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Chapter 1. Introduction, objectives and outline

Introduction

Seafood is a healthy food product which is necessary in human diet for the uptake of omega- 

3-fatty acids, several vitamins and trace elements. The public awareness of this health 

advantage leads to an increase in the demand for especially fresh and mildly preserved 

seafood. However, the very rapid spoilage of seafood, which is mainly due to microbiological 

activity, cannot easily be reconciled with a busy life style. The microbiota on seafood is 

matrix-specific and depends on many factors including the intrinsic properties of the species, 

the environment, water temperature, area of catch, and handling and processing procedures 

(Jay, 1986). The unpleasant and offensive off-odours and off-flavours that lead to sensory 

rejection by consumers and restricted the shelf life of the seafood are produced by 

microbiological degradation of soluble, low molecular weight components (Gillespie and 

Macrae 1975; Gram and Dal gaard 2002; Gram et al. 2002; Herbert et al. 1971; Shewan and 

Murray 1979). The volatile organic compounds (VOCs) associated with spoilage are 

produced by only a fraction of the microbiota present on the seafood during storage, generally 

known as “specific spoilage organisms” or SSOs (Dalgaard 1995). Each fish or fishery 

product will have its own SSOs and the number of these will, as opposed to the total number, 

be related to the shelf life. Therefore it is important to identify the SSOs and observe their 

spoilage potential in order to ultimately advise on measures for improving the quality and 

shelf life.

Objectives

■ Optimisation of the detection and identification techniques to obtain a broad view

of the microbiota present on seafood during air storage on ice.

■ Implementation of the optimised techniques for the identification and

characterisation of the dominant microbiota of two Flemish fishery products, 

brown shrimp and ray.

Outline

In Part I, culture-dependent (e.g. conventional plating techniques) as well as (molecular) 

culture-independent techniques [e.g. polymerase chain reaction - dénaturant gradient gel 

electrophoresis (PCR-DGGE)] were optimised. Chapter 3 outlines the limitations of the

1
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growth media currently used by food business operators, government agencies, retailers, 

distribution quality laboratories, and researchers.

The identification and characterisation of the dominant microbiota of brown shrimp and ray, 

targeted here were used to achieve more knowledge in the spoilage process of these fishery 

products, in order to achieve a better estimation of their quality and, where possible, to obtain 

an extension of shelf life (Part II and Part III). These fishery products were chosen based on 

their special characteristics correlated to a high sensitivity to spoilage, e.g. a very high 

number of non-protein nitrogenous compounds (NPN fraction) compared to other seafood, 

which are easily metabolised by microorganisms (Liston 1980). In Part II, the SSOs of 

brown shrimp (Crangon crangon) are described. Brown shrimp is a typical product of the 

Belgian fishery and recently its formulation without preservatives received the local quality 

label, “Purus”. It is exclusively caught in the North Sea and prepared by Flemish fishermen, 

predominantly in a traditional way. Chapter 4 outlines the dominant microbiota of brown 

unpeeled and peeled preservative-free shrimp during air storage under different 

temperature conditions. Special attention was given to the molecular identification of each 

isolate, since accurate species identification is required to link particular species to 

increased spoilage risks. Sequencing of household genes were used for species identification. 

The spoilage potential of the dominant isolates by their volatile organic compound 

(VOC) production on sterile shrimp was studied in chapter 5 via gas chromatography 

coupled to mass spectrometry (GC-MS) and selected ion flow tube mass spectrometry (SIFT- 

MS) analysis. Part III deals with the spoilage microbiota of ray (Raja sp.) during ice storage. 

Ray is a commercial elasmobranch fish species important for the Belgian market. 

Elasmobranch fish species are especially known for their short shelf life due to rapid 

ammonia production. In Chapter 6, the dominant microbiota of ray and their spoilage 

potential was studied under several conditions in order to postpone ammonia production.

In summary, this thesis contributes to the optimisation of detection and identification 

techniques used to observe and reveal the SSOs of seafood. These techniques were applied to 

identify and characterise SSOs of brown shrimp (Part II) and ray (Part III).

The research outline of this PhD study is presented in Figure 1.1.
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Chapter 2. Seafood spoilage and quality analysis techniques: a literature overview

Pa r t  I. Se afo o d  q u a lity  a sse ssm e n t s: o pt im isa t io n  o f  tr a d itio n a l  d et e c t io n

TECHNIQUES

Chapter 3. Seafood quality analysis: molecular identification of dominant 
microbiota after ice storage on several general growth media

Im p le m e n t a tio n  of  t e c h n iq u e s: id e n t ific a t io n  a nd  c h a r a c t e r isa t io n  o f  the

DOMINANT MICROBIOTA

P a r t  II. B r o w n  sh rim p  (Cr a n g o n  c ran g o n )-. T he d o m in a n t  m ic r o b io ta  a n d
THEIR SPOILAGE POTENTIAL

Chapter 4. Molecular identification 
of the microbiota of peeled and 
unpeeled brown shrimp (Crangon 
crangon) during storage on ice and at 
7.5°C

Chapter 5. Volatile compounds 
associated with Psychrobacter spp. 
and Pseudoalteromonas spp., the 
dominant microbiota of brown 
shrimp (Crangon crangon) during 
aerobic storage

P a r t  III. R a y  (Ra ja  sp .): T he d o m in a n t  m ic r o b io ta  a n d  t h e i r  s p o ila g e
POTENTIAL

Chapter 6. The spoilage microbiota of ray (Raja sp.) during ice storage under 
different conditions: molecular identification and characterisation of the 
spoilage potential

Ch a pt e r  7. G ener al  c o n c l u sio n s , r ec o m m e n d a tio n s  a nd  p er spec t iv es

Fig. 1.1. Research outline of this PhD study
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Chapter 2. Seafood spoilage and quality analysis techniques: A literature 

overview

Shortly after capture, death of seafood occurs. Upon death, physical and chemical changes 

caused by enzymes and microorganisms start to occur. Post mortem changes in seafood 

tissues will take place in three stages: (1) rigor mortis and slime secretion (for fish), (2) 

autolysis through enzymatic decomposition of tissues (biochemical changes) and (3) 

microbiological spoilage (Sen 2005).

2.1. Microbiological and biochemical changes after catch

2.1.1. Rigor mortis

The rigor mortis phase that occurs shortly after death, is caused by a series of changes due to 

the ceasing of respiration and anabolic processes. After death, the remaining oxygen will be 

depleted by ATP production. Anaerobic breakdown of glucose takes place, whereas ATP 

synthesis stops and hydrolysis starts (Fig. 2.1) (Sen 2005). The rigor mortis state is well

Nucleoside Hypoxanthine (Hx) 
phophonlase

A TP-ase mvokinase AMP-dcamituise
ATP -------------- > ADP  > .YMP--------------- > IMP

**" .5 'nucleotidase
Nucleoside
hydrolase

Inosine —  > Hypoxanthine (Hx)

+ Pi

Fig. 2. 1. Break down of ATP to hypoxanthine

understood in vertebrate muscle, but has not been investigated in many crustaceans, where for 

some it probably seems to be absent.

The stiffening of the muscles during rigor mortis is caused by ATP depletion. ATP is needed 

in muscle contraction and relaxation (Fig. 2.2). It supplies energy for the contraction and 

removal of calcium ions via a calcium pump, which breaks down the actomyosin complex, 

leaving the muscle ready for a further contraction. Upon death, ATP levels drop and calcium 

ions leak forming actomyosin. However, there is insufficient ATP for the calcium pump, so 

the actomyosin complex remains unbroken and the muscle is in a continual state of rigidness 

(Nicholls and Ferguson 2002).
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Rigor usually starts at the tail. Seafood remains rigid for a period which can vary from an 

hour to three days, depending on a number of factors. The onset of rigor mortis depends on 

the seafood, the catching technique (rough handling and stress can shorten the time of 

occurrence and duration of rigor mortis) and the temperature of the seafood (Kiessling et al. 

2006; Skjervold et al. 2001).

Relaxed muscle Rigor

-ATP

- Ca: '

+ ATP

Fig. 2. 2. Scheme of the contraction and relaxation of muscle in the presence and absence of ATP energy supply

The onset is correlated to the glycogen reserves of the muscle prior to death, which is directly 

related to the action and stress the fish has undergone prior to capture and death. The lower 

the glycogen reserve, the faster the onset; in active seafood, rigor mortis therefore proceeds 

very quickly (Skjervold et al. 2001). The higher the internal temperature, the sooner rigor 

mortis starts and the faster it ceases due to the faster enzymatic reactions (Kiessling et al. 

2006). Usually, the later rigor mortis begins and the longer it lasts, the longer is the storage 

life of the seafood. When muscles begin to soften and become limp again, the animal has 

passed through rigor and the muscle is in post-rigor condition (Stroud 2001).

2.1.2. Seafood spoilage by autolysis and biochemical changes during aerobic storage 

Seafood spoilage itself starts due to two causes: autolysis and microbiological activities (see 

2.1.4.).

Autolysis results in the breaking down of proteins, nucleotides, and sugars and the oxidation 

of fatty acids. This leads to a release of free bases and a pH drop. These make the seafood 

smelly, rancid, and tough. Tissue enzymes in the muscle break down desirable compounds 

into tasteless or bitter ones, whilst gut enzymes attack the internal organs and allow 

microbiological penetration into the flesh. Initially, the flesh is considered sterile; only the 

outer surface and the intestines contain bacteria (Shewan 1962). Once autolysis begins, the

5
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bacteria are able to enter the flesh, after which they rapidly multiply and decompose the 

muscle (Mukundan et al. 1986).

During autolysis, several biochemical changes occur (Mukundan et al. 1986). These changes, 

as described below, are often used as quality indicators (see 2.2.3.).

■ Some factors, such as slow freezing and variability of storage conditions will cause

protein dénaturation. A denatured enzyme will lose its water-holding capacity and will 

cause excessive dripping upon thawing (drip-thaw). The physical appearance of the flesh 

will change and it will become fibrous and tasteless.

■ Living seafood has a nearly neutral pH. Autolysis will decrease this pH due to the

anaerobic break down of glycogen via glycolysis to lactic acid. The concentration of

lactic acid depends on the muscles’ glycogen reserves prior to death. This decline in pH

(below 6.6) will affect the quality of the tissues, with a more firm flesh and the 

enhancement of drip.

■ The autolytic production of volatile bases. The total volatile bases (TVB) value is the 

total amount of volatile nitrogen compounds produced during storage. These nitrogen 

compounds such as trimethylamine (TMA) are produced due to autolytical, but especially 

due to microbiological activity (see 2.1.4.2.).

■ Lipid hydrolysis and oxidation are two major deteriorative changes and comprise: (1) the

enzymatic hydrolysis of lipids to fatty acids and glycerol and (2) the oxidation of fatty

acids yielding rancid odours and aromas, which are a major problem encountered in fish 

storage.

■ Nucleotide [adenosine triphosphate (ATP)] break down to hypoxanthine (Hx) (Fig. 2.1.). 

This biochemical change is also used in the “freshness” index (K-value), as described in

2.2.3.

2.1.3. Biochemical changes under aerobic conditions

Biochemical composition o f  seafood

In general, seafood flesh is composed of 66 to 81% water, 16 to 21% proteins, 0.2 to 25% 

lipids and 0.1 to 3% minerals (Love 1970; Stansby 1962). The chemical composition in 

seafood muscles depends on the type of seafood and also fluctuates depending on size,

6
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season, fishing grounds, feed intake (diet), migratory swimming, and sexual changes in 

connection with spawning (Shewan 1961).

Fresh and mildly preserved seafood are prone to rapid spoilage mainly due to their high 

number of non-protein nitrogenous compounds (NPN fraction) which are easily metabolised 

by microorganisms (Drosinos and Board 1994; Gili 1976; Liston 1980). This NPN fraction 

contains the water-soluble, low molecular weight, nitrogen-containing compounds of non

protein nature. The major components in this fraction (Fig 2.3) are volatile bases such as 

ammonia and trimethylamineoxide (TMAO), creatine, free amino acids, nucleotides and 

purine bases, and in case of cartilaginous fish, urea (Brown 1986; Huss 1995; Jay 1986; 

Shewan 1961).

t o o  -

8 0 -

60  ■

40  ■

2 0 -

A

H  Ammonia 

^  TMAO

S  Creatine and Creatinine 
M  Amino acids 

HD Nucleotides 

D  Urea
A Red sea bream 
B Jack mackerel 
C Shark 
D Ayu

Fig. 2. 3. Distribution of non-protein nitrogen in fish muscles of two marine bony fish (A, B), an elasmobranch 
(C), and a freshwater fish (D) (Konosu and Yamaguchi, 1982; Suyama et al., 1977).
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Biochemical changes during storage

When seafood is consumed, the quality is observed based on the sensory characteristics. 

These characters may be grouped as appearance, odour, flavour and texture. The odour of 

freshly caught seafood is described as a weak odour typical of the sea or sea weedy (Triqui 

2006). If seafood is held on ice from the time of catch, it retains its high quality for a short 

period of time depending on their characteristics. However, prolonged storage or 

inappropriate storage (e.g. at ambient temperature) may lead to the development of an 

undesirable “fishy” odour. During spoilage, microbiological degradation of soluble, low 

molecular weight components results in the formation of volatile metabolites such as alcohols, 

ketones, sulphur compounds [e.g. dihydrogen sulphide (H2 S), dimethyl sulphide (DMS) and 

dimethyl disulphide (DMDS)], amines [e.g. TMA, dimethyl amine (DMA)], esters, aldehydes 

and organic acids (Gram and Dalgaard 2002; Gram et al. 2002).

These metabolites are responsible for the unpleasant and offensive off-odours and off-flavours 

that lead to sensory rejection and shorten the shelf life of the seafood (Gillespie and Macrae 

1975;Herbert et al. 1971;Shewan and Murray 1979). Not all microorganisms on seafood are 

able to produce those metabolites, but mainly the SSOs. As shown in Table 2.1 for three 

major spoilage organisms, the produced volatiles are species-specific. In general, the capable 

microorganisms produce volatile metabolites in concentrations important for spoilage once 

they have reached a total count of 108-109 cfu/g (Dalgaard 1995b; Gram et al. 2002). Next to 

the potential of the microorganisms to form metabolites associated with spoilage, also the 

substrates for production need to be present in the matrix. The possible substrates for the 

production of the most important spoilage volatiles are listed in Table 2.2.

Especially the presence of TMA is considered a very important spoilage indicator for marine 

seafood, since this compound is the cause of the fishy smell that occurs during spoilage. The 

precursor, TMAO is typical for several marine seafood species. The TMAO concentration of 

seafood depends mainly on the depth that they live; the deeper the water, the higher the 

TMAO level in the muscles (Kelly and Yancey 1999). TMA is produced particularly by the 

decomposition of TMAO by Shewanella putrefaciens, Photobacterium phosphorenm , Vibrio 

spp., Aeromonas spp. and psychrotolerant Enterobacteriaceae (Fig. 2.4.).

These bacteria all contain the enzyme TMAO reductase that catalyses the reduction of 

TMAO. The compound is produced in much higher amounts when fish is stored under low 

oxygen conditions, since P. phosphorenm  and S. putrefaciens use TMAO instead of oxygen
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as final electron acceptor in their metabolism (Boskou and Debevere 1997; Dalgaard et al. 

1993; Gram and Dalgaard 2002). This makes TMA production a useful quality index method, 

but only during the middle and the last stages of spoilage when bacteria have invaded the fish 

flesh and reduce TMAO. TMA can be further converted in the muscle tissue into DMA and 

formaldehyde by enzyme action during frozen storage.

Table 2.1. The spoilage potential of three important spoilers based on their ability to produce volatiles

Microorganism Potential to produce 
spoilage volatiles

References

Photobacterium Alcohols (Chai et al. 1968; Dalgaard 2006; Olafsdottir et al.
phosphoreum 2005b)

Amines (Chai et al. 1968; Dalgaard 2006; Olafsdottir et al.
E.g. TMA 2005b)
Hypoxanthine (Chai et al. 1968; Dalgaard 2006; Olafsdottir et al. 

2005b)
Ketones (Chai et al. 1968; Dalgaard 2006; Nemecek-Marshall
E.g. acetone, acetoin et al. 1999; Olafsdottir et al. 2005b)

Pseudomonas spp. Alcohols
E.g. methanol, ethanol

(Chinivasagam et al. 1998; Freeman et al. 1976)

Amines 
E.g. TMA

(Nychas et al. 2007)

Ammonia (Reynisson et al. 2009; Schmitt and Schmidtlorenz 
1992)

Esters (Edwards et al. 1987; Freeman et al. 1976; Reynisson
E.g. ethyl acetate et al. 2009)
Ketones
E.g. acetone, 2-pentanone

(Chinivasagam et al. 1998; Pittard et al. 1982)

Sulphur compounds (Freeman et al. 1976; Nychas et al. 2007; Pittard et al.
E.g. DMS, DMDS, 
methylmercaptan

1982; Reynisson et al. 2009)

Shewanella Alcohols (Chinivasagam et al. 1998; Joffraud et al. 2001)
putrefaciens E.g. 2,3-butanediol, 2- 

pentanol
Amines 
E.g. TMA

(Joffraud et al. 2001; Reynisson et al. 2009)

Esters
E.g. ethyl esters

(McMeekin 1982)

Hypoxanthine (Reynisson et al. 2009)
Ketones (Chinivasagam et al. 1998)
Sulphur compounds (Freeman et al. 1976; Joffraud et al. 2001; Reynisson
E.g. H2S, methylmercaptan, 
DMDS

et al. 2009)

The association between seafood spoilage and volatile sulphides is well known (Varlet and 

Fernandez 2010). Due to the low odorant thresholds, those compounds can rapidly give a 

putrid odour to seafood (Chung and Cadwallader 1993). The odours corresponding to the 

production of sulphur compounds are described as rotten vegetable (e.g. cabbage) smell, 

onion or garlic odour, etc. (Varlet and Fernandez 2010). Sulphur-containing amino acids such 

as methionine and cysteine are the key components in the production of sulphur-containing 

volatiles in seafood (Varlet and Fernandez 2010). The measurement of sulphur-containing
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Table 2. 2. Possible substrates for the production of the most important volatile organic compounds (off-odours) 
by microbiological activity in (sea) food (Herbert and Shewan 1976; Nychas et al. 2007)

Volatile organic compound Possible precursor

Sulphides

Dimethylthioether Methanethiol, methionine

Dimethyldisulfide Methionine

Methyl mercaptan Methionine

Sulphur hydride Cystine, cysteine

Other

Ammonia Amino acids

Trimethy lamine Trimethy lamine oxide

volatiles is therefore a reliable indicator for the monitoring of seafood quality (Varlet and 

Fernandez 2010).

TMAO-

CH3 CHOHCOOH + (CH3)3 n o  ------------------ > CH3 COCOOH + (CH3)3 n  + h 2o

lactic acid TMAO reductase pyruvate TMA

C il, COCOOH 4  (CU)3 NO 4 11;( > ---- > CH3 COOH 4  (CH3)3 n  + c o 2 + H20

pyruvate TMAO acetic acid TMA

Fig. 2. 4. Reduction of TMAO to TMA by TMAO reductase.

The production of these off-odours depends not only on the intrinsic characteristics of the 

seafood species (e.g. chemical composition), but also on the extrinsic parameters such as the 

storage temperature and environment (Olafsdottir et al. 2006a). It should also be noted that 

chemical changes (e.g. the production of off-odours) occurring in naturally contaminated 

seafood differ significantly from those on sterile muscle tissue inoculated with spoilage 

organisms (Koutsoumanis and Nychas 1999). Single strains and mixtures of microorganisms 

will give different outcomes due to microbiological interaction (see 2.1.3.) (Joffraud et al. 

2001).

2.1.4. Microbiological spoilage of fresh seafood

Seafood is very sensitive to spoilage. The main factors limiting shelf life are microbiological 

activities. Microbiological spoilage can be manifested in visible growth, textural changes or 

off-odours and off-flavours (Gram and Dalgaard, 2002).
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The initial microbiota o f  marine seafood

Microbiological growth occurs immediately after rigor mortis, microbiological spoilage 

however does not. In general, seafood is contaminated with a wide range of microorganisms 

which occur naturally in the surrounding environment. The degree of microbiological 

contamination depends on several environmental factors such as the water temperature, salt 

content, the season of catch, fishing method, and the microbiological quality of the water, but 

also on species-specific factors, including the type of seafood and their diet (Feldhusen 2000; 

Gram et al. 1990; Grigorakis et al. 2003; Huss 1995; Jay 1986; Kaspar and Tamplin 1993; 

Tzikas et al. 2007; Zaballos et al. 2006).

Seafood from cold and temperate waters contains mainly psychrotrophic Gram-negative, rod

shaped, strictly aerobic or facultatively anaerobic microorganisms of the genera Aeromonas, 

Pseudomonas, Moraxella Acinetobacter, Shewanella, or Flavobacterium, or from the family 

of Vibrionaceae (Liston 1980). Gram-positive bacteria, such as Bacillus, Micrococcus, 

Clostridium, Lactobacillus, and coryneforms may occur, albeit to a lesser extent (Elotmani et 

al. 2004; Gennari et al. 1999). Although it is said that seasonal differences in the 

microbiological load are present, significant differences in species variation have not been 

observed (Elotmani et al. 2004). Also, the influence of the water temperature on the species 

variation is disputed. Shewan (1977) reported that seafood from tropical waters contain more 

mesophilic Gram-positive microorganisms such as Bacillus and Micrococcus. Several other 

authors found a microbiological contamination similar to those of temperate waters, but often 

with a slightly higher contamination degree of Gram-positives and enteric bacteria (Gram et 

al. 1990; Jay 1986; Liston 1980).

Influence o f  handlins and processing on the microbiota

Not only environmental features, but also (early) handling procedures [e.g. gutting, rinsing 

with seawater (see 2.3.1) and icing], as well as other processing procedures and storage 

conditions [e.g. filleting and packaging (see further)] are an important source of 

microbiological contamination and population shifts (Bagge-Ravn et al. 2003; Feldhusen 

2000; Huss 1995; Jay 1986; Nychas et al. 2007; Reynisson et al. 2009; Shewan and Georgala 

1957; Valdimarsson et al. 1998; Zapatka and Bartolomeo 1973).

One of the most important procedures to deliver high-quality seafood is immediate icing 

(Akankwasa 1998). This is beneficial for the onset of rigor mortis, but also much lower 

counts of microorganisms are found when the seafood is kept on ice. Thereby, different ways

11
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of icing (e.g. flake ice or slurry ice) are often compared and often a difference in the general 

microbiological quality of the seafood is observed (Rodriguez et al. 2005). For many food 

products, including seafood, superchilling results in better quality when compared to 

conventional chilling (Duun and Rustad 2008; Fagan et al. 2004; Wang et al. 2008). When 

superchilled, food products are stored between the freezing point of the products and 1 to 2°C 

below this. The surrounding temperature is set below the initial freezing point of the food, 

which is between -0.5°C and -2.8°C (Fennema et al. 1973) and depending on the method 

used, some ice is formed in the outer few millimeters. This is in contrast to conventional 

chilling on ice where the surface of the fish, when in direct contact with the ice, is 0 ± 0.5°C. 

When the ice does not make contact with the seafood, the temperature will be slightly higher. 

Superchilling can be performed in several ways, using crushed melting ice and additional 

refrigeration or by using cold air tunnels (most effective). This superchilling may delay the 

microbiological growth of microorganisms such as Photobacterium phosphoreum  while other 

dihydrogen sulphide (H2 S)-producing bacteria, most likely Shewanella spp., are not affected 

(Olafsdottir et al. 2006b).

Specific spoilage organisms (SSOs) o f  marine seafood

Research has revealed that the total number of microbiota on seafood is not responsible for 

spoilage, but rather only a small fraction of the microorganisms, the SSOs (Dalgaard 1995b). 

SSOs must be enumerated and eventually identified for quality control or determination of the 

remaining shelf life (Dalgaard 1995a). SSOs are specific to each seafood species and storage 

conditions (Table 2.3. and 2.4.), and are still unknown for most seafood. Microorganisms such 

as Pseudomonas, Shewanella putrefaciens, Shewanella baltica, Photobacterium phosphoreum  

and Brochothrix thermosphacta are commonly known SSOs of seafood during cold storage 

(Dalgaard 1995b; Dalgaard et al. 1997; Emborg et al. 2002; Gram et al. 1990; Gram and Huss 

1996; Lauzon et al. 2009; Mejlholm et al. 2005; Olafsdottir et al. 2006a; 2006b; Paarup et al. 

2002; Vogel et al. 2005). The microbiological activity and especially the formation of 

volatiles (see 2.1.3.) such as TMA, ammonium and FES of SSOs such as Shewanella sp., 

Photobacterium phosphoreum  and Pseudomonas sp. (Dalgaard 1995b; Koutsoumanis and 

Nychas 1999; Tryfinopoulou et al. 2002; Vogel et al. 2005), contribute to the off-flavours and 

taste associated with spoiled seafood. A close relationship between the log number of the 

SSOs and the shelf life may be expected (Dalgaard 1995a).

12
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Population shifts during different storage conditions

During storage, the composition of the initial microbiological population may shift 

(Reynisson et al. 2009; Shewan and Georgala 1957). In general, seafood is kept in chilled 

storage and preferable on ice. This allows the psychrotolerants (e.g. Pseudomonas spp.), 

which grow optimal at chilled conditions, to dominate the microbiota during storage (Castell 

and Mapplebeck 1952; Moore et al. 2006; Tryfinopoulou et al. 2002). Air stored chilled or 

iced conditions often promote the growth of Pseudomonas spp., Shewanella putrefaciens, and 

Psychrobacter immobilis (Gennari et al. 1999). Temperature fluctuations will influence the 

microbiota during storage. For instance, abusive temperature can create an optimal 

environment for strong microbiological spoilers such as Photobacterium phosphoreum or 

other microorganisms which are able to produce biogenic amines (Olafsdottir et al. 2006b).

The microbiota and shelf life of seafood will also be influenced by storage conditions (Table 

2.3) such as aerobic storage, vacuum or modified atmosphere packaging (MAP) (Table 2.4) 

(Poli et al. 2006). MAP packaging will extend the shelf life of fresh fish significantly due to 

its inhibitory effect on microbiological growth. It will also reduce certain undesirable 

physiological, chemical/biochemical and physical changes in foods (Floros and Matsos 2005).

Table 2.3. Seafood SSOs for fresh seafood stored under different conditions

Product SSO References
Fresh chilled seafood Shewanella putrefaciens. Pseudomonas (Gram and Huss 1996;Molin and

spp. Stenström 1984)

Fresh chilled seafood vacuum or Lactic acid bacteria (LAB), (Dalgaard et al. 1993;Gramand
MAP packed Photobacterium phosphoreum, Huss 1996;Jeppesen and Huss

Brochothrix thermosphacta 1993;Rudi et al. 2004)
Fresh seafood stored at >10°C Vibrionaceae, Enterobacteriaceae (Lindbergetal. 1998;Molinand 

Stenström 1984)
Cooked shrimp, MAP stored LAB, Brochothrix thermosphacta (Dalgaard et al. 2003;Dalgaard and 

Jorgensen 2000)

The best known SSO of fresh MAP packed seafood is Photobacterium phosphoreum. 

(Dalgaard 1995b; Dalgaard et al. 1993; 1997). Based on the gas mixture (Table 2.4), MAP 

packed fresh seafood, may reduce the growth of several microorganisms important for the 

production of off-odours and off-flavours such as Pseudomonas spp., Aeromonas spp., and 

Shewanella putrefaciens. These are all microorganisms which are able to outcompete other 

microbiological groups/microorganisms when air stored (Table 2.3) (Gennari et al. 1999; 

Gram and Huss 1996; Hansen et al. 2007; Lalitha et al. 2005; Leroi 2010; Poli et al. 2006).
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Table 2.4. Effect of gas composition on the specific spoilage organisms dominating fresh fish stored at 0 to 4°C 
under different gas atmospheres (Gram and Huss 1996; Gram and Huss 2000; Huss et al. 1997; Lalitha et al. 
2005; Poli et al. 2006)

Gas composition Microorganisms in fish

Air Shewanella putrefaciens, Pseudomonas spp.

>50% C02 with 0 2 Brochothrix thermosphacta, S. putrefaciens

50% C02 Photobacterium phosphoreum, lactic acid bacteria

(LAB)

50% C02 with 0 2 P. phosphoreum, LAB, B. thermosphacta

100% C02 LAB

Vacuum packed Pseudomonas spp., P. phosphoreum

Interactions amons spoilage bacteria

The microbiological association and subsequent chemical changes that occur during spoilage 

depend on environmental conditions but also microbiological interactions are of great 

importance (Gram and Melchiorsen 1996; Gram et al. 2002). Several types of interactions 

between food spoilage bacteria can be observed, such as antagonism and metabiosis (inter

dependency) (Gram et al. 2002).

The promotion of changes in the environmental conditions, e.g. decreasing pH, can create a 

selective advantage. Competition for nutrients, such as minerals, proteins and amino acids, 

may also select for the microorganisms best capable of utilizing the limiting compound. An 

important parameter in fish is the limiting concentration of iron (Gram 1994). Several bacteria 

growing on seafood produce siderophores (Gram and Melchiorsen 1996) that are only 

induced when the iron concentration is low. Especially Pseudomonas spp. isolated from fish 

are prominent producers of siderophores (Gram 1993). When Pseudomonas spp. are grown in 

co-culture with Shewanella putrefaciens, the growth of the latter is inhibited. Other examples 

comprise certain Gram-negative microorganisms which produce NH3 and TMA, toxic to a 

number of other bacteria and sometimes to the producing organism itself. Also lactic acid 

bacteria (LAB) are able to outcompete other microorganisms (e.g. Listeria monocytogenes) 

for essential nutrients and to decrease the pH via the production of lactic acid or the 

production of antimicrobiological peptides (bacteriocins) (Adams and Nicolaides 1997; 

Buchanan and Bagi 1997; Nilsson et al. 1999). Therefore, more and more research focusses 

on a possible role as natural preservative of LAB in seafood (Leroi 2010).

Next to antagonism, innumerable ways of inter-dependency (metabiosis) exist between 

different organisms, such as the production of off-odours by a mixture of microorganism and

14



Seafood spoilage and quality analysis techniques: A literature overview

not by the strains individually. Joffraud et al. (2001) have observed that the separate 

inoculation of three Gram-negative bacteria (Shewanella, Photobacterium and Aeromonas) 

did not cause spoilage in cold-smoked salmon. However, when one of those was co

inoculated with B. thermosphacta and Carnobacterium maltaromaticum spoilage off-odours 

were produced. Therefore, Jorgensen et al. (2000) created the term “metabolic spoilage 

association” (MSA) to describe situations where two or more microbiological species 

contribute to spoilage through metabolite or nutrient exchange.

2.2. Quality assessments of seafood in the industry

The quality can be explained by several sensory, microbiological, biochemical and physical 

parameters (Fig. 2.5).

volatiles
High levels of fresh odour compounds 

Low levels of spoilage odour compounds 
Low levels ofTMA and TVB

Microbiology
Low microbial

counts

Sensory analysis
Characteristic freshness 

attributes (flavour 
appearence, texture)

ATP
Low K value F i s h  q u a l i t y

Lipids
Initiation of enzymatic oxidation 

No autoxidation 
Low hydrolysis Physical

Low temperature/short storage time 
No structure and texture changesProtein

Limited
proteolysis

Fig. 2. 5. Summary of the various approaches used to evaluate fish quality according to Olafsdottir et al. 
(1997). The K value is defined as the ratio of the sum of inosine and hypoxanthine concentrations to the 
total concentration of adenosine triphosphate (ATP) catabolites. TMA: trimethylamine; TVB: total volatile 
bases.

2.1.1. Sensorial evaluation of the seafood quality

The sensorial evaluation of seafood is defined as the discipline used to evoke, measure, 

analyse and interpret characteristics of the food as perceived by the senses of sight, smell, 

taste, touch and hearing (Olafsdottir et al. 1997). When seafood deteriorates, its characteristic 

appearance, odour, taste, and texture change. Therefore, the quality of seafood is determined 

by the sensorial evaluation based on a number of external features such as skin, eyes, slime, 

gills, incision, texture, and taste by highly specialized trained assessors. In Europe, the most 

commonly used method for the quality assessment of raw seafood is the European Union
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(EU) scheme (Anonymous 1996). The EU scheme uses three different classes of freshness: 

E(xtra), A and B. The E class stands for the highest quality, whereas seafood below the B 

class quality is not suitable for consumption. This scheme does not take into account 

differences between species since only general parameters are used (Olafsdottir et al. 1997). 

An alternative scaling method is the quality index method (QIM). This method has been 

suggested since it uses precise, objective and independent descriptions of the individual 

grades for each species individually (Larsen et al. 1992). The QIM is based on the significant 

sensorial parameters for raw seafood. The scores for all of the characteristics are then added 

to give an overall sensorial score, the quality index, which can be used to predict storage life. 

The QIM score will linearly increase with the storage time on ice. Since the potential storage 

time on ice is known for each product, also the remaining shelf life can be calculated based on 

the QIM score. Bekaert at al. (2007) have developed QIM parameters for several North Sea 

fish species and other fishery products.

2.2.2. Evaluation of the microbiological quality of seafood

The main factor limiting shelf life of fresh seafood is microbiological activity. In order to 

measure the microbiological quality of seafood, several parameters are observed (Table 2.5). 

When seafood reaches a microbiological contamination level associated to the end of shelf 

life, the seafood will be considered not appropriate for consumption. As described in chapter 

3, quality control and potential shelf life of fish is currently still often estimated based on the 

total aerobic psychotropic count (APC). As recommended by the International Organization 

for Standardization (ISO), the psychotropic enumeration of microorganisms on food, 

including fish, must be performed on plate count agar (PCA) without addition of extra salt or
7  8 *minerals. It is assumed that an APC of 10 -10 cfu/g is reached when spoilage becomes 

organoleptically detectable (Liston, 1980). Standards, guidelines, and specifications as part of 

purchase agreements of chilled fish quality only accept a much lower APC of IO6 cfu/g for 

human consumption (Anonymous, 1986). Next to the APC, the presence of other 

microorganisms e.g. LAB and hygiene indicators and pathogens, yeasts and mould are 

observed [Table 2.5. (raw seafood) and Table 2.6. (cooked seafood)].

More recently it was shown that the correlation between the SSOs such as Shewanella 

putrefaciens and Photobacterium phosphoreum  and freshness is much higher than between
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Table 2. 1. Summary of the microbiological parameters and values in relation to the microbiological quality of 
raw seafood (Uyttendaele et al. 2010). * = legal limit.

Parameter Goal (cfu/g) Tolerance
(cfu/g)

End of shelf life
(cfu/g)

Total aerobic psychotropic count IO5 IO6 IO7

Psychotropic lactic acid bacteria IO2 IO3 IO7

Yeasts IO2 IO3 IO5

Moulds IO2 IO3 No visual growth

Escherichia coli IO2 IO3 IO3

Coagulase positive staphylococci IO2 IO3 IO3

Sulphite reducing bacteria IO2 IO3 IO5

Salmonella spp. Absent in 25g Absent in 25g Absent in 25g

Listeria monocytogenes* Absent in 25g Absent in 25g IO2

APC and freshness (Chai et al. 1968;Gram et al. 1987;Herbert et al. 1971;Jorgensen et al. 

1988). The presence of these SSOs at the beginning of storage life, in combination with the 

storage conditions can be used to provide accurate information of the remaining shelf life and 

the safety (ability of pathogens to grow) of the seafood by mathematical models such as SSSP 

(seafood spoilage and safety predictor) (Dalgaard et al. 2002).

Table 2. 2. Summary of the microbiological parameters and values in relation to the microbiological quality of 
cooked seafood with post-cooking contamination (Uyttendaele et al. 2010). * = legal limit.

Parameter Goal (cfu/g) Tolerance
(cfu/g)

End of shelf life
(cfu/g)

Total aerobic psychotropic count IO3 IO5 IO6

Total anaerobic psychotropic count IO3 IO4 IO6

Psychotropic lactic acid bacteria IO2 IO3 IO7

Yeasts IO2 IO3 IO5

Moulds IO2 IO3 No visual growth

Enterobacteriaceae 5x IO1 5x IO2 n.a.

Escherichia coli <10' 5x IO1 5x IO1

E. coli * 10° IO1 IO1

Coagulase positive staphylococci* IO2 IO3 IO3

Sulphite reducing bacteria IO2 IO3 IO5

Salmonella spp. * Absent in 25g Absent in 25g Absent in 25g

Listeria monocytogenes * Absent in 25g Absent in 25g IO2

Bacillus cereus* IO2 IO3 IO5
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2.2.1. Evaluation of the quality of seafood based on biochemical methods 

Odour is one of the most important parameters to observe seafood quality. Therefore, the 

measurement of volatile compounds can be used to monitor quality. The volatile compounds 

characterizing spoilage can be characterized as sweet, fruity, ammoniacal, sulphur and putrid 

(Olafsdottir et al. 1997) and comprise alcohols, ketones, sulphur compounds (e.g. H2S, DMS 

and DMDS), amines (e.g. TMA, DMA), esters, aldehydes and organic acids (Gram and 

Dalgaard 2002; Gram et al. 2002). Classical chemical methods to observe seafood quality are 

mainly the analysis of TMA, TVB, and the K-value (Olafsdottir et al. 1997). As described in 

2.1.4., TMA is considered a very important spoilage indicator for marine seafood, since this 

compound is the cause of the fishy smell that occurs during spoilage.

