Cañadas et al., 2005). Regarding the 
slope, the most influenced species seems to be Risso’s dol­
phin which preferred slopes greater than 40 m km-1 (2.29°), 
followed by the pilot whale (between 20 and 80 m km- 1 ,
i.e. 1.15 and 4.58°) and the sperm whale which did not 
show any preference (Cañadas et al., 2002). In the Gulf of 
Mexico, a tropical area, the preferred depths of the sperm 
whale, Risso’s dolphin and the short-finned pilot whale (Glo­
bicephala macrorhynchus?) are close to those found in the 
Alboran Sea (Baumgartner et al., 2001; Davis et al., 1998). 
Risso’s dolphin seems to have similar habitats in the Alboran 
Sea, Gulf of Mexico and NWMS. For the sperm whale, dif­
ferences appear for the slope, which seems to have a greater 
influence in our study area, due to a steeper slope at the 
same depth in the NWMS (Biju-Duval and Savoye, 2001). 
In the Alboran Sea and Gulf of Mexico, the pilot whale has 
a shallower habitat in waters with a steeper slope than in the 
NWMS.

Pilot whales are reported to be influenced by cold SST 
(Hamazaki, 2002), the presence of eddies (Davis et al., 2002) 
or a shallow thermocline (Ballance et al., 1997; Davis et 
al., 1998). In the North Atlantic, genetic analyses on dif­
ferent populations of long-finned pilot whales do not support 
a simple segregation by distance. They suggest that popula­
tion isolation occurs between areas of the ocean which dif­
fer in SST (Fullard et al., 2000). Similarly in the Pacific, 
populations of the short-finned pilot whale (Globicephala 
macrorhynchus>) show genetic, morphometric and life history 
differences related to SST (Wada, 1988; Kasuya et al., 1988). 
Hence, the pilot whale could be influenced by temperature

features more than topographic ones. In the Alboran Sea, 
areas with a depth between 1000 m and 2000 m are very 
reduced and major oceanographic features occur in a shal­
lower area compared to the Figurian and Provençal basins 
(Millot, 1999). Furthermore, cold water masses are observed 
offshore in the NWMS, in relation to the general circulation. 
In particular, the FF and NBF cause upwelling of cold deep 
waters (Sournia et al., 1990; Millot, 1999). In our study area, 
this influence of temperature features and cold SST on pilot 
whales could result in an oceanic habitat, more distinct from 
Risso’s dolphin and sperm whale habitats.

Astruc and Beaubrun (2005) used the Index of Relative 
Importance (IRI) to compare the importance of prey species 
in the diet of Mediterranean cetaceans (Cortés, 1997), from 
stomach contents of stranded animals. The sperm whale 
presents an IRI>90%  for Histioteuthis bonnellii. The diet 
of the pilot whale has an IRI between 40 and 50% for 
Todarodes sagittatus, between 10 and 20% for H. bonnel­
lii and H. reversa, and the remaining 10% consist of sev­
eral other species, including some Gadidae. Finally Risso’s 
dolphin has the most diverse diet composed of H. reversa 
(IRI> 30%), H. bonnellii and T. sagittatus (10<IR I<30%) 
and of several other species with an IRI< 10%. All together 
H. bonnellii, H. reversa and T. sagittatus may represent 60 to 
100% of the diet of the three predators studied here. These 
species of cephalopods principally occur at the same depths, 
between 200 and 800 m (Quetglas et al., 2000), but their spa­
tial distribution in the whole study area is unknown. It is dif­
ficult to compare precisely the habitat of the teuthophageous 
odontocetes and the distribution of their different prey. How­
ever, the habitats that we modelled are influenced by envi­
ronmental features which are also favourable to cephalopods 
(e.g. Quetglas et al., 2000; O ’Dor and Coelho, 1993).