TVB analysis includes the measurements of TMA, DMA, ammonia and other volatile base 

nitrogen compounds produced by microbiological degradation of proteins and amino acids 

(Gram and Huss 1996; Olafsdottir et al. 1997).

The K-value or “freshness” index concerns the nucleotide degradation to hypoxanthine. The 

production of hypoxanthine is in many seafood species paralleled by the development of 

TMA (Jorgensen et al. 1988). Hypoxanthine can be formed by autolytic decomposition of 

nucleotides (see 2.1.1. and 2.1.2. and Fig 2.1), but also by microbiological activity, which 

displays a higher formation. Several spoilage bacteria produce hypoxanthine from inosine or 

inosine monophosphate, including Pseudomonas spp., S. putrefaciens and P. phosphoreum  

(Jorgensen and Huss 1989; Surette et al. 1988; Van Spreekens 1977). The K-value is 

determined by the formula in Figure 2.7 (Saito et al. 1959):

[Ino] + [Hx]
K% = ------------------------------------------------------------------

[ATP] + [ADP] + [AMP] + [IMP] + [Ino] + [Hx]

Fig. 2. 6. The K-value formula by Saito et al. (1959). where [ATP], [ADP], [AMP], [IMP], [Ino] and [Hx] 
represent the concentrations of these compounds in fish muscle measured at various times during chilled storage. 
Ino= inosine, Hx= hypoxanthine, ATP= adenosinetrifosfaat, ADP= adenosinedifosfaat, AMP= 
adenosinemonofosfaat, and IMP= inosine monophosphate.

More recently, a rapid assessment of volatile compounds using gas sensors (electronic noses) 

is of increasing interest (Haugen et al. 2006;Haugen and Kvaal 1998;Haugen and Findeland 

2003;Jonsdottir et al. 2008;01afsdottir et al. 2005a).
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2.2.2. Evaluation of the quality of seafood based on physical methods 

Physical changes in seafood are mainly related to structure and colour. To determine 

structural changes several techniques can be used in the industry such as texturometers, 

macroscopy, and microscopy (Olafsdottir et al. 1997). Changes in freshness can also be 

measured by the dielectrical properties of the muscle. As seafood spoil, microbiological and 

enzyme activity within the muscle structure breaks down the cellular structure in a slow and 

systematic way. Dielectric changes are caused which can be observed with, for instance, the 

Torry meter or the Fishtester. These methods can however not be used for thawed seafood or 

seafood stored in chilled seawater, and also the use for fish fillets is limited since a water-ice 

content with high salt content and mechanically damaged fish may cause erroneous results. 

The advantage of this method is the immediate response, the possibility for field use, and the 

fact that there is no need for experienced personnel (Olafsdottir et al. 1997).

Changes in seafood quality can also be correlated with colour changes. For instance, 

fluorescent spectra can be used to determine whether seafood has been frozen and to 

determine the time of storage since the intensity decreases with time storage on ice 

(Olafsdottir et al., 1997).

2.3. Target species

2.3.1. Brown shrimp (Crangon crangon)

Biology, fishery and the importance o f  the species in Belgium

About 1950 different families of shrimp have been described worldwide, of which 330 

families are used for consumption. Brown shrimp (Crangon crangon) belong to the family of 

the Crangonidae or sand shrimp, which can be found in cold to average waters in the 

Northern hemisphere. These are highly reproductive crustaceans with a short life time of 

about one to possible three years. The distribution ranges from the North Atlantic (Norway, 

Iceland) to North African waters and the Mediterranean. However, only shallow coastal 

waters such as the southern North Sea give abundance rates that form the basis of an intensive 

fishery (Anonymous, 2010). Especially the countries in North-West Europe intensively catch 

North sea shrimp, with an annual supply of maximal 3500 tonnes, which places the brown 

shrimp in the top 10 of the most important commercial shrimp species. The Netherlands, 

Denmark, and Germany represent about 95% of the total North Sea production. Over 80% of 

the EU market is controlled by two Dutch companies, Heiploeg and Klaas Puul, which buy 

about 30000 tonnes of brown shrimp a year. Brown shrimp is considered as a speciality in
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Belgium, which makes Belgium the main consumer market with more than half of the total 

EU market (1500 tonnes) for brown shrimp (Anonymous, 2010). Although Belgium has a 

smaller fleet with a lower production, brown shrimp is amongst the top 10 species (in terms of 

supply as well as of value) for the Flemish fleet (Anonymous 2009b). In 2010, Flanders’ 

fishermen caught 1563 tonnes of shrimp, whereas 588 tonnes were landed in Flanders’ 

harbours. This could count for approximately 29 million euro. Although 2010 was a relatively 

good year, shrimp fishermen earned a lower amount of money per fishing day in comparison 

with fishermen targeting other fish species. The shrimp landed in Belgian harbours by 

Flemish fishermen are artisanally processed on board of the vessels.

Microbial quality and spoilage o f  crustaceans

Crustaceans such as brown shrimp are prone to rapid microbiological spoilage. This is due to 

the neutral pH, high water activity (aw), and a high NPN fraction (Liston 1980; Mendes et al. 

2002a). However, to date not much research on the microbiological quality or spoilage of 

brown shrimp has been carried out. Since cooked shrimp are ready-to-eat products, it is 

important to follow the microbiological quality and the presence of pathogens. In a study 

performed in The Netherlands in 1991, it was seen that many samples of especially brown 

shrimp exceeded the maximal microbiological contamination degree based on aerobic counts 

(at 30°C) of IO6 (CODEX norm) and even IO7 log cfu/g (ICMSF norm) (Jonker et al. 1992). 

This is in contrast to tropical shrimp, where much lower concentrations of preservatives may 

be used. During the years, the microbiological contamination of shrimp has improved. In 

1981, 89% of the tested shrimp samples would be unacceptable for purchase, wheras in 1992 

this number was already reduced to 27% and in 2000 only 13% was considered unacceptable 

(Jonker et al. 2000). The microbiological levels and norms concerning the conservation of 

unpeeled and peeled brown shrimp are listed in Table 2.6 and 2.7.

Table 2. 7. Microbiological levels and norms concerning shrimp (Bon 1996).

Mesophilic aerobic total count (cfu/g) Description
IO2 Shrimp, immediately after cooking
IO3 Rinsing and cooling of the shrimp with clean seawater
IO4 m= below limit maximal count of unpeeled shrimp
5x IO4 m= below limit maximal count of peeled shrimp
IO5 M= upper limit maximal count of unpeeled shrimp
5x IO5 M= upper limit maximal count of peeled shrimp
IO6 Sensorial limit for rejection of shrimp without preservatives
IO7 Sensorial limit for rejection of shrimp with preservatives

20



Seafood spoilage and quality analysis techniques: A literature overview

Influence o f  handling and processing offish on the microbiota 

Processing on board

On board processing starts with immediate sorting of the shrimp and the fish caught in the 

nets. During sorting, fish is manually or mechanically removed from the shrimp fraction. The 

shrimp are placed in baskets of about 20 kilo. One by one, the baskets are poured in a large 

cooking jar on deck in approximately 100 litres of boiling seawater with an extra cup of sea 

salt added. When the 20 kilos of cold shrimp are poured into the boiling water, the 

temperature immediately drops to 86 - 92°C. The shrimp are ‘cooked’ for a maximum of 2 to 

4 minutes. In a study observing the cooking process of white shrimp (Penaeus indicus), it was 

found that a boiling time of 3 minutes is enough to reduce the number of microorganisms with 

4 log and to inactivate enzymes causing melanosis in boiled shrimp (Niamnuy et al. 2007). 

For brown shrimp, the time of cooking is considered as a delicate balance between 

microbiological decontamination (degree of maximal contamination IO5 logio cfu/g) and 

shrimp quality. Texture is considered to be the most important sensorial quality attribute since 

it may change dramatically during extended cooking, while the characteristic shrimp flavour 

develops relatively early during the process and does not change substantially after prolonged 

heating (Ma et al. 1983; Niamnuy et al. 2007). After cooking, the shrimp are immediately 

cooled down for about 5 minutes in a rinsing machine where cold clean seawater is poured 

over the cooked shrimp. In theory, clean seawater means seawater, salt or brackish water that 

does not cause microbiological recontamination. However in practice, cooling with seawater 

recontaminates the shrimp with psychrophilic microbiota. Van Spreekens and de Man, 

however, reported that this recontamination also occurs when the shrimp are cooled to the air 

or by ice (1970). This cooling decreases the shrimp’s temperature to approximately 15°C. The 

cooled shrimp are stored below deck in a cold room covered with ice until landing the 

following morning. During storage on board as well as on land, temperature is very important 

in relation to shelf life; the lower the temperature, the longer the shelf life (Dalgaard and 

Jorgensen 2000). Different ways of icing and rapid cooling are reflected in the shelf life; Zeng 

et al. (2005), showed that storage in liquid ice and superchilling (-1.5°C) are beneficial for the 

shrimp’s shelf life.

Processing on land

Once on land, the shrimp are landed near the fish auction where a quality control is performed 

based on temperature and microbiological contamination. The freshness and size category of
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the shrimp is determined based on a few criteria (Anonymous 1996) as described in Tables 

2.8 and 2.9.

Between the cooking of shrimp and consumption, diverse processing steps occur which all 

may contribute to post-catch contamination of the product. The longer the processing 

line/time, the higher the contamination degree (Wiedemeijer and Pateer 1984). Once the 

shrimp enter the fish auction, they are generally immediately treated with preservatives in 

order to prolong the shelf life. Mostly benzoic acid (E210) and sorbic acid (E200) or the 

derived salts (sodium benzoate E211 and sodium sórbate E201) are added. Since those 

products can have a negative consequence for human health, the maximum concentration 

allowed is regulated by law. For most shrimp species, 2 grams per kilo is the upper limit; for 

Crangon crangon shrimp the legal limit is three times higher (0.6%) in accordance with the 

ELI standard (Anonymous 1995). Often organic acids such as citric acid (E330), acetic acid

Table 2. 8. Freshness parameters of common shrimp (Crangon crangon) as described by the Council 

Regulations No 2406/96 (Anonymous 1996).

Criteria 
Freshness category 

Extra A
Minimum ■ Surface of shell: moist and shiny ■ The same as for Extra
requirements Shrimp must fall out separately when 

transferred from one container to 
another

■ Flesh must be free from any foreign 
odour

■ Shrimp must be free from sand, mucus 
and other foreign bodies

category

Appearance of ■ Clear reddish-pink in colour with ■ Ranging in colour from
shrimp with shell small white flecks; pectoral part of slightly washed-out

shell predominantly light in colour reddish-pink to bluish-red 
with white flecks; 
pectoral part of shell 
should be light coloured 
tending towards grey

Condition of flesh ■ Shells easily with only technically ■ Shells less easily with
during and after unavoidable losses of flesh small losses of flesh
peeling ■ Firm but not tough ■ Less firm, slightly tough
Fragments ■ Occasionally fragments of shrimp ■ Small quantity of

allowed fragments of shrimp 
allowed

Smell ■ Fresh seaweed, slightly sweet smell ■ Acidulous; no smell of
seaweed
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Table 2. 9. Quality parameters concerning the size of common shrimp (Crangon crangon) as described by the 

Council Regulations No 2406/96 (Anonymous 1996).

Scale of size for Crangonid shrimp (Crangon crangon)
_________Size_______________________________ Kg/fish_1_____________________

1 6,8 ïmn and over2
__________ 2_____________________________ 6.5 ïmn and over__________________

1 The categories of weights include fish from the lower limit up to, but excluding, the upper limit;2 
Width of shell

(E260), lactic acid (E270), glucono delta-lactone (E575) or the derived salts thereof are added 

too since the above-listed preservatives function more effective at lower pH values. To avoid 

discolouration, sodium metabisulfite (E223) is often added. Another possibility to decrease 

the microbiological contamination is irradiation. Irradiation of frozen shrimp is limited to a 

few countries such as France, The Netherlands, and Belgium (Diehl 1992). Adding 

preservatives in high concentrations is mainly needed because of the extra microbiological 

contamination pressure during the peeling process. Brown shrimp are currently still hand- 

peeled in low-cost countries, such as Morocco, in large temperature-regulated peeling centres. 

For peeling in low cost countries, lorries drive up and down with shrimp kept in climate- 

controlled conditions. Approximately two weeks later, the hand-peeled shrimp return and can 

be packed in modified atmosphere packages (MAP). A MAP package with 45% CO2 . 5% O2  

and 50% N 2  seems to be the most effective to preserve pink shrimp quality up to 9 days 

compared to 4 to 7 days for ice storage (with pre-treatment with preservatives) (Goncalves et 

al. 2003).

Some of the shrimp are processed according to the PURUS standards, indicating that no 

preservatives are added ('http://hirammedia.tvpepad.com/purus/purus.html (16/01/2012)). 

PURUS indicates artisanal products that have received a regional product label. Those shrimp 

are offered on the market within 24 hours after catch. The shrimp are size-sorted and are 

offered unpeeled and peeled in MAP package. Peeling of the shrimp generally decreases the 

total count by 0.5 log, indicating that the carapax of the shrimp is the most contaminated area. 

However, cross-contamination between the carapax and the inner flesh of the shrimp during 

peeling seems unavoidable. The peeled shrimp are locally machine peeled.

Enterobacteriaceae may indicate unhygienic processing circumstances (Jonker et al. 2000).
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New trends in shrimp fishery

To date, experiments with electrical fishing gear are going on (Polet et al. 2005), because the 

traditional beam trawling fishing technique causes stress on the seabed and all its inhabitants 

and results in a very large by-catch.

Nowadays, some shrimp are kept alive on board until sold ('http://www.northsealife.be/ 

(22/08/2011). Since further processing occurs on land, microbiological contamination and all 

processing steps can be better monitored

Popidation shifts during different storage conditions

To supply all year around, shrimp are often freeze-stored. Processing procedures such as 

freezing/thawing and long frozen storage influence the colour and texture of brown shrimp. 

Freezing/thawing has a stronger influence on texture (hardness, chewiness, resilience, 

springiness and cohesiveness) and colour stronger than prolonged frozen storage (Schubring 

2002). According to Makarios-Laham and Lee (1993), psychrophilic microorganisms may 

contribute to deterioration of seafood even during frozen storage. In the latter study, slow 

microbiological growth was measurable at -5°C and -8°C. Growth near subfreezing 

temperatures was mainly by Gram-negative, oxidase- and catalase-positive, coccobacilli- 

shaped cells; which were identified as Psychrobacter phenylpyruvicus by API tests (Tsironi et 

al. 2009).

SSOs o f  crustaceans

On brown shrimp, no records of SSO identification are reported. However, microorganisms 

such as Pseudomonas sp., Shewanella sp., Photobacterium phosphoreum  and Brochothrix 

thermosphacta are the common SSOs found on cold-stored crustaceans (Dalgaard 1995b; 

Gram and Huss 1996; Mejlholm et al. 2005; Vogel et al. 2005). However, the microbiota of 

chilled, lightly preserved (e.g. brined) shrimp such as Pandalus borealis seem often to be 

dominated by LAB (Dalgaard and Jorgensen 2000; Einarsson and Lauzon 1995; Jeppesen and 

Huss 1993). Especially Carnobacterium divergens, C. maltaromaticum and other unidentified 

Carnobacterium-\\kQ bacteria were isolated from spoilage associations of chilled seafood 

(Dalgaard et al. 2003; Mauguin and Novel 1994). LAB can originate from the intestinal 

content of live fish and shellfish (Ringo and Gatesoupe 1998).

Next to the presence of some typical species, such as Pseudomonads and Aeromonas spp., the 

presence of pathogens is important for the microbiological quality research of shrimp. 

Pathogens can be present from initial contamination but are mostly eliminated by cooking.
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Nevertheless, post-catch contamination may occur due to the cooling water or during peeling 

or packaging due to unhygienic conditions. The legal limits for pathogens such as E. coli are 

listed in Table 2.6. Also inappropriate storage temperature can threaten human health. For 

instance, Vibrio spp. are present in seawater, and can potentially recontaminate the shrimp via 

cooling water (Jonker et al., 2000).

Biochemical changes in crustaceans and quality

Endogenous enzymes and microbiological activities have a special role in the deterioration of 

crustaceans (Finne 1982). The determination of several chemical compounds such as TVBs, 

as well as nucleotides and their breakdown products, have been suggested as criterium for the 

evaluation of crustacean quality (Cobb and Mathews 1973; Mendes et al. 2002b).

2.3.2. Ray (Raia sp.)

Biology, fishery and the importance o f  ray in Belgium

In several European countries, including Belgium, ray (Raja sp.) represents the most 

commercialised elasmobranch fishery product. Ray is mainly caught in sandy European 

coastal shelf areas (Anonymous 2006) and is often a by-catch product of the fishery of sole 

and other commercial important flatfish. In the North Sea, especially thomback ray (R. 

clavata), spotted ray (R  montagni), and blonde ray (R. brachyura) are caught. In Belgium, 

ray belongs to the top three of fishery products in terms of supply with an annual catch around 

1500 tonnes the last years. In terms of value, ray belongs to the top 10 (Anonymous 2009a).

(Microbial) quality and spoilage

A typical fish spoilage phenomenon prior to rigor mortis is the production of slime in certain 

skin cells of the fish. The secreted quantity of slime depends on the fish species, with fish that 

have poorly developed scales secreting more. The secretion process stops with the onset of 

rigor mortis. This slime contains a high amount of nitrogenous compounds, which provides 

nutrients for the initial microbiota (see 2.1.3.). This slime will spoil very quickly and will 

facilitate the deeper microbiological penetration into the fish flesh.

9  7The initial microbiological contamination of fish varies between 10 to 10 cfu/cm2 on the
3  9skin in the outer slime layer and between 10 and 10 cfu/g on the gills and in the intestines, 

while the fish flesh is considered to be sterile (Shewan 1962).
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Influence o f  handling and processing o f  (elasmobranch) fish on the microbiota 

The early handling and processing of fish comprises next to icing (see 2.1.3.) also the removal 

of intestines (gutting) of freshly caught fish. Gutting has several benefits, including a decrease 

in (mesophilic) aerobic counts, and a lower amount of ThS-producing bacteria and 

Enterobacteriaceae (Erkan and Ozden 2008; Papadopoulos et al. 2003). Some studies, 

however, did not find any significant decrease in microbiological numbers, but did find that 

the SSOs were detected faster and in higher amounts in gutted fish (Erkan and Ozden 

2008;Karl and Meyer 2007). This observation might possibly be explained by cross

contamination during gutting.

Also, washing of the fish with seawater reduced the total viable counts and can be correlated 

with the removal of the outer slime layer, a source of nutrients for microorganisms (Erkan 

2007). The skin of fish also has a protective function; for instance filleted fish will have a 

faster increase of the microbiological counts than whole fish due to the removal of the skin 

which may slow down the microbiological penetration (Poli et al. 2006).

A characteristic of all elasmobranch fish is the occurrence of a high level (1.0 to 2.5%) urea in 

the muscles, blood, organs and skeleton (Huss 1995; Vyncke 1978a). During spoilage, urea 

breaks down with the formation of ammonia (see further). Often, the capture of ray in distant 

fishing areas means that the time elapsed between catch and arrival at the fish auction may 

vary from one to eight days. Therefore, intense and optimal refrigeration is a must to maintain 

fish of the highest quality (Bilinski et al. 1983; Múgica et al. 2007; Ocano-Higuera et al. 

2011; Ravesi et al. 1985; Vyncke 1978a). Moreover, the formation of ammonia may limit the 

commercialisation period of elasmobranch fish (Finne 1992; Vyncke 1978a). Hence, Vyncke 

set the borderline of acceptability of ammonia at 60-70 mg per 100 g ray (1978a). This fast 

deterioration caused that 1.5 to 4.0% of the rays docked in Belgian harbours were no longer 

suitable for consumption (Anonymous 2009a). Immediate icing of elasmobranch fish is 

essential to obtain a high quality product for a reasonable period of shelf life. Several studies 

performed on elasmobranch fish have shown that correct icing delays the formation of 

ammonia and TMA in the fish muscle; even a small change of 1.5°C (flake ice or slurry ice) 

will have an effect on the shelf life (Bilinski et al. 1983; Múgica et al. 2007; Ocano-Higuera 

et al. 2011; Ravesi et al. 1985; Vyncke 1978a). Once the rays are landed, a quality control 

based on sensorial characteristics is performed to determine whether the fish quality is high 

enough. This quality control and measurement of the size order is based on the parameters 

described in Tables 2. 10. and 2.11. according to the EU scheme (Anonymous 1996).
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Table 2. 10. Freshness parameters of ray species (Raja sp.) as described by the Council Regulations No 2406/96 
(Anonymous 1996).

Extra

Criteria 
Freshness category 

A
Not admitted

B
Eye

Appearance

Smell

Convex, very bright 
and iridescent; small 
pupils

In rigor mortis or 
partially in rigor; 
small quantity of 
clear mucus present 
on skin
Seaweed smell

Convex and slightly 
sunken; loss of 
brightness and
iridescence, oval 
pupils
Beyond rigor stage; 
no mucus on skin 
and especially in 
mouth and gili 
openings
No smell or very 
slight stale but not an 
ammonia smell

Flat, dull

Some mucus in 
mouth and on gili 
openings; slightly 
flattened jaw

Slight ammonia 
smell; sour

Concave yellowish

Large quantities of 
mucus in mouth and 
on gili openings

Pungent ammonia 
smell

Specific or additional criteria for skate
Skin

Texture o f the flesh 
Aspect

Belly

Bright, iridescent 
and shiny
pigmentation, 
aqueous mucus 
Firm and elastic 
Edge of the fins 
translucent and 
curved
White and shiny 
with mauvish edge 
around the fins

Bright pigmentation, 
aqueous mucus

Firm 
Stiff fins

White and shiny 
with red patches 
only around the fins

Pigmentation in the 
process of becoming 
discoloured and dull, 
opaque mucus 
Soft 
Soft

White and dull, with 
numerous red or 
yellow patches______

Discolouration, skin 
creased, thick mucus

Flaccid
Drooping

Yellow to greenish 
bellies red patches in 
the flesh itself

Table 2. 11. Quality parameters concerning size of ray species (Raja sp.) as described by the Council 
Regulations No 2406/96 (Anonymous 1996).

Scale of weights
Species________________ Size____________________Kg/fish
Whole skates 1 5 and over

2 3 to 5
3 1 to 3
4 0.3 to 1

Skate wings 1 3 and over
2 0.5 to 3

Since ray is offered as a fresh fishery product in Belgium, not much further processing is 

involved. The general processing concerns the gutting of the fish which is performed shortly 

after catch and removal of the wings. Proper gutting prolongs the shelf life, while an 

inappropriate gutting accelerates microbiological contamination and growth (Ravesi et al. 

1985). The ray wings are sold to consumers and are mainly stored on ice until purchased; in 

some supermarkets they are MAP packed. In some European countries, such as Spain, ray 

meat is also frozen and can be used in canned fish products (Pastoriza and Sampedro 1993).
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SSOs o f  elasmobranch fish

While several studies have observed the effect of handling and processing procedures on the 

production of ammonia, nothing is known about the microbiota on elasmobranch fish and its 

possible effect on the degradation of urea to ammonia.

Biochemical changes o f  elasmobranch fish under aerobic conditions

Biochemical composition o f  elasmobranch fish

The NPN fraction in the fish muscle causes the rapid decay by microbiological activities of 

fish. Especially elasmobranchs (such as rays) contain about twice as high a concentration of 

soluble components (e.g. urea and TMAO (see 2.1.4. and Fig. 2.3) as do other fish (Huss 

1995). In elasmobranch fish such as sharks and ray, a high concentration of urea is stored in 

the cartilaginous skeleton of the fish. This urea can be converted to ammonia due to autolytic 

and/or microbiological activity (Fig 2.7). Ammonia can also be formed together with H2S as a 

result of the conversion of cysteine to pyruvate by the enzyme cysteine desulfhydrase (Gili 

1982). The release of large amounts of ammonia will contribute to the development of 

spoilage odours. The main cause of ammonia production from urea (autolytic or 

microbiological) is currently not yet known (Múgica et al. 2007).

ÍNHAiCO + HA9
urease

v. COt + TMH-

Fig. 2. 7. Conversion of urea to ammonia due to urease activity.

Due to the high concentration of urea (2000 mg) in elasmobranch fish (Huss 1995; Vyncke 

1978a), the main reason for rejection is the production of ammonia. In fish other than 

elasmobranch fish, the post-mortem ammonia production arises from the enzymatic 

deamination of proteins, ammonia acids, and other nitrogen compounds. In elasmobranchs, 

the ammonia is mainly formed by the enzymatic degradation of urea. The enzyme responsible 

for this activity is thought to be urease, present in certain bacteria (Vyncke 1978a). Research 

concerning the quality of elasmobranch fish has shown that the fraction of urease-positive 

bacteria comprises 3 to 20 percent of the total aerobic count on elasmobranch fish stored on 

ice (Ravesi et al. 1985). When considered spoiled, the fraction of these urease-positive 

bacteria was 6.3 log cfu/g, while the total microbiological count at the point of spoilage was 

around 8 log cfu/g (Moyer et al. 1959; Ravesi et al. 1985). When dipping ray fillets in citric 

acid, a product known for its preservative action, the shelf life increased with a few days 

(Vyncke 1978b), indicating the possible microbiological role in spoilage. However, a study
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by Mugica et al. (2007) found that the ammonia production was correlated more with the 

activity of the endogenous mechanisms involved in the degradation of proteins and non- 

protein-nitrogen compounds (the NPN fraction), rather than with the activity of 

microorganisms. This was concluded due to the very low microbiological count when the fish 

was rejected by sensorial criteria (Múgica et al. 2007). Therefore, the main cause of ammonia 

production (autolytic or microbiological) is not exactly known.

The ammonia production in elasmobranch fish causes an increase in pH beyond the optimum 

for TMAO reductase (pH 7.2-7.4) (Castell and Snow 1949). Therefore, the production of 

ammonia could explain the rather low production of TMA during spoilage although the 

precursor TMAO is present in high levels (Elliot 1952). The concentration of TMAO in 

elasmobranch fish is two to three times higher than in cod (500-1000mg in elasmobranch fish 

compared to 350mg in cod), whereas in cod TMA production is the main cause of the 

spoilage (putrid fishy smell) in contrast to elasmobranch fish (Huss 1995).
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Preamble

Correct and profound seafood quality research depends on the detection o f  the microbiota 
present during storage and spoilage. Independent o f  the purpose (purchase agreements, 
governmental control, research fo r  shelf life improvement by SSO identification, ...) the first 
step is always creating a profound overview o f  the microbiota. In order to detect and identify 
the dominant microbiota on brown shrimp and ray, we first need to evaluate the general 
growth media currently used in seafood quality research.



Seafood spoilage and quality analysis techniques: A literature overview

C h a p t e r  3 

S e a f o o d  q u a l it y  a n a l y s is : m o l e c u l a r

IDENTIFICATION OF DOMINANT MICROBIOTA AFTER 
ICE STORAGE ON SEVERAL GENERAL GROWTH MEDIA

Redrafted from:

Broekaert, K., Heyndrickx, M., Herman, L., Devlieghere, F. and Vlaemynck, G. 2011. 

Seafood quality analysis: Molecular identification of dominant microbiota after ice storage on 

several growth media. Food Microbiology 28, 1162-1169.
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Chapter 3. Seafood quality analysis: molecular identification of dominant 

microbiota after ice storage on several general growth media

Abstract
This study points out the limitations of several general growth media frequently used in 

seafood research by a systematic identification of the microorganisms on fish samples during 

ice storage unable to grow on those media. Aerobic psychrotolerant count (APC), replication 

on various general media and total cultivable microbiological community PCR-denaturing 

gradient gel electrophoresis (PCR-DGGE) analysis revealed that many potential spoilage 

microorganisms were overlooked. Those microorganisms overlooked by using only one 

single growth medium were identified by partial 16S rRNA gene and gyrB  gene sequencing. 

Members of the genera Shewanella, Vibrio, Aliivibrio, Photobacterium, Pseudoalteromonas 

and Psychrobacter, including Photobacterium phosphoreum , Shewanella baltica and 

Pseudomonas fluorescens were unable to grow on PC A. APC analysis also confirmed that on 

plate count agar (PCA) the enumeration of the microbiota was underestimated. Although 

Long and Hammer agar (LH) and marine agar (MA) obtained the best quantitative (APC 

analysis) and qualitative (replication and PCR-DGGE analyses) results for fish quality 

analysis, analysts have to keep in mind that some species were also unable to grow on those 

media, such as Pseudomonas fragi and Acinetobacter sp.

I. Introduction

Fresh seafood is very sensitive to spoilage. The main factors limiting shelf life are enzyme 

and microbiological activities. Freshly caught fish are naturally contaminated with a diversity 

of microbiota which depends among other things on the environment, water temperature, area 

of catch, handling and processing procedures (Jay, 1986). During storage certain genera are 

able to grow very well and population shifts may occur depending on the storage conditions. 

As described in chapter 2, quality control and potential shelf life of fish is currently still often 

estimated based on the total aerobic psychotolerant count (APC). Standards, guidelines and

specifications as part of purchase agreements of chilled fish quality accept an APC of IO6
1 8cfu/g for human consumption (Anonymous, 1986). When reaching an APC of 10 -10 cfu/g, 

spoilage generally becomes organoleptically detectable (Liston, 1980). The ISO reference 

medium for the psychotolerant enumeration of microorganisms on food (ISO 17410; 

International Organization for Standardization, 2001), including fish, is plate count agar 

(PCA) without addition of extra salt or minerals. However, studies have reported that an APC
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underestimation of 1 logio cfu/g on PCA is plausible in comparison with growth media 

containing sodium chloride (NaCl) such as Long and Hammer agar (LH; Joffraud & Leroi, 

2000; Van Spreekens, 1974), which is recommended by the NMKL 184 (Nordic Committee 

of Food Analysis, 2006) method for the enumeration of psychotolerant microorganisms in 

seafood.

In this study, four different media often used in general fish quality control and research, i.e., 

PCA, MA (marine agar), LH and IA are compared. Since the initial microbiota is fish 

specific, the biggest microbiological variation during ice storage will be acquired by using 

several different fish species. Ten marine fish species and one brackish water fish were used 

in this study. These eleven fish samples mimic the high variety of fish species and broad 

variability in individual characteristics. The aim of this study is to provide a molecular 

identification of the most important microorganisms present in fish during ice storage that do 

not grow on some general growth media frequently used, in order to evaluate the usefulness 

of these media for seafood analysis. Denaturing gradient gel electrophoresis (PCR-DGGE) 

profiles visualizing the differences in the dominant microbiological community on the 

different media (by plate swabs), are used to support and illustrate the results from the plating 

and replication analysis.

II. Materials and methods

2.1. Raw material, preparation and storage

Eleven fresh, gutted fish samples were taken from a supermarket’s supply centre. Following 

fish species were selected: plaice {Pleuronectes platessa), common sole {Solea solea), 

European sea bass {Dicentrarchus labrax), gilthead sea bream {Sparus aurata), salmon 

{Salmo salar), whiting {Merlangius merlangus), mackerel {Scomber scombrus), pangasius 

{Pangasius pangasius), ray {Raja sp.), cod {Gadus morhua) and angler fish {Lophius 

piscatorius). Small fish were collected whole, a 200-gram piece was taken from the bigger 

fish (cod, salmon and angler fish). Whiting and pangasius were only available as fillets. Ray, 

sole and angler fish had their skin removed at purchase. The samples were put in sterile 

stomacher bags and transported on ice to the lab. Upon arrival at the lab (Ti), a piece of 2 by 2 

cm (equalling 10 g) was aseptically excised for microbiological analysis, and the remaining 

fish was stored in a sterile bag on ice at 0 ± 0.5 °C. A second sample was taken at T2 , namely 

after 7 days or 4 days (ray) of ice storage.
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2.2. Cultivation and isolation of microorganisms from the fish samples

A 10-gram fish sample was transferred aseptically to a stomacher bag, 90 ml of maximum 

recovery diluent (MRD, Oxoid) was added and the mixture was homogenised for 2 min. 

Samples (0.1 ml) of serial dilutions in MRD of the fish homogenates were spread on the four 

growth media: plate count agar (PCA, Oxoid), marine agar (MA, Difco), Long and Hammer 

medium (LH; Van Spreekens, 1974) and Lyngby iron agar (IA; Atlas, 2006). MA and LH 

contain 1% NaCl and either mimic the composition of seawater or are rich in essential 

compounds for an optimal enumeration of marine microorganisms. Although IA with 0.5% 

NaCl is specifically used for the enumeration of H 2 S-producing microorganisms (black 

colonies), it is used often for the enumeration of the total microbiota as well (Karl & Meyer, 

2007; Kyrana & Lougovois, 2002; Paarup et al., 2002; Tzikas et al., 2007). LH medium was 

composed of (grams per litre distilled water): proteose pepton (Oxoid) 20, gelatin (Oxoid) 40, 

dipotassium phosphate (K2 HPO4 ) 1, NaCl 10, agar (Oxoid) 15, and ammonium ferric (III) 

citrate 0.25. IA was composed of (grams per litre distilled water): proteose pepton (Oxoid) 20, 

agar (Oxoid) 12, NaCl 5, beef extract 3, yeast extract 3, L-cysteine (C3 H 7 O2  SN) 0.6, iron (III) 

citrate (CöHsFeCL . 5H20 )  0.3, sodium thiosulphate (Na2 S2 Û3 . 5H20 )  0.3. Standard 

incubation periods and temperatures for the specific media were used, namely 3 days at 21°C 

for PCA and MA and 5 days at 15°C for LH and IA. After incubation, all colonies were 

counted to give the aerobic psychotolerant count (APC). Duplicate plating was performed for 

every sample. After counting, these duplicates were used for replication analysis (2.3.) and 

plate swabs for PCR-DGGE analysis (2.5.), respectively. A Student t-test was used to 

determine whether the results of total count on the media significantly differed from one 

another.

2.3. Replication of the cultivated microorganisms on different growth media

For all media, one of the duplicates of the enumeration plates was used for replication on the 

other fresh media. The dilution used for replication could differ between fish species and 

depended on the APC of the fish sample and whether separate colonies were present. The 

number of colonies present on the replicated plates ranged from 9 to 166 colonies (listed 

between brackets in Table 2). This technique was used to detect which microorganisms were 

unable to grow on one of the studied media. The replications were made on the other three 

media using a replicator and velveteen tissues (Fisher Bioblock). The last replica was pressed 

onto a fresh petri dish of the original medium to exclude false negatives due to insufficient 

uptake onto the fabric. These replicates were incubated as indicated above.
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2.4. Identification of the microbiological isolates failing to grow on one or more media

2.4.1. DNA extraction

After replication, a selection of 121 isolates with different colony morphology at T2  were 

selected based on their inability to grow on one of the media. These strains were purified and 

DNA extraction was performed using a modified Flamm method (Flamm et al., 1984), 

adjusted with lysostaphine (0.5 mg/pl) and mutanolysine-lysozyme solution (1 U/pl 

mutanolysine, 2.5 mg/ml lysozyme) which were dissolved in HPLC water and TE-buffer 

(0.05 M Tris, 0.02 M EDTA, pH 8), respectively, and were added to the pellet of pure culture 

at the start of the DNA extraction.

2.4.2. Rep-PCR

A (GTG ) 5  rep-fingerprinting technique was used to cluster the purified isolates based on their 

fingerprint. The microbiological DNA (50 ng/pl) was used as a template in the PCR-reaction 

containing lx  RedGoldstar buffer (75 mM Tris-HCl; Eurogentec) and a final concentration of 

3.4 pM of (GTG ) 5  primer, 1.5 mM Mg2Cl (Eurogentec), 1 U RedGoldStar DNA polymerase 

(Eurogentec) and 0.2 mM of each deoxynucleotide triphosphate (GE Healthcare Europe 

GmbH) in a total reaction volume of 25 pi. The reaction was performed on a GeneAmp PCR 

9700 Thermocycler (Applied Biosystems) using the amplification conditions described by 

Versalovic, Koeuth, & Lupski (1991). PCR-products were size separated in a 1.5% Seakem 

LE agarose gel (Lonza) in lx  TBE buffer (0.1 M Tris, 0.1 M Boric Acid, 2 mM EDTA) at 

120 V for 4 h. The (GTG)s profiles were visualised under UV light after ethidium bromide 

staining and a digital image was captured using the G:BOX camera (Syngene). The resulting 

fingerprints were analysed using the Bionumerics version 6.5 software package (Applied 

Maths) using the EZ load 100 bp PCR Molecular Ruler (Biorad) as normalisation reference. 

The similarity between the fingerprints was calculated using the Pearson correlation (1% 

optimisation and 1% position tolerance). The fingerprints were grouped according to their 

similarity by use of the UPGMA (unweighted pair group method with arithmetic averages) 

algorithm.

2.4.3. Identification o f  the microbial isolates by sequence analysis

A 1500 bp fragment of the 16S rRNA gene was amplified by PCR using the conserved 

primers 16F27 and 16R1522 (Brosius et al., 1978). Amplification was performed as follows: 

30 cycles at 94 °C for 15 s, 57 °C for 15 s and 72 °C for 30 s followed by an elongation step 

at 72 °C for 8 min. Further identification was performed by gyrB  gene sequence analysis. A
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1500 bp fragment of the gyrB gene was amplified by PCR using the universal primers UP1 

and UP2r following the protocol of Yamamoto and Harayama (1995). All PCR products were 

purified for sequencing with a High Pure PCR product purification kit (Roche) according to 

manufacturer’s protocol and stored at -20 °C. The quality and quantity of the purified PCR 

products were verified on a 1.5% agarose gel.

Sequencing reactions were performed using the high pure PCR product as template in the 

PCR-reaction containing a final concentration of 30-50 ng PCR product DNA, 0.2 pM of 

16F27 (16S forward primer) or U Pls and UP2rs (gyrB; Yamamoto & Harayama, 1995) 

primer, 4 pi BigDye Terminator v3.1 Cycle (Applied Biosystems) and adding HLPC water to 

a final volume of 10 pi. After amplification, a sodium acetate/ethanol precipitation was 

performed. Sequencing was performed on an ABI Prism 3100 Genetic Analyzer (Applied 

Biosystems). The partial 16S rDNA sequences were around 700 bp. The identification of 

phylogenetic neighbours was initially carried out by the BLAST (Altschul et al., 1997) and 

megaBLAST (Zhang et al., 2000) programmes against the database of type strains with 

validly published prokaryotic names (Chun et al., 2007). The 50 16S rDNA sequences with 

the highest scores were then selected for the calculation of pairwise sequence similarity using 

global alignment algorithm, which was implemented at the EzTaxon server 

(http://www.eztaxon.org/; Chun et al., 2007). The gyrB  sequences were assembled with 

Vector NTI Advance 11 (Invitrogen corp.). A tentative identification was performed by a 

similarity search against the FASTA web search

(http://www.ebi.ac.uk/tools/fasta33/nucleotide.html). When similarity value was low, 

phylogenetic trees were constructed by the Neighbour Joining (NJ) method with inclusion of 

selected type strains, chosen based on the results obtained from the 16S rDNA identification, 

by using the programme Treecon version 1.3b (Van de Peer & De Wachter, 1994). Cut-off 

values of 90% were used to tentatively identify the isolates. For this purpose, the sequences 

were aligned and cut to the same length using Clustal X version 2 (Larkin et al., 2007). The 

gyrB  sequences of the type strains were submitted in the EMBL nucleotide sequence database 

(accession numbers FR668560 to FR668582).

2.5. Differences in the microbiological community by PCR-DGGE analysis 

A complete plate swab was performed using an inoculation loop. The dilution used for the 

plate swab depended on the APC of the fish sample. The pellets were washed twice with lx  

PBS (137 mM NaCl, 2.7 mM KC1, 0.9 mM KH2P 0 4 and 6.4 mM Na2H P 02 (pH 7.4)) and
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stored at -20 °C. A DNA extraction was performed using the Blood and Tissue Kit (Qiagen) 

following the manufacturer’s protocol. This DNA, diluted in 200 pi elution buffer (QIAGEN) 

was used for further analysis by dénaturant gradient gel electrophoresis (PCR-DGGE).

Universal primers were used for amplification of the variable 16S rRNA V3-region. The 

forward primer UN357f included a 40 base GC clamp at the 5’ end, the reverse primer used 

was UN518r (Muyzer et al., 1993). The PCR mixture was prepared as followed: each mixture 

(final volume, 50 pi) contained 1 pi of template DNA, 0.2 pM of each primer, 0.2 pM of each 

deoxynucleoside triphosphate (GE Healthcare Europe GmbH), 3.5 mM M gCf, l x PCR 

buffer (Invitrogen), 0.1% T4 gene 32P (Roche) and 1 U of Taq polymerase (Invitrogen). 

Template DNA was denatured for 5 min at 95 °C. In order to increase the specificity of the 

amplification and to reduce the formation of spurious byproducts, a “touchdown” PCR was 

performed as previously described by Muyzer et al. (1993). Additional 12 cycles were carried 

out at 55 °C, with an extension for each cycle of 1 min at 72 °C. A final extension of 7 min at 

72 °C was performed.

PCR-DGGE analysis was performed on the DCode Universal Mutation Detection system 

(Biorad) as described by Muyzer et al. (1993). Samples were applied to an 8% (w/v) 

polyacrylamide gel (acrylamide-bisacrylamide, 37.5:1) in lx  TAE buffer (40 mM Tris- 

acetate, 1 mM EDTA, Invitrogen). Optimal parallel electrophoresis experiments were 

performed at 60 °C by using gels containing a 40 to 60% urea-formamide denaturing gradient 

(100% corresponding to 7 mol/1 urea and 40% [w/v] formamide). Electrophoresis was 

performed at a constant voltage of 45 V for 14 h. After separation, the gels were incubated for 

20 minutes in lx  TAE pH 8 containing lx  Sybr Gold staining (Invitrogen), and gel images 

were digitized under UV illumination (G:BOX, Syngene). Bands were detected manually and 

viewed with Bionumerics version 6.5 software (Applied Maths).

III. Results

3.1. Aerobic psvchotolerant counts (APC) on different growth media 

Averages for duplicate plate counts on PCA are presented as logio cfu/g (Table 3.1). At Ti, 

the APC of the fish samples ranged from 2.7 to 6.1 logio cfu/g. At this point, APC was highest 

for the ray sample and lowest for salmon. At T2, APC increased and ranged from 4.4 to 7.2 

logio cfu/g. The sample of pangasius showed an increase of less than 0.5 logio, while those of
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angler fish and mackerel increased by more than 2 logio. The APC of the other samples 

increased between 1 and 2 logio.

Table 3.1. The total aerobic psychotolerant count (APC) (login cfu/g) on Plate Count Agar (PCA) (mean of 
duplicate platings) for all 11 fish samples at the time of arrival (TO and after 7 days or 4 days (ray) of ice storage 
(T2).

Total aerobic psychotolerant count (APC) (logi0 cfu/g)

Sampling Salmon Whiting Ray Pangasius Cod Plaice Sole Sea bass Angler fish Mackerel Sea bream

Ti 2.7 5.5 6.1 4.9 3.6 4.0 5.3 4.5 4.9 4.3 5.8

t2 4.4 6.8 6.6 5.2 4.8 6.0 6.9 6.4 7.2 6.8 6.8

When comparing PC A, MA, LH and IA at Ti (Fig. 3.1) and after ice storage (T2) (Fig. 3.2), 

PCA generally showed a lower APC than the salt-containing media (MA, LH and IA), but 

some counts were equal. Although APC between several batches of the same fish species also 

showed some differences, the difference between APC on PCA and the other media was 

always more pronounced. Student t-tests showed a statistically significant difference, except 

between LH and MA at Ti and T2 and between PCA and IA at Ti.

The highest difference in APC at Ti was observed between PCA and LH, with those on PCA 

being 0.3 to 1.1 logio cfu/g lower than on LH (Fig. 3.1). Differences in APC lower than 0.5 

logio were interpreted as within standard plate counting error and are not shown. Five samples 

showed a 0.5 to 1 logio lower APC on PCA than on LH, and one sample exceeded a 1 logio 

difference. Differences between MA, LH and IA were lower than 0.5 logio except for two 

samples (ray and plaice) where IA had a lower APC compared to MA and LH.

ÖC
o  0,8o
O 0.6 Ö
K °-4
< 0.2

4  (MA-PCA) 

1 4  (LH-PCA)

■ 4 (IA-PCA)

0& \cy3

Fish samples

Fig. 3.1. Differences (A) in total aerobic psychotolerant count (APC) (login cfu/g) between MA, LH, IA and 
PCA growth media at arrival (T, ) of fish samples. Only those fish samples are shown where a higher difference 
than 0.5 logm cfu/g between PCA and the salt-containing media (MA, LH and IA) was observed.
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At T2, the difference in APC between PCA and the other media (MA, LH and IA) increased 

for most fish samples. APC on LH and MA was almost equal, with both being 0.5 to 1.8 logio 

higher than on PCA (Fig. 3.2). Compared to Ti, more samples showed a significant difference 

between PCA and LH/MA, and only two samples (angler fish and mackerel) had an APC 

difference lower than 0.5 logio. Five samples (whiting, pangasius, plaice, sea bass and sea 

bream) showed a 0.5 to 1 logio difference between PCA and LH/MA, while four samples 

(salmon, ray, cod and sole) showed a difference more than 1 logio. Five samples showed an 

APC difference of 0.5 logio or more between LH and IA (salmon, whiting, ray, cod and sole).

1,2

A (M A-PCA)

■ A (LH-PCA)

■ A <1A-PCA)
0 .4
0.2

Fisli samples

Fig. 3.2. Differences (A) in total aerobic psychotolerant count (APC) (login cfu/g) between MA, LH, IA and 
PCA growth media at T2 (i.e., after 7 days or 4 days (ray) of ice storage) of fish samples. Only those fish samples 
are shown where a higher difference than 0.5 logm cfu/g between PCA and the salt-containing media (MA, LH 
and IA) was observed.

3.2. Replication of the cultivated microorganisms on different growth media

Replication showed a high percentage of colonies unable to grow on at least one medium 

(Table 3.2). On MA, LH and IA, most colonies were able to grow.

At Ti, all fish samples, excluding the pangasius sample, contained microorganisms unable to 

grow on all tested media. Of those samples originally incubated on MA or LH, 10 to 92% of 

the colonies, depending on the fish sample, could not grow on PCA after replication. Thirteen 

to 68% of the colonies from samples originally incubated on IA were unable to grow on PCA. 

One to 53% of the colonies from samples originally incubated on PCA could not grow on one 

or more of the salt-containing media. At T2, shifts were noticeable. The number of non

growing colonies replicated to PCA increased for seven fish samples (salmon, whiting, ray, 

pangasius, cod, sole and sea bream). As for the other four fish samples, the number of non

growing replicated colonies was equal or lower than at Ti. On the other hand, the percentage
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of colonies taken from PCA that did not grow on the salt-containing media was mostly much 

lower at T2  than at Ti.

Table 3.2. Percentages of colonies non-growing on the different media (PCA, MA, LH and IA) after replication 
at both time points, T, (sampling at the time of arrival) and T2 (after 7 or 4 days (ray) of ice storage). X/Y: The 
growth medium Y from which the colonies are replicated onto growth medium X. Between brackets are the 
number of colonies that have been transferred by replication as mentioned. When replicated from PCA onto LH, 
MA or IA, the number and media indicated after the asterisk refer to the percentage of colonies not growing on 
the mentioned salt-containing medium. The average percentage of non-growing colonies from the total pool of 
fish species is given in the last row.

Fish Day of arrival (TI) After storage on ice (T2)
species PCA/LH PCA/MA PCA/IA LH-MA-

IA/PCA PCA/LH PCA/MA PCA/IA LH-MA-
IA/PCA

Salmon 33 (21) 42 (24) 35 (17) 0(7) 85 (27) 95(19) 19 (57) 0(21)

Whiting 10 (52) 36 (14) 13 (32) 11 (28) 41 (46) 43 (37) 0(17) 0(34)

Ray 92 (145) 83 (58) 68 (34) 53 (30)
*(43 LH & MA) 94 (50) 91 (53) 94 (31) 0 (23)

Pangasius 0 (58) 2(56) 0(48) 0 (99) 21 (47) 38 (29) 20 (35) 0(14)

Cod 11 (72) 37 (43) 24 (21) 11(18) 60 (20) 94 (213) 59(17) 14 (58)
*(3.5 IA)

Plaice 47(113) 62 (129) 27 (49)
20 (54)
*(10 MA; 2.5 LH; 

7.5 IA)
29(105) 35 (86) 10 (67) 5(57)

*(5 MA)

Sole 43 (101) 48 (105) 17 (54)
30 (100)
*(7.5 MA; 12 LH; 

10.5 IA)
58(102) 56(114) 40 (45) 15 (52)

*(15 IA)

Sea bass 31 (67) 46 (52) 24 (38) 1(71) 38 (39) 38 (42) 24 (34) 10 (112)

Angler
fish 11(18) 30 (114) 16 (51)

52 (44)
*(36 MA; 2 LH; 11 

IA)
3(149) 9(166) 1(141) 4(106)

*(4 MA)

Mackerel 26 (43) 41 (41) 15 (26) 22 (9)
*(22 MA & IA) 13 (76) 17 (82) 3(58) 11 (44)

*(2 MA & LH)

Sea bream 14 (21) 27(15) 0(15) 27 (48)
*(27 MA & IA) 45 (31) 29 (41) 24 (29) 2(50)

*(2 IA)

Average
(%) 29 41 22 21 44 50 27 6

3.3. Identification of the microbiological isolates failing to grow on one or more media

After replication, a selection of 121 isolates with different colony morphology were selected 

based on their inability to grow on at least one of the tested media. The colonies were 

collected from the plates at T2, since mainly those microorganisms present during spoilage 

were of interest. These isolates clustered based on their (GTGfi fingerprint (Supplementary 

Fig. 3.1), showed a large variety, with some large clusters present. These clusters were
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visually defined. PCR-reproducibility ranged from 95.3 to 99.0% similarity (Pearson 

correlation).

From this cluster analysis, 39 representatives were selected, with a minimum of 2 isolates per 

cluster, and identified based on their partial 16S rRNA and gyrB  gene sequence. Twenty-one 

different species were identified (Table 3.3). Using 16S rRNA gene analysis, the 

representative isolates could mostly be allocated to species complexes after BLAST search 

with the EzTaxon database. Further identification to species level was obtained by gyrB 

sequence analysis. However, not all gyrB  sequences of all species were available. In these 

cases, 16S rRNA gene based identification on the genus and/or species complex level was 

used to select type strains of species not present in any accessible database of gyrB sequences. 

Phylogenetic trees were constructed with these extra type strains included together with the 

known gyrB sequences and the representative isolates.

Members of the genera Photobacterium, Shewanella, Vibrio!Aliivibrio, Pseudoalteromonas, 

Psychrobacter and Pseudomonas were unable to grow on PCA, but tended to grow very well 

on fish during ice storage as evidenced from their isolation on the other growth media at T2  

(Table 3.3). In particular, Shewanella frigidimarina and Pseudoalteromonas nigrifaciens were 

abundantly present in this study, with 47 and 33 isolates found, respectively. On the other 

hand, some microorganisms could only grow on PCA, i.e. some species of the genera 

Psychrobacter, Pseudomonas and Acinetobacter. Within the genus Psychrobacter, 

Psychrobacter fozii and Psychrobacter maritimus could not grow on LH, and Psychrobacter 

cibarius could not grow on either of the salt-containing media. Psychrobacter proteolyticus 

and an isolate identified as Psychrobacter cibarius by gyrB  sequence analysis {Psychrobacter 

cibarius-\\ke species) were, however, unable to grow on PCA. Within the genus 

Pseudomonas two species were identified. Pseudomonas fragi was unable to grow on salt- 

containing media, while Pseudomonas fluorescens was unable to grow on PCA. Some species 

of the genus Flavobacterium and Janthinobacterium were unable to grow on MA. 

Brochothrix thermospacta was unable to grow on IA.
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Table 3.3. Identification of 121 isolates with different colony morphology from the 11 fish samples after 7 or 4 
days (ray) of ice storage, which did not grow on a specific growth medium. The (range of) similarity values 
(gvrB) against the type strains of the species (exceptions are mentioned in footnotes) are listed in the second 
column, when the gvrB sequence could not be used, the 16S rRNA similarity values are used. The abundance of 
isolation of these species is listed in the third column by the number of isolates. The fish samples on which the 
microorganisms are found are in the third column.

Identification Similarity 
values (%)

#
isolates From fish sample Not growing 

on
Photobacterium
P. phosphoreum 99.6 4 salmon, cod, whiting PCA
P. iliopiscicarium 99.1 3 sole, plaice, whiting PCA
Shewanella
S. frigidimarina 94.6 - 99.21 47 all fish PCA
S. vesiculosa 98.5 -99.5 5 angler fish, plaice, sole, salmon. pangasius PCA
S. baltica 98.7-99.1 3 angler fish, cod, mackerel PCA
S. glacialipiscicola 98.7 1 plaice PCA
Vibrio/Aliivibrio
V. litoralis 97.0 (16S) 2 mackerel, sole PCA
A. logei 96.2 1 salmon PCA
Pseudoalteromonas
Psa. nigrifaciens 99.8 33 all fish except cod PCA
Psychrobacter
Psb. cibarius-like2 / 1 mackerel PCA
Psb. proteolyticus 94.0 - 95.2 2 angler fish PCA
Psb. fozii /3 1 angler fish LH
Psb. maritimus /4 1 angler fish LH
Psb. cibarius /5 1 mackerel MA, LH & IA
Pseudomonas
Ps. fragi 92.2-93.3 5 angler fish, mackerel, sea bass MA, LH & IA
Ps. fluorescens 89.2 1 gilthead sea bream PCA
Acinetobacter
Acinetobacter sp. 80.86 1 mackerel MA, LH & IA
Flavobacterium
F. hydatis 97.7-98.3 4 salmon, plaice, cod MA
F. hercynium 96.6 (16S) 2 angler fish, gilthead sea bream MA
Janthinobacterium
J. lividum 95.6 1 cod MA
Brochothrix
B. thermosphacta 99.6 (16S) 2 gilthead sea bream, sole IA

'The similarity values could not be calculated based on a type strain, but were calculated based on an 
enviromnent isolate (NCIMB 400). Phylogenetic tree analysis confirmed the identification.
2 The isolate was identified based on gvrB gene sequence and phylogenetic tree analysis. FASTA results gave 
96.2% similarity with the Psb. immobilis type strain, however, phylogenetic tree analysis with inclusion of extra 
type strains confirmed a higher similarity with Psb. cibarius. Sequence comparison between both isolates and 
the type strain showed several mismatches with the sequence of the Psb. cibarius-like isolate.
3 The isolate showed 93.6% similarity with Psb. luti type strain, but phylogenetic tree analysis gave a higher 
similarity with Psb. fozii.
4 FASTA results gave a similarity value of 93.6% with the Psb. luti type strain, phylogenetic tree analysis gave a 
higher similarity with the Psb. maritimus type strain.
5 FASTA results gave a similarity value of 97.4% with the Psb. immobilis type strain, phylogenetic tree analysis 
gave a higher similarity with the Psb. cibarius type strain.
6 The Acinetobacter isolate showed 80.8% similarity with the Acetinobacter johnsonii type strain.
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3.4. Differences in the microbiological community on the different growth media by PCR- 

DGGE analysis

The PCR-DGGE analysis of the plate swabs of mackerel from the different growth media at 

Ti and T2  is shown in Fig. 3.3A. A clear difference in band patterns was observed between 

PCA and the other media, indicating a different microbiota on PCA at both time points. In 

comparison to MA, LH and IA, PCA exhibited only a very small number of bands especially 

at Ti. At T2 , the number of bands for PCA highly increased but the pattern observed from 

PCA was still quite different from the other media. The PCR-DGGE pattern from the salt- 

containing media showed some variation between both time points; nevertheless, the 

difference was rather small compared to the difference on PCA. A similar clearly distinct 

pattern of PCA from the other media was also observed for several other fish samples such as 

plaice, salmon, gilthead sea bream, whiting, sea bass, sole and cod. However, not all fish 

samples showed such a clear difference in PCR-DGGE pattern between PCA and the other 

media. PCR-DGGE analysis of the brackish water fish pangasius (Fig. 3.3B) showed that 

besides a few bands, the pattern obtained from PCA plate swabs was more similar to the salt- 

containing media at Ti, indicating that the dominant microbiota on all media was more or less 

the same. At T2, a shift in PCR-DGGE pattern was noticed where the differences between 

PCA and the salt-containing media became much larger. Rather subtle differences in 

dominant microbiota were also observed for the fish samples of angler fish and ray.

IV. Discussion

4.1. Quantitative differences between the media

Most samples of fish species examined, except three (salmon, pangasius and cod), reached an 

aerobic psychotolerant count of 6  logio cfu/g on PCA at T2 . At the same time, an APC of 7 

logio cfu/g was counted on the salt-containing media indicating that these fish are definitely 

no longer suitable for purchase. On the other hand, some fish samples still showed a quite low 

APC at T2  (cod, salmon and pangasius). However, large fish tend to spoil more slowly than 

small fish, and also aquacultured fish may have a longer shelf life, when caught in ideal 

conditions than similar fish from wild catch (Huss, 1995). On the contrary, elasmobranch fish 

such as ray tend to spoil very quickly after catch, but this is always assumed to be mainly due 

to organoleptic changes (fast emission of ammonia) (Múgica et al., 2007). In this study, the
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T2 TI T2

Fig. 3.3. PCR-DGGE - V3 profile of a plate swab of all media P (PCA), M (MA), L (LH), I (IA) from mackerel 
(A) and pangasius (B) at the day of arrival (T,) and after 7 days of ice storage (T2). An internal reference marker 
m was used for the comparison of different gels.

APC of ray was already quite high ( 6  logio cfu/g on PCA or 7 logio cfu/g on salt-containing 

media) at Ti.

The APC results confirm earlier publications indicating differences up to one log or more 

between PCA and LH or MA for marine fish species (Joffraud & Leroi, 2000; Kudaka et al., 

2010; Van Spreekens, 1974). In this study, several fish samples (salmon, plaice, sole, sea bass 

and sea bream) have a difference of at least 1 log between PCA and LH/MA. The differences 

were noticed at Ti as well as at T2 , indicating that fish quality analysis on PCA in fish 

auctions or supply center misses many microorganisms and underestimates the 

microbiological quality. A shift was also noticed during storage: in some cases, the number of 

microorganisms not growing on PCA increased, while in other fish samples those growing on 

PCA increased. This results in the differences in APC noticed at each sampling point. The 

microbiological growth during storage is mainly fish specific, depending on intrinsic and 

extrinsic characteristics of the fish and the handling procedures.

4.2. Qualitative differences concerning the growth of microorganisms between the media 

Replication showed many isolates that were unable to grow on one of the media, mostly on 

PCA. Many bacterial species on fresh fish are only able to grow on LH, MA or IA, but also a 

considerable part (21%) is unable to grow on one of those salt-containing media. After ice 

storage, however, the number of isolates not growing on PCA has increased to approximately 

50% of the total number of isolates, while those unable to grow on LH, MA or IA have
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decreased from 21 to 6 %. This indicates that the microorganisms important for spoilage are 

mainly species needing those salt-containing media in order to be detected. The inability of 

microorganisms to grow could be caused by the absence of sodium chloride in PCA as 

previously noted in several studies (Boskou & Debevere, 1996; Liston, 1980; Vallé et al., 

1998). The choice of growth medium may therefore be even more important during ice 

storage or at the end of shelf life than for (fresh) fish immediately after catch.

Identification of the non-growing colonies on one of the tested media at T2  shows that some 

currently known marine SSOs are unable to grow on PCA, such as Shewanella. Especially 

Shewanella putrefaciens and Shewanella baltica are dominant microorganisms of ice-stored 

marine fish and are known as typical SSOs of marine fish species (Jorgensen & Huss, 1989; 

Koutsoumanis & Nychas, 1999; Vogel et al., 2005). All Shewanella species found, could be 

responsible for sensory spoilage since they are all capable of TMAO reduction and are 

important producers of H 2 S. Although most of these species are described as nonhalophilic, 

this feature is strain specific and most species grow preferentially in the presence of 2% NaCl 

(Bowman et al., 1997; Satomi et al., 2007; Vogel et al., 2005). The Shewanella isolates in this 

study were all unable to grow on PCA.

Further, species of the genera Photobacterium (including P. phosphorenm), Vibrio and 

Aliivibrio, were not detected on PCA. P. phosphorenm  is also a known SSO of fish. Fish in 

MAP packaging is especially sensitive to spoilage due to this microorganism (Dalgaard et al., 

1997). The genera Photobacterium , Vibrio and Aliivibrio are closely related, and they all 

require a high sodium content and other ions for growth; most species need at least 1% NaCl 

(Baumann & Schubert, 1984; Farmer & Hickman-Brenner, 2006). In this study, P. 

phosphorenm, P. iliopiscarium and V. litoralis were able to grow on IA, a medium with 0.5% 

NaCl, but not on PCA.

Two less known genera in fish spoilage, Pseudoalteromonas (Psa) and Psychrobacter (Psb), 

were also unable to grow on PCA. Species of the genus Pseudoalteromonas were not 

detectable on PCA; they all require NaCl for growth. Pseudoalteromonas is a heat labile 

common marine microorganism. Species of this genus appear to be growing during storage of 

several fish and fishery products (Koutsoumanis & Nychas, 2000; Paarup et al., 2002; 

Romero et al., 2002; Rudi et al., 2004). Pseudoalteromonas nigrifaciens make up a large part 

of the microbiota for these fish samples after ice storage in this study (Table 3.3). In this 

study, also several species of the genus Psychrobacter were found. Some of the species
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{Psychrobacterproteolyticus and Psychrobacter cibarius-\\ke strains) were unable to grow on 

PCA, while others could only grow on PCA and not on the salt-containing media 

{Psychrobacter fozii, Psychrobacter maritimus and Psychrobacter cibarius strain). Except for 

Psychrobacter cibarius, for which growth has been reported to be stimulated by NaCl (Jung et 

al., 2005), the growth data of this study correspond with literature data (Bozal et al., 2003; 

Jung et al., 2005; Romanenko et al., 2004; Yoon et al., 2003). The genus Psychrobacter is 

currently not associated with major SSOs; Psychrobacter immobilis is a minor spoiler 

producing a musty off-odour commonly found on chilled fish (Gennari et al., 1999).

Some typical food microorganisms such as Flavobacterium sp., Pseudomonas sp. and 

Acinetobacter sp. were less able to grow on salt-containing media, specifically on MA growth 

seemed to be inhibited. These genera have simple nutritional requirements and grow best on 

media without NaCl (Bernardet et al., 1996; Moore et al., 2006; Towner, 2006).

Brochothrix thermosphacta, a known SSO, especially for MAP-stored fish (Rudi et al., 2004), 

was unable to grow on IA.

PCR-DGGE analysis using the 16S rRNA V3-region has recently been used for several 

studies concerning the microbiota of fish and other food (Ercolini, 2004; Hovda et al., 2007a; 

Hovda et al., 2007b). Next to the advantages of using PCR-DGGE for bacterial community 

studies, analysts have to keep in mind some potential biases of the technique. For instance, by 

running pure strains, it was noticed that several important genera isolated in this study, 

including Shewanella, Pseudomonas, Photobacterium, Psychrobacter and 

Pseudoalteromonas, showed multiple bands. The multiple bands can originate from the 

presence of multiple gene copy numbers with small sequence differences in the genome of the 

microorganism. This makes a simple interpretation of diversity conclusions impossible (de 

Araujo & Schneider, 2008). The number of bands cannot be correlated to the diversity, so a 

conclusion about a possible diversity difference between the media cannot be made. Other 

biases linked to PCR-DGGE are the potential co-migration of bands despite sequence 

variation, this means that one band in the PCR-DGGE pattern may visualise more than one 

species (Vallaeys et al., 1997). PCR-DGGE analysis is also limited to the detection of the 

most dominant bacterial populations in the community (Muyzer et al., 1993). Additionally not 

all bacterial species are detectable by using 16S - V3 universal primers due to selective 

amplification of genes by PCR (Ercolini et al., 2003). In this study, PCR-DGGE analysis was 

therefore only used to confirm the APC and replication results. A comparison was made
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between the band patterns of cultivable microorganisms on the different growth media in 

order to have some insight in the similarity of species composition on these media. For most 

fish samples, the band pattern of PCA plate swabs is very different from those of the salt- 

containing media. The patterns of the salt-containing media, in contrast, resemble each other.

The APC analysis and replication technique results were in concordance with the differences 

in PCR-DGGE profiles of the fish samples. For mackerel, the differences in APC on the 

different media were not significant, but identification of the colonies not growing on PCA 

showed that species from the genera Shewanella, Vibrio, Pseudoalteromonas and 

Psychrobacter were present. On the other hand, species that only grow on PCA were also 

present. This explains the difference in PCR-DGGE pattern (no matching bands) of mackerel 

between PCA and the other media. For pangasius, the APC differences were small and PCR- 

DGGE band patterns on the different media were quite similar at Ti, but at T2  differences in 

APC and PCR-DGGE pattern similarity increased possibly because genera such as 

Shewanella and Pseudoalteromonas were found which only grow on salt-containing media.

Several methods were used in this study to observe the differences between microorganisms 

from fish growing on four different media. All methods show that many microorganisms will 

be overlooked if only one medium is used in fish quality research, and especially when only 

PCA is used. Members of the genera Shewanella, Vibrio, Aliivibrio, Photobacterium, 

Pseudoalteromonas and Psychrobacter were not able to grow on PCA. These results indicate 

that PCA, now used as the general reference medium for the enumeration of microbiota on all 

food and feed (ISO 17410, 2001), has important limits concerning the detection of microbiota 

on fish for quality control through APC, especially after prolonged ice storage. LH 

(recommended by NMKL 184; Nordic Committee of Food Analysis, 2006) and MA gave the 

best APC analysis results. With a few exceptions, most microorganisms were capable of 

growing on these media. PCR-DGGE analysis also showed that most of the patterns of these 

two media are quite similar for most fish samples.
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Suppl. Fig. 3.1. Dendrogram generated after cluster analysis of the digitized (GTG)5-rep-PCR fingerprints. The 
dendrogram was constructed using the unweighted pair-group method using arithmetic averages with correlation 
levels expressed as percentages values of the Pearson correlation coefficient. Relevant cophenetic values (above 
75%) are shown. Identification of isolates was performed by 16S rRNA gene or gyrB gene sequencing 
(summarized in Table 3.3).
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P a r t  II

B r o w n  sh r im p  (Cr a n g o n  c r a n g o n ): T h e
DOMINANT MICROBIOTA AND THEIR SPOILAGE

POTENTIAL



Preamble

Brown shrimp without preservatives are a local delicacy in Belgium. However, these are 
extremely sensitive to spoilage possibly due to their high NPN fraction, which is easily 
metabolized by microorganisms. Since spoilage o f  seafood is mainly caused by microbial 
growth and activities, i t ’s important that the microorganisms responsible fo r  the deterioration 
by off-odours and offflavours are identified. These microorganisms are called SSOs and are 
not only seafood specific but also depend on the storage conditions. In international 
literature, research about the microbiota present during spoilage on brown shrimp is rare, 
incomplete and out dated. In order to identify the SSOs o f  brown shrimp without 
preservatives, the dominant microbiota on shrimp are detected via traditional and molecular 
(culture dependent and independent) methods in chapter 4. Subsequently is the dominant 
microbiota identified via 16S rRNA and  gyrB gene sequencing. In chapter 5, the spoilage 
potential o f  several isolates is determined and quantified via mass spectrometry analyses.
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Chapter 4. Molecular identification of the microbiota of peeled and 

unpeeled brown shrimp {Crangon crangon) during storage on ice and at 

7.5°C

Abstract

The dominant microbiota of brown shrimp {Crangon crangon) were systematically identified 

during storage under different conditions. Freshly caught shrimp were processed on board the 

fishing vessel under the best possible hygienic conditions (IDEAL), unpeeled and manually 

(sterile) peeled, then stored on ice and at 7.5°C until microbiologically spoiled. Results were 

compared with industrially processed (INDUSTRIAL) shrimp. Isolates grown on various 

media were identified by 16S rRNA and gyrB  gene sequencing. We examined the total 

microbiota and microbiological population shifts of shrimp under various storage conditions 

using dénaturant gradient gel electrophoresis (PCR-DGGE). The microbiota differed 

somewhat during storage and among the various storage conditions; however, members of the 

genera Psychrobacter and Pseudoalteromonas were found to dominate the microbiota of all 

shrimp samples regardless of processing procedures or storage conditions. Most isolates could 

be identified by gyrB  gene sequencing as Psychrobacter immobilis or Psychrobacter cibarius. 

Also Pseudoalteromonas nigrifaciens, Pseudoalteromonas elyakovii or Pseudoalteromonas 

paragorgicola dominated the microbiota of brown shrimp during storage. Also species from 

the genera Planocuccus, Exiguobacterium , Carnobacterium, Pseudomonas, 

Chryseobacterium and Staphylococcus were detected during storage of brown shrimp.

Culture-dependent and culture-independent PCR-DGGE analysis produced different results in 

band patterns. Both methods are therefore required to accurately identify the microbiota and 

bacterial population shifts on seafood during storage.

I. Introduction

The brown shrimp {Crangon crangon) is a typical Belgian seafood product, especially 

machine-peeled and unpeeled brown shrimp, processed without preservatives and other 

additives, are a local delicacy. As described in chapter 2, the shrimp landed in Belgian 

harbours by Flemish fishermen are artisanally processed on board the vessels. Immediately 

after being caught, the shrimp are cooked for a short time, resulting in a decrease of the 

bacterial count. After cooking, the shrimp are cooled either by rinsing with clean seawater or
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exposing them to the air, then stored in large boxes with ice in a cooled space below deck. 

The shrimp are landed no more than 24 hours after being caught.

Like other fresh and lightly preserved seafood, brown shrimp are prone to rapid spoilage due 

to their high number of non-protein nitrogenous compounds which are easily metabolised by 

microorganisms (Liston, 1980). The shrimp’s shelf life can be extended by adding 

preservatives (commonly 0.6% benzoic acid and 0.6% sorbic acid). However, consumer 

pressure to reduce the use of preservatives may influence this practice.

The aim of this study was to develop a molecular identification technique for the dominant 

microbiota present on brown shrimp stored without preservatives or other additives either on 

ice or at a temperature of 7.5 ± 0.5°C (Marklinder et al. 2004). This temperature is also in 

agreement with the mean temperature (6.7 ± 2.7°C) in consumer’s fridges as determined by a 

study performed (WIV 2006). The microbiota of shrimp processed and stored under several 

circumstances was identified to species level. The total microbiota was compared between 

the store-bought (INDUSTRIAL) and self-processed (D EAL) samples, together with 

microbiological shifts observed under different processing and storage conditions, such as 

manual or machinal peeling and storage on ice versus storage at 7.5°C. Those analyses were 

made using dénaturant gradient gel electrophoresis (PCR-DGGE).

II. Materials and methods

A scheme of the storage conditions and performed analyses of the shrimp sampled on board 

of a fishing vessel under the best possible hygienic conditions (further mentioned as D EA L 

shrimp) and the shrimp purchased at the dock, which had been processed according to normal 

industrial procedures (further mentioned as INDUSTRIAL shrimp) is shown in Fig 4.1.

2.1. Sampling of shrimp on board a fishing vessel under the best possible hygienic 

conditions (D EAL) and during storage at different temperatures 

The shrimp were caught using a beam trawler in March 2008 and processed under good 

hygienic conditions on board. Specifically, the artisanal processing procedures described 

above were duplicated but conditions were optimized by 1 ) minimal cross-contamination 

between raw and cooked material, 2) (fast) cooling by air exposure after cooking, and 3) 

continual ice storage in a large amount of fresh ice on the fishing vessel, during transport, and 

during storage at the lab. The shrimp were machine washed and hand sorted immediately after 

being caught. After sorting, one sample of raw shrimp was aseptically placed in a sterile 

stomacher bag. Another sample was cooked according to normal Belgian fishing procedures

49



Molecular identification of the microbiota of peeled and unpeeled brown shrimp during storage on ice
and at 7.5°C

(2 to 4 minutes at 8 6  to 98°C) in clean seawater with some extra salt added. Cooked shrimp 

never came in contact with material used for raw shrimp. After air-cooling, the cooked shrimp 

were aseptically placed in a sterile stomacher bag. Both samples were immediately put on ice 

for transport to the laboratory. No additives or preservatives were added. Twenty-four hours 

after catch (To), the samples arrived at the laboratory. From the sample of cooked shrimp, half 

was manually peeled under nearly sterile conditions (wearing sterile gloves under a laminar 

flow hood, with minimal cross-contamination between peel and flesh). Half of the peeled and 

unpeeled shrimp were stored in sterile bags on ice (0 ± 0.5°C), while the other half was stored 

in the refrigerator at 7.5 ± 0.5°C. Microbiological analyses were performed at regular time 

intervals, i.e., at arrival (To), after 7 days (T i) and after 13 days (T2). The shrimp were stored
Huntil microbiologically spoiled (APC > 10  cfu/g).

2.2. Sampling of purchased (INDUSTRIAL) shrimp and during storage on ice

For purposes of comparison, shrimp without preservatives were purchased at the dock in a 

small fish store that specialized in brown shrimp in June 2010. These samples had been 

processed according to normal industrial procedures. These shrimp had been caught, sorted, 

cooked on board, and machine cooled using clean cold seawater. Upon landing, the shrimp 

were machine-sorted and sold either unpeeled or machine-peeled. Both preparations (peeled 

and unpeeled) were used as comparison with the hygienically prepared, ice-stored sample 

described above. These purchased samples of peeled and unpeeled shrimp were put on ice for 

transport to the lab and during storage at the lab. Microbiological analyses were performed at 

arrival (T0) and after 7 days of storage on ice (Ti).