From our summer habitat results and published stomach 
contents, three kinds of ecological niches appeared. First, 
Risso’s dolphin is very specialized for its habitat, mainly lo­
cated on the upper part of the continental slope, but seemed 
generalist for its diet. Second, the pilot whale had an offshore 
habitat and a relatively generalist diet. Finally, the sperm 
whale had a wide habitat, over the whole continental slope 
and adjacent offshore waters, but is very specialized in its 
diet. The differentiation of ecological niches of the sperm 
whale, the pilot whale and Risso’s dolphin could then tend to 
reduce their competition for food resources. However, stom­
ach contents of stranded animals may lead to biases (Santos 
et al., 2001). Further investigations on their diet with more 
recent techniques, such as stable isotopes or fatty acid anal­
yses, will provide more precise information on this part of 
their ecological niche.

The temporal evolution remains the least known part of the 
ecological niches of the teuthophageous odontocetes. The 
seasonal variation of the habitat of the three species is dif­
ficult to assess in a large area like the NWMS and would 
require a considerable observation effort.
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4.3 Perspectives

The modelling of the teuthopageous odontocetes’ habitat 
showed a partial spatial segregation between sperm whales, 
pilot whales and Risso’s dolphins in the NWMS. These 
species are exposed to anthropogenic impacts such as ship 
collision, noise disturbance and occasionally net entangle­
ment. Our habitat modelling could help the International 
Sanctuary for Marine Mammals to implement efficient pro­
tection measures. Furthermore, cetaceans are fragile species 
at the top of the food web and dependent on a fluctuating 
environment. Modelling their habitat and understanding the 
influence of environmental factors will enable us to assess 
the effect of global climate change on their distribution and 
abundance. As it does not need extensive data sets or absence 
data, ENFA is a useful tool for such objectives.

Acknowledgements. We wish to thank all the GREC and CRC -  
Marineland volunteers who participated to the data collections. 
We also thank Y. Cornet for his help with map processing and 
GIS, and C. Beans for improving the English in the manuscript. 
We are grateful to A. Hirzel, two anonymous reviewers and the 
editor C. Robinson for their precious comments on an earlier 
version of the manuscript. Seawifs and Modis data were provided 
by the SeaWiFS Project, NASA/Goddard Space Flight Center 
and GeoEye. Pathfinder data were obtained from the Physical 
Oceanography Distributed Active Archive Center (PO.DAAC) at 
the NASA Jet Propulsion Laboratory, Pasadena, CA. E. P. receives 
a CIFRE funding no. 0032/2005 by the Association Nationale de la 
Recherche Technique and the European Social Fund.

Edited by: C. Robinson

References

Antoine, D., André, J.-M., and Morel, A.: Oceanic primary produc­
tion : 2. Estimation at global scale from satellite (coastal zone 
colour scanner) chlorophyll, Glob. Biogeoch. Cy., 10, 57-69, 
1996.

Astruc, G. and Beaubrun, P.: Do Mediterranean cetaceans diets 
overlap for the same resources?, Eur. Res. Cet., 19, p. 81, 2005.

Azzelino, A., Airoldi, S., Gasparini, S., Patti, P., and Sturlese, A.: 
Physical habitat of cetaceans along the continental slope of the 
western Ligurian Sea, Eur. Res. Cet., 15, 239-243, 2001.

Azzellino, A., Carrón, M., D’Amico, A., Misic, C., Podesta, M., 
Portunato, N., and Stoner, R.: Cuvier’s beaked whale (Ziphius 
cavirostris) habitat use and distribution in the Genoa canyon area 
(Sirena’02), Eur. Res. Cet., 17, p. 193, 2003.

Baird, R. W., Borsani, F. J., Hanson, M. B., and Tyack, P. L.: Div­
ing and night-time behavior of long-finned pilot whales in the 
Ligurian Sea, Mar. Ecol. Prog. Ser., 237, 301-305, 2002.

Ballance, L. T., Pitman, R. L., Reilly, S. B., and Fiedler, P. C.: Habi­
tat relationship of cetaceans in the western tropical Indian Ocean, 
Rep. Int. Whal. Commn., SC/49/023, 16, 1997.