2.3. Cultivation of microorganisms of IDEAL shrimp

For the IDEAL shrimp samples, several growth media were used to obtain a complete view of 

the microbiota of raw, cooked unpeeled and peeled shrimp during storage on ice and at 7.5°C. 

Three media were used for the total APC: plate count agar (PCA, Oxoid), marine agar (MA, 

Difco) and modified Long and Hammer medium (LH; Van Spreekens, 1974). The 

enumeration of lactic acid bacteria (LAB) was performed on de Man Rogosa Sharpe medium 

(MRS, Oxoid) pH 6.5, and Pseudomonas species were enumerated on Pseudomonas 

cetrimide fucidine cephaloridine (CFC, Oxoid) agar. Enterobacteriaceae were enumerated on 

violet red bile glucose (VRBGA, Oxoid) agar. Bacteria capable of producing H2S (black 

colonies) were enumerated on Lyngby iron agar (IA; Atlas, 2006). The composition of LH 

and IA medium is described in chapter 3 (2.2.).
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lee7.5°C7.5°C leeleelee

IDEAL

Unpeeled Unpeeled

Shrimp samples

INDUSTRIAL

Machine peeledManual peeled

Total counts on 7 ^  media <-----------------> Total counts on LH medium

■ Isolation
■ (GTG)5-rep fingerprints
■ 16S + gyrB  gene ID

PCR-DGGE plate swab <-----------------> PCR-DGGE plate swab

PCR-DGGE direct from matrix <-----------------> PCR-DGGE direct from matrix

Fig 4.1. Scheme of the storage conditions (unpeeled, peeled, stored on ice or at 7.5°C) and perfonned analyses of the shrimp sampled on board of a fishing vessel under the 
best possible hygienic conditions (IDEAL) and the shrimp purchased at the dock, processed according to nonnal industrial procedures (INDUSTRIAL). LH= modified Long 
and Hammer medium (Van Spreekens, 1974).
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The microbiological analyses of purchased shrimp during storage on ice were only performed 

on LH medium, since this medium appears to be the best growth medium for enumeration of 

the microbiota of fresh seafood as observed in chapter 3.

For the microbiological analysis, 10 g shrimp was transferred aseptically to a stomacher bag, 

90 ml maximum recovery diluent (Oxoid) was added and the mixture was homogenized for 2 

min. A part of this homogenized mixture (50 ml) was collected and stored at -20°C for the 

culture-independent PCR-DGGE analysis (2.5.2.). Samples (0.1 ml) of serial dilutions of the 

homogenates were spread on the growth media for enumeration. An incubation period of 1 

day at 30°C (VRBGA), 5 days at 30°C (MRS), 3 days at 21°C (PCA, MA and CFC) or 5 days 

at 15°C (LH and IA) was used. Duplicates were made for every sample. After incubation, all 

colonies were counted. After enumeration, the duplicates of PCA and LH plates were used for 

the plate swabs for cultivation-dependent PCR-DGGE analysis (2.5.1.).

2.4. Identification of the isolates from shrimp processed under the best possible conditions

2.4.1. DNA extraction

A selection of 390 isolates with different colony morphology were selected from PCA, MA, 

IA, LH and CFC media. Of those 390 isolates, 210 were picked from cooked shrimp samples. 

These isolates were purified and DNA extraction was performed as described in chapter 3 

(2.4.1.). The DNA was stored at -20°C in HPLC water.

2.4.2. Rep-PCR

The purified strains were clustered based on their (G TG f rep-fingerprint. The PCR was 

performed as described in chapter 3 (2.4.2.). PCR products were size separated in a 1.5% 

agarose gel in lx  TBE buffer at 120V for 4h. After ethidium bromide staining, the (G TG f 

profiles were visualized under UV light and a digital image was captured using a G:BOX 

camera (Syngene). The resulting fingerprints were further analysed as performed in chapter 3 

(2.4.2.).

2.4.3. Identification o f  the microbial isolates by sequence analysis

Fifty-two representatives from the (G T G f clusters generated from isolates from the cooked 

unpeeled and peeled shrimp were selected for identification. A 1500 bp fragment of the 16S 

rRNA gene and the gyrB gene was amplified as previously described in chapter 3 (2.4.3.). All 

PCR products were purified for sequencing with a High Pure PCR product Purification kit
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(Roche) according to the manufacturer’s instructions and stored at -20°C until sequencing. 

The quality and quantity of the purified PCR products was verified on 1.5% agarose gel.

Sequencing reactions, precipitation and sequencing on a ABI Prism 3100 Genetic Analyzer 

(Applied Biosystems) were performed as described in Broekaert et al. (2011). The 16S partial 

sequences were mostly about 700 bp. The identification of phylogenetic neighbours was 

initially carried out by the BLAST (Altschul et al., 1997) and megaBLAST (Zhang et al., 

2000) analysis of 16S partial sequences against the Eztaxon database of type strains with 

validly published prokaryotic names (Chun et al., 2007). For isolates of the genera 

Psychrobacter and Pseudoalteromonas, the complete 16S rRNA (16F27 and 16R1522 primer 

pair) and gyrB  gene sequences were sequenced and assembled with Vector NTI Advance 11 

(Invitrogen corp.). A tentative identification was performed by a similarity search using the 

Eztaxon (16S; http://www.Aztoxow.org) and a FASTA {gyrB) web search 

(http://www.ebi.ac.uk/tools/fasta33/nucleotide.html). When similarity value was low, 

phylogenetic trees were constructed as previously described in Broekaert et al. (2011). The 

gyrB  sequences of the type strains were submitted to the EMBL nucleotide sequence database 

(accession numbers FR668560 to FR668582).

2.5. Observation of the microbiological community using PCR-DGGE analysis 

PCR-DGGE analysis was performed on the IDEAL shrimp sampled in March 2008 and the 

INDUSTRIAL shrimp purchased in June 2010. Both sets of samples were unpeeled and 

peeled. Since differences between culture-dependent and independent PCR-DGGE analyses 

are often observed (Ampe et al., 1999), both methods were performed and results compared.

2.5.1. Sample preparation for culture-dependent PCR-DGGE analysis 

Complete plate swabs of the PCA (only for the IDEAL samples) and LH growth media were 

taken immediately after enumeration. The dilution used for the plate swab depended on the 

APC of the sample and counts between 30 and 150 were chosen. The pellets were washed 

twice with lx  PBS (137mM NaCl, 2.7mM KC1, 0.9mM KH 2 PO4  and 6.4mM Na2 HP 0 2  

(pH7.4)) then stored at -20°C until use. A DNA extraction was performed using the Blood 

and Tissue Kit (Qiagen) following the manufacturer’s instructions. This DNA was stored at - 

20°C until further usage by PCR-DGGE.
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2.5.2. Sample preparation for culture-independent PCR-DGGE analysis

A culture-independent DNA extraction from the shrimp sample was performed according to 

Rudi et al. (2004). Briefly, the method consisted of 1:10 dilution of the shrimps in peptone 

water, which were then homogenized for 2 min before freezing 50 ml of each suspension. For 

bacterial extraction, the tubes were thawed and diluted 1 : 2  with peptone water before 

centrifugation for 2 min at 70 g (Sorvall RC 26 plus, Thermo Scientific). The supernatant was 

removed and collected until approximately 10 ml was left. 90 ml peptone water was added to 

the fish suspension and the centrifugation was repeated. The supernatant was added to the 

supernatant from the first centrifugation, then the suspension was centrifuged for 15 min at 

14500 g. Pellets were resuspended in 10 ml TE-buffer pH 8  (10 mM Tris-HCl and 1 mM 

EDTA) then centrifuged for 10 min at 8500 g. Pellets were resuspended in 5 ml TE-buffer 

and DNA was purified using the Blood and Tissue Kit (Qiagen) according to the 

manufacturer's instructions.

2.5.3. PCR-DGGE analysis and identification o f  the bands

The PCR for PCR-DGGE analysis was performed as described in chapter 3 (2.5.). PCR- 

DGGE analysis of the PCR amplicons was performed on the DCode Universal Mutation 

Detection system (Biorad) as described by Muyzer et al. (1993). Samples were applied to an 

8 % (w/v) polyacrylamide gel in lx  TAE buffer (Invitrogen). Optimum parallel 

electrophoresis experiments were performed at 60°C using gels containing a 40 to 60% urea- 

formamide denaturing gradient. Electrophoresis was performed at a constant voltage of 45V 

for 14h. After separation, the gels were incubated for 20 minutes in lx  TAE pH 8  containing 

Sybr Gold staining and photographed with UV transillumination (G:BOX, Syngene). Bands 

were detected manually and analysed using Bionumerics version 6.5 software (Applied 

Maths).

For interpretation of the band patterns and normalization of the gels, an internal marker was 

made including pure strains of the genera Pseudoalteromonas and Psychrobacter. As 

template for the PCR-DGGE-PCR analysis, lOng DNA of several identified microorganisms 

was pooled. This mixture of pure strains was used for the PCR as described above and was 

run on PCR-DGGE with the samples.

Eleven bands were selected from the gels for further identification. The selected PCR-DGGE 

fragments were punched from the gel. The pieces were transferred into 20pl of sterile water 

and were incubated overnight at 4°C. Two pi of the eluted DNA were used for
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reamplification using the same protocol as described above and the PCR products were 

verified for purity using PCR-DGGE. The corresponding bacterial community PCR-DGGE 

profile was used as control in an adjacent lane. Products that migrated as a single band, 

located at the same position as the control, were purified using the High Pure PCR product 

purification kit (Roche) according to the manufacturer’s protocol and sequenced using the 

primer UN357f without GC clamp. Identification of the nearest phylogenetic neighbours was 

performed using a nucleotide similarity search against the Eztaxon and FASTA database as 

described above.

III. Results

3.1. Microbiological analysis of IDEAL shrimp

Several media (general and specific) were used to obtain a complete view of the total 

microbiota on IDEAL shrimp sampled on board. Table 4.1 shows the microbiological counts 

on all media for these raw shrimp after manual sorting and for cooked unpeeled shrimp. Fig.

4.2 (A: unpeeled, B: peeled) shows the microbiological counts for cooked shrimp during 

storage on ice and at 7.5°C. Since the APC on MA and LH were more or less similar, only the 

results on LH are discussed below.

Table 4.1. Microbiological counts on all growth media in login cfu/g of raw shrimp and of cooked unpeeled 
shrimp sampled on board and processed under the best possible conditions at T„. /: not performed. PCA= plate 
count agar, LH= modified Long and Haimner medium (Van Spreekens, 1974), MA= marine agar, CFC= 
Pseudomonas Cetrimide Fucidine Cephaloridine, MRS= Man Rogosa Sharp medium, VRBGA= Violet Red Bile 
Glucose agar and IA= Iron agar (Atlas, 2006).

Microbiological counts of shrimp (logi0cfu/g)

Shrimp processed under best possible conditions at T0 Purchased shrimp at T0 and Ti 
Unpeeled Peeled

Medium Uncooked Cooked To Ti To Ti
PCA 4.9 2.9 / / / /
LH 6.5 3.5 5.0 8.3 4.1 7.6
MA 6.5 4.1 / / / /
CFC 4.6 2.7 / / / /
MRS 2.6 2.2 / / / /
VRBGA 1.0 <10 / / / /
IA 2.2 <10 / / / /

3.1.1. Effect o f  cookins on the microbiota o f  im peded IDEAL shrimp

The brief cooking of the shrimp decreased the total microbiota (Table 4. 1) by 2 log (PCA) to 

3 log (LH). On Pseudomonas-specific (CFC) medium, a 2 log reduction was observed. The
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number of LAB (MRS) was more or less equal before and after cooking. Enterobacteriaceae 

(VRBGA) were absent in 10 g of shrimp during most of the study. The number of sulphide 

producers (IA (H2 S)) decreased by 2.2 log to below the detection level.

3.1.2. Microbiological analysis o f  unpeeled IDEAL shrimp stored on ice

The microbiological counts of cooked unpeeled shrimp are shown below (Fig 4.2A). On 

freshly cooked unpeeled shrimp on ice at arrival in the laboratory (To) an APC of 2.9 (PCA) 

or 3.5 (LH) log cfu/g was counted. During storage on ice, the microbiota increased rapidly; 

after 7 days (Ti) a 2.5 (PCA) to 2.6 (LH) log increase was observed. After 13 days (T2), an 

APC of 7.4 (PCA) or 8 . 8  (LH) was reached and the shrimp were considered to be 

microbiologically spoiled (APC: > 7 logio cfu/g). On CFC, the numbers of Pseudomonas spp. 

increased rather slowly during storage on ice; at Ti the number increased by 0.8 log, at T2  by

3.2 log. The number of LABs (MRS) was rather low and stayed equal during the whole study. 

No Enterobacteriaceae were counted on VRBGA in 10 g of unpeeled shrimp during storage 

on ice. Sulphide producers were absent during the storage on ice until end of storage (T2), 

when a 1.5 log increase was observed.

3.1.3. Microbiological analysis o f  manually peeled IDEAL shrimp daring storage on ice 

After arrival at the laboratory (To), half of the cooked shrimp were peeled manually under 

sterile conditions. In general, fewer microbiota were observed than on unpeeled shrimp during 

ice storage (Fig 4.2B). At Ti, a -0.8 (LH) to -1.4 (PCA) log difference was observed as 

compared to the unpeeled shrimp stored under identical conditions. At T2, a -1 log difference 

with unpeeled shrimp was observed on PCA, whereas on LH the difference was within a 

standard error range of 0.5 log (-0.3 log). For Pseudomonas spp. (CFC), no difference 

between peeled and unpeeled shrimp was observed at Ti. At T2  however, a difference of -1.1 

log was observed between peeled and unpeeled shrimp. Peeling also decreased the number of 

LAB by -1.4 log at Ti and -0.6 log at T2  compared with unpeeled shrimp. Enterobacteriaceae 

(VRBGA) were absent in 10 g of peeled shrimp during storage on ice. Peeling the shrimp also 

reduced the number of sulphide producers (IA) by 1.5 log at T2  to below the detection level as 

compared with unpeeled shrimp.
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Fig 4.2. Microbiological counts (login cfu/g) on all growth media of unpeeled (A) and manual peeled (B) shrimp 
sampled on board processed under the best conditions at L  (7days of storage) and T2 (13 days of storage) on ice 
and at 7.5°C. PCA= plate count agar, LH= modified Long and Hammer medium (Van Spreekens, 1974), MA= 
marine agar, CFC= Pseudomonas Cetrimide Fucidine Cephaloridine, MRS= Man Rogosa Sharp medium, 
VRBGA= Violet Red Bile Glucose agar and IA= Iron agar (Atlas, 2006). The standard error between duplicate 
plates on the different media were added.

3.1.4. Effect o f  storage at different temperatures on the microbiota on IDEAL shrimp 

In general, storage at 7.5°C revealed a much higher microbiological contamination on both 

the unpeeled (Fig 4.2A) and the peeled (Fig 4.2B) shrimp as compared to shrimp stored on 

ice. At Ti, the shrimp stored at 7.5°C were considered spoiled due to a very high APC (> 7 

logio) and an strongly disagreeable odour. The unpeeled shrimp at 7.5°C showed a difference 

of 1.4 (LH) to 2 (PCA) log as compared with those stored on ice (Fig 2A). A 1 log difference 

of Pseudomonas spp. (CFC) was also observed. Some Enterobacteriaceae (VRBGA: 1.6 log) 

and a high number of H 2 S producers (IA: 4.7 log) were able to grow very well at this 

temperature, while they were absent in 10 g of shrimp on ice at Ti. On the contrary, the 

number of LAB (MRS) during storage at a higher temperature appeared somewhat (0.8 log) 

lower than on ice.

The difference in bacterial numbers for peeled shrimp (Fig 4.2B) between ice storage and 

storage at 7.5°C was even larger than for unpeeled shrimp, especially for the general media 

(PCA and LH). When stored at 7.5°C, the difference in APC as compared with ice storage 

was approximately 3 log. The number of Pseudomonas spp. on CFC medium increased by 1 

log when stored at 7.5°C, while LAB (MRS) showed an increase of 0.8 log. In contrast to the 

unpeeled shrimp stored at high temperature, no Enterobacteriaceae or sulphide producers 

were detected in 1 0  g of peeled shrimp at Ti.

57



Molecular identification of the microbiota of peeled and unpeeled brown shrimp during storage on ice
and at 7.5°C

3.2. Microbiological analysis of INDUSTRIAL shrimp stored on ice

Enumeration of the APC on purchased shrimp as grown on LH was much higher than from 

IDEAL shrimp (Table 4.1). At T0, the APC was already 5 logio cfu/g for unpeeled shrimp and

4.1 logio cfu/g for machine peeled shrimp. After 7 days of ice storage (Ti), the purchased 

shrimp were considered to be microbiologically spoiled with an APC of 8.3 logio cfu/g 

(unpeeled) and 7.6 logio cfu/g (peeled).

3.3. Molecular identification of the isolates of IDEAL shrimp

In total, 390 colonies with different colony morphology were isolated from PCA, MA, LH, 

CFC and IA. Each purified isolate was (GTG)5 -rep-fmgerprinted. The pattern of all isolates 

showed great variety, with some large clusters of related isolates (similarity >64%). 

Identification of those large clusters was important as those are part of the most abundantly 

recovered microbiota. Additionally, representatives of all isolates present at T2  were 

identified.

Of the isolates, 180 came from raw shrimp. Some isolates could be identified based on 

comparing their rep-profile with the profiles of isolates from cooked shrimp. Those only 

present on raw shrimp were not identified, given that most shrimp are usually cooked 

immediately after catch.

The remaining 210 isolates were collected from cooked unpeeled (129) and peeled (81) 

shrimp during storage at all time points during storage on ice and at 7.5°C. From the (GTG)s- 

rep-fingerprints, 52 representatives were selected and identified 158 of the 210 isolates to 

genus level based on their partial 16S rRNA gene sequence. Most of the identified isolates 

belonged to the genera Psychrobacter (40%) and Pseudoalteromonas (34%). Other genera 

present during storage were Planococcus, Loktanella, Pseudomonas, Exiguobacterium and 

Chryseobacterium (Table 4.3). However, these genera were only present in 1-2 isolates per 

genus. The remaining 52 of the 210 isolates either had an unique (GTG)5 -rep-fingerprint or 

did not grow out during further storage and were therefore not identified.

3.3.1. Identification o f  the dominant microbiota on unpeeled IDEAL shrimp 

One hundred twenty-nine isolates of unpeeled shrimp were collected during storage on ice or 

at 7.5°C. From the (GTGf-rep clusters, 26 representatives were selected and identified 8 8  of 

the 129 isolates to genus level based on their partial 16S rRNA gene sequence. Immediately 

after cooking (To), isolates from the genera Psychrobacter, Pseudoalteromonas, Loktanella 

(one isolate) and Planococcus (one isolate) were found. During storage on ice (at Ti and T2),
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the microbiota on shrimp consisted only of Psychrobacter and Pseudoalteromonas species. 

When stored at 7.5°C, Psychrobacter species and one Exiguobacterium isolate were 

identified.

3.3.2. Identification o f  the dominant microbiota on manually peeled IDEAL shrimp 

Eighty-one isolates were collected from the manually peeled shrimp during storage on ice and 

at 7.5°C. From the (GTGfi-rep fingerprints, 25 representatives were selected and identified 63 

of the 81 isolates were identified to genus level. During storage, two genera, Psychrobacter 

and Pseudoalteromonas, were found abundantly on peeled shrimp. On ice a Pseudomonas 

isolate was found at Ti. When stored at 7.5°C Psychrobacter and Pseudoalteromonas species 

were present in high amounts; one isolate of Chryseobacterium and one Planococcus isolate 

were also found.

3.3.3. Species identification o f  the isolates belonging to the senera Psychrobacter and 

Pseudoalteromonas

After cooking, the most abundant genera on shrimp were Psychrobacter and 

Pseudoalteromonas, independent of the storage conditions. Partial 16S rRNA gene 

sequencing could identify the isolates to genus level only, since it resulted in species 

complexes for those two genera. Therefore, 44 isolates with different (GTGfi-rep fingerprints 

were selected for further identification to species level using the nearly complete 16S rRNA 

and gyrB gene sequence. Supplementary Table 4.1 (Psychrobacter) and supplementary Table

4.2 {Pseudoalteromonas) show the tentative identifications of the isolates based on similarity 

searches against Eztaxon (16S) and FASTA {gyrB) web searches. Between both genes, 

discrepancies in identification were often found. The phylogenetic trees based on the gyrB 

gene (1500 bp) sequence are shown in Figs. 4.3 and 4.4; the phylogenetic tree for 

Psychrobacter based on the full 16S sequence is shown in Suppl Fig 4.1.

According to the phylogenetic tree based on the full 16S rRNA gene sequences of 

Psychrobacter isolates (Suppl. Fig 4.1.), 21 isolates were assigned to Psychrobacter cibarius, 

one isolate (G12) was identified as Psychrobacter fo zii, one (G65) as Psychrobacter 

marincola and six isolates remained unknown at species level. Fig 4.3 shows the phylogenetic 

clustering of 29 isolates of the genus Psychrobacter based on the gyrB  gene. Most isolates 

(21) are most closely related to Psychrobacter immobilis or Psychrobacter cibarius, with two 

isolates clearly identified as Psychrobacter cibarius (2G40 and 1G232). For most of the other 

isolates within this cluster, unambiguous species identification was not possible. One isolate
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(1G194) was most related to Psychrobacter okhotskensis and one to Psychrobacter marincola 

(G65). The same six isolates (G30, G34, G56, G67, G70 and G71) which could not be 

identified based on their full 16S rRNA gene sequence remained unknown to species level 

using gyrB  as well.

For the genus Pseudoalteromonas, identification based on the full 16S rRNA gene did not 

seem possible, since several type strains seemed to have the same sequence (i.e., 

Pseudoalteromonas distincta, Pseudoalteromonas paragorgicola and Pseudoalteromonas, 

elyakovii). The isolate 2G68 was most closely related to Pseudoalteromonas translucida and 

Pseudoalteromonas antarctica based on the full 16S sequence. The isolates 1G272 and 

1G161 were closely related to all other isolates and the type strains of Pseudoalteromonas 

distincta, Pseudoalteromonas paragorgicola and Pseudoalteromonas elyakovii based on their 

full 16S sequence, but they were separated in genetic distance from the other isolates based on 

gyrB. Fig. 4.4 shows the phylogenetic tree based on the gyrB  gene including 15 isolates. 

Eleven of those isolates were identified as Pseudoalteromonas nigrifaciens. One was closely 

related to Pseudoalteromonas paragorgicola (2G68) and two (1G272 and 1G161) were 

closely related to Pseudoalteromonas elyakovii and Pseudoalteromonas paragorgicola. One 

isolate (G41) remained unidentified to species level.

3.4. Bacterial population dynamics during storage of shrimp as revealed by PCR-DGGE 

analysis

We used PCR-DGGE analysis to investigate the microbiological diversity and dynamics of 

the dominant microbiological communities on brown shrimp during storage. PCR-DGGE 

analysis was performed on plate swabs from PCA and from LH (Fig 4.5) and from DNA 

extracted directly from the shrimp matrix (Fig 4.6). The appearance or disappearance of 

amplicons (bands) in the PCR-DGGE pattern indicates the possible detectability of the 

dominant microbiota present on the various growth media and indicates important shifts in the 

microbiological community during storage on ice or at 7.5°C.
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Fig 4.3. Phylogenetic tree of the genus Psychrobacter, with the isolates from brown shrimp included, based on 
the gvrB gene sequence (1500bp). The type strains which were sequenced and submitted to the EMBL 
nucleotide sequence database are underlined. The tree was constructed with the neighbour-joining method. 
Genetic distances were calculated by the Jukes & Cantor model. The scale shows the genetic distance of 0.02. 
The percentages on the nods give the bootstrap values (on 1000 bootstrapped trees). Only values above 65% are 
shown. Acinetobacter baumannii was used as outgroup.
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Fig 4.4. Phylogenetic tree of the genus Pseudoalteromonas, with the isolates from brown shrimp included, based 
on the gvrB gene sequence (1500bp). The type strains which were sequenced and submitted to the EMBL 
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shown. Alteromonas macleodii was used as outgroup.
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Fig 4.5. PCR-DGGE pattem from the microbiota of cooked shrimp swabbed from modified Long and Hammer 
medium (LH). m= marker, A= Pseudoalteromonas, B= Psychrobacter: 1-4 and 7-9: samples from shrimp 
processed under best conditions; 5-6 and 10-11: samples from purchased shrimp. 1 and 5= unpeeled shrimp 
stored on ice at T0, 2 and 6= unpeeled stored on ice at T,. 3= unpeeled stored at 7.5°C at T,. 4= unpeeled stored 
on ice at T2. 7 and 11= peeled stored on ice at T,. 8= peeled stored at 7.5°C at T,. 9= peeled stored on ice at T2, 
10= peeled stored on ice at T0. The small letters correspond to those in table 4.2.

The internal marker with Pseudoalteromonas and Psychrobacter included several isolates of 

those genera and showed (Figs 4.5 and 4.6) that in many samples both genera were present 

during storage on ice as well as at 7.5°C. The presence of Psychrobacter was mostly observed 

on PCA plate swabs, while Pseudoalteromonas was only observed on LH plate swabs. Table

4.2 shows the identification of the excised PCR-DGGE bands. Several genera, namely 

Psychrobacter sp. (PCA: band k), Carnobacterium sp. (PCA), Bacillus sp. (LH), and 

Pseudoalteromonas sp. (LH) could be recovered from only one of the growth media.

Fig 4.6. PCR-DGGE pattem from the microbiota of cooked shrimp from DNA extracted without cultivation 
direct from the shrimp matrix. m= marker, A= Pseudoalteromonas, B= Psychrobacter: 1-4 and 7-9: samples 
from shrimp processed under the best possible conditions; 5-6 and 10-11 : samples from purchased shrimp. 1 and 
5= unpeeled shrimp stored on ice at T0, 2 and 6= unpeeled stored on ice at Tj, 3= unpeeled stored at 7.5°C at T,. 
4= unpeeled stored on ice at T2. 7 and 11= peeled stored on ice at Ti, 8= peeled stored at 7.5°C at Ti, 9= peeled 
stored on ice at T2, 10= peeled stored on ice at T0. The small letters correspond to those in table 4.2.
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Some differences were observed between the PCR-DGGE patterns obtained by plate swabs 

and via direct DNA extraction from the matrix (Fig. 4.5 and 4.6). The genera corresponding 

with the excised band a and bands c to e were only visualized via plate swabs. On the other 

hand, the genera corresponding to bands g (Exiguobacterium sp.) and i (Staphylococcus sp.) 

were only observed via direct DNA extraction.

Further differences were observed in PCR-DGGE patterns between unpeeled and peeled 

shrimp. According to the identified bands the species of the genus Pseudoalteromonas 

corresponding with bands d and e (Fig. 4.5) dominated the microbiota of unpeeled shrimp and 

were not observed on peeled shrimp (Fig. 4.6). Marker-based identification, however, showed 

that most samples did contain Pseudoalteromonas species.

The PCR-DGGE patterns from the INDE1S TRIAL shrimp showed that the genera 

Pseudoalteromonas and Psychrobacter were both present. They were also found on the 

IDEAL shrimp. Other bands, especially from the DNA directly extracted from the matrix, 

also showed some similarity between both shrimp samples. Species from the genus 

Staphylococcus (band i) were only found on INDUSTRIAL shrimp and not on the IDEAL 

shrimp. Pseudoalteromonas arctica (band e) was only found on INDUSTRIAL shrimp. Table

4.3 summarizes all genera/species found in this study. It is shown that the most abundant 

genera (Pseudoalteromonas, Psychrobacter) and also the genera Exiguobacterium and 

Planococcus species were discovered via both PCR-DGGE analysis and isolation. The other 

genera were only discovered via plating and isolation (Loktanella, Pseudomonas and 

Chryseobacterium) or only via PCR-DGGE analysis (Bacillus, Carnobacterium and 

Staphylococcus).
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Table 4.2. Identification of the excised PCR-DGGE bands shown in Fig 5 and 6 based on the 16S rRNA-V3 region from the microbiota on brown shrimp via similarity 
searches against the FASTA websearch. T0= present at day one, Ti present after 7 days of storage of shrimp, T2= present after 13 days of storage of shrimp, ice= present 
during storage on ice, 7.5°C= present during storage at 7.5°C, L= microbiota recovered from swabs from modified Long and Haimner medium, P= microbiota recovered from 
swabs from plate count agar, D= microbiota recovered from the direct DNA extraction from the shrimp matrix, /= absent, n/a= not applicable.

Band Closest relative in FASTA websearch Similarity
(%)

The best possible processing Purchased

Unpeeled Peeled Unpeeled Peeled
a Psychrobacter sp. 89.8 T0 ice (P & L) Tj ice (P) / /
b Planococcus donghaensis 99.3 T0 ice (P, L) Tj ice (P) T2 ice & Tj 

7.5°C (D)
T0 and T, ice (L & D) T,;, ice (D)

c Bacillus sp. 99.3 Tj at 7.5°C (L) Ti ice (L) / /
d Pseudoalteromonas translucida 98.6 T0 ice (L) & Ti ice (L, D) / Ti ice (L) Ti and To ice 

(L)
e Pseudoalteromonas arctica 

Psa. fuliginea
98.7-98.5 Tj ice (L) / Tj ice (L) /

f Crangon crangon (brown shrimp) s 97.6 n/a n/a n/a n/a
g Exiguobacterium sp. 89.1 T0, Tl, T2 ice. Tl 7.5°C (D) Tl, T2 ice. Tl 7.5°C (D) TO ice (D) TO ice (D)
h Uncultured Verrucomicrobia bacterium 

(EU350866)
77.6 TO ice (L), TI ice (P) / TO ice (L), Tl & Tl 

ice (D)
TO ice (D)

i Staphylococcus sp. 89.7 / / TO ice (D) /
j Carnobacterium funditum 

C. divergens
100 -
99.6

TO ice (P) TI ice (P), T1 7.5°C & 
T2 ice (D)

TI ice (D) /

k Psychrobacter sp. 94.5 TI ice (P, D), Tl 7.5°C (P, D), 
T2 ice (D)

T1 7.5°C (P, D), T2 ice 
(P. D)

TI ice (D) TI ice (D)

An artefact from the direct DNA extraction.
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IV. Discussion

Shrimp are rich in NPN compounds that are easily metabolised by microorganisms (Liston, 

1980). Microbiological growth and activity are the main cause of spoilage and contribute to 

the off-flavour and olfactory changes associated with spoiled seafood. The APC results show 

that brown IDEAL shrimp without preservatives caught and processed under the best possible 

conditions stored on ice have a microbiological shelf life of about two weeks before their 

APC exceeds 7 logio cfu/g. The absence of Enterobacteriaceae indicates hygienic processing 

under these conditions. LAB, which dominate the microbiota of MAP stored seafood 

(Tryfmopoulou et al. 2002), were practically absent on the shrimp in this study, possibly 

because of the other storage conditions, namely aerobic (iced) storage. INDUSTRIAL shrimp 

without preservatives stored on ice have a microbiological shelf life of about one week. The 

shorter microbiological shelf life of INDUSTRIAL shrimp shows that many factors (e.g., 

icing and limiting cross-contamination with raw material) could be manipulated to extend the 

shelf life of fresh shrimp. At To. all samples were well within the microbiological limits of 

IO5 -IO6  cfu/g for fresh and precooked fish (Anonymous 1986). The cooking process severely 

decreased the bacterial contamination on the shrimp. Niamhuy et al. (2007) observed a 2 log 

reduction on white shrimp {Penaeus indicus) when a boiling time of 1 minute was used and a 

4 log reduction when cooked for 3 to 4 minutes. Despite cooking during a similar duration, 

the microbiological reduction in this study for Crangon crangon was much lower than for 

Penaeus indicus. This can be explained by different reasons: (1) Microbial analysis was 

performed one day after cooking instead of immediately. (2) This can be due to cooling of the 

shrimp to the air (IDEAL shrimp) or with seawater (INDUSTRIAL shrimp). Using seawater 

to expedite the cooling process can be an important source of recontamination (Van 

Spreekens and de Man 1970). The IDEAL shrimp were first air-cooled then placed on ice, 

which quickly reduced their temperature to 4°C. However, less probable, some of the 

microorganisms remaining after the cooking process could possibly be able to survive the 

high temperatures and were able to grow out during ice storage. Cooking at a higher 

temperature or during a longer time might resolve this, but nothing is known about the heat 

resistance of these microorganisms. A change in the cooking and cooling process can also 

affect the taste and texture of the shrimp (Niamnuy et al., 2007). The cooking process itself 

may also influence the rate of bacterial outgrowth on the shrimp flesh during further storage, 

since the shell and flesh will be damaged (Dykes et al. 2003; Niamnuy et al. 2007).
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In this study, both manual and machinal peeling of the shrimp resulted in equal reductions in 

APC. This indicates that manual peeling of the shrimp (as sterile as possible) was not more 

effective in reducing the APC. These results agree with Schrubring and Meyer (1999) who 

studied the difference in APC between hand-peeled and machine-peeled shrimp. As Dykes et 

al. (2003) discuss, these results can be explained by the fact that the bacterial contamination is 

not only present on the shell, but also in the crevasses and channels between the shell 

segments, which makes it impossible to peel the shrimp without contaminating the meat. 

Some microorganisms were found exclusively on INDUSTRIAL peeled shrimp as shown by 

PCR-DGGE band i (Staphylococcus sp.), which may indicate process contamination.

This study reinforces the finding that the storage temperature of seafood has an important 

effect on shelf life and microbiological growth. Immediately placing shrimp in a large amount 

of ice is recommended, as this can double the shelf life of shrimp without preservatives 

compared to storage at 7.5°C. The average refrigerator temperature of 7.5°C (± 0.5°C) was 

used in accordance with Marklinder et al. (2004) and the results from a fridge temperature 

study performed by consumers (WIV 2006). However, this temperature was considered worst 

case practice in this study. Several studies have indicated the importance of storage 

temperature on the enumeration of microorganisms as well as on sensory spoilage (Huidobro 

et al. 2002). In particular, TVC analysis showed a steep increase in H 2 S producers under 

refrigerated storage conditions. One of the H 2 S producers isolated from iron agar was 

identified as an Exiguobacterium sp. In this study, all the microorganisms identified on 

shrimp during storage were marine food-related microorganisms. Most of them have been 

isolated before from food or seafood. Some of the genera found are even known to contribute 

to seafood spoilage, such as Pseudomonas sp., Bacillus sp. and Carnobacterium sp. Members 

of the genus Pseudomonas tend to grow very rapidly. They often outgrow species of other 

genera (Moore et al. 2006) and have often been observed to dominate the microbiota of 

seafood stored aerobically under chilled conditions (Tryfmopoulou et al. 2002). This leads 

them to be used as a spoilage indicator (Olafsdottir et al. 2006). Staphylococcus species are 

often associated with post-harvest and processing procedures. The isolates found in this study 

were not closely related to Staphylococcus aureus, a known threat to public health. 

Carnobacterium is a typical genus present in MAP-stored food such as brined shrimp 

(Dalgaard et al. 2003). It has been assumed that this microorganism’s presence is a result of 

contamination after the cooking process (e.g., cooling, peeling, or packaging), but in this 

study a species of the genus was found based on identification of a PCR-DGGE band (k) on
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unpeeled IDEAL shrimp as well. This species was closest related to Carnobacterium 

funditum  and Carnobacterium divergens with a similarity of 100 to 99.6%. This indicates that 

the presence of this genus may not be the result of contamination post-cooking but may 

possibly originate from the intestinal content and survive the cooking process. 

Carnobacterium divergens has been reported before in cooked and brined shrimp (Dalgaard et 

al. 2003). Strains belonging to this genus have previously been isolated from tropical cooked 

and peeled shrimp (Jaffrés et al. 2009). The other genera found in this study have been 

correlated to seafood before, but to date those have not been described as SSOs. Some studies 

indicate, however, that some of these organisms may have spoilage potential. Species of the 

genus Chryseobacterium, formerly known as Sejongia (Kampfer et al. 2009), have been 

isolated from fish (Austin and Austin 1999) and some of the strains may contribute to sensory 

spoilage of fish (Engelbrecht et al. 1996). Many Planococcus species, formerly known as 

Micrococcus, were assigned to this genus the last decade and have been isolated from fish and 

other cold or frozen food (Hao and Komagata 1985). Alvares et al. (1982) described that 

proteolytic Planococcus species may contribute to shrimp spoilage. However, Planococcus 

donghaensis, the closest phylogenetic neighbour of the strains isolated in the present study, is 

not able to produce hydrogen sulphide and other spoilage characteristics are not known (Choi 

et al. 2007). To date, no Exiguobacterium species have been isolated from fish, therefore 

nothing is known about their possible role in shelf life. In this study, Exiguobacterium sp. 

seemed to be an hydrogen sulphide producer on iron agar.

Pseudoalteromonas and Psychrobacter dominate the microbiota of brown shrimp without 

preservatives regardless of differences in area and season of catch, early handling, processing 

procedures, and storage conditions. Both genera are described quite recently. The genus 

Pseudoalteromonas was described in 1995, and contains several species previously described 

as Alteromonas, Shewanella and Moritella (Gauthier et al. 1995). Likewise, the genus 

Psychrobacter was first described in 1986 (Juni and Heym 1986) and most species have only 

been identified during the last decade. As also shown in chapter 3, both genera are often 

observed to be the most abundant microorganisms on several fish species and other seafood 

during storage on ice or on fish in general (Reynisson et al. 2009; Romero et al. 2002; Wilson 

et al. 2008). Both genera have been associated with the gut microorganisms of lobsters, 

prawns and other seafood (Fjellheim et al. 2007; Meziti et al. 2010; Oxley et al. 2002). Both 

genera were also shown to cause black spots (melanosis), a problem relevant to the storage of 

raw shrimp (Miwa et al. 2008).
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Table 4.3. Summarizing table with all the identified species or genera found on brown shrimp during storage, with indication of the sample from which they were found, the 
time points during storage, the processing procedures, the storage temperature and via which technique they were recovered and identified. The last column shows on which 
growth media the genus or species was isolated/detected. T0= present at day 1, Ti= present after 7 days of storage, T2= present after 13 days of storage. S= microbiota 
recovered from plate swabs, D= microbiota recovered from the direct DNA extraction from the shrimp matrix. LH= modified Long and Haimner medium, PCA= plate count 
agar, IA= Lyngby iron agar, MA= marine agar, CFC= Pseudomonas Cetrimide Fucidine Cephaloridine agar

Genus/species Shrimp sample Time point Processing Storage conditions Detected/identified via Growth
media

Pseudoalteromonas

Psa. nigrifaciens Ideal processing All time points Both unpeeled and 
peeled At both temperatures Rep and gvrB

Psa. elyakovii Ideal processing Ti Both unpeeled and 
peeled At both temperatures Rep and gvrB

Psa. paragorgicola Ideal processing Ti,T 2 Both unpeeled and 
peeled Onice Rep and gvrB

All media 
except PCA

Psa. translucida Ideal processing To, T, Unpeeled On ice PCR-DGGE (S,D) 16S-V3

Purchased Ti,T 2 Both unpeeled and 
peeled Onice PCR-DGGE (S) 16S-V3

Psa. arctica /Psa. fuliginea Ideal processing Ti Unpeeled On ice PCR-DGGE (S) 16S-V3
Purchased Ti Peeled Onice PCR-DGGE (S) 16S-V3

Pseudomonas
Pseudomonas sp. Ideal processing Ti Peeled Onice Rep and 16S CFC
Psychrobacter

Psychrobacter sp. Ideal processing Ti,T 2 Both unpeeled and 
peeled Onice PCR-DGGE (S) 16S-V3 PCA, LH

Ideal processing To Unpeeled On ice Rep and gvrB PCA, LH

Psb. cibarius Ideal processing All time points Both unpeeled and 
peeled At both temperatures Rep and gvrB All media

Psb. immobilis Ideal processing All time points Both unpeeled and 
peeled At both temperatures Rep and gvrB PCA

Psb. okhotskensis Ideal processing Ti Peeled At both temperatures Rep and gvrB PCA
Psb. marincola Ideal processing To Unpeeled On ice Rep and gvrB PCA
Staphylococcus
Staphylococcus sp. Purchased To Unpeeled On ice PCR-DGGE (D) 16S-V3
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4 Table 4.3. Continue

Genus/species Shrimp sample Time point Processing Storage conditions Detected/identified via Growth
media

Bacillus

Bacillus sp. Ideal processing Ti Both unpeeled and 
peeled At both temperatures PCR-DGGE (S) 16S-V3 LH

Carnobacterium

C. funditum/ C. divergens Ideal processing All time points Both unpeeled and 
peeled At both temperatures PCR-DGGE (S, D) 16S-V3 PCA

Chryseobacterium
Chryseobacterium sp. Ideal processing Ti Peeled At 7.5°C Rep and 16S PCA
Exiguobacterium
Exiguobacterium sp. Ideal processing Ti Unpeeled At 7.5°C Rep and 16S IA

Ideal processing All time points Both unpeeled and 
peeled At both temperatures PCR-DGGE (D) 16S-V3

Purchased T0
Both unpeeled and 
peeled Onice PCR-DGGE(D) 16S-V3

Loktanella
Loktanella sp. Ideal processing T0 Unpeeled On ice Rep and 16S MA
Planococcus
Planococcus sp. Ideal processing T0 Unpeeled On ice Rep and 16S MA

Ideal processing Ti Peeled At 7.5°C Rep and 16S MA

Planococcus donghaensis Ideal processing All time points Both unpeeled and 
peeled At both temperatures PCR-DGGE (S,D) 16S-V3 PCA, LH

Purchased T0 and T, Both unpeeled and 
peeled Onice PCR-DGGE (S,D) 16S-V3 LH
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Several species of the genus Pseudoalteromonas have many useful properties, such as 

antimicrobiological properties, the ability to break down PCBs (Michaud et al. 2007) and the 

degradation of paralytic shellfish toxins (Donovan et al. 2009). Little is known about the 

spoilage potential of those microorganisms, but some species such as Pseudoalteromonas 

citrea have proteolytic activities (Iijima et al. 2009) and are able to hydrolyse fish proteins 

(Belchior and Vacca 2006). Ivanova et al. (1998) revealed that Pseudoalteromonas fuliginea, 

which might also be found in this study (PCR-DGGE band e (Fig. 4.6 and Table 4.2)), is a 

heterotypic synonym of Pseudoalteromonas citrea. Some Pseudoalteromonas species form 

biofilms, which may affect processing of seafood and cleaning of the appliances used in 

processing.

Species of the genus Psychrobacter are members of the spoilage microbiota of chilled 

proteinaceous foods stored in air (Bowman 2006). Psychrobacter species have been isolated 

from several seafood products such as cooked and peeled or frozen tropical and nordic shrimp 

in MAP packaging (Jaffrés et al. 2009; Mejlholm et al. 2005; Tsironi et al. 2009), salt-cured 

cod (Bjorkevoll et al. 2003) and shellfish (Prapaiwong et al. 2009). Their importance in 

spoilage is considered rather low since they seemed to be unable to compete with common 

spoilage microorganisms (Rodríguez-Calleja et al. 2005); however, their spoilage potential 

has not been extensively studied. Psychrobacter immobilis is able to produce only weak 

slightly fishy, musty (Mejlholm et al. 2005; Prapaiwong et al. 2009) off-flavours, and is able 

to hydrolyse lipids (Gennari et al. 1992; Yumoto et al. 2003).

It was shown that the use of the 16S rRNA gene for identification of shrimp isolates resulted 

in species complexes within the genera Psychrobacter and Pseudoalteromonas since 

similarity searches against type strains in the Eztaxon database resulted in plural species 

names with more than 98.7% similarity and often with either null, one or two base pairs 

difference. Identification based on the gyrB gene could better discriminate between species 

(La Duc et al., 2004).

When a 16S rRNA gene based phylogenetic tree was made, type strains of the species 

Pseudoalteromonas distincta (AF082564), Pseudoalteromonas paragorgicola (AY040229) 

and Pseudoalteromonas elyakovii (AF082562) were not distanced from each other. By using 

gyrB, the sequence differences between those type strains was larger, and identification of 

some of the isolates could be achieved. Not many gyrB  sequences of type strains had been 

deposited in a public database, whereas gyrB sequences of several type strains were deposited
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in the EMBL nucleotide database. This allowed the use of a phylogenetic tree with inclusion 

of these type strains for isolate identification. Most isolates were identified as

Pseudoalteromonas nigrifaciens (similarity > 99.1%).

Psychrobacter identification showed similar problems. Based on gyrB  sequences, those 

isolates were identified as either Psychrobacter cibarius or Psychrobacter immobilis 

(similarity between 96.3 and 99.8%). A phylogenetic tree (Fig 4.3) indicated some sequence 

differences between all isolates; clear allocation to either one of the two species was not 

possible. This could mean that the tree also indicates the possible presence of some new 

species within this genus (isolate G30, the cluster G12, 1G192, 1G201 and the cluster G71, 

G56, G67, G34, G70).

PCR-DGGE analysis using the 16S-V3 region has often been used in seafood research to 

observe population shifts and identify the microbiota present. In this study, PCR-DGGE was 

used to observe population shifts during storage and among different storage conditions. Only 

few differences between unpeeled and peeled shrimp were observed, and the differences were 

mostly not very large. This can be explained by the very high incidence of contaminating the 

meat while peeling the shrimp either manually or with a machine (Dykes et al. 2003). 

Differences between culture-dependent and culture-independent techniques were also 

observed using PCR-DGGE analysis. Food science research relies on many factors, including 

the choice of growth media or DNA extraction methods. Some differences were observed 

between both culture-dependent and independent detection of microbiota such as in the 

dominance of Psychrobacter and Pseudoalteromonas (Fig. 4.5 and 4.6). When using the 

culture-independent method, the genera were still found but the intensity of the bands was 

much weaker, especially for the band corresponding with Psychrobacter. This may indicate 

that on growth media Psychrobacter spp. and Pseudoalteromonas spp. have a slight 

advantage and possibly outgrow some other microorganisms. The difference in band pattern 

can also arise from the media used (Table 4.3). For example, Exiguobacterium sp. (Fig 4.6; 

band h) was isolated from Lyngby iron agar (IA) and could only be identified from all 

culture-independent PCR-DGGE patterns since plate swabs from IA were not included in the 

PCR-DGGE analysis. The inability of microorganisms to grow on PCA or LH might explain 

the differences in PCR-DGGE patterns (Table 4.3). As previously observed in chapter 3, 

some Psychrobacter spp. were unable to grow on the LH growth medium. In contrast, 

Pseudoalteromonas spp. were only detected on LH. The PCR-DGGE technique itself also has
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. . .  3some potential pitfalls, such as a detection limit of 1 0  cfu/g, which also depends on the 

species composition of the total bacterial community (Muyzer et al. 1993). The abundance of 

some species may mask the presence of the other microorganisms, even when they are present 

in higher numbers than 10 cfu/g. Sequence heterogeneity of the 16S gene might cause the 

diversity to be overestimated (de Araujo and Schneider 2008). Identification of the PCR- 

DGGE bands is limited to genus level due to the very small fragment sequenced. Potential co

migration of different species as one band or as bands with the same migration pattern might 

compromise the identification and presence of species in samples based on comparison of 

bands. This must therefore be interpreted with caution.

In conclusion, Pseudoalteromonas and Psychrobacter are the dominant microbiota of brown 

shrimp during storage on ice and at 7.5°C. Both genera were present on IDEAL shrimp 

processed under the best possible circumstances as well as from INDUSTRIAL samples. 

Culture-dependent techniques more clearly revealed the presence of those genera. When the 

culture-independent technique PCR-DGGE was used, both genera were still present, but their 

presence in every sample diminished especially for Psychrobacter spp., while some other 

bands in the PCR-DGGE pattern became more pronounced. Therefore, when studying the 

microbiota on seafood one needs to account for the inability of some techniques to give a 

complete overview or indicate which microbiota are present.
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Supplementary table 4.1. Tentative identification of the isolates from brown shrimp belonging to the genus 
Psychrobacter via the nearest phylogenetic neighbour based on the full 16S rRNA gene (1500bp) and the gvrB 
gene (1500bp) with indication of the percentage of similarity.
Isolate
names

16S EZTAXON (accession 
number)

similarity
(%)

GvrB Fasta (accession 
number)

similarity
(%)

G12 Psb. fozii (AJ430827) 99.1% Psb. cibarius (FR668579) 96.2%
G30 Psb. maritimus (AJ609272) 97.4% Psb. maritimus (FR668575) 87.6%
G34 Psb. celer (AY842259) 99.1% Psb. marincola 

(DQ143914)
85.8%

G56 Psb. namhaensis (AY722805) 97.9% Psb. maritimus (FR668575) 85.3%
G57 Psb. fozii (AJ430827) 99.6% Psb. immobilis 

(DQ143927)
98.5%

G65 Psb. marincola (AJ309941) 100% Psb. marincola 
(DQ143919)

97.9%

G67 Psb. maritimus(A]609272) 98.2% Psb. submarinus 
(DQ143923) 
Psb. marincola 
(DQ143919)

85.0%

G70 Psb. celer (AY842259) 98.9% Psb. marincola 
(DQ143919)

85.9%

G71 Psb. nivimaris (AJ313425) 94.9% Psb. pulmonis (AB458223) 85.1%
1G136 Psb. cibarius (AY639871) 98.9% Psb. immobilis (FR668577) 98.1%
1G140 Psb. cibarius (AY639871) 97.7% Psb. cibarius (FR668579) 97.3%
1G145 Psb. cibarius (AY639871) 98.1% Psb. cibarius (FR668579) 98.1%
1G164 Psb. cibarius (AY639871) 100% Psb. cibarius (FR668579) 97.1%
1G192 Psb. cibarius (AY639871) 100% Psb. immobilis 

(DQ143927)
96.3%%

1G194 Psb. cibarius (AY639871) 100% Psb. okhotskensis 
(DQ143920)

91.1%

1G198 Psb. cibarius (AY639871) 100% Psb. cibarius (FR668579) 98.7%
1G199 Psb. cibarius (AY639871) 98.3% Psb. immobilis 

(DQ143927)
96.8%

1G201 Psb. cibarius (AY639871) 100% Psb. cibarius (FR668579) 96.9%
1G206 Psb. cibarius (AY639871) 100% Psb. immobilis 

(DQ143927)
96.5%

1G211 Psb. cibarius (AY639871) 97.9% Psb. immobilis 
(DQ143927)

96.5%

1G220 Psb. cibarius (AY639871) 98.3% Psb. cibarius (FR668579) 97.8%
1G231 Psb. cibarius (AY639871) 100% Psb. cibarius (FR668579) 97.0%
1G232 Psb. cibarius (AY639871) 97.6% Psb. cibarius (FR668579) 99.8%
2G1 Psb. cibarius (AY639871) 99.2% Psb. cibarius (FR668579) 96.8%
2G2 Psb. cibarius (AY639871) 100% Psb. immobilis 

(DQ143927)
96.8%

2G36 Psb. cibarius (AY639871) 98.4% Psb. cibarius (FR668579) 97.5%
2G40 Psb. cibarius (AY639871) 100% Psb. cibarius (FR668579) 99.1%
2G44 Psb. cibarius (AY639871) 98.3% Psb. immobilis (FR668577) 96.8%
2G46 Psb. cibarius (AY639871) 98.8% Psb. cibarius (FR668579) 96.3%
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Supplementary table 4.2. Tentative identification of the isolates from brown shrimp belonging to the genus 
Pseudoalteromonas via the nearest phylogenetic neighbour based on the full 16S rRNA gene (1500bp) and the 
gvrB gene (1500bp) with indication of the percentage of similarity. /: not performed.

Isolate 16S EZTAXON (accession similarity GvrB Fasta (accession number) similarity
names number) (%) (%)
G41 / / Psa. arctica (FR668562) 96.4%
G43 Psa. nigrifaciens (X82146) 

Psa. elyakovii (AF082562) 
Psa. undina (X82140)

98.5% Psa. nigrifaciens (FR668569) 99.1%

1G146 Psa. elyakovii (AF082562) 98.7% Psa. nigrifaciens (FR668569) 99.4%
1G148 Psa. elyakovii (AF082562) / 

Psa. espejiana (X82143)
98.5% Psa. nigrifaciens (FR668569) 99.6%

1G161 Psa. nigrifaciens (X82146) 97.5% Psa. elyakovii (FR668565) 98.7%
1G209 Psa. elyakovii (AF082562) 

Psa. nigrifaciens (X82146)
98.8% Psa. nigrifaciens (FR668569) 99.6%

1G212 Psa. arctica (DQ787199) 
Alteromonas fuliginea 
(AF529062)
Psa. elyakovii (AF082562 
Psa. nigrifaciens (X82146)

98.1% Psa. nigrifaciens (FR668569) 99.6%

1G215 Psa. nigrifaciens (X82146) 98.0% Psa. nigrifaciens (FR668569) 98.8%
1G242 Psa. nigrifaciens (X82146) 

Psa. elyakovii (AF082562)
99.3% Psa. nigrifaciens (FR668569) 99.1%

1G244 Psa. nigrifaciens (X82146) 98.0% Psa. nigrifaciens (FR668569) 99.6%
1G272 Psa. nigrifaciens (X82146) 

Psa. elyakovii (AF082562) 
Psa. haloplanktis (X67024)

100% Psa. elyakovii (FR668565) 98.7%

2G19 Psa. elyakovii (AF082562) 98.8% Psa. nigrifaciens (FR668569) 99.4%
2G20 Psa. elyakovii (AF082562) 98.4% Psa. nigrifaciens (FR668569) 99.7%
2G22 Psa. elyakovii (AF082562) 98.7% Psa. nigrifaciens (FR668569) 99.7%
2G68 Psa. translucida 

(AY040230)
99.6% Psa. paragorgicola(FR66%570) /Psa. 

elyakovii (FR668565)
98.9%
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Suppl. Fig 4.1. Phylogenetic tree of the genus Psychrobacter based on the full 16S rRNA gene sequence 
(1500bp). The isolates found in this study were hereby compared to all sequences generated from the typestrains 
of the species within this genus. The tree was constructed with the neighbour-joining method. Genetic distances 
were calculated by the Jukes & Cantor model. The scale shows the genetic distance of 0.02. The percentages on 
the nods give the bootstrap values (on 1000 bootstrapped trees). Only values above 65% are shown. 
Acinetobacter baumannii was used as outgroup.
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Volatile compounds associated with Psychrobacter spp. and Pseudoalteromonas spp.

Chapter 5. Volatile compounds associated with Psychrobacter spp. and 

Pseudoalteromonas spp., the dominant microbiota of brown shrimp 

{Crangon crangon) during aerobic storage

Abstract

Psychrobacter and Pseudoalteromonas species dominate the microbiota of cooked brown 

shrimp {Crangon crangon). Therefore, the spoilage potential of several Psychrobacter and 

Pseudoalteromonas species {Psychrobacter cibarius, Psychrobacter maritimus, 

Pseudoalteromonas elyakovii, Pseudoalteromonas paragorgicola and Pseudoalteromonas 

nigrifaciens) was determined and quantified based on the presence of VOCs. Additionally, 

API ZYM analyses determined the species’ enzymatic capacity to contribute to spoilage by 

degrading lipids, amino acids and proteins. The bacterial species used in this study were 

isolated from cooked brown shrimp during storage (spoilage) under different storage and 

processing (peeled, unpeeled) conditions and were selected for analysis of their spoilage 

potential based on their difference in the (GTG)s-rep profile, 16S rRNA and gyrB sequences 

and API ZYM profile. The isolates were inoculated as pure cultures on heat-sterilised shrimp. 

The inoculated samples were stored at 4°C and the production of VOCs by the pure strains on 

the shrimp matrix was identified via gas chromatography coupled to mass spectrometry (GC- 

MS). VOC production was quantified daily by selected ion flow tube mass spectrometry 

(SIFT-MS) until the bacterial count exceeded IO8 - IO9  cfu/g. Based on the API ZYM results, 

Pseudoalteromonas as well as Psychrobacter species might enhance spoilage by breaking 

down lipids and hydrolysing amino acids and proteins. The sensory profile of Psychrobacter 

species revealed very low potential of the production of VOCs. Pseudoalteromonas species, 

especially Pseudoalteromonas elyakovii and Pseudoalteromonas nigrifaciens, produced 

significant amounts of volatile compounds such as sulphides, acetone, ammonia, and ethanol, 

which are all involved in seafood spoilage, and might be responsible for the off-odours 

produced during spoilage of brown shrimp.
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I. Introduction

As described in chapter 2, seafood spoilage is a complex phenomenon involving various 

biochemical and microbiological factors. Microbiological growth and activity is by far the 

most common cause of spoilage and contributes to the textural, off-flavour, and olfactory 

changes associated with spoiled seafood. Brown shrimp are prone to rapid microbiological 

spoilage due to the ideal intrinsic conditions: a nearly neutral pH, a high water activity (aw = ± 

0.99) and high content of low molecular weight compounds, which are easily metabolised by 

microorganisms (Liston 1980). Bacterial degradation of soluble, low molecular weight 

components results in the formation of volatile metabolites such as alcohols, ketones, sulphur 

compounds, amines (TMA, DMA), esters, aldehydes, and organic acids (Gram and Dalgaard 

2002; Gram et al. 2002). Some of these metabolites are responsible for the unpleasant and 

offensive off-odours and off-flavours that lead to sensory rejection and shorten the shelf life 

of seafood (Gillespie and Macrae 1975; Herbert et al. 1971; Shewan and Murray 1979). These 

VOCs are metabolised by only a fraction of the microbiota present on the seafood during 

storage, generally referred to as SSOs (Dalgaard 1995).

Chapter 4 revealed that the genera Psychrobacter and Pseudoalteromonas dominate the 

microbiota of brown shrimp without preservatives despite differences in area and season of 

catch, early handling and processing procedures, or storage conditions. Their abundant 

presence has also been observed on other fish and fishery products during storage on ice or on 

fish in general (see chapter 3). However, literature contains little data on the spoilage potential 

of these organisms. Several species of the genus Pseudoalteromonas have been used for their 

antimicrobiological properties, their ability to break down PCBs (Michaud et al. 2007), and 

their ability to degrade paralytic shellfish toxins (Donovan et al. 2009). Some, such as 

Pseudoalteromonas citrea, have proteolytic activities (Iijima et al. 2009) and are able to 

hydrolyse fish proteins (Belchior and Vacca 2006). They are known to form biofilms, which 

may be important in seafood processing and cleaning of the appliances.

Species of the genus Psychrobacter belong to the group of spoilage microbiota found on 

chilled proteinaceous foods stored in air (Bowman 2006) and have been isolated from several 

seafood products (see chapter 3). Only one species within the genus, Psychrobacter immobilis 

has been reported to produce slightly fishy, musty off-flavours (Mejlholm et al. 2005; 

Prapaiwong et al. 2009) and has the capacity to hydrolyse lipids (Gennari et al. 1992; Yum oto 

et al. 2003).
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The aim of this study was to investigate the spoilage potential of several Psychrobacter and 

Pseudoalteromonas spp. isolates that had been previously isolated from cooked peeled and 

unpeeled brown shrimp without preservatives stored under aerobic conditions. We studied the 

spoilage potential of these isolates by studying the sensory profile of an inoculated pure 

culture on sterile shrimp as detected by gas chromatography coupled to mass spectrometry 

(GC-MS). The real-time quantification throughout the spoilage process of these chemical 

compounds was measured by selected ion flow tube mass spectrometry (SIFT-MS) analysis.

II. Material and methods

2.1. Selection of bacterial strains based on API ZYM characterisation

From a collection of Psychrobacter and Pseudoalteromonas isolates from brown shrimp 

(Crangon crangon) described in chapter 4, a selection of isolates was made which represented 

(GTG)5 -rep PCR fingerprint-clusters and different species based on partial 16S rRNA gene 

sequencing. In total, 17 isolates were selected for API ZYM tests (Biomerieux): 6  isolates 

from the genus Pseudoalteromonas and 11 from the genus Psychrobacter. This test was used 

to determine their enzymatic activities for the following reasons: ( 1 ) to indicate the probable 

(biochemical) spoilage activity and (2 ) to further clarify strain differences in addition to 

(GTG)5 -rep fingerprints and sequence identification. In total, we performed 19 enzymatic 

tests: alkaline phosphatase; esterase (C4); esterase lipase (C 8 ); lipase (C14); leucine 

arylamidase; valine arylamidase; cysteine arylamidase; trypsin; chymotrypsin; acid 

phosphatase; napthol-AS-Bi-phosphopydrase; a-galactosidase; ß-galactosidase; ß- 

glucuronidase; a-glucosidase; ß-glucosidase; N-acetyl-ß-glucosaminidase; a-mannosidase; 

and a-fucosidase. The isolates were cultured on modified Long and Hammer medium (Van 

Spreekens 1974) at 21°C for 5 days since they are unable to grow on regular plate agar (see 

chapter 3). Further analysis was performed according to the manufacturers’ guidelines with 

the exception of incubating the strips at 21°C for 20 h. The API ZYM results were used to 

select the isolates for further study of the volatile compounds (see 2.4.). Isolates with the same 

(GTG)5-rep PCR fingerprint, same sequence identification, and same API ZYM results were 

considered to be identical. The selected isolates were identified to species level by gyrB  gene 

sequencing as described in chapter 3.

2.2. Sample inoculation and storage

For each of the selected isolates, 1 kg fresh shrimp without preservatives in a 5L Duran bottle 

was heat-treated at 121°C for 10 min in a pressure cooker. The bottles were then immediately
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stored at 4°C. After rapid cooling to 4°C in the fridge on ice, the remaining moisture was 

poured out of the bottles in a sterile manner and the sterile shrimp were inoculated with 1 0  to 

IO4  cfu/g of each isolate. One bottle of sterile shrimp was not inoculated and was used as a 

control. All bottles were stored at 4 C until the end of the experiment (T 1-T9 ). Samples were 

aseptically taken daily starting the day after inoculation (Ti) for bacterial enumeration and to 

identify (GC-MS) and quantify (SIFT-MS) the volatiles (see further).

2.3. Total counts of inoculated samples. pH and lactic acid production

The growth of the bacterial isolates on the samples and pH of every sample was measured 

daily. For the microbiological analysis, 10 g of shrimp were transferred aseptically to a 

stomacher bag, 90 ml of maximum recovery diluent (Oxoid) was added and the mixture was 

homogenised for 2 min. Samples (0.1 ml) of serial dilutions of the homogenates were spread 

on modified Long and Hammer medium (Van Spreekens 1974) for enumeration. An 

incubation period of 3 days at 21°C was used. Duplicates were made for every sample. After 

incubation all colonies were counted. The pH of every sample was measured with a pH meter 

(Mettler Toledo) by mincing 5 to 10 g of shrimp sample. An RI-HPLC analysis according to 

Dang et al. (2009) was performed to measure the production of lactic acid within 4 weeks 

after sampling in samples stored at -20°C.

2.4. Analysis of spoilage related VOCs

2.4.1. Identification o f  VOCs by GC-MS

Every other day starting at Ti, shrimp from each inoculated and control sample were 

aseptically prepared for HS-GC-MS in order to identify all volatile compounds produced by 

the isolates. This was done by placing 5.0 ± 0.1 g of each sample in a 20ml glass vial closed 

with a PTFE-faced silicone septum crimp cap (Agilent Technologies, Diegem, Belgium). 

During an incubation period of 30 min, samples were heated at 50 ± 0.5°C. One ml of the 

headspace of the vial was sampled with the headspace CTC PAL auto sampler (Agilent 

Technologies, Belgium) in the PTV injector (Agilent Technologies, Belgium) of the GC. 

Chromatographic separation was performed on a capillary DB-WAX column of 60m, 0.25mm 

ID, 0.25pm film thickness, in a 7890A GC system (Agilent Technologies, Diegem, Belgium) 

with a constant flow of 0.8 ml helium/min. The temperature programme was 5 min at 45 °C, 

ramp 7 °C/min to 220 °C, 10 min at 220°C and a 10 min post-run at 230 °C. An Agilent 5975 

Series electron impact ionization mass spectrometer (Agilent Technologies, Diegem, 

Belgium) with 70 eV ionization energy operating in full scan mode with a mass range
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between 33 and 330 was used for detection. Interface, source and quadruple temperatures 

were 270 °C, 230 °C and 150 °C, respectively. The MSD Chemstation software package was 

used for data processing. The compounds were identified based on the retention time as well 

as by spectral comparison using the NIST 05 library. In total, 17 compounds (Table 5.1) were 

in combination with additional compounds generally found in fish spoilage (Duflos et al. 

2006; Olafsdottir et al. 2005). Components present in all samples, including the control, were 

considered to be natural compounds of the shrimp matrix, and were therefore not selected. 

Real-time quantification of the 17 compounds was performed using SIFT-MS.

2.4.2. Real-time quantification o f  the identified VOCs by selective ion flow tube mass 

spectrometry (SIFT-MS)

Every day, starting with Ti, 50.0 ± 0.5g of shrimp from each inoculated and blank sample, 

stored in air at 4°C, was aseptically taken until a total viable count (TVC) of 10 cfu/g was 

exceeded (T9). Each 50g shrimp sample was packed in a high barrier film bag (Euralpack, 

Schoten, Belgium) with 950.0 ± 5.0ml of inert N 2  gas using a Multivac A300/42 packaging 

unit (Hagenmüller, Wolfert-schwenden, Germany) for SIFT analysis as described in Noseda 

et al (2010). All bags were stored at 4°C for 1 h before starting SIFT analysis. The headspace 

was sampled through selected based on the HS-GC-MS results (Table 5.2) and a preliminary 

research with HS-GC-MS a septum on the sampling bag during 60 seconds with a flow of

77.3 Pa L s '1. VOCs were introduced through the heated inlet into the flow tube, where 

reactions with precursor ions H 3 0 +, NO+ and 0 2 + resulted in ionized masses. These masses 

were monitored by a mass spectrometer located at the downstream area of the flow tube. 

Specific VOCs were targeted using the multiple ion monitoring mode (MIM). The reaction 

rate coefficients (K) and the branching ratios between the precursor ions and the target VOCs 

were used to quantify the VOCs. Table 5.1 shows the ionized masses used for quantification. 

Blank samples (three empty sample bags filled with nitrogen) were randomly analysed 

between other samples. For every compound, a limit of detection (LOD) was calculated based 

on the mean value of the 3 blank samples (xbi) plus three times the standard deviation (SDbi):

LOD = xbi + (3*SDbi)

LOD value was subtracted from the analysed VOC concentration of the inoculated samples. 

The reported concentrations ([sample]) are the mean value of the samples (xsampie) (only those 

above the LOD value), subtracted by the mean value of the blank sample (xbi):

[sample] -  xsampie - Xbi.
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Table 5.1. Mass-to charge ratio, m/z, values of the characteristic product ions of the volatile compounds shown 
analysed by SIFT-MS using H30 +, NO+ and 0 2+ precursor ions.

Volatile compound Precursor m/z
Branching ratio

(%) K Characteristic product ion

Alcohols
ethanol H30 + 47 100 2.70E -09 c2h 7o +

h 3o + 65 2.70E -09 c2h 7o +.h 2o

h 3o + 85 2.70E -09 C2H70 +.(H20 )2
1,2-butanediol NO+ 89 100 3.90E -09 C5HnO+
2-propanol H30 + 43 80 2.70E -09 c 3h 7+
isobutyl alcohol h 3o + 57 100 2.70E -09 c 4h 9+

NO+ 73 95 2.40E -09 c4h 9o +
Ketones
2-pentanone H30 + 87 100 3.90E -09 c 5h „ 0 +

h 3o + 105 3.90E -09 C5Hn0 +.H20
NO+ 116 100 3.10E -09 n o +.c 5h „ o

butanone NO+ 102 100 2.80E -09 n o +.c 4h 8o
acetone H30 + 59 100 3.90E -09 c3h 7o +

h 3o + 77 3.90E -09 (CH3)2C0H+.H20
NO+ 88 100 1.20E -09 n o +.c 3h 6o

Sulphur compounds
methyl mercaptan H30 + 49 100 1.80E -09 h 3o+.c h 4s

sulphur hydride h 3o + 35 100 1.60E -09 h 3s+
0 2+ 34 100 1.40E -09 h 2s+

dimethyl disulphide h 3o + 95 100 2.60E -09 (CH3)2S2.H+
NO+ 94 100 2.40E -09 (CH3)2S2+

dimethyl thioether NO+ 62 100 2.20E -09 (CH3)2s+
Amines
trimethyl amine H30 + 58 10 2.00E -09 c3h 8n +

h 3o + 60 90 2.00E -09 (CH3)3N.H+
dimethyl amine h 3o + 46 100 2.10E-09 (CH3)2NH.H+
Esters
ethyl acetate h 3o + 89 100 2.90E -09 c h 3c o o c 2h 5.h +

h 3o + 107 2.90E -09 c h 3c o o c 2h 5.h +.h 2o

NO+ 148 90 2.10E -09 n o +.c h 3c o o c 2h 5
Acids
acetic acid H30 + 90 100 9.00E -10 n o +.c h 3c o o h

Other
ammonia h 3o + 18 100 2.70E -09 n h 4+

0 2+ 17 100 2.40E -09 n h 3+
ethylene oxide h 3o + 45 100 2.40E -09 c2h 5o +

NO+ 74 100 1.00E -10 c2h 4o .n o +
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Table 5.2. GC-MS results on sterilized shrimp inoculated with Pseudoalteromonas and Psychrobacter strains 
and stored in air on ice. Analyses were perfonned after 7 ice storage. The compounds marked with an asterisk 
showed an increase during storage and were incorporated in the SIFT-MS method for quantification.

Component Pseudoalteromonas spp. Psychrobacter spp.

1,2-butanediol* X
1,2-butanone X
1 -methoxy-butane X
2,3 -dimethyl-oxirane X X
2,3-dimethyl-oxirane cis X
2-butanone X X
2-ethoxy-propane X
2-formylhistamine X X
2-methyl-2-propanol X
2-methylfiiran X
2-methyl-propanol X
2-pentanone* X
3-methyl-butanal X
Acetaldehyde X
Acetone* X X
Dimethyl disulphide* X
Ethylene oxide* X X
Isopropyl alcohol X X
Methanethiol X
Trimethy lamine * X X

III. Results

3.1. API ZYM results

The API ZYM results of the 17 isolates revealed differences in enzymatic activity. None of 

the 17 isolates were able to degrade one of the 12 carbohydrates included in the API ZYM 

strip. In general, members of the genus Psychrobacter showed some lipolytic (esterase (C4) 

and esterase lipase (C8 )) activity and were capable of hydrolysing amino acids (leucine 

arylamidase). Members of the genus Pseudoalteromonas had a similar potential to degrade 

small lipids and hydrolyse amino acids, but some isolates also showed proteolytic (trypsin and 

a-chymotrypsin) activity. The phenotypical characteristics combined with the genotypic 

differences of the (GTG)s-rep profiling described in chapter 4, resulted in the selection of 8  

isolates for further spoilage analysis, i.e., 4 Pseudoalteromonas isolates and 4 Psychrobacter 

isolates. Table 5.3 shows the tentative gyrB  gene identification of these selected isolates and 

the different enzymatic activities. Enzymatic differences between genera, differences between 

species, and variability between species were observed. Most of the tested isolates from the
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genus Pseudoalteromonas showed more enzymatic activities than those of the genus 

Psychrobacter. For example, all Pseudoalteromonas isolates were positive for trypsin, while 

all Psychrobacter isolates were negative. Between species, differences were observed for 

alkaline phosphatase. Most species from Pseudoalteromonas were considered positive, except 

for isolate 2G68, identified as Pseudoalteromonas paragorgicola. For Psychrobacter, most 

isolates showed no alkaline phosphatase activity, except for Psychrobacter maritimus 

(1G200). Some variability was observed between tested isolates of the same species. In 

particular, lipase activities differed within the species Pseudoalteromonas elyakovii (esterase 

and esterase lipase) and between the isolates identified as Psychrobacter cibarius (esterase). 

Pseudoalteromonas elyakovii and Pseudoalteromonas nigrifaciens also showed variation for 

a-chymotrypsin activity between isolates.
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Table 5.3. GvrB identification and enzymatic activities of the selected isolates from shrimp during storage. 1: alkaline phosphatase, 2: acid phosphatase, 3: napthol-AS-Bi- 
phosphopydrase, 4: esterase (C4), 5: esterase lipase (C8), 6: lipase (C14), 7: leucine arylamidase, 8: valine arylamidase, 9: cysteine arylamidase, 10: trypsin, 11: a- 
chymotrypsin and 12: all carbohydrates grouped (a-galactosidase, ß-galactosidase, ß-glucoronidase, a-glucosidase, ß-glucosidase, N-acetyl-ß-glucosaminidase, a- 
mannosidase and a-fucosidase).

Strain N° gvrB ID APIZYM results
(% of similarity by FASTA search) Phosphatases Lipases Hydrolysis of amino acids / proteins Carbohydrates

1 2 3 4 5 6  7 8  9 10 11 12

Pseudoalteromonas
1G272 Psa. elyakovii (98.7%)
1G161 Psa. elyakovii (98.7%)
2G68 Psa. paragorgicola8 (98.9%)
1G215 Psa. nigrifaciens (98.8%)

Psychrobacter
1G198 Psb. cibarius (98.7%)
2G40 Psb. cibarius (99.1%)
1G232 Psb. cibarius (99.8%)
1G200____ Psb. maritimus (87.6%)____

8 Same similarity to typestrain of Pseudoalteromonas elyakovii, however due to small sequence differences with the isolates 1G272 and 1G161 considered to be
Pseudoalteromonas paragorgicola.
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3.2. Total counts and pH

Figure 5.1 shows the results of bacterial growth on the inoculated sterile shrimp. The counts
2 4of the inoculated bacteria were 10 to 10 cfu/g at T0. At T9, nearly every sample except for 

2G68 {Pseudoalteromonas paragorgicola) and 1G200 {Psychrobacter maritimus) exceeded 

IO9  cfu/g. The pH of the samples inoculated with Pseudoalteromonas increased slightly 

during the first 3 days (from pH 8.17-8.21 to 8.24-8.34) and then decreased to 7.9 at T9. The 

sample inoculated with Pseudoalteromonas paragorgicola did not reach IO9  cfu/g after 9 

days, which was reflected in a higher pH (8.16). The pH of the samples inoculated with 

Psychrobacter isolates followed a similar pattern and decreased after a small increase the first 

4-5 days after inoculation from 8.21-8.39 to 8.1-8.19. The decrease of the pH was not 

correlated to lactic acid production, as HPLC analysis did not reveal any significant lactic acid 

and other acid production.