Baumgartner, M. F., Mullin, K. D., May, L. N., and Leming, T. D.: 
Cetacean habitats in the northern Gulf of Mexico, Fish. Bull., 99, 
219-239, 2001.

Biju-Duval, B. and Savoye, B.: Océanologie, Dunod, Paris, 232 pp., 
2 0 0 1 .

Bompar, J. M.: Etude de la population de dauphins de Risso 
[Grampus griseus) fréquentant la corne nord ouest du futur sanc­
tuaire de Mer Ligure, Rapport GECEM/Parc National de Port- 
Cros, 32 pp., 1997.

Boyce, M., Vernier, P. R., Nielsen, S. E., and Schmiegelow, F. K.: 
Evaluating resource selection functions, Ecol. Model., 157, 281- 
300, 2002.

Brotons, L., Thuiller, W., Araujo, M. B., and Hirzel, A.: Presence- 
absence versus presence-only modelling methods for predicting 
bird habitat suitability, Ecogeography, 27, 437-448, 2004.

Cañadas, A., Sagarminaga, R., and Garcia-Tiscar, S.: Cetacean dis­
tribution related with depth and slope in the Mediterranean wa­
ters off southern Spain, Deep-Sea Res. I, 1, 2053-2073, 2002.

Cañadas, A., Sagarminaga, R., De Stephanis, R., Urquiola, E., and 
Hammond, P. S.: Habitat preference modelling as a conservation 
tool: Proposals for marine protected areas for cetaceans in south­
ern Spanish waters, Aquat. Conserv.: Mar. Freshw. Ecosyst., 15, 
485-521,2005.

Conan, P., Pujo-Pay, M., Raimbault, P., and Leveau, M.: Variabilité 
hydrologique et biologique du Golfe du Lion. II. Productivité sur 
le bord interne du courant, Oceanol. Acta, 21, 767-782, 1998.

Cortés, E.: A critical review of methods studying fish feeding based 
on analysis of stomach contents: Application to elasmobranch 
fishes, Can. J. Fish Aquat. Sei., 54, 726-738, 1997.

Davis, N. B., Ortega-Ortiz, J. G., Ribic, C. A., Evans, W. E., Biggs, 
D. C., Ressler, P. H., Cady, R. B., Leben, R. R., Mullin, K., 
and Würsig, B.: Cetacean habitat in the northern oceanic Guff 
of Mexico, Deep-Sea Res. I, 49, 121-142, 2002.

Davis, R. W., Fargion, G. S., May, N., Leming, T. D., Baumgartner, 
M., Evans, W. E., Hansen, L. J., and Mullin, K.: Physical habitat 
of cetaceans along the continental slope in the north-central and 
western Gulf of Mexico, Mar. Mamm. Sei., 14, 490-507, 1998.

Drouot, V., Gannier, A., and Goold, J. C.: Diving and feeding be­
havior of sperm whales (Physeter macrocephalus) in the north­
western Mediterranean Sea, Aquat. Mamm., 30, 419-426, 2004.

Fielding, A. H. and Bell, J. F.: A review of methods for the as­
sessment of prediction errors in conservation presence/absence 
models, Environ. Conserv., 24, 38-49, 1997.

Frontier, S. and Pichod-Viale, D.: Ecosystèmes : Structure, fonc­
tionnement, évolution, Dunod, Paris, 447 pp., 1998.

Fullard, K.J., Early, G., Heide-Jorgensen, M. P., Bloch, D., Rosing- 
Avid, A., and Amos, W.: Population structure of long-finned pi­
lot whales in the north Atlantic: A correlation with sea surface 
temperature ?, Mol. Ecol., 9, 949-958, 2000.

Gannier, A.: Comparison of the distribution of odontocetes ob­
tained from visual and acoustic data in northwestern Mediter­
ranean, Eur. Res. Cet., 12, 246-250, 1998a.

Gannier, A.: Variation saisonnière de l’affinité bathymétrique des 
cétacés dans le bassin Liguro-provençal (Méditerranée occiden­
tale), Vie Milieu, 48, 25-34, 1998b.