T l T2 T3 T4 T5 T6 T7 TS T9

S to ra g e  t im e  (days)

T l T2 T3 T4 T5 T6 T7 T8 T9

S to ra g e  t im e  (days)

Figure 5.1. Growth of the bacterial isolates on chilled shrimp during storage at 4°C in air. The bacterial counts 
are given in login cfu/g. A: Pseudoalteromonas spp.: Pseudoalteromonas nigrifaciens (isolate 1G215 O), 
Pseudoalteromonas elyakovii (isolate 1G272 O), Pseudoalteromonas elyakovii (isolate 1G161 A), 
Pseudoalteromonas paragorgicola (isolate 2G68 □). B: Psychrobacter spp.: Psychrobacter cibarius (isolate 
2G40 ♦), Psychrobacter cibarius (isolate 1G198 • ) ,  Psychrobacter cibarius (isolate 1G232 A), Psychrobacter 
maritimus (isolate 1G200 ■).

3.3. Volatile compounds

Table 5.2 shows the results of the GC-MS analysis with inoculated pure Psychrobacter and 

Pseudoalteromonas strains on sterilized shrimp stored on ice. The compounds marked with an 

asterisk clearly increased in concentration during storage and were selected for further 

analysis with the SIFT-MS. Table 5.1 shows the 17 VOCs selected by GC-MS analysis and 

by literature search for further analysis during storage of the inoculated shrimp samples.

86



Volatile compounds associated with Psychrobacter spp. and Pseudoalteromonas spp.

Every day a quantitative SIFT-MS analysis for these 17 VOCs was performed on the 

inoculated samples and the blank sample during storage at 4°C.

In the samples inoculated with Psychrobacter, generally no significant production of VOCs 

was detected after 9 days of storage. However, two inoculated samples (one with 

Psychrobacter cibarius (isolate 1G232) and one with Psychrobacter maritimus) showed a 

higher concentration of TMA than all the other samples. The concentration of TMA was not 

clearly (linear) correlated with the total viable count, but did show some concordance with pH 

fluctuations as TMA and pH are always correlated with each other (Fig. 5.2).

2000

_  1800

1200

1000

800
600
400
200

Storage in days

Fig. 5.2. pH and production of trimethylamine (TMA) (olfactory threshold by Devos et al., 1990: 5.89pg/nT) by 
Psychrobacter cibarius isolate 1G232 (O  (pH) ♦  (TMA)) and Psychrobacter maritimus isolate 1G200 ( A(pH) 
▲ (TMA)), both in function of the storage time in days.

Several VOCs were detected and quantified in the samples inoculated with 

Pseudoalteromonas isolates. The most important compounds detected were 1,2-butanediol, 2- 

propanol, 2 -pentanone, butanone, acetone, methyl mercaptan, sulphur hydride, dimethyl 

disulphide, ethyl acetate, acetic acid and ammonia. Sulphur compounds (i.e., sulphur hydride, 

methyl mercaptan and dimethyl disulphide (DMDS)) and acetone were produced by all 

isolates, but only for some isolates above the olfactory threshold described by Devos et al. 

(1990). Exceeding this olfactory threshold means that the human nose will detect this odour 

and may consider this as the first signs of spoilage. Sulphur hydride was produced by all four 

isolates in a similar concentration (85-91 pg/m3) at the end of the storage period (T9), which is 

three times higher than the olfactory threshold (25.6 pg/m3). The produced concentrations by 

each isolate for methyl mercaptan, DMDS, acetone, acetic acid and ammonia is shown in Fig.
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5.3. We observed that Pseudoalteromonas elyakovii isolate 1G161 produced the highest 

concentrations of these VOCs and exceeded the olfactory threshold for some of these. 

Pseudoalteromonas paragorgicola (2G68) either did not produce any of the selected VOCs 

except for sulphur hydride or produced them in extremely low concentrations, which 

coincides with the species not exceeding 10 cfu/g at the end of storage (T9). It was observed

that most of the Pseudoalteromonas isolates started producing several compounds after
• 8exceeding 10 cfu/g (Fig 5.3.). For the other detected VOCs, all produced below the olfactory 

threshold, isolate 1G161 usually produced the highest concentrations (up to 3 times the 

concentration of the other Pseudoalteromonas elakovii (1G272) and Pseudoalteromonas 

nigrifaciens isolates (1G215)). The maximal concentration of 2-propanol at T9  was 39pg/m3 

for Pseudoalteromonas elyakovii (1G161), 24 pg/m3 for Pseudoalteromonas nigrifaciens 

(1G215) and 17pg/m3 for Pseudoalteromonas elakovii (1G272). For 1,2-butanediol, the 

maximal concentration was 1804pg/m3 for Pseudoalteromonas elakovii (1G161), 3 times 

higher than the production by Pseudoalteromonas elakovii (1G272) (656pg/m3) and 

Pseudoalteromonas nigrifaciens (1G215) (643pg/m3). For butanone, isolate 1G161 

{Pseudoalteromonas elakovii) produced a maximal concentration of 326pg/m3 at T9, twice as 

high as the other 2 isolates (179pg/m3 {Pseudoalteromonas elakovii 1G272) and 150pg/m3 

{Pseudoalteromonas nigrifaciens 1G215)). In contrast to the above mentioned VOCs, 

Pseudoalteromonas elyakovii isolate 1G272 produced the highest concentration of 2- 

pentanone (168 pg/m3) and ethyl acetate (46 pg/m3), while Pseudoalteromonas elyakovii 

isolate 1G161 and Pseudoalteromonas nigrifaciens isolate 1G215 produced a slightly lower 

concentration of 113 pg/m 3 and 89 pg/m3 for 2-pentanone, respectively, and 32 pg/m3 and 24 

pg/m3 for ethyl acetate, respectively.
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Fig. 5.3. Concentrations (in pg/m3) of (A) methyl mercaptan, (B) dimethyl disulphide, (C) acetone, (D) acetic 
acid and (E) ammonia produced by Pseudoalteromonas elyakovii (1G161 A), Pseudoalteromonas elyakovii 
(1G272 • ) ,  Pseudoalteromonas nigrifaciens (1G215 ■) and Pseudoalteromonas paragorgicola (2G68 ♦ )  
inoculated on sterile brown shrimp are given by filled marks. Each point is the mean of two measurements. This 
concentration is compared to the days of storage at 4°C in air (X-axis) and the growth of the bacterial isolates in 
login cfu/g (primary Y-axis): The unfilled marks show the bacterial counts: Pseudoalteromonas elyakovii 
(1G161 A), Pseudoalteromonas elyakovii (1G272 O), Pseudoalteromonas nigrifaciens (1G215 □) and 
Pseudoalteromonas paragorgicola (2G68 O). The olfactory thresholds as described by Devos et al., 1990 are 
indicated by a dotted line.
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IV. Discussion

The objective of this study was to investigate the spoilage potential of the dominant 

microbiota of brown shrimp, namely species from the genera Psychrobacter and 

Pseudoalteromonas. In chapter 4, all species had been isolated from brown shrimp under 

several different storage conditions. These species were all present during storage on ice, but 

were particularly numerous at the end of storage, when a TVC of more than 10 cfu/g was 

reached and the shrimp were considered microbiologically spoiled. However, since not all 

micro-organisms present on fish contribute to spoilage (Dalgaard 1995; Gram and Dalgaard

2002), the spoilage potential of the isolates was determined based on their sensory profile of 

volatile organic compounds and their biochemical potential based on API ZYM analysis. 

Psychrobacter species have been considered to be moderate spoilers, as some produce only 

weak off-flavours or slightly fishy, musty off-odours (Mejlholm et al. 2005; Prapaiwong et al. 

2009; Rodríguez-Calleja et al. 2005). These species lack the important food spoilage 

attributes such as proteolysis and production of sulphides (Gennari et al. 1992). It was 

described that they are able to form acids from carbohydrates and show lipase and lecithinase 

activity but that they do not produce TMA (Garcia-Lopez and Maradona 2000). This study 

confirms that Psychrobacter cibarius and Psychrobacter maritimus do not produce significant 

amounts of VOCs on brown shrimp during storage of 9 days at 4°C, not even when bacterial 

counts exceeded 10 cfu/g. However, two isolates (Psychrobacter cibarius 1G232 and 

Psychrobacter maritimus 1G200) did show slight production of TMA during storage at 4°C 

(Fig 4.2). In comparison to known TMA producers such as Photobacterium phosphoreum  and 

Shewanella putrefaciens, the produced TMA concentration was considered low. Nevertheless, 

this slight TMA production by Psychrobacter may however explain the slightly fishy off- 

odour of spoiling seafood described previously (Mejlholm et al. 2005; Prapaiwong et al. 

2009). Based on this profile, we may conclude that the isolates of Psychrobacter studied here 

do not significantly contribute to sensorial spoilage and are therefore not SSOs of brown 

shrimp, but are only weak spoilers as already described in literature (Mejlholm et al. 2005; 

Prapaiwong et al. 2009; Rodríguez-Calleja et al. 2005). Due to their high abundance during 

spoilage/shelf life (see chapter 4) however, we cannot conclude that their low importance in 

spoilage is caused by an inability to compete with common spoilage microorganisms as 

formulated by Rodríguez-Calleja et al. (2005). Additionally, most of the Psychrobacter 

isolates in this study were able to break down short to medium chain (C4-C8) lipids. This 

capacity, together with their ability to hydrolyse amino acids (leucine arylamidase) may 

contribute to spoilage, however, further study is necessary. Lipolytic capacity is a general
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characteristic of all species of the genus Psychrobacter (Gennari et al. 1992; Yumoto et al.

2003).

In contrast to Psychrobacter, the Pseudoalteromonas species showed a high spoilage 

potential. In particular, Pseudoalteromonas elyakovii and Pseudoalteromonas nigrifaciens 

appeared to produce high amounts of several VOCs, which may result in sensory rejection of 

the product. Pseudoalteromonas paragorgicola appeared to have a weaker spoilage potential 

compared to the other species studied. The microorganism did not exceed IO9 cfu/g, as the 

other isolates did, after 9 days of storage, which could explain the lower VOC production, 

since microorganisms start producing VOCs in higher amounts above IO9 cfu/g (Gram et al. 

2002). The two isolates of Pseudoalteromonas elyakovii included in this study differed in 

their VOC production. The isolate 1G161 seemed to produce both more VOCs and higher 

concentrations of VOCs than isolate 1G272. This strain effect has been described for other 

microorganisms by Stohr et al. (2001) and Jaffrès et al. (2011).

The production of VOCs by the microorganisms was observed when the total viable count
7 8 *exceeded 10 to 10 cfu/g, which corresponds to the end of the exponential phase and the 

beginning of the stationary phase of the growth curves (Fig 5.3.). Gram and Dalgaard (2002) 

described this as a typical behaviour for SSOs. Our study shows that some of the inoculated 

Pseudoalteromonas species produce especially large amounts of sulphides and acetone. Both 

volatile compounds are involved in the spoilage process of seafood with sulphides usually 

involved in the first manifestation of spoilage. It has been described that during aerobic 

storage, large amounts of ammonia are also formed and that the concentration of acetone, 

methyl ethyl ketones, dimethyl sulphide and dimethyl disulphide increases continuously 

(Nychas et al. 2007). Many of these compounds were also formed by most of the 

Pseudoalteromonas isolates studied. In addition to producing several VOCs, all 

Pseudoalteromonas isolates in this study had alkaline phosphatase activity and were also able 

to break down low to medium chain lipids and hydrolyse proteins and amino acids (i.e., 

trypsin, a-chymotrypsin and leucine arylamidase). Therefore, not only Pseudoalteromonas 

citrea (Iijima et al. 2009), but also other species within the genus, such as Pseudoalteromonas 

elyakovii, Pseudoalteromonas nigrifaciens and Pseudoalteromonas paragorgicola, have 

proteolytic potential.

In this study only pure strains were used to observe the spoilage potential of the strains; 

however, under some conditions, the interaction between spoilage bacteria may influence 

their growth and metabolism. This interactive behaviour is likely to be important in any food 

containing various bacterial species during storage (Gram et al. 2002). In brown shrimp, the
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microbiota during spoilage is nearly exclusively dominated by Psychrobacter and 

Pseudoalteromonas species. Interaction between the species of both genera (e.g. metabiosis) 

might elevate the spoilage activity of the Psychrobacter strains, since Pseudoalteromonas has 

a larger biochemical potential and may create extra nutrients for the growth and metabolic 

activities of the other microorganisms as observed for other microorganisms by Joffraud et al. 

(2001).

It also needs to be mentioned that PCR-DGGE analyses between plate swabs and direct DNA 

extractions showed differences in PCR-DGGE profiles. This may indicate that the overall 

presence of Psychrobacter and Pseudoalteromonas species, might be overestimated. This also 

means that several other microorganisms might contribute to the spoilage of the shrimp. In 

future research, the VOC profiles of co-inoculated samples as well as a natural contaminated 

sample should be included to compare with the profiles from the pure strains in this study. 

However, it has to be considered that autoclaving the shrimp matrix may have an influence on 

the sensory profile, and may therefore differ from a sensory profile obtained from natural 

shrimp samples.

In conclusion, this study has contributed to the knowledge concerning the spoilage potential 

of Psychrobacter and Pseudoalteromonas isolates/species inoculated as pure cultures on 

sterile shrimp. The sensory profile results showed that the Psychrobacter isolates, identified 

as three Psychrobacter cibarius strains and one Psychrobacter maritimus strain, apparently do 

not contribute to the sensory spoilage of brown shrimp. However, this does not implicate that 

the Psychrobacter spp. do not have any spoilage potential. The off-odours produced during 

storage of brown shrimp without preservatives appeared to be produced by the isolates 

identified as Pseudoalteromonas elyakovii and Pseudoalteromonas nigrifaciens. These 

isolates produce several volatile compounds (sulphides, acetone, etc.) associated with 

spoilage.
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P a r t  III

R a y  (Ra j a  sp .):Th e  d o m in a n t  m ic r o b io t a  a n d
THEIR SPOILAGE POTENTIAL



Preamble

Ray belongs to the elasmobranch fish  species and is therefore known fo r  the large amount o f  
urea in their cartigilous bones. After catch, this urea is converted to ammonia. Whether this 
conversion is caused by autolytic or microbial activity is not yet complete certain, however, it 
is assumed that urease positive bacteria are the most possible cause fo r  the strong ammonia 
smell shortly after catch. This off-odour makes ray a very perishable seafood product. To 
date, not much is internationally published about the microbiota during storage spoilage o f  
elasmobranch fish. In chapter 6 the dominant microbiota o f  ray during ice storage under 
various conditions is identified via 16S rRNA, gyrB and  rpoB gene sequence analysis. 
Subsequently, the spoilage potential o f  several isolates is determined and quantified via mass 
spectrometry analyses.
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Chapter 6. The spoilage microbiota of ray {Raja sp.) during ice storage 

under different conditions: molecular identification and characterisation of 

the spoilage potential.

Abstract

The dominant microbiota of ray stored on ice was systematically identified. Isolates grown on 

various media were identified by partial 16S rRNA, gyrB  and rpoB gene sequencing. 

Microbiological shifts were observed during storage, ending in a dominance of especially 

members of the genera Pseudomonas and Psychrobacter. Most isolates could be identified by 

rpoB {Pseudomonas spp.) or g>rB gene sequencing as Pseudomonas fluorescens, 

Pseudomonas fragt, Pseudomonas psychrophila, Psychrobacter cibarius, Psychrobacter 

cryohalolentis, Psychrobacter glacincola and Psychrobacter immobilis. Also species from the 

genera Arthrobacter, Flavobacterium, Pseudoalteromonas, Shewanella and Staphylococcus 

were detected during storage of ray. Subsequently, the spoilage potential of six selected 

isolates {Flavobacterium tegetincola, Pseudomonas fluorescens, Pseudomonas psychrophila, 

Psychrobacter cibarius, Psychrobacter cryohalolentis and Shewanella frigidimarina) was 

determined and quantified based on the presence of VOCs. Additionally, API ZYM and 

urease analyses determined the species’ enzymatic capacity to contribute to spoilage by 

degrading lipids, amino acids and proteins and breaking down urea to ammonia. The six 

isolates were inoculated separately as pure cultures on gamma-sterilised ray. The inoculated 

samples were stored at 4°C and the production of VOCs by the pure strains on the ray matrix 

was identified via gas chromatography coupled to mass spectrometry (GC-MS). VOC 

production was quantified by selected ion flow tube mass spectrometry (SIFT-MS). The 

sensory profile of the selected species revealed that especially Psychrobacter cibarius and 

Pseudomonas psychrophda were able to produce higher concentrations of VOCs and might 

be responsible for the off-odours produced during spoilage of ray.

I. Introduction

In several European countries, ray {Raja sp.) encompasses the most commercialised 

elasmobranch fish species. In the North Sea, especially thomback ray {R. clavata), spotted ray 

{R. montagui) and blonde ray {R. brachyura) are caught in sandy coastal areas (Anonymous

2006). Since elasmobranchs (such as rays) contain concentrations of soluble components 

about twice as high as other seafood (Huss 1995), they are prone to rapid spoilage. Rays 

contain one to two percent urea in their muscles, blood, organs and skeleton, and have a
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TMAO concentration two to three times higher than in cod (Elliot 1952; Huss 1995; Vyncke 

1978). During spoilage, the stored urea will break down with the formation of ammonia. The 

main component causing rejection of elasmobranch fish and limiting the commercialization 

period is the fast increase in ammonia concentration (Finne 1992; Vyncke 1978). In 

elasmobranchs, the ammonia is formed mainly by enzymatic degradation of urea. The enzyme 

responsible for this activity is thought to be urease, present in certain bacteria (Vyncke 1978). 

However, a study by Mugica et al. (2007) found that the ammonia production was more 

correlated with the activity of the endogenous mechanisms involved in the degradation of 

proteins and NPN compounds, rather than with the activity of proteolytic microorganisms, 

meaning that the cause of ammonia production is still not known.

Although several studies have observed the effect of handling and processing procedures on 

the production of ammonia, nothing is known about the microbiota on elasmobranch fish and 

which microorganisms have the capacity to degrade urea to ammonia or produce other 

volatile organic compounds associated with spoilage.

The aim of this study was (1) to observe the shelf life of ray stored under different conditions, 

(2) to identify the dominant microbiota present on ray stored on ice to species level, and (3) to 

study the spoilage potential of these isolates by studying the volatile organic compound 

production of an inoculated pure culture on gamma sterile ray as detected by solid-phase 

micro-extraction gas chromatography coupled to mass spectrometry (SPME-GC-MS). The 

real-time quantification throughout the spoilage process of these chemical compounds was 

measured by selected ion flow tube mass spectrometry (SIFT-MS) analysis.

II. Materials and methods

2.1. Sampling of ray, lav out of the experiment and sampling during storage 

Three blonde rays (Raja brachyura) were caught in august 2008 by beam trawling in the 

English channel. The catch was collected in large boxes. The rays were aseptically removed 

and were immediately put in a sterile bag and stored at 4°C until landed. The day after catch, 

the samples were transferred to the laboratory on ice. Three experiments were set up in the 

lab. The scheme of the set up and the microbiological analyses is given in Figure 6.1. Of two 

of the three rays the wings were carefully and aseptically removed (gutted) at day 1 (dl). One 

ray was further stored with the intestines (ungutted). The wings of the first ray (gutted) were 

stored on ice during a 9 day period with the skin. These wings were used to observe the
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bacterial growth of skinned ray wings during storage on ice. At day 1 (d l) also the skin of one 

of the wings of the second gutted ray was removed aseptically with a sterile scalpel and 

forceps. The microbiological contamination degree and possible microbiological shifts during 

storage on ice between those two wings (with and without skin) were observed in order to 

study the effect of the skin on the shelf life of ray during storage. The third ray was kept on 

ice as a whole during 3 days. After those 3 days of storage (at d3), the wings were removed 

and one wing was left with skin. These wings were used to observe the differences between 

early gutted and late gutted rays on the shelf life and microbiota.

2.2. Cultivation of microorganisms

Several growth media were used to obtain a complete view of the ray-associated microbiota 

during storage on ice. The same media as in chapter 4 were used for the total aerobic 

psychotolerant count (APC): plate count agar (PCA, Oxoid), marine agar (MA, Difco) and 

modified Long and Hammer medium (LH) (Van Spreekens 1974). The enumeration of lactic 

acid bacteria (LAB) was performed on de Man Rogosa Sharpe medium (MRS, Oxoid) pH 6.5, 

and Pseudomonas species were enumerated on Pseudomonas Cetrimide Fucidine 

Cephaloridine (CFC, Oxoid) agar. Enterobacteriaceae were enumerated on violet red bile 

glucose (VRBGA, Oxoid) agar. Bacteria capable of producing hydrogen sulphide (black 

colonies) were enumerated on Lyngby iron agar (IA) (Atlas 2006).

For the microbiological analysis, 10 g of ray was transferred aseptically to a stomacher bag, 

90 ml maximum recovery diluent (Oxoid) was added and the mixture was homogenized for 

two min. Samples (0.1 ml) of serial dilutions of the homogenates were spread on the growth 

media for enumeration. An incubation period of 1 day at 30°C (VRBGA), 5 days at 30°C 

(MRS), 3 days at 21°C (PCA, MA and CFC) or 5 days at 15°C (LH and IA) was used. Plating 

duplicates were made for every sample. After incubation, all typical colonies were counted. 

On IA, only the black colonies were counted as these represent the hydrogen sulphide 

producers.

2.3. DNA extraction

A selection of 284 isolates with different colony morphology were selected from PCA, MA, 

IA, LH and CFC media. These isolates were purified and DNA extraction was performed 

using the modified Flamm method as described in chapter 3. The DNA was stored at -20°C in 

HPLC water. The DNA concentration was measured upon usage by a Nanodrop 1000 

spectrophotometer (Thermo Scientific).
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dO Catch + s torage  at 4°C

Ray 1 Ray 2 Ray 3

Gutted  
2 wings  + skin on  ice 

Microbiological  analysis

Gutted  
1 wing + skin on ice 
1 wing -  skin on ice

d l W h o le  fish on  ice

d3 Microbiological  analysis Microbiological  analysis
Gutted  

1 wing + skin on ice 
1 w i n g - s k i n  on ice

d6 Microbiological  analysis

d9 Microbiological  analysis

Aim: Microbiota during  
s torage  on ice

Microbiological  analysis Microbiological  analysis

Microbiological  analysis Microbiological  analysis

Effect o f  removal  o f  skin 
on she l f  life and microbiota

Effect of  gut ting  
on she l f  life and microbiota

Total co u n ts  on 7 * media  
Isolation
(GTG)s-rep fingerprints  
16S + g y r B / r p o B g e n e  ID

Fig 6.1. Scheme of the three experimental set ups with indication of the time intervals. T0 = 1 day after catch = 
arrival at the laboratory, T, = after 3 days of aerobic ice storage, T2 = after 6 days of aerobic ice storage, T3 = 
after 9 days of aerobic ice storage.

2.4. Rep-PCR

The purified strains were clustered based on their (GTGfi rep-fmgerprint. The PCR was 

performed as described in chapter 3. PCR products were size separated in a 1.5 % agarose gel 

in lx  TBE buffer (0.1M Tris, 0.1M Boric Acid, 2mM EDTA) at 120 V for 4 h. After ethidium 

bromide staining, the (GTGfi profiles were visualized under UV light and a digital image was 

captured using a G:BOX camera (Syngene). The resulting fingerprints were further analysed 

as described in chapter 3

2.5. Identification of the microbiological isolates by sequence analysis

Forty five representatives from the (GTGfi clusters were selected for identification. A 1500 

bp fragment of the 16S rRNA gene (for all genera) and of the gyrB  gene (for the genera 

Shewanella, Psychrobacter and Pseudoalteromonas) was amplified as described in chapter 3 

and 4. For the species belonging to the genus Pseudomonas, a 1200 bp fragment of the rpoB 

gene was amplified as described in Tayeb et al. (2005). All PCR products were purified for
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sequencing with a High Pure PCR product Purification kit (Roche) according to the 

manufacturer’s instructions and stored at -20°C until sequencing. The quality and quantity of 

the purified PCR products was verified on 1.5% agarose gel.

Sequencing reactions, precipitation and sequencing on a ABI prism 3100 Genetic Analyzer 

(Applied Biosystems) was performed as described in chapter 3. The 16S partial sequences 

were mostly about 700 bp. The identification of phylogenetic neighbours was initially carried 

out by the BLAST (Altschul et al. 1997) and megaBLAST (Zhang et al. 2000) analysis of 16S 

partial sequences against the Eztaxon database of type strains with validly published 

prokaryotic names (Chun et al. 2007). The 50 16S sequences with the highest scores were 

then selected for the calculation of pairwise sequence similarity using a global alignment 

algorithm, which was implemented at the Eztaxon server (http://www.Eztaxon.org/). The 

gyrB and rpoB sequences assembled with Vector NTI Advance 11 (Invitrogen corp.). A 

tentative identification was performed by a similarity search using the Eztaxon (16S; 

http://www.Aztoxow.org) and a FASTA (gyrB and rpoB) web search 

(http://www.ebi.ac.uk/tools/fasta33/nucleotide.html).

2.6. Characterisation of the spoilage potential: selection of the isolates 

A selection of isolates was made based on their (GTGfi-rep PCR fingerprints and partial 16S 

rRNA gene sequence identification. Representatives of large rep-clusters present when the 

fish was microbiologically spoiled were selected, as these were possibly most abundantly 

present on ray during storage and were possibly important for spoilage. In total 22 isolates 

were selected for API ZYM tests (Biomerieux): two Arthrobacter isolates, one 

Flavobacterium isolate, two Pseudoalteromonas isolates, nine Pseudomonas isolates, four 

Psychrobacter isolates, three Shewanella isolates and one Staphylococcus isolate. This test 

was used to determine their enzymatic activities for the following reasons: (1) to indicate the 

probable (biochemical) spoilage potential, and (2) to further clarify differences between the 

isolates in addition to (GTGfi-rep fingerprints and sequence identification. In total, 19 

enzymatic tests were performed: alkaline phosphatase; esterase (C4); esterase lipase (C8); 

lipase (C14); leucine arylamidase; valine arylamidase; cysteine arylamidase; trypsin; 

chymotrypsin; acid phosphatase; napthol-AS-Bi-phosphopydrase; a-galactosidase; ß- 

galactosidase; ß-glucoronidase; a-glucosidase; ß-glucosidase; N-acetyl-ß-glucosaminidase; a- 

mannosidase; and a-fucosidase. The isolates were cultured on plate count agar (Oxoid) or 

marine agar (Difco) at 21°C for 3 days, depending on the species. Further analysis and
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interpretation was performed as described in chapter 5. These results were used to select the 

isolates for further study of the volatile compounds. Additionally, an urease test was 

performed on the same 22 isolates. This test was performed on Christensen’s urea agar 

(Fluka) according to the manufacturers’ guidelines with the exception of an incubation of 24 

hours at 21°C. Isolates with the same (GTG)s-rep PCR fingerprint, same sequence 

identification, and same API ZYM results were considered to be the same isolate (as was 

performed for shrimp in chapter 5).

2.6.1. Sample inoculation and storage

For each isolate, 300g of fresh ray was cut in 10g pieces, frozen en sent on dry ice for gamma 

sterilization in plastic stomacher bags. A minimal radiation dose of 25kGy was applied to 

completely sterilize the fish pieces. Afterwards, the fish was defrosted and aseptically 

transferred to sterile 2L bottles for air storage at 4°C. The bottles were inoculated resulting in 

concentration of IO5 cfu/g of the selected pure strains. One bottle contained unirradiated ray 

pieces to compare the influence of radiation on the production of volatile organic compounds. 

Another bottle was filled with sterile ray which was not inoculated and was used as a control. 

All bottles were stored at 4°C for 5 days (T4) until the end of the experiment. Samples were 

taken daily starting the day of inoculation (T0) for bacterial enumeration and to identify (GC- 

MS) and quantify (SIFT-MS) the volatiles.

2.6.2. Total counts o f  inoculated samples and pH

The growth of the bacterial strains on the samples and pH of every sample was measured 

daily. For the microbiological analysis, 10 grams of ray were transferred aseptically to a 

stomacher bag, 90 ml of maximum recovery diluent (Oxoid) was added and the mixture was 

homogenised for 2 min. Samples (0.1 ml) of serial dilutions of the homogenates were spread 

on modified plate count agar or marine agar (depending on the species) for enumeration. An 

incubation period of 3 days at 21°C was used. Duplicates were made for every sample. After 

incubation all colonies were counted. The pH of every sample was performed by mincing 5 to 

10 grams of ray sample and measuring the pH by using a pH meter (Mettler Toledo).

2.6.3. Identification o f  VOCs by GC-MS

Every other day starting at T0, ray from each inoculated and control sample (sterilized and not 

sterilized) stored in air were aseptically prepared for SPME-GC-MS in order to identify all 

volatile compounds produced by the strains. The preparation of samples and conditions of the 

analysis were identical to those described in chapter 5 except that the SPME CTC PAL
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autosampler (Agilent Technologies, Diegem, Belgium) equipped with a new 2 cm x 50/30 pm 

divinylbenzene/carboxen/ polydimethylsiloxane (DVB/CAR/PDMS) coated fibre (Supelco, 

Beliefonte, USA) was inserted through the PTFE septum for headspace (HS) extraction for 30 

min at 50 ± 0.1 °C agitated at 500 rpm. Before use, the fibre was conditioned in a combiPAL 

conditioning station during lh  at 270°C as recommended by the manufacturer. After each 

desorption (10 min at 260°C in split less mode), the fibre was post-conditioned (20 minutes at 

250°C) to avoid carry-over problems. In total, 33 compounds (Supplementary table 6.1.) were 

selected based on the SPME-GC-MS results (Table 6.4) and a preliminary research with 

SPME-GC-MS in combination with additional compounds generally found in fish spoilage 

(Duflos et al. 2006; Olafsdottir et al. 2005). Components present in all samples including the 

control (not inoculated samples) were not selected, they were considered natural sensory 

compounds of the matrix. Real-time quantification of these 33 compounds was performed 

using SIFT-MS.

2.6.4. Real-time quantification o f  the identified VOCs by selective ion flow tube mass 

spectrometry (SIFT-MS)

Every day during five days, starting with To, 50.0 ± 0.5g of ray from each inoculated and 

control sample, stored in air at 4°C, was aseptically taken for VOC quantification. The sample 

preparation, SIFT analysis and further interpretation was identically performed as in chapter 

5. The supplementary table 6.1. shows the ionized masses used for quantification.

III. Results

3.1. Microbiological analysis of ray during storage on ice

Several media (general and specific) were used to obtain a complete view of the total 

microbiota on ray stored aerobically on ice. Figure 6.2 shows the microbiological counts on 

all media for ray 1 during storage on ice with skin. At d l, approximately 4 log was counted on 

PCA, while on MA and LH nearly 5 log was counted. On CFC, the number of Pseudomonas 

spp. was 3.2 log cfu/g. Lactic acid bacteria (MRS) were absent in 10g of ray during most of 

the study. Enterobacteriaceae (VRBGA) were absent in 10 g of ray during the whole study 

independent of the storage conditions. On iron agar, 2.5 log of H2S producers were counted. 

During storage, microbiological counts increased and after 9 days of ice storage (d9) an 

increase of nearly 2 log with the counts at arrival at the laboratory (d l) was observed on all 

media.
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G rowth m edia

Fig 6.2. Total counts (log,,, cfu/g) of gutted ray with skin during storage on ice on plate count agar (PCA), Long 
and Hammer medium (LH), marine agar (MA), Pseudomonas cetrimide fucidine cephaloridine (CFC) and 
Lyngby iron agar (IA). dl= arrival at the laboratory, 1 day after catch and storage on ice, d3= 3 days after catch 
and storage on ice, d6= 6 days after catch and storage on ice, d9 = 9 days after catch and storage on ice.

Effect o f  skinning and direct gutting on the shelf life

Table 6.1 shows the microbiological counts of ray 2 with and without skin. However, since 

analyses were performed on only a few samples, only possible trends can be demonstrated. 

Results show that deskinning lowers the total microbiological count on ray slightly. A small 

decrease in microbiological count observed after skinning. Eight days after skinning (at d9), 

the microbiological counts on the ray with skin seemed to increase and became slightly higher 

than on the skinned ray. This was also noticed for H2S producers on IA. Late gutting showed 

a slightly higher total aerobic psychotolerant count nine days after catch (d9) compared with 

early gutting. Also the number of Pseudomonas spp. on CFC, the lactic acid bacteria (MRS) 

and sulphide producers (IA) showed a slightly higher total count with the early gutted ray 

with skin. When the skin was removed of the late gutted ray sample, total counts decreased a 

little and remained within a standard plate counting error of 0.5 log during further storage, 

while the total count on the not skinned ray increased between d6 and d9.
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Table 6.1. Microbiological counts (log,,, cfu/g) on various growth media of ray 2 and 3 stored on ice early and 
late gutted, with and without skin at d3 (3 days of ice storage), d6 (6 days of ice storage) and d9 (9 days of ice 
storage). PCA= plate count agar, LH= modified Long and Hammer medium (Van Spreekens, 1974), MA= 
marine agar, CFC= Pseudomonas Cetrimide Fucidine Cephaloridine, MRS= Man Rogosa Sharp medium, 
VRBGA= Violet Red Bile Glucose agar and IA= Iron agar (Atlas, 2006). - = not perfonned.

M edia

Im m ediate gutted  

ray

w ith skin (Ray 2)

Im m ediate gutted ray 

w ithout skin (Ray 2)

L ate gutted ray 

w ith skin (Ray 3)

L ate gutted ray 

w ithout skin (Ray 

3)

d3 d6 d9 d3 d6 d9 d6 d9 d6 d9

PCA 4.7 5.1 5.1 4.3 4.3 5.9 5.3 6.4 5.3 5.7

LH 5.8 6.2 6.2 5.1 5.2 6.6 6.6 7.3 6.2 6.7

M A 5.4 5.9 6.0 5.0 5.1 6.6 6.5 7.3 6.1 6.5

CFC 4.8 5.0 5.0 3.7 4.2 5.9 5.5 6.4 5.0 5.5

MRS <10 <10 <10 <10 <10 1.3 <10 2.1 1.5 1.8

VRBG A <10 <10 <10 <10 <10 <10 <10 <10 <10 <10

IA 3.1 3.3 3.3 2.5 - 3.7 3.8 4.8 3.9 4.2

3.2. Molecular identification of the isolates of ray

In total 284 colonies with different colony morphology were isolated from PCA, MA, LH, 

CFC and IA. Each purified isolate was (GTG)5 -rep-fingerprinted. The pattern of all isolate 

showed great variety, with some large clusters of related isolates (similarity above 66%). 

Identification of those large clusters, with special attention to these isolates present at the end 

of storage, was important as those are part of the most abundantly recovered microbiota. From 

the (GTG)5 -rep-fingerprint fingerprints, 56 representatives were selected and identified based 

on their partial 16S rRNA gene sequence. Using partial 16S rRNA gene analysis, mainly 

species complexes could be found after BLAST search within the Eztaxon database. In total, 

165 isolates present at d3 to d9 could be identified. Most of the identified isolates belonged to 

the genera Pseudomonas (39%), Psychrobacter (20%), Pseudoalteromonas (15%), 

Flavobacterium (10%) and Shewanella (10%). Other genera present during storage were 

Arthrobacter and Staphylococcus (Table 6.3). The remaining 119 of 284 isolates either had an 

unique (GTG)5 -rep-fmgerprint or were not able to grow during ice storage and were therefore 

not identified. Further identification to species level (Table 6.3) was obtained via gyrB gene
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Table 6.2. Summarizing table with all the identified species and genera found on ray during aerobic iced storage, 
with the percentage of similarity compared to the FASTA (gvrB and rpoB) websearch and the Eztaxon (16S) 
database. In the following columns give the number of identical isolates found, indicate the sample from which 
they were found (with/without skin, early/late gutted) and the time points during storage. dt= present at arrival at 
the laboratory, 1 day after catch, d3= present after 3 days of ice storage, d6= present after 6 days of storage, d9= 
present after 9 days of storage. With “x” the presence and abundance of the species is indicated on the sample.

Tentative phylogenetic # Time
With/without Gutted

Isolate neighbour (accession 
name number)

Similarity (%) isolates points
With

skin
Without Early Late

Arthrobacter
2.42 . !. antarcticus (AM9.3 1709) 98,7 (16S) 2 di, d9 X X X

1.154 A. cryotolerans (GQ406812) 98,1 (16S) 2 d9 X

A. psychrochitiniphilus
2.200 (AJ810896) 98,8 (16S) 3 di.T2 X X

Flavobacterium
3.101 F. frigoris (AJ557887) 97,6-98,1 (16S) 3 di-d9 X X X X X X

3.92 F. tegetincola (U85887) 98,7-99,6 (16S) 13 di-d9 X X X X X X

Pseudoalteromonas
Psa. nigrifaciens 99,5-97,5

3.4 (FR668569) (gvrB) 25 di-d9 X X X X

Pseudomonas
1.9 Ps. fluorescens (AJ717451) 96,1 (rpoB) 4 di-d9 X X X X X

3.91 Ps. fluorescens (AJ717451) 99,6 (rpoB) 
93,7-92,8

32 d6-d9 X X X X X

1.172 Ps. fragi ( AJ7 17444) (rpoB) 12 di-d9 X X X X

2.102 Ps. fragi (AJ717444) 97,1 (rpoB) 4 di,d9 X X

2.275 Ps. mandelii1 (AJ717435) 95,0 (rpoB) 13 di-d9 X X X X

Ps. vancouverensis9
2.250 (AJ717473) 96,4 (rpoB)

Ps. xanthomarina1
1.155 (FN554765) 99,5 (rpoB)

Ps.
1.135 psychrophila1 (AJ717464) 97,8 (rpoB)

Psychrobacter
97,4-97,7

3.85 Psb. cibarius (FR668579) (gvrB) 8 d6-d9 X X X X

Psb. cryohalolentis
2.256 (DQ143922) 96,7 (gvrB) 3 d6-d9 X X X

2.112 Psb.glacincola (DQ143926) 98,9 (gvrB) 
94,2-99,4

6 d6-d9 X X X

3.128 Psb. immobilis (DQ143927) (gvrB) 16 d6-d9 X X X X X X

Shewanella
98,4-98,5

2.175 S. frigidimarina(AF0l4941) (gvrB) 14 d6-d9 X X X X

2.23 S. putrefaciens (AF005669) 98,7 (gvrB) 2 d6 X X

Staphylococcus
2.35 Staphylococcus sp. (L37605) 95,2 (16S) 1 d9 X X

3.222 St. warneri (L37603) 100 (16S) 2 d9 X X X

9 These isolates were all identified as Pseudomonas psychrophila, based on their partial 16S rRNA gene 
sequence and their (GTG)5-rep fingerprint.
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sequencing for the isolates belonging to the genera Pseudoalteromonas, Psychrobacter and 

Shewanella and via rpoB gene sequencing for the genus Pseudomonas.

3.3. Characterisation of the spoilage potential of the selected isolates

3.3.1. API ZYM  and urease residís

The API ZYM and urease results of the 22 isolates revealed differences in enzymatic activity. 

Table 6.3 shows the different enzymatic activities of the isolates. Differences between genera 

and between species were observed. The selected species of the genus Arthrobacter 

[.Arthrobacter antarcticus (isolate 2.42) and Arthrobacter cryotolerans (isolate 1.154)] 

showed some enzymatic activity. They were able to degrade short (C4) to medium chain (C8) 

lipids and to hydrolyse leucine arylamidase. Arthrobacter antarcticus (isolate 2.42) was able 

to break down urea due to urease activity, an enzymatic activity which is very important in 

elasmobranch fish spoilage. The species representing the genus Flavobacterium 

{Flavobacterium tegetincola) appears to have a lot of enzymatic activity. The isolate shows 

phosphatase and lipase activity, and is able to hydrolyse not only amino acids but also 

proteins (a-chymotrypsin). Pseudoalteromonas nigrifaciens has positive phosphatase activity 

and is able to break down short to medium chain lipids. The species was able to hydrolyse 

leucine arylamidase and possesses urease activity.

The isolates of Pseudomonas only show positive hydrolysis of all tested amino acids (leucine 

arylamidase), and Pseudomonas fluorescens is able to hydrolyse valine arylamidase and to 

degrade urea to ammonia via urease activity. Both Psychrobacter isolates have positive 

phosphatase activity, have some lipolytical activity (esterase lipase) and are able to break 

down urea.

Shewanella frigidimarina shows phosphatase and lipolytic (esterase and esterase lipase) 

activity and hydrolysis of leucine arylamidase. The urease activity was variable between 

different isolates all identified as Shewanella frigidimarina. The Staphylococcus species in 

this study showed positive acid phosphatase activity and was able to degrade lipids (C4 and 

C8 chains). These phenotypical characteristics combined with the genotypic differences of the 

(GTG)5 - rep profiling resulted in the selection of 6 isolates, i.e., one Flavobacterium (isolate 

3.92) , two Pseudomonas (isolates 1.9 and 1.135), two Psychrobacter (3.85 and 2.256) and 

one Shewanella (2.175) isolate(s).
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Table 6.3. Molecular identification and enzymatic activities (via API ZYM and urease tests) of the selected 
isolates from ray during storage. 1: alkaline phosphatase, 2: acid phosphatase, 3: napthol-AS-Bi- 
phosphopydrase, 4: esterase (C4), 5: esterase lipase (C8), 6: lipase (C14), 7: leucine arylamidase, 8: valine 
arylamidase, 9: cysteine arylamidase, 10: trypsin, 11: a-chymotrypsin and 12: all carbohydrates grouped (a- 
galactosidase, ß-galactosidase, ß-glucoronidase, a-glucosidase, ß-glucosidase, N-acetyl-ß-glucosaminidase, a- 
mannosidase and a-fucosidase). V= variable, *= selected for further analysis.

ID (gene) Phosphatases 
1 2 3

Lipases 
4 5 6

APTZYM results 
Hydrolysis of amino acids/proteins 
7 8 9 10 11

Carbohydrates
12

Urease

Arthrobacter
Arthrobacter spp. 
( 16S)
Flavobacterium

+ V - + + - + - +10 V

F. tegetincola 
(16S)*
Pseudoalteromonas

+ + + + + + + + + - + +11 -

Psa. nigrifaciens 
(gvrB)
Pseudomonas

+ + + + + - + - - +

Ps. fluorescens 
(,rpoQ)*
Ps. psychrophila

- - - - - - + + - - - +

(r/?oB)*
Psychrobacter
Psb. cibarius

_ _ _

(gvrB)* + + + - + - + + -  - “ +

Psb. cryohalolentis
(gvrB)*
Shewanella

+ + + - + - + - - +

S. frigidimarina 
(gvrB)*
Staphylococcus

+ + + + + - + . - V

Staphylococcus spp. 
(16S) - + - + + - - - -

3.3.2. Total counts and pH

Figure 6.3 shows the results of bacterial growth of the inoculated sterile ray. The counts of the 

inoculated bacteria were IO5 to IO6 cfu/g after inoculation (at To). The unirradiated sample 

had a TVC of 5,62 log cfu/g, which is approximately the same as for the inoculated samples. 

After five days of storage at 4°C (T4), nearly every inoculated sample except for

Flavobacterium tegetincola (isolate 3.92) and Psychrobacter cryohalolentis (isolate 2.256)
1 • 8 exceeded 10 cfu/g, also the TVC of the unirradiated control sample was nearly 10 cfu/g,

while the TVC on the irradiated control sample was below the detection limit. The pH of the

inoculated samples at T0 was measured between 6.29 and 6.51. At T4 the pH of the inoculated

111 Positive for a-glucosidase
11 Positive for N-acetyl-ß-glucosaminidase
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samples was between 6.79 and 7.18. These values are however much lower than the pH of the 

unirradiated control sample which reached a pH of 8.61 at T4 .

9

8Clû

6

h- 5,5

5

4,5
TO T1 T2 T3 T4

T im e  o f  s to r a g e  in  d a y s

Fig 6.3. Growth of the bacterial inoculated isolates on chilled ray during storage at 4°C in air. The bacterial 
counts are given in login cfu/g. ♦= Flavobacterium tegetincola (isolate 3.92), ■= Shewanella frigidimarina 
(isolate 2.175), A= Psychrobacter cryohalolentis (isolate 2.256), A= Psychrobacter cibarius (isolate 3.85), 0=  
Pseudomonas fluorescens (isolate 1.9), • =  Pseudomonas psychrophila (isolate 1.135), >K= Control unirradiated, 
T0= day of inoculation. T,= lday of storage, T2= 2 days of storage, T3= 3 days of storage, T4= 4 days of storage.

3.3.3. Volatile compounds

Table 6.4 shows the results of the GC-MS analysis of the inoculated pure strains on irradiated 

ray stored at 4°C. The compounds marked with an asterisk clearly increased in concentration 

during storage and were selected for further analysis with the SIFT-MS. Supplementary table 

6.1 shows the 33 VOCs selected by GC/MS analysis and by literature search for further 

analysis during storage of the inoculated ray samples. Every day a quantitative SIFT-MS 

analysis for these 33 VOCs was performed on the inoculated samples and the control samples 

stored at 4°C. In the sample inoculated with Shewanella fiigidimarina  (isolate 2.175), no 

significant production of VOCs was detected after 5 days. Also the sample inoculated with 

Flavobacterium (isolate 3.92) showed limited VOC production, only 99 pg/m3 H2 S was 

produced, a concentration nearly four times above the olfactory threshold of 25,7pg/m3 as 

described by Devos et al. (1990). However, this sample reached the lowest TVC of all 

inoculated strains (6.2 log) which could be the cause of the low production. Several VOCs 

were detected and quantified in the samples inoculated with Psychrobacter and Pseudomonas 

isolates, however this production depended on the isolate. SIFT-MS results indicate that 

Psychrobacter cryohalolentis (isolate 2.256) was able to produce 1,3-butanediol, 2-hexanone, 

carbon disulphide, H 2 S, 2-pentanamine, ammonia and also showed an increase in TMA 

production, independent of a low TVC (6.9 log). The highest number of compounds and at the
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highest concentrations were produced by Psychrobacter cibarius (isolate 3.85) and 

Pseudomonas psychrophila (isolate 1.135). The most important compounds detected for 

Psychrobacter cibarius (isolate 2.256) were 1,3-butanediol, 2-methylbutanal, 3- 

methylbutanal, 2-methylpropanal, acetoin, 2,3-butanedione, butanone, carbon disulphide, 2- 

pentanamine and acetic acid. For the inoculated samples with Pseudomonas isolates, 

Pseudomonas fluorescens (isolate 1.9) only produced 2-methylbutanal which is limited 

compared to Pseudomonas psychrophila (isolate 1.135) which has a similar TVC and 

produces 1,3-butanediol, 2-methylbutanal, carbon disulphide, H 2 S, 2-pentanamine, DMA, 

ammonia and a low concentration of TMA. Aldehydes such as 2-methylbutanal (threshold: 

123 pg/m3), 3-methyl-butanal (threshold: 8.12 gg/m3) and 2-methylpropanal (threshold: 123 

gg/m3) were produced above the olfactory threshold in the inoculated samples. 2 - 

methylbutanal was produced by Pseudomonas psychrophila (isolate 1.135) at the highest 

concentration (1033.1 gg/m3), followed by Pseudomonas fluorescens (502 gg/m3) and 

Psychrobacter cibarius (446.3 gg/m3). 2-methylpropanal (332.8 gg/m3) and 3-methylpropanal 

(700.1 gg/m3) were only produced by Psychrobacter cibarius (isolate 2.256) above the 

olfactory threshold of 123 gg/m3 and 8.12 gg/m3 respectively. The ketone 2,3-butanedione 

was also produced by Psychrobacter cibarius in a concentration of 586.5 gg/m3, much higher 

than the threshold (15.8 gg/m3). The sulphur compounds carbon disulphide and H2S have a 

olfactory threshold of 302 gg/m3 and 25.7 gg/m3 respectively. Carbon disulphide was 

produced by both Psychrobacter species above this threshold {Psychrobacter cibarius 893 

gg/m3 and Psychrobacter cryohalolentis (302.4gg/m3). The concentration of TMA increased 

at T4  for Pseudomonas psychrophila (205.8 gg/m3) and Psychrobacter cryohalolentis (394 

gg/m3), to concentrations clearly above the olfactory threshold of 5.88 gg/m3, indicating a 

possible production. However, this concentration is extremely low compared to the real TMA 

producers such as Photobacterium and is also much lower than the TMA concentration of the 

unirradiated ray (control) sample (202155gg/m3). Ammonia, a typical compound indicative of 

spoilage of ray, was produced by Pseudomonas psychrophila (4346.8 gg/m3) and 

Psychrobacter cryohalolentis (5139.8 gg/m3), both slightly above the threshold of 4073.8 

gg/m3. However, it was not present on the unirradiated control sample. On the unirradiated 

ray sample also ethanol (1154.8 gg/m3), acetone (281.6 gg/m3), 2-nonanone (1200.3 gg/m3), 

2-undecanone (66.9 gg/m3) and methyl mercaptan (912.2 gg/m3) was found, which were not 

detected on the inoculated samples. Several compounds produced by the inoculated samples 

were also produced on the not sterilized ray (control) sample but in much higher
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concentrations: 2-methylbutanal (1155.3 pg/m3), carbon disulphide (381168.8 gg/m3), and all 

three amines (DMA: 68463 pg/m3, 2-pentanamine: 36592.6 pg/m3 and TMA 202155 pg/m3). 

Other compounds were not produced in the unirradiated control sample, namely 3- 

methylbutanal, 2-methylpropanal, acetic acid and surprisingly also ammonia.

IV. Discussion

Elasmobranch fish such as ray are known for their quick spoilage shortly after catch. This 

spoilage is possibly caused due to the high NPN fraction and subsequently the production of 

ammonia from the high urea content present in the fish. In this study, the dominant microbiota 

of ray stored on ice under different conditions is identified and their spoilage potential is 

unravelled. The microbiological analysis shows that one log difference was observed between 

PCA and marine media as previously noticed on various fish species including ray (chapter 

3). This is due to the presence of halotolerant species unable to grow on PCA. At To. all 

samples were well within the microbiological limits of 105-106 cfu/g for fresh and precooked 

fish (Anonymous 1986). The microbiological analysis shows that the TVC on ray doesn’t 

exceed 10 cfu/g after 9 days of storage except for late gutted ray stored with skin. However, 

all the ray samples were no longer considered suitable for consumption due to a strong 

ammonia smell. The absence of Enterobacteriaceae indicates that the ray samples were 

processed under hygienic conditions. Lactic acid bacteria (LAB), were only present after a 

few days of storage when the ray sample was stored unskinned and when the ray was not 

immediately gutted.

Skinning of the fish gave a lower total count on all media at three to six days after skinning 

compared to fish that had not been skinned. However, during further storage, total counts 

increased much faster resulting in a much higher total count. One of the functions of the skin 

of fish is protection against microbiological penetration, which can explain the steep increase 

in microbiological count after prolonged storage without skin. On the other hand, removing 

the skin decreases the total count at a short term, this because the slime layer contains a high 

amount of nitrogenous compounds, which provides nutrients for the microbiota on the skin 

and is therefore a microbiological contamination source. Therefore it might be useful to leave 

the skin on until purchase, however, more data should be obtained to make a correct 

statement.
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Table 6.4. GC-MS results on irradiated ray inoculated with Flavobacterium, Pseudomonas, Psychrobacter and 
Shewanella strains and stored in air at 4°C. Analyses were perfonned after 5 days of storage at 4°C. The 
compounds marked with an asterisk showed an increase during storage and were incorporated in the SIFT-MS 
method for quantification.

Compound Flavobacterium Pseudomonas Psychrobacter Psychrobacter Shewanella
tegetincola psychrophila cibarius cryohalolentis frigidimarina

1,3-butanediol* X

l-hexen-3-ol X

l-penten-3-ol X X X X

1-undecene X

2,2,4,6,6 penta- X X

methylheptane
2,4-dimethyl-1- X X X X

heptene
2-butanone* X

2-ethyl-1-hexanol X X X X X

2-ethyl-hexanal X

2-heptanone X X

2-hexanone* X X X

2-methyl-1 -pentene X X

2-methylbutanal* X

2-no nano ne* X X X

2-pentanamine* X

2-pentanone* X

2-undecanone X

3,4-heptadiene X

3-hydroxy-2- X X X X

butanone
3-methy 1- X X X X

1-butanol*
3 -methy lbutanal * X X X

4 -methy 1-heptane X X X X

Acetone* X X X X

Benzene X X

Dimethyldisulphide* X

Dimethyl sulphide* X X X X X X

Ethanol* X

Ethylbenzene
Eucalyptol X X X X X

Methanetliiol X X

Methy lisobutyl X

-ketone
o-xylene X

Pentane* X

Styrene X

Toluene X X X X

Trimethy lamine * X X X X X X
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The results from early and late gutting are based on little data. Therefore, only assumptions 

can be made. It was noticed that especially the number of LAB and the amount of LLS 

producers increased, which may contribute to an unacceptable sulphur odour. However, 

further study should necessary to verify this assumption.

Identification of the isolates (Table 6.3) shows that species from the genus Pseudomonas, 

Psychrobacter, Pseudoalteromonas but also Idavohacterium and Shewanella dominate the 

microbiota of fresh ray. During storage, microbiological shifts are noticed. At the beginning 

of storage (dl-d3), the fresh fish is mainly dominated by Pseudomonas, Arthrobacter, 

Pseudoalteromonas and Flavobacterium species. During further storage on ice (d6-d9), the 

number of isolates identified as Arthrobacter and Flavobacterium decrease, while the 

numbers of Psychrobacter, Shewanella and also a small number of Staphylococcus species 

increase. Species identified as Arthrobacter are present at the beginning of storage but are 

virtually competed out by Pseudomonas spp. and Psychrobacter species during storage. Also 

the storage conditions, have an influence on the microbiota present; Shewanella putrefaciens 

and Staphylococcus warneri were detected when the ray was gutted late, indicating a 

contamination from the intestines. Since S. putrefaciens is a strong SSO (Gram and Huss 

1996; Molin and Stenström 1984), early and hygienic gutting of the fish is recommended for 

shelf life extension. Plating techniques (due to the species’ obvious colony morphology 

(large, slimy, light brownish convex colonies) on Long and Hammer medium) showed that 

also Pseudoalteromonas nigrifaciens is present in higher numbers when the fish is stored 

ungutted. Not only Pseudoalteromonas but also Psychrobacter species are often associated 

with the gut microbiota of seafood (Fjellheim et al. 2007; Meziti et al. 2010; Oxley et al. 

2002).

In this study, all the microorganisms identified during storage were marine food-related 

microorganisms. Most of them have been isolated before from food or seafood. Some of the 

genera are known seafood spoilage microorganisms, such as Pseudomonas sp. Pseudomonas 

has often been observed to dominate the microbiota of seafood stored aerobically under 

chilled conditions (Gennari et al. 1999; Koutsoumanis and Nychas 1999; Shewan et al. 1960; 

Stenström and Molin 1990; Tryfinopoulou et al. 2002), which leads them to be used as a 

spoilage indicator (Olafsdottir et al. 2006). However Pseudomonas species are considered to 

grow very rapidly and outgrow other genera (Moore et al. 2006). Species are often found to 

co-exist with other Pseudomonas sp. or other psychrothrops such as Shewanella putrefaciens
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or Psychrobacter immobilis (Blackburn 2006). Two of the four Pseudomonas species mostly 

associated to food spoilage were also found in this study, namely Pseudomonas fluorescens 

and Pseudomonas fragi. Next to seafood spoilage, those species are also associated with 

spoilage of meat, poultry, milk and fresh produce (only Pseudomonas fluorescens). Spoilage 

by these proteolytic and lipolytic microorganisms is indicated by a slimy and musty 

appearance, the production of off-odours and at the end partial or complete degradation of the 

animal tissue (Blackburn 2006). In this study, the isolates identified via rpoB sequencing 

respectively as Pseudomonas fluorescens (isolate 1.9) and Pseudomonas psychrophila (isolate 

2.256), did not show such a high odour production potential. This is in contrast to previous 

studies where the species was associated with the production of alcohols (methanol and 

ethanol), TMA, ammonia, ethyl acetate, ketones such as acetone and 2-pentanone or sulphur 

compounds (Chinivasagam et al. 1998; Edwards et al. 1987; Freeman et al. 1976; Nychas et 

al. 2007; Pittard et al. 1982; Reynisson et al. 2009; Schmitt and Schmidtlorenz 1992). In those 

previous studies, especially Pseudomonas fluorescens (isolate 1.9) was thought to have a high 

odour production potential, which has not been shown in this study. This lower VOC potential 

can be due to the low total counts of the isolates on the sterilized ray at the end of the SMPE- 

GC-MS and SIFT-MS analysis. The total count did not exceed 10 cfu/g, while a total count
8 9 *of 10 -10 cfu/g is generally thought to be needed in order to start the excessive production of 

volatiles (Gram et al. 2002). Also the inoculation of one pure strain can make a difference. 

Another possibility is a wrong identification in the previous studies due to phenotypic 

identification, since this genus has suffered from severe identification problems in the past, 

which is still reflected in the current taxonomy (Tryfinopoulou et al. 2002). Discrepancy 

between the rpoB gene and 16S rRNA gene analyses gave different results for the same 

isolate (isolate 3.91) in this study, namely Pseudomonas fluorescens (99.6% similarity -  

rpoB) against Pseudomonas gessardi (97.7% similarity -  16S). Wrong identification of 

isolates associated to seafood spoilage might also be the reason why Pseudomonas 

psychrophila, identified by rpoB gene analysis, has not been associated with seafood spoilage 

despite his potential to produce VOCs such as alcohols, aldehydes, sulphur compounds, 

amines (including TMA) and ammonia as described in this study. Pseudomonas psychrophila 

is closest related to Pseudomonas fi'agi, a well-known spoiler. DNA-DNA hybridisation 

however showed that homology was too low to be the same species, resulting in a new species 

(Yumoto et al. 2001). The other Pseudomonas isolates found in this study identified by rpoB 

analysis as Pseudomonas mandelii, Pseudomonas vancouverensis, Pseudomonas
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xanthomarina and Pseudomonas psychrophila (Table 3) were all clustered together based on 

their (GTG)5 -rep fingerprints. Also 16S rRNA gene analysis identified them all as 

Pseudomonas psychrophila with similarities between 97.4 and 100%.

The two test strains of Pseudomonas didn’t show much enzymatic activities in the API ZYM 

test, only hydrolysis of amino acids. Pseudomonas fluorescens (isolate 1.9) was able to 

degrade urea.

Also the other genera {Psychrobacter, Pseudoalteromonas, Flavobacterium and Shewanella) 

found in this study have been associated to seafood and spoilage (see previous chapters and 

Bjorkevoll et al. 2003; Castell and Mapplebeck 1952; Chai et al. 1968; Jaffrés et al. 2009; 

Mejlholm et al. 2005; Paarup et al. 2002; Prapaiwong et al. 2009; Tsironi et al. 2009). Four 

different Psychrobacter species were found in this study, only one of which, Psychrobacter 

immobilis, is known to have a minor spoilage potential, producing a musty odour (Bjorkevoll 

et al. 2003; Mejlholm et al., 2005; Prapaiwong et al. 2009) and ammonia (Ozogul and Ozogul

2007). The other Psychrobacter species have not been associated to spoilage so far. The 

genus’ importance in spoilage was also considered rather low since they seemed to be unable 

to compete with common spoilage microorganisms (Rodriguez-Calleja et al. 2005), which is 

in contrast with the results found in this study. This study indicates a co-dominance with 

Pseudomonas spp. on ray during aerobic ice storage and indicates that Psychrobacter 

cryohalolentis and especially Psychrobacter cibarius was able to produce VOCs (e.g. 

alcohols, acetoin and sulphur compounds) possibly associated to spoilage. This is in contrast 

to the spoilage potential of Psychrobacter cibarius on sterilized shrimp, as it does not produce 

any VOCs and therefore does not contribute to sensory spoilage (Chapter 5). Psychrobacter 

species were also positive for a large number of enzymatic activities such as phosphatases, 

medium chain lipid break down and hydrolysis of amino acids. Both species studied 

{Psychrobacter cibarius and Psychrobacter cryohalolentis) were also able to break down 

urea, an important characteristic concerning spoilage of elasmobranch fish. 

Pseudoalteromonas nigrifaciens, formerly not associated with spoilage, seemed to be an 

effective spoiler of brown shrimp without preservatives producing several VOCs associated 

with spoilage as observed in chapter 5. However, the spoilage potential on ray was not further 

investigated. It is possible that the species is able to contribute to spoilage though. 

Flavobacterium species, although present until the end of storage, were mainly found at the 

beginning of aerobic iced storage of ray and consisted of Flavobacterium fiigoris  and 

Flavobacterium tegetincola. Previous literature (Castell and Mapplebeck 1952) has observed
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that some Pseudomonas species are able to inhibit Flavobacterium, a phenomenon which may 

happen on ray during iced aerobic storage as well. The same study indicated that 

Flavobacterium grew more slowly and produced less offensive odours than for instance 

Pseudomonas, which is confirmed in this study. They showed that some species were able to 

produce offensive odours from stale and sweet to putrid or faecal when inoculated as pure 

cultures on the fish matrix. Also a few were able to reduce trimethylamine oxide to TMA. 

Freeman et al. (1976) associated ethanol and dimethyl disulfide production with 

Flavobacterium species found during spoilage. Via SIFT-MS analysis in this study it was 

found that Flavobacterium tegetincola (isolate 3.92) only produces hydrogen sulphide during 

storage. The API test however did show that Flavobacterium tegetincola (isolate 3.92) has a 

large potential or enzymatic activity, whereas it was the only isolate able to hydrolyse proteins 

as well and was able to break down carbohydrates next to phosphatase, lipase and hydrolysis 

of amino acid activity. The isolate was however urease negative.

During aerobic storage on ice, a number of Shewanella species are able to outgrow on ray. 

Especially when the fish is stored ungutted, the typical SSO Shewanella putrefaciens will be 

present. Another species, identified as Shewanella frigidimarina (isolate 2.175) by gyrB gene 

sequencing did not significantly contribute to spoilage. However the species may contribute to 

spoilage due to enzymatic activities (phosphatase and lipase activity and hydrolysis of leucine 

arylamidase). Identification of this species by 16S rRNA gene sequencing resulted in a 

species complex with high similarity between the species Shewanella vesiculosa, Shewanella 

frigidimarina and Shewanella livingstonensis. Accordingly, gy/B analysis tentatively 

identified the isolates as Shewanella frigidimarina (similarity 98.4 -  98.5%). A recent 

described new species, Shewanella arctica, did suffer from the same species complex based 

on the 16S rRNA sequence (Kim et al. 2011). A comparison between our isolate’s 16S rRNA 

gene sequence and the sequence of Shewanella arctica gave a similarity of 99.9%. Since there 

are not yet any gyrB  sequences present in a database, we are unable to compare sequences, 

but it is very likely that the isolates found in this study on ray are Shewanella arctica rather 

than Shewanella frigidimarina.

The large differences between the VOC production on the inoculated samples and the not- 

sterilized control sample, can be explained as the VOC production of pure isolates on a 

sterilized matrix can be different than the production in co-existence with other 

microorganisms. This can result in benefits from microbiological interaction such as 

antagonism or metabiosis (Gram and Melchiorsen 1996; Gram et al. 2002). Also other
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microorganisms which were not found or for which no VOC profile was determined, could 

contribute to spoilage and by doing so create a different VOC profile in natural contaminated 

ray. VOC analysis of co-inoculated strains as well as comparison with natural contaminated 

ray should be interesting for further research.

Gamma sterilization did not have an effect on the matrix itself as both control samples 

(sterilized and not sterilized) had the same SIFT-MS profile at To.

In conclusion, this study has contributed to the knowledge concerning the dominant 

microbiota on aerobic ice stored ray under different conditions. The spoilage potential of 

Pseudomonas, Psychrobacter, Flavobacterium and Shewanella isolates/species inoculated as 

pure cultures on sterile ray was studied. The sensory profile results indicate that especially 

Pseudomonas and Psychrobacter species may contribute to the off-odours produced during 

storage. However, due to the low counts of the inoculated isolates (below 10 cfu/g) at the end 

of the SIFT-MS analysis, all results are only indicative. The selected isolates may have a 

much higher spoilage potential than mentioned in this study, not only by VOC production but 

also by enzymatic activities. Both Psychrobacter species {Psychrobacter cibarius and 

Psychrobacter cryohalolentis) and Pseudomonas fluorescens were able to degrade urea to 

ammonia based on an enzymatic test. However SIFT-MS analysis showed that only 

Psychrobacter cryohalolentis and Pseudomonas psychrophila produced ammonia in 

concentrations above the olfactory threshold so that they could be observed by the human 

nose. This study might also indicate that the ammonia production possibly is caused by 

bacterial activity rather than autolytic processes, since no ammonia production was observed 

on the irradiated ray samples, in contrary of the production by some Psychrobacter and 

Pseudomonas isolates.
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Supplementary table 6.1. Mass-to charge Ratio, m/z, values of the characteristic product ions of the volatile 

compounds shown analysed by SIFT-MS using H30 + , NO+ and 0 2+ precursor ions.

Volatile compound Precursor m/z Branching 
ratio (%) K Characteristic produc

Alcohols

1,2-butanediol NO+ 89 100 3.90E -09 C5HnO+

1,3-butanediol NO+ 89 100 1.1E -09 c4h 9o 2+

ethanol H30 + 47 100 2.70E -09 c2h 7o+

h 3o + 65 2.70E -09 c2h 7o+.h 2o

isobutyl alcohol h 3o + 57 100 2.70E -09 C4H9+

NO+ 73 95 2.40E -09 C4H90 +

3 -methyl-1 -butanol H30 + 71 100 2.8E -09 c5h „ +

NO+ 69 10 2.3E -09 c5h 9+

2-propanol H30 + 43 80 2.70E -09 c 3h 7+

Aldehydes

hexanal NO+ 99 100 2.5E -09 CgHnCC

0 2+ 56 50 2.0E -09 C4IV

2-methylbutanal h 3o + 45 2 3.7E -09 c2h 5o+

NO+ 57 2 3.2E -09 c4h 9+

3-methylbutanal NO+ 85 100 3.0E -09 c5h 9o+

2-methylpropanal NO+ 71 100 3.IE -09 c4h 7o+

Ketones
acetoin H30 + 89 100 3.0E -09 c 4h 8o 2.h +

h 3o + 107 3.0E -09 c4h 8o 2.h +.h 2o

NO+ 118 100 2.5E -09 c4h 8o 2.h +.n o +

o2+ 88 20 2.5E -09 C4H80 2

acetone h 3o + 59 100 3.90E -09 c3h 7o+

2,3-butanedione NO+ 43 80 1.3E -09 c2h 3o+

butanone NO+ 102 100 2.80E -09 n o +.c 4h 8o

2-hexanone NO+ 130 100 3.6E -09 n o +.c6h 12o

o2+ 100 5 3.4E -09 C6H12o +

2-nonanone h 3o + 143 100 4.2E -09 GFhgOFh

h 3o + 161 4.2E -09 GjHjgOH+.ITO

NO+ 142 2 2.7E -09 CgHisO

NO+ 172 98 2.7E -09 c9h 18o +.n o +

o2+ 142 30 3.2E -09 c9h 18o +

2-pentanone NO+ 116 100 3.10E -09 n o +.c5h „ o
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NO+ 88 100 1.20E -09 n o +.c 3h 6o

2-undecanone H30 + 171 100 4.3E -09 c „ h 22o h +

h 3o + 189 4.3E -09 c „ h 22o h +.h 2c

NO+ 200 100 3.4E -09 c „ h 22o+.n o 4

0 2+ 110 10 3.4E -09 c8h 14

0 2+ 127 5 3.4E -09 c9h i 9+

o2+ 152 5 3.4E -09 C11H 2 , ,

o2+ 170 15 3.4E -09 ChH220 +
Sulphur compounds

carbon disulphide o2+ 76 100 7.0E -09 cs2+
dimethyl disulphide H30 + 95 100 2.60E -09 (CH3)2S2.H+

NO+ 94 100 2.40E -09 (CH3)2s2+

o2+ 61 10 2.30E -09 c h 3c h 2s+

o 2+ 94 80 2.30E -09 (CH3)2S2+

dimethyl sulphide h 3o + 63 100 2.5E -09 (CH3)2S.H+

NO+ 62 100 2.2E -09 (CH3)2S+

0 2+ 47 25 2.2E -09 c h 3s+

0 2+ 62 60 2.2E -09 (CH3)2s+

dimethyl thioether NO+ 62 100 2.20E -09 (CH3)2s+

methyl mercaptan H30 + 49 100 1.80E -09 c h 4s .h +

hydrogen sulphide h 3o + 35 100 1.60E -09 h 3s+

0 2+ 34 100 1.40E -09 h 2s+

Amines
dimethyl amine h 3o + 46 100 2.10E -09 (CH3)2NH.H+

2-pentanamine h 3o + 18 60 2.7E -09 n h 4+

trimethyl amine h 3o + 58 10 2.00E -09 C\HXN

Esters

ethyl acetate h 3o + 89 100 2.90E -09 CH3COOC2H5.f

h 3o + 107 2.90E -09 c h 3c o o c 2h 5.h +.

NO+ 148 90 2.10E -09 n o +.c h 3c o o c 2

Acids

acetic acid NO+ 90 100 9.0E -10 n o +.c h 3c o o i

NO+ 108 9.0E -10 n o +.c h 3c o o h .i

0 2+ 60 50 2.3E -09 CHjCOOH

Other

ammonia 0 2+ 17 100 2.40E -09 n h 3+

diethyl ether h 3o + 75 100 2.4E -09 C2H5OC2H5.Hh
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+O£ 73 100 1.8E -09 C4H90 +

0 2+ 31 15 2.0E -09 c h 3o +

ethylene oxide h 3o + 45 100 2.40E -09 c2h 5o+

+o5S 74 100 1.00E -10 c2h 4o .n o +

pentane 0 2+ 42 40 1.6E -09 c3h 6+

118



General conslusions, recommendations and perspectives

C h a p t e r  7

G e n e r a l  c o n c l u s io n s , r e c o m m e n d a t io n s  a n d

PERSPECTIVES



General conslusions, recommendations and perspectives

Chapter 7. General conclusions, recommendations and perspectives

The fast deterioration of seafood is an important economic loss for the fisheries sector. Since 

seafood spoilage is mainly caused by microbiological growth and microbiological activity, the 

study of the microbiota on seafood and the identification of specific spoilage organisms 

(SSOs) can be considered as an important topic. More knowledge may finally result in an 

ameliorated quality and shelf life extension of seafood.

To study the microbiological quality of different seafood, a profound fundamental study to 

detect, identify and characterise the possible spoilage microbiota is necessary. Methodologies 

were evaluated and optimised and subsequently used to identify the dominant microbiota of 

brown shrimp (Crangon crangon) and ray {Raja sp.), and to characterize them to their 

spoilage potential. In this study both seafood products were not treated with preservatives and 

air stored.

Spoilage, microbial quality and shelf life of brown shrimp and ray

Today, many researchers are convinced that the use of SSOs or metabolic spoilage 

associations (MSAs) should be a better approach for seafood quality analysis and shelf life 

prediction than total viable count (TVC) analysis. SSOs are those microorganisms that grow 

at certain storage conditions. They grow faster than other microorganisms and produce the 

metabolites responsible for off-odours and off-flavours resulting in sensory rejection by 

consumers. Numbers of SSOs and concentrations of their produced metabolites are generally 

accepted as objective quality indices for shelf life determination (Dalgaard 2000; Erkan and 

Ozden 2008; Olafsdottir et al. 1997). However, as SSOs are matrix-specific and condition- 

specific, population shifts will occur depending on the storage conditions. Therefore, 

thorough research on specific seafood and specific storage conditions is necessary. For several 

fish species, depending on the conditions of storage, microorganisms such as Photobacterium, 

Shewanella, Pseudomonas and Brochothrix are listed as the SSOs of seafood. However, the 

possible SSOs on brown shrimp and ray are different from those listed above. Their specific 

intrinsic (e.g. their large non protein nitrogen (NPN) fraction, high ureum content, etc.) or 

extrinsic characteristics (traditional processing on board the vessel, possible use of 

preservatives, etc.) may contribute to this difference in dominant microbiota during storage. 

This study indicates that for both fishery products the microbiota during aerobic storage on 

ice predominantly consists of Psychrobacter and Pseudoalteromonas species. Although on 

ray, the microbiota during ice storage is co-dominated by Pseudomonas species.
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Pseudoalteromonas has to date not been mentioned in literature concerning food spoilage. 

The genus Pseudoalteromonas consists of 38 species and two subspecies of which 

Pseudoalteromonas haloplanktis is the type species of the genus. The genus consists of 

merely marine, strictly aerobic, psychrotolerant, straight or curved rods described between 

1995 and 2011. The bacterial strains belonging to the genus, however, have several properties 

including the production of antifouling agents, the identification as fish and invertebrate 

pathogens, denitrifying properties, peptide dissolving properties, etc. (Euzeby 1997).

Previously, Pseudoalteromonas species belonged to the genus Alteromonas until phylogenetic 

research based on the 16S rRNA gene has shown that the species genetically belonged to a 

new genus Pseudoalteromonas (Gauthier et al. 1995). The genus Pseudoalteromonas is 

closely related to the genus Shewanella (Fig. 7.1), which contains species known to be SSOs 

of seafood. This close relationship might be the cause that the genus Pseudoalteromonas was 

never mentioned before as an SSO in literature. Identification based on phenotypic tests (e.g. 