Gannier, A.: Les cétacés de Méditerranée : Nouveaux résultats sur 
leur distribution, la structure de leur peuplement et l’abondance 
relative des différentes espèces, Mésogée, 56, 3-19, 1999.

Gannier, A., Drouot, V., and Goold, J. C.: Distribution and relative 
abundance of sperm whales in Mediterranean Sea, Mar. Ecol. 
Prog. Ser., 243, 281-293, 2002.

Gannier, A. and Praca, E.: SST fronts and the summer sperm whale

Ocean Sei., 4, 49-59, 2008 www.ocean-sci.net/4/49/2008/

http://www.ocean-sci.net/4/49/2008/


E. Praca and A. Gannier: Mediterranean ecological niches of teuthophageous odontocetes 59

distribution in the north-west Mediterranean Sea, J. Mar. Biol. 
Ass. UK, 8, 187-193,2007.

Gordon, J. C. D., Matthews, J. N., Panigada, S., Gannier, A., Bor- 
sani, F. J., and Notarbartolo di Sciara, G.: Distribution and rel­
ative abundance of striped dolphins, and distribution of sperm 
whales in the Ligurian Sea cetacean sanctuary, J. Cet. Res. 
Manag., 2, 27-36, 2000.

Guisan, A. and Zimmermann, N. E.: Predictive habitat distribution 
models in ecology, Ecol. Model., 135, 147-186, 2001.

Hamazaki, T.: Spatiotemporal prediction models of cetacean habi­
tats in the mid-western north Atlantic Ocean (from cape Hatteras, 
north Carolina, USA, to Nova Scotia, Canada), Mar. Mamm. 
Sei., 18, 920-939,2002.

Hirzel, A., Hausser, J., Chessel, D., and Perrin, N.: Ecological- 
niche factor analysis: How to compute habitat-suitability maps 
without absence data?, Ecology, 83, 2027-2036, 2002.

Hirzel, A., Le Lay, C., Helfer, V., Randin, C., and Guisan, A.: Eval­
uating the ability of habitat suitability models to predict species 
presences, Ecol. Model., 199, 142-152, 2006b.

Hurlbert, S. H.: The measurement of niche overlap and some rela­
tives, Ecology, 59, 67-77, 1978.

Kasuya, T., Miyashita, T., and Kasamatsu, F.: Segregation of two 
forms of short-finned pilot whales off the Pacific coast of Japan, 
Sei. Rep. Whales Res. Inst., 39, 77-90, 1988.

Le Vourch, J., Millot, C., De Stephanis, R., Castagne, N., 
Le Borgne, P., and Olry, J. P.: Atlas des fronts thermiques 
en Méditerranée d ’après l’imagerie satellitaire, Mémoires de 
l ’Institut Océanographique, 160 pp., 1992.

Legendre, P. and Legendre, L.: Numerical ecology, 2nd english edi­
tion, Elsevier Scientific Publishing Company, Amsterdam, 853 
pp., 1998.

Lévêque, C.: Ecologie, de l’écosystème à la biosphère, Dunod, 
Paris, 502 pp., 2001.

Lopez-Garcia, M. J., Millot, C., Font, J., and Garcia-Ladona, E.: 
Surface circulation variability in the Balearic basin, J. Geophys. 
Res., 99, 3285-3296, 1994.

Mangion, P. and Cannier, A.: Improving the comparative distribu­
tion picture for Risso’s dophin and long-finned pilot whale in the 
Mediterranean Sea, Eur. Res. Cet., 16, p. 68, 2002.

Millot, C. and Wald, L.: Upwelling in the Gulf of Lions, Coast. 
Upw., 160-166, 1990.

Millot, C.: Circulation in the western Mediterranean Sea, J. Mar. 
Syst., 20, 423-442, 1999.

MODB: Medar/Medatlas II database, available at http://modb.Oce. 
Ulg.Ac.Be/medar/medar.html, last access: July 2007.