API tests), as often performed in food spoilage literature, might incorrectly identify the newly 

found SSO as belonging to the genus Shewanella. In this study, species of the genus 

Pseudoalteromonas were found to actively contribute to spoilage of brown shrimp without 

preservatives under different storage conditions. This was mainly seen by the production of a 

large number of volatile organic compounds (VOCs) (sulphides, ammonia etc.) associated to 

spoilage. The studied isolates also have a large enzymatic capacity. These enzymatic activities 

might also contribute to spoilage, which is a possible issue for further research.

other

7 other families

Alteromonadales

Pseudoalteromonas

PseudomonadaceaePseudoalterornonaceae

Order

Family

Genus

Fig. 7.1. Systematics of the genus Pseudoalteromonas in comparison with its’ close related genus Shewanella 
(after (Euzeby 1997) - List of Prokaryotic names with Standing in Nomenclature, http://www.bacterio.net).

The colony morphology of all species/isolates of Pseudoalteromonas found in this thesis 

consisted of very slimy big brownish colonies on Long and Hammer medium (LH), 

transparent or white on marine agar and white-yellowish/white-light orange on Pseudomonas
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CFC medium. This specific characteristic on LH could be an easy and quick method to 

recognise the number of Pseudoalteromonas spp. on seafood.

The second important genus, Psychrobacter counts 33 species and was first described in 1986 

by Juni and Heym and was named after “rod that grows at low temperature”. The type species 

is Psychrobacter immobilis, a microorganism which has been isolated in large numbers from 

proteinaceous foods such as fish, processed meat and poultry (Bjorkevoll et al. 2003; Euzeby 

1997; Gennari et al. 1992; Juni and Heym 1986). The genus consists merely of aerobic, 

psychotropic, halotolerant coccobacilli. However, some strains are able to grow under 

anaerobic conditions when a suitable electron acceptor is present. The taxonomic status of the 

members of the Moraxellaceae family have been constantly under review over the past 

decades. Phylogenetic research demonstrated their relatedness to Moraxella and 

Acinetobacter (Fig. 7.2), both associated with seafood microbiota and spoilage (Gennari et al. 

1989). Within the entire family of Moraxellaceae, Moraxella is the closest related to 

Psychrobacter. However, Psychrobacter spp. are considered to have a low spoilage potential 

because they lack important food spoilage biochemical attributes (Gennari et al. 1992). This 

study indicated that the spoilage potential of these microorganisms can be matrix- and 

possibly also strain-dependent. On brown shrimp, Psychrobacter cibarius and Psychrobacter 

maritimus did not produce any VOCs. On ray, however, Psychrobacter cibarius was able to 

produce a certain amount of carbonyl sulphides, aldehydes, and ketones.

other.otherMoraxallaAcinetobacter

Moraxellaceae.

Psychrobacter

Pseudomonadales

Pseudomonadaceae

Older

Family

Genus

Fig. 7.2. Systematics of the genus Psychrobacter in comparison with its’ close related genera Acinetobacter, 
Moraxella and Pseudomonas (after Euzeby 1997) - List of Prokaryotic names with Standing in Nomenclature. 
http://www.bacterio.net).

Biochemical tests on isolates from ray (Chapter 6) also showed that both Psychrobacter 

cibarius and Psychrobacter cryohalolentis are able to degrade urea to ammonia. Members of 

the genus Psychrobacter are considered to grow well on PCA (Blackburn 2006). However, in
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this study, some species/isolates were unable to grow on PCA but only on salt containing 

media such as LH or MA, whereas for other species/isolates the opposite was noticed. The 

colony morphology of all species within the genus in this thesis grown on LH, MA or PCA 

was always convex, (transparently) white and relatively small. This colony morphology is 

however not discriminating enough to identify these microorganisms on culture media.

Future research and opportunities to increase the shelf life o f  brown shrimp and ray 

In order to turn research results into recommendations to the sector, fisheries and seafood 

processing industry or organisations active in quality control, it is necessary to monitor the 

microbiota on brown shrimp and ray throughout the year and from different fishing grounds 

more thoroughly. Only then, it will probably be shown that those microorganisms are indeed 

persistently present on the stated fishery products. The study of their spoilage potential should 

also be expanded. On one hand the VOC profile of pure strains on a fishery product should be 

compared to the profile generated from natural contaminated products as already performed 

for ray. Also potential interactions between pure strains should be verified, in order to 

quantify the importance of one SSO within a microbiological association. Furthermore the 

strains’ lipolytic, proteolytic, etc. capacities should be studied more in depth to create a more 

complete view on their spoilage potential.

Opportunities to increase shelf life might be found in several processing steps of brown 

shrimp and ray:

One of the methods to extend the shelf life is by optimising the initial microbiological quality 

of the start product. This could for example be realised through the implementation of a 

durable fishery technique such as the electrical fishing gear instead of the traditional beam 

trawling. Since during application of this durable technique the fishing equipments floats 

above the seabed and the shrimp jump into the net due to electrical pulses, the degree of 

contamination (e.g. by sand and mud) might be smaller. Also the amount of by-catch will 

normally be lower as they do not react to the pulses, which also might reduce the initial 

contamination degree. However, future research is necessary to monitor the effect of different 

fishing techniques on the initial microbiological quality of the caught raw material.

The current knowledge generated on the microbiota during storage and spoilage of brown 

shrimp and ray, may form the scientific basis for a profound study and optimisation of the 

different processing steps [e.g. cooking (only for shrimp), and chilling]. Both Psychrobacter 

and Pseudoalteromonas species are associated with the intestinal content of seafood
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(Fjellheim et al. 2007; Meziti et al. 2010; Oxley et al. 2002). Further research on their heat 

resistance, the cooking process (time and temperature), and the maximal temperature and 

duration inside the shrimp is necessary. Certainly post-cooking contamination can occur and 

since these microorganisms are present in seawater, contamination has to be prohibited or 

reduced as much as possible to eliminate or minimise these microorganisms on the product.

Especially for ray it was seen that immediate hygienic gutting of ray could decrease the 

presence of Pseudoalteromonas and Shewanella putrefaciens. However the skin of the fish 

and particularly the slime layer is also a source of contamination (due to the presence of 

nutrients during the fast onset of decay), it should remain present as long as possible during 

storage since it also acts as an antibacterial (anti-penetration) layer. To avoid cross

contamination, rinsing with hot water prior to skinning, might influence the microbiological 

condition and thereby also the shelf life.

The microbiota of ray during ice storage was mainly dominated by several Pseudomonas 

species. Pseudomonas spp. actively contribute to spoilage due to their capacity for amino acid 

degradation resulting in the formation of alcohols, amines, ammonia, esters, ketones and 

sulphur compounds as described in chapter 2 (Table 2.3). Since Pseudomonas spp. are mainly 

the SSOs of seafood stored under aerobic chilled conditions, a specific packaging technique 

(e.g. MAP) with specific O2  and CO2  levels might ameliorate the shelf life of ray, especially 

since the other dominant microbiota consists of Psychrobacter and Pseudoalteromonas 

species, which are nearly all (strict) aerobic microorganisms. However, a change in storage 

conditions may induce the growth of other microorganisms present such as lactic acid 

bacteria, which makes further research essential.

Comments and recommendations for routine laboratory control of seafood

In many routine laboratories, the total (psychotropic) count analysis is determined on general 

culture media, as an indication of the microbiological quality of seafood.

Based on the evaluation of the four most used general media in seafood quality research 

(Chapter 3), LH medium, as recommended by the Nordic Committee of Food Analysis, could 

be assigned as the possible best general culture medium for microbiological analysis on 

seafood. Since this medium is currently not for sale as a pre-composed dehydrated powder 

mix, and as a consequence labor intensive to prepare, also MA medium can be used with 

good results. Chapter 3 showed that the TVC on MA and LH was similar, only some 

microorganisms were not detected on MA or vice versa. Although many halotolerant
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microorganisms and/or SSOs, such as Photobacterium spp., Shewanella spp., 

Pseudoalteromonas spp. were able to grow on LH, this does not mean that LH was able to 

give a complete overview of the dominant microbiota or SSOs present during storage. 

However it is quite clear that the microorganisms mentioned above do not grow on PCA, the 

current recommended general culture medium by the International Organisation of 

Standardisation.

Next to the culture media, also the use of microbiological techniques such as the use of pour 

plating or spread plating and specific incubation temperatures may hamper or facilitate the 

detection of certain microorganisms (Dalgaard et al. 1997; Reynisson et al. 2009). For 

instance, the most important SSO of fresh fish, Photobacterium phosphoreum , is not easily 

cultivated compared to other bacteria found in seafood, as the species is vulnerable not only to 

the salt content in the growth medium, but also to temperature fluctuations (Dalgaard et al. 

1997; Emborg et al. 2002).

Therefore, when selecting specifically for a specific SSO, the use of a specific growth 

medium, such as STAA (Streptomycin-Thallous Acetate-Actidione) agar for Brochothrix sp., 

Pseudomonas CFC or Iron agar (black colonies) for Shewanella sp. and other H 2 S-producing 

bacteria, is appropriate. When there is no doubt that a specific microorganism can be assigned 

as the SSO of a seafood product, a specific growth media adapted to its growth requirements 

and specific (e.g. morphological) characteristics can be developed. The specific detection of 

the SSO, combined with (the creation of) a mathematical model to calculate the growth of this 

microorganism such as SSSP (Dalgaard et al. 2002), could then predict the quality and 

remaining shelf life. Or a species or genus specific molecular detection technique as 

developed for instance for the genus Pseudomonas on seafood by Reynisson et al. 2008, 

based on the rapid quantitative monitoring by real-time PCR of the carA  gene, could be 

applied for this purpose. This method would take less than 5 hours between sampling and 

results and could therefore be a suitable technique for estimating fast the quality of a fishery 

product. The last method can however not be considered as ready for commercial use as more 

research is still necessary.

In general, this thesis indicated that the use of general growth media in this field of fish and 

fish products analysis should be revised in function of the fish and fish product matrix. A 

separate analysis method for the microbiological quality of seafood instead of a general 

method for all food and feed as currently used seems to be more appropriate. Further research

124



General conslusions, recommendations and perspectives

is however necessary, including many more fish species and their SSOs in order to obtain the 

best (the most complete) general medium or more probable a combination of several media 

which are able to guarantee a more accurate microbiological quality assessment and shelf life 

prediction.

Comments and recommendations concerning a molecular approach/research.

The last decade, molecular techniques have been introduced in food microbiology in order to 

study the present microbiota.

PCR-DGGE (community analysis): In chapters 3 and 4, traditional plating techniques were 

supplemented with a PCR-DGGE which was used to generate a general overview of the 

dominant microbiota present and to observe microbiological shifts under certain conditions. 

The 16S V3 region was chosen as target-region since this region is mostly used in food 

matrices including seafood (Ercolini 2004; Hovda et al. 2007a, 2007b) and the large in-house 

experience.

It was seen that PCR-DGGE analysis of plate swabs and direct DNA extraction from the 

matrix reproduced totally different profiles. It was shown that the absolute dominance of 

Pseudoalteromonas and Psychrobacter on shrimp was not present in the profiles obtained via 

direct DNA extraction. The selection of certain microorganisms based on either nutrients (by 

conventional plating techniques) or based on the DNA extraction, primer selection and other 

artefacts (by PCR-DGGE) could be the reason for these differences. For LH medium it was 

noticed that especially Pseudoalteromonas could grow intensively and could overgrow the 

other microbiota, which was shown in a pronounced dominance of this genus on PCR-DGGE 

analysis from LH plate swabs. On the other hand, also the PCR-DGGE analysis of DNA 

extracted directly from the matrix has limitations; not only non-cultivable but also large 

fractions of non-viable (dead) microorganisms are detected (Cocolin et al. 2007; Ercolini et al. 

2001; Olofsson et al. 2007; Rudi et al. 2004).

Although the PCR-DGGE technique is reliable and mostly reproducible (Muyzer 1999), the 

community fingerprints do not directly give taxonomic information, which is an important 

limitation (Giraffa and Neviani 2001). Therefore, a sequence analysis of excised and 

reamplified DNA fragments is necessary. An identification to species level is practically 

impossible due to the very small fragments generated through PCR-DGGE analysis. Next to 

the advantages of using PCR-DGGE for microbiological community studies, the technique 

also suffers from some potential practical biases [e.g. the DNA extraction method used (de
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Lipthay et al. 2004), detection limits (Muyzer et al. 1993), selective amplification by the 

primers (Ercolini et al. 2003), multiple gene copy numbers (de Araujo and Schneider 2008), 

etc.] as addressed in the Chapters 3 and 4. Another bias linked to PCR-DGGE is the potential 

co-migration of bands despite sequence variation, this means that one band in the PCR-DGGE 

pattern may visualise more than one species (Vallaeys et al. 1997). A way to solve this 

problem is the application of household genes such as rpoB or gyrB for PCR-DGGE (Dahllof 

et al. 2000; Peixoto et al. 2002; Renouf et al. 2006; Tacao et al. 2005). However, trial and 

error in this thesis has shown that several genera need a different primer which demands for 

an intensive optimisation. In general, it could be hypothesised that the bacterial variation on 

seafood will possibly be too large to allow the detection of all microorganisms using only one 

technique. In order to avoid some limiting factors affecting PCR-DGGE analysis, 

pyrosequencing might be a solution. Pyrosequencing is based on detecting the activity of 

DNA polymerase with a chemiluminiscent enzyme. It has often been used to observe changes 

in microbial communities and the technique can discriminate microbial species, types and 

strains in contrast to PCR-DGGE.

Molecular analysis methods, except for real time PCR methods, are however also often non- 

quantitative techniques, whereas plating techniques are able to give an idea of the quantity of 

certain microorganisms. The problem concerning the detection of dead microbiological cells 

in all molecular methods can only be solved by using reverse transcriptase PCR techniques, 

which needs intensive optimisation. The largest disadvantage of any molecular technique for 

detection is the inability to obtain extra information e.g. the spoilage capacity of the 

microorganisms, since they are not cultivated/isolated. The optimal technique, conventional or 

molecular or a combination of both, will therefore depend on the aim of the experiment.

Molecular identification: After detection and cultivation of microorganisms or SSOs of 

seafood by conventional plating, it can, depending on the purpose of the analysis, be 

important that they are correctly identified to species level. This is still too often performed by 

phenotypic testing which lacks sensitivity due to the large diversity and the variety of 

especially marine microbiota. Biochemical test kits (e.g. API, BIOLOG) are often not adapted 

for identification of these microorganisms (except for the already known SSOs) and would 

assign the isolate a wrong identity. Molecular techniques are more appropriate to this matter, 

but also have their limitations and disadvantages. Since molecular identification techniques 

based on sequencing are quite expensive and the colony morphology of identical isolates may
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vary depending on the selected media and incubation parameters, a de-replication (grouping 

the identical isolates at a certain taxonomic level) of all isolates may be necessary. In order to 

de-replicate the large number of isolates, rep-PCR fingerprinting was used in this thesis. 

Comparing REP, BOX and (GTG)s primers showed that only (GTG)s -  rep fingerprinting was 

useful based on the number of bands generated for marine microorganisms in this study. 

(GTG)5 -rep fingerprinting is a powerful technique that allows the analysis of a high amount of 

isolates from different taxonomic groups without prior genotypic knowledge with a high 

taxonomic resolution (between species and strain level) (Gevers et al. 2001; Versalovic et al. 

1991). This high taxonomic resolution could not be applied to all genera studied in this thesis. 

It was observed especially for the genus Psychrobacter that isolates clustering together with a 

Pearson’s correlation coefficient above 80% were not identified as the same species based on 

16S and gyrB gene sequencing. This made provisionary identification based on the rep- 

profiles with type strains not reliable. Therefore several isolates from large clusters were 

always sequenced in order to avoid incorrect identification.

However, identification based on the 16S rRNA gene is considered to be the golden standard 

in prokaryotic systematics (Hillis and Dixon 1991; Stackebrandt and Ebers, 2006; Woese 

1987). Identification based on the partial or nearly full 16S rRNA gene of especially four 

genera {Pseudoalteromonas, Pseudomonas, Psychrobacter and Shewanella) in this thesis 

resulted in species complexes with a similarity above 99% with several species. As described 

by Stackebrandt and Ebers (2006) a similarity above 98.7% is needed to be identified as the 

same species, a similarity which can be correlated to 70% DNA-DNA hybridization. 16S 

rRNA gene sequencing thereby limited the identification of the above listed genera. Sequence 

analysis of household genes which have a wider sequence variation and evolve more rapidly, 

such as rpoB or gyrB might solve this problem (Giraffa and Neviani 2001; Palys et al. 1997; 

Yamamoto and Harayama 1995). For the genus Pseudomonas, it was chosen to use the rpoB 

gene for identification due to the large in-house experience (De Jonghe et al. 2011; Marchand 

et al. 2009) and literature search (Tayeb et al. 2005). However, even with rpoB sequencing 

the identification of isolates remained indefinite. In general, it is known that the classification 

of Pseudomonas strains is problematic due to the lack of an accurate taxonomic system 

(Yamamoto et al. 2000). Methods, such as DNA-rRNA hybridization, DNA-DNA 

hybridization, direct comparison of rRNA sequences have been applied in order to establish 

the phylogenetic relationships between new isolates and previously defined taxa (De Vos et
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al. 1989; Palleroni et al. 1973; Ursing 1986). However, identification remains often difficult 

(Tryfinopoulou et al. 2002). This problem is not limited for the genus Pseudomonas.

In general, thorough studies for the identification and systematics of marine microorganisms 

is lacking. Not only are many species associated to seafood spoilage often identified by 

phenotypical techniques, also a large amount of species are not yet described (novel species) 

or lack profound identification.

For the genera Shewanella, Psychrobacter, and Pseudoalteromonas, the gyrB  gene was used 

for species identification. Discrepancies between 16S and gyrB  genes were often found and 

could perhaps be assigned to the presence of novel species. For the genus Shewanella several 

isolates were identified as a Shewanella frigidimarina -  vesiculosa -  livingstonensis species 

complex based on 16S identification. Phylogenetic tree analysis with gyrB  showed a higher 

similarity with Shewanella frigidimarina. However, a sequence comparison with Shewanella 

arctica sp. nov. (Kim et al. 2011), a recent novel species within the genus, shows that the 

isolates, identified as Shewanella fiigidimarina {gyrB) in this thesis, have a 99.9 % similarity 

with the novel species based on 16S. The discrepancies between the genes can therefore 

possibly be explained by species closely related to currently known species, but which are in 

fact novel species. For the genera Psychrobacter and Pseudoalteromonas, as described in 

chapter 4, phylogenetic tree analysis showed that for 16S sequences also the species type 

strains showed a very low genetic distance between them, which could be resolved by using 

gyrB. The use of household genes, in combination with 16S, might therefore possibly become 

more useful in prokaryotic systematics.
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Summary

After an outline of the objectives of this thesis (chapter 1), a profound literature overview of 

seafood spoilage and quality analysis techniques in general is given in chapter 2. Several 

aspects of spoilage are described from rigor mortis, autolysis and microbiological changes to 

biochemical changes under aerobic conditions. Also the different ways of assessing the 

quality of seafood by sensorial, microbiological, biochemical or physical evaluation in the 

industry is briefly described.

Since seafood spoilage is mainly caused by microbiological growth and activity it’s important 

to detect a profound view of the microbiota present on seafood. Therefore, the first part (Part 

I) of this thesis consists of a profound investigation and evaluation of the traditional detection 

techniques.

It is known that total count analysis on various general media gave different results 

concerning the total aerobic psychrotolerant counts. To this end, the microbiological 

community on eleven fish species during storage on ice was analysed through several plating 

methods and identified and compared through molecular techniques. In chapter 3, several 

methods, traditional and molecular, confirmed that on plate count agar the enumeration of the 

microbiota was much lower and revealed that many microorganisms were not detected. 

However, a generalization as described in literature that total counts on plate count agar are 

approximately one log lower than on marine media could not be made. The difference in 

counts on various media depended on the fish species and therefore the present microbiota. 

Partial 16S rRNA gene and gyrB gene sequencing identified members of the genera 

Photobacterium, Shewanella, Vibrio, Aliivibrio, Pseudoalteromonas, Psychrobacter, 

Brochothrix, Flavobacterium, Acinetobacter, Pseudomonas and Janthinobacterium as not 

growing on one of the media studied. This study therefore provides further evidence that plate 

count agar, an official ISO method, is not the most suitable growth medium for fish analysis 

and fish spoilage quality. Especially since some well-known SSOs such as Photobacterium 

phosphoreum, Shewanella baltica and Pseudomonas fluorescens are unable to grow on it. 

Marine media such as Long and Hammer agar and marine agar seemed to obtain the best 

quantitative and qualitative results for fish quality analysis during this study, however also 

these media have restrictions.

The second part of this thesis, divided in part II and part III, consists of the implementation of 

the optimized techniques in order to identify and characterise the dominant microbiota of two
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typical Belgian fishery products, namely brown shrimp (Crangon crangon) and ray {Raja sp.). 

Since previous research revealed that not the total number of microbiota on fish is responsible 

for fish spoilage, but rather only a small fraction of the microorganisms, the “specific spoilage 

organisms” or SSOs it’s important that those microorganisms are detected and identified in 

order to be able to determine the seafood quality and remaining shelf life. These SSOs are 

seafood specific and are responsible for the production of volatile organic compounds (VOCs) 

associated with spoilage.

In Part II the dominant microbiota of brown shrimp (chapter 4) and their spoilage potential 

(chapter 5) is studied.

In chapter 4, the dominant microbiota of brown shrimp {Crangon crangon) without 

preservatives were identified during storage under different conditions. Therefore freshly 

caught shrimp were caught and processed on board under the best possible hygienic 

conditions. These shrimp were unpeeled and manually (sterile) peeled and stored on ice and at 

7.5°C until microbiologically spoiled. The results were then compared with industrially 

processed shrimp without preservatives. However the microbiota differed somewhat during 

storage and among the various storage conditions; members of the genera Psychrobacter and 

Pseudoalteromonas were found to dominate the microbiota of all shrimp samples regardless 

of processing procedures or storage conditions. Identification via partial and nearly full 16S 

rRNA gene sequencing resulted for both genera in species complexes. GyrB gene sequencing 

however, was able to identify more isolates to species level. Psychrobacter immobilis, 

Psychrobacter cibarius, Pseudoalteromonas nigrifaciens, Pseudoalteromonas elyakovii and 

Pseudoalteromonas paragorgicola were found to dominate the microbiota of brown shrimp 

during storage. Also species from the genera Planococcus, Exiguobacterium, 

Carnobacterium, Pseudomonas, Chryseobacterium and Staphylococcus were detected in 

lower numbers during storage of brown shrimp.

Also a culture-dependent and culture-independent PCR-DGGE analysis was performed 

resulting in different results in band patterns between both methods. Both methods are 

therefore interesting to compare in order to accurately identify the microbiota and bacterial 

population shifts on seafood during storage.

Chapter 5 deals with the spoilage potential of the isolates detected in chapter 4. The spoilage 

potential of Psychrobacter cibarius, Psychrobacter maritimus, Pseudoalteromonas elyakovii, 

Pseudoalteromonas paragorgicola and Pseudoalteromonas nigrifaciens was determined and
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quantified in this study based on the presence of VOCs. These isolates were inoculated as 

pure cultures on heat-sterilised shrimp. The inoculated samples were stored at 4°C and the 

production of VOCs by the pure strains on the shrimp matrix was identified via gas 

chromatography coupled to mass spectrometry (GC-MS). VOC production was quantified 

daily by selected ion flow tube mass spectrometry (SIFT-MS) until the bacterial count
8 9exceeded 10-10 cfu/g. The sensory profile of Psychrobacter species revealed very low 

spoilage potential as measured by the production of VOCs. However, these species may 

nevertheless contribute to spoilage; based on the API ZYM test, a way to observe the species’ 

enzymatic capacity to contribute to spoilage by degrading lipids, amino acids and proteins, 

Pseudoalteromonas as well as Psychrobacter species might enhance spoilage by breaking 

down lipids and hydrolysing amino acids and proteins. Pseudoalteromonas species, especially 

Pseudoalteromonas elyakovii and Pseudoalteromonas nigrifaciens, do have a high spoilage 

potential, however, and might be responsible for some off-odours produced during spoilage of 

brown shrimp. These isolates produced significant amounts of volatile compounds such as 

sulphides, acetone, ammonia, ethanol, etc., which are all involved in seafood spoilage.

Part III describes the dominant microbiota of ray and their spoilage potential.

The dominant microbiota of ray, an elasmobranch fish known for its fast deterioration due to 

the conversion of ureum to ammonia, was identified during storage on ice in chapter 6. 

Isolates grown on various media were identified by partial 16S rRNA, gyrB and rpoB gene 

sequencing. Microbiological shifts were observed during storage from the initial microbiota 

(e.g. Arthrobacter, Flavobacterium, Pseudomonas) to a dominance of members of the genera 

Pseudomonas and Psychrobacter at the end of storage time. Most isolates could be identified 

by rpoB {Pseudomonas spp.) or gyrB gene sequencing as Pseudomonas fluorescens, 

Pseudomonas fragi, Pseudomonas psychrophila, Psychrobacter cibarius, Psychrobacter 

cryohalolentis, Psychrobacter glacincola and Psychrobacter immobilis. Different storage 

conditions e.g. late gutting, resulted in the presence of other species in large numbers such as 

Pseudoalteromonas spp., Shewanella putrefaciens and Staphylococcus spp.

Subsequently, also the spoilage potential of six selected isolates {Flavobacterium tegetincola, 

Pseudomonas fluorescens, Pseudomonas psychrophila, Psychrobacter cibarius, 

Psychrobacter cryohalolentis and Shewanella frigidimarina) was determined and quantified 

based on the presence of VOCs as performed for brown shrimp in chapter 5. Additionally, 

API ZYM and urease analyses determined the species’ enzymatic capacity to contribute to
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spoilage by degrading lipids, amino acids and proteins and breaking down ureum to ammonia. 

The isolates were inoculated as pure cultures on gamma-sterilised ray, were stored at 4°C and 

the VOC production was determined daily by GC-MS and SIFT-MS analyses. The obtained 

profile of the selected species revealed that especially Psychrobacter cibarius and 

Pseudomonas psychrophila were able to produce higher concentrations of VOCs and might 

be responsible for the off-odours produced during spoilage of ray.

In the last chapter the general conclusions, recommendations and perspectives were 

discussed. The limitations of the techniques were debated and possible solutions were 

provided for further research. Also the SSOs of brown shrimp and ray were discussed with an 

emphasis on how further research is necessary and how those SSOs can be eliminated in order 

to ameliorate shelf life.
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Na het beschrijven van de doelstellingen van de thesis (Hoofdstuk 1), wordt in hoofdstuk 2 

een grondige literatuurstudie weergegeven over het bederf van visserijproducten en de huidige 

technieken, gebruikt voor de kwaliteitsanalyses van visserijproducten. Hierbij worden de 

verschillende aspecten omtrent bederf zoals rigor mortis, autolytische en microbiologische 

veranderingen, maar ook biochemische veranderingen onder aerobe condities beschreven. 

Tevens worden de verschillende methodes die tot op heden gebruikt worden om de kwaliteit 

van visserijproducten zowel sensorisch, microbiologisch, biochemisch ais fysisch te 

evalueren, kort aangehaald.

Aangezien bederf van visserijproducten voornamelijk gebeurt door bacteriële groei en 

activiteiten, is het belangrijk om een zo volledig mogelijk overzicht te genereren van alle 

microbiota op het te bestuderen visserijproduct. Daarom bestaat het eerste deel van deze 

thesis (Deel I) uit een diepgaande studie en evaluatie van de traditionele detectiemethoden die 

tegenwoordig gebruikt worden in het onderzoek naar de microbiologische kwaliteit van vis en 

visserijproducten.

In de viswereld is algemeen geweten dat verschillende algemene groeimedia andere 

psychrotrofisch kiemgetal resultaten zullen weergeven van hetzelfde staal. Daarom werd op 

elf vissoorten met verschillende typische kenmerken de aanwezige microbiologische 

gemeenschappen gedurende bewaring op ijs geanalyseerd aan de hand van verschillende 

conventionele plaattechnieken. Vervolgens werden deze resultaten vergeleken met de 

resultaten verkregen via moleculaire technieken en werden de isolaten genetisch 

geïdentificeerd. In hoofdstuk 3 werd bevestigd dat plate count agar een veel lager totaal 

kiemgetal weergeeft dan andere (mariene) groeimedia. Tevens bleek dat verschillende micro- 

organismen niet op deze bodem kunnen groeien. Maar het verschil in totaal kiemgetal 

verschilde naargelang de vissoort en bijgevolg ook met de aanwezige microbiota. Via 

gedeeltelijke 16S rRNA gen en gyrB gen sequentiebepaling werden volgende genera 

teruggevonden: Photobacterium, Shewanella, Vibrio, Aliivibrio, Pseudoalteromonas,

Psychrobacter, Brochothrix, Flavobacterium, Acinetobacter, Pseudomonas en 

Janthinobacterium. Hierdoor bewijst dit onderzoek dat het gebruik van plate count agar, een 

officiële ISO methode, eigenlijk niet geschikt is voor microbiologisch onderzoek of 

kwaliteitsbepaling op vis- en visserijproducten van mariene oorsprong. Dit wordt benadrukt 

doordat verschillende specifieke bederf organismen zoals Photobacterium phosphor eum,
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Shewanella baltica en Pseudomonas fluorescens niet op plate count agar kunnen groeien. 

Hoewel mariene media zoals Long en Hammer medium en mariene agar zowel kwalitatief ais 

kwantitatief het beste leken in deze studie, hebben ook deze groeimedia beperkingen.

Het tweede deel van deze thesis, opgesplitst in 2 aparte delen (Deel II en Deel III), bestaat uit 

het identificeren en karakteriseren van de dominante microbiota van twee typische Belgische 

visserijproducten, namelijk de grijze garnaal (Crangon crangon) en rog (Raja sp.). Onderzoek 

heeft aangetoond dat slechts een kleine fractie van de aanwezige microbiota op vis, namelijk 

de specifieke bederforganismen of SBO’s verantwoordelijk zijn voor het bederf van 

visserijproducten. Om de kwaliteit en de resterende bewaartijd van visserijproducten te 

bepalen is het belangrijk dat deze SBO’s gedetecteerd en geïdentificeerd worden. Deze SBO’s 

zijn niet alleen verantwoordelijk voor de productie van vluchtige organische componenten die 

geassocieerd zijn met bederf, ze zijn ook specifiek voor een bepaald visserijproduct onder 

specifieke bewaaromstandigheden.

In deel II werd de dominante microbiota van grijze garnalen (Hoofdstuk 4) en hun 

bederfpotentieel (Hoofdstuk 5) bestudeerd.

In hoofdstuk 4, gebeurde de identificatie van de dominante microbiota van grijze garnalen 

zonder bewaarmiddelen onder verschillende bewaarcondities. Hiervoor werden verse garnalen 

gevangen en aan boord verwerkt onder de meest steriele condities. Deze garnalen werden 

zowel gepeld (manueel steriel) ais ongepeld bewaard op ijs en bij 7.5°C tot ze 

(microbiologisch) bedorven waren. De resultaten werden dan vergeleken met industrieel 

verwerkte garnalen zonder bewaarmiddelen. Hoewel er soms kleine verschillen optraden in de 

microbiota tijdens bewaring of onder verschillende condities, werden voornamelijk 

Psychrobacter en Pseudoalteromonas soorten gevonden die de microbiota van de grijze 

garnaal domineerden onafhankelijk van de verwerkings- of bewaarcondities. Identificatie van 

deze isolaten via het 16S rRNA gen resulteerde voor beide genera in soortcomplexen. Via hun 

gyrB sequentie werden verschillende isolaten tot op soortsniveau geïdentificeerd, namelijk 

Psychrobacter immobilis, Psychrobacter cibarius, Pseudoalteromonas nigrifaciens, 

Pseudoalteromonas elyakovii en Pseudoalteromonas paragorgicola. Hiernaast werden er ook 

een aantal genera (Planococcus, Exiguobacterium, Carnobacterium, Pseudomonas, 

Chryseobacterium en Staphylococcus) teruggevonden in lagere aantallen. Tussen 

cultuurafhankelijke en cultuuronafhankelijke PCR-DGGE technieken op dezelfde stalen 

werden eveneens verschillen in bandenpatronen teruggevonden. Het wordt dan ook
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aanbevolen om beide technieken naast elkaar te gebruiken om de microbiota grondig te 

identificeren en eventuele populatieverschuivingen te detecteren tijdens bewaring.

In hoofdstuk 5 wordt het bederfpotentieel van de verkregen isolaten uit hoofdstuk 4 

{Psychrobacter cibarius, Psychrobacter maritimus, Pseudoalteromonas elyakovii, 

Pseudoalteromonas paragorgicola en Pseudoalteromonas nigrifaciens) bepaald en 

gekwantificeerd aan de hand de productie van vluchtige organische componenten (VOC’s) 

bepaald en gekwantificeerd. Hiervoor werden deze isolaten ais pure cultuur geïnoculeerd op 

hitte-gesteriliseerde garnalen. Deze geïnoculeerde stalen werden bewaard bij 4°C en de 

productie van VOC’s werd geïdentificeerd via GC-MS en dagelijks gekwantificeerd via SIFT-
8 9 *MS tot een totaal kiemgetal van 10 -10 werd bereikt. Aan de hand van het sensorisch profiel 

op basis van VOC productie werd het bederfpotentieel van Psychrobacter ais relatief laag 

beschouwd, wat echter niet betekent dat deze soorten niet kunnen bijdragen aan bederf. Op 

basis van de API ZYM test, waarmee men bepaalde enzymatische capaciteiten van een isolaat 

kan bepalen, bleek dat zowel Pseudoalteromonas ais Psychrobacter soorten in staat waren om 

vetten af te breken en aminozuren en eiwitten te hydrolyseren. Pseudoalteromonas soorten, en 

dan voornamelijk Pseudoalteromonas elyakovii en Pseudoalteromonas nigrifaciens kunnen 

door hun productie van sulfiden, aceton, ammoniak, ethanol en dergelijke mogelijks wel 

bijdragen tot de productie van de bederfgeur bij grijze garnalen.

Deel III van deze thesis beschrijft de dominante microbiota van rog en hun bederfpotentieel.

Rog is een kraakbeenvis welke gekenmerkt is door snelle productie van een afwijkende 

ammoniak geur na vangst. In hoofdstuk 6 werd de dominante microbiota van deze vissoort 

geïdentificeerd. Hiervoor werden isolaten afgepikt van verschillende groeimedia en 

geïdentificeerd via hun partiele 16S rRNA, gyrB en rpoB gen sequentie. Tijdens bewaring op 

ijs werden populatieverschuivingen opgemerkt van de meer initiële populatie (bv. 

Arthrobacter, Flavobacterium, Pseudomonas) naar de dominante populatie met Pseudomonas 

en Psychrobacter soorten op het einde van bewaring op ijs. Via rpoB {Pseudomonas spp.) en 

gyrB sequentie analyse konden de meeste isolaten geïdentificeerd worden ais Pseudomonas 

fluorescens, Pseudomonas fragi, Pseudomonas psychrophila, Psychrobacter cibarius, 

Psychrobacter cryohalolentis, Psychrobacter glacincola en Psychrobacter immobilis. 

Afhankelijk van de bewaarcondities, bv. laat gutten, konden ook andere soorten zoals 

Pseudoalteromonas spp., Shewanella putrefaciens en Staphylococcus spp. in hoge aantallen 

geïdentificeerd worden.
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Samenvatting

Na identificatie volgde de karakterisatie van het bederfpotentieel van een aantal isolaten 

{Flavobacterium tegetincola, Pseudomonas fluorescens, Pseudomonas psychrophila, 

Psychrobacter cibarius, Psychrobacter cryohalolentis en Shewanella frigidimarina) zoals in 

hoofdstuk 5 uitgevoerd werd voor grijze garnalen. Naast de VOC productie werden ook een 

API ZYM en urease test uitgevoerd om hun enzymatische bederf capaciteit te bepalen aan de 

hand van eventuele lipolytische of proteolytische activiteit, hydrolyse van aminozuren en 

eiwitten of de omzetting van ureum naar ammoniak. Zoals in hoofdstuk 5 werden pure 

isolaten geïnoculeerd op de steriele matrix, hier gamma gesteriliseerde rog, bewaard bij 4°C 

en werd dagelijks de VOC productie gekwantificeerd. Opnieuw werd gezien dat voornamelijk 

Psychrobacter cibarius en Pseudomonas psychrophila in staat waren om hogere concentraties 

aan VOCs te produceren en hierdoor mogelijks medeverantwoordelijk zijn voor de 

afwijkende geuren gedurende bederf van rog.

In het laatste hoofdstuk werden de algemene conclusies, mogelijke aanbevelingen en 

perspectieven voor verder onderzoek besproken. De beperkingen van de gebruikte 

technieken werden aangehaald gevolgd door mogelijke oplossingen voor verder onderzoek. 

Tevens werden de SBO’s van garnaal en rog besproken met de nadruk op de noodzaak aan 

verder onderzoek om deze te elimineren en zo de bewaartijd mogelijks te verlengen.
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