Morel, A. and André, J. M.: Pigment distribution and primary pro­
duction in the western Mediterranean as derived and modelled 
from coastal zone colour scanner observations, J. Geophys. Res., 
96,685-698, 1991.

O’Dor, R. K. and Coelho, M. L.: Big squid, big currents and big 
fisheries, in: Recent advances in cephalopod fisheries biology, 
edited by: Okutani, T., O’Dor, R. K., and Kubodera, T., Tokai 
University Press, Tokyo, Japan, 385-396, 1993.

OceanColor: available at http://oceancolor.Gsfc.Nasa.Gov, last ac­
cess: July 2007.

Panigada, S., Notarbartolo di Sciara, C., Zanardelli Panigada, M., 
Airoldi, S., Borsani, J. F., and Jahoda, M.: Fin whales (Bal­
aenoptera physalus) summering in the Ligurian Sea: Distribu­
tion, encounter rate, mean group size and relation to physio­
graphic varaibles, J. Cet. Res. Manag., 7, 137-145, 2005.

PO.DAAC: Physical Oceanography Distributed Active Archive 
Center, available at http://poet.Jpl.Nasa.Gov/, last access: July 
2007.

Podesta, C. P., D ’Amico, A., Pavan, C., Drougas, A., Kommenou, 
A., and Portunato, N.: A review of Cuvier’s beaked whale strand- 
ings in the Mediterranean Sea, J. Cet. Res. Manag., 7, 251-261, 
2006.

Quetglas, A., Carboneli, A., and Sanchez, P.: Demersal continental 
shelf and upper slope cephalopod assemblages from Balearic Sea 
(north-western Mediterranean). Biological aspects of some deep- 
sea species, Est. Coast. Shelf Sei., 50, 739-749, 2000.

Redfern, J. V., Ferguson, M. C., Becker, E. A., Hyrenbach, K. D., 
Good, G., Barlow, J., Kaschner, K., Baumgartner, M., Forney, 
K. A., Ballance, L. T., Fauchald, P., Halpin, P., Hamazaki, T., 
Pershing, A. J., Qian, S. S., Read, A. J., Reilly, S. B., Torres, L., 
and Werner, F.: Techniques for cetacean-habitat modelling, Mar. 
Ecol. Prog. Ser., 310, 271-295, 2006.

Santos, M. B., Clarke, M. R., and Pierce, G. J.: Assessing the im­
portance of cephalopods in the diet of marine mammals and other 
top predators: Problems and solutions, Fish. Res., 52, 121-139, 
2 0 0 1 .

Sournia, A., Brylinski, J. M., Dallot, S., Le Corre, P., Leveau, 
M., Prieur, L., and Froget, C.: Fronts hydrologiques au large 
des côtes françaises : Les sites-ateliers du programme frontal, 
Oceanol. Acta, 13, 413-438, 1990.

Teloni, V.: Patterns of sound production in diving sperm whales in 
the northwestern Mediterranean, Mar. Mamm. Sei., 21, 446-457, 
2005.

Wada, S.: Genetic differentiation between two forms of short-finned 
pilot whales off the Pacific coast of Japan, Sei. Rep. Whales. Res. 
Inst., 39, 91-101, 1988.

Watwood, S. L., Miller, P. J. O., Johnson, M., Madsen, P. T., and 
Tyack, P. L.: Deep-diving foraging behaviour of sperm whales 
(Physeter macrocephalus), J. Anim. Ecol., 75, 814-825, 2006.

Whitehead, H., MacLeod, C. D., and Rodhouse, P.: Differences 
in niche breadth among some teuthivorous mesopelagic marine 
mammals, Mar. Mamm. Sei., 19, 400-406, 2003.

www.ocean-sci.net/4/49/2008/ Ocean Sei., 4, 49-59, 2008

http://modb.Oce
http://oceancolor.Gsfc.Nasa.Gov
http://poet.Jpl.Nasa.Gov/
http://www.ocean-sci.net/4/49/2008/

