The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists

SINA M. ADL,^a ALASTAIR G. B. SIMPSON,^a MARK A. FARMER,^b ROBERT A. ANDERSEN,^c
O. ROGER ANDERSON,^d JOHN R. BARTA,^c SAMUEL S. BOWSER,^f GUY BRUGEROLLE,^g
ROBERT A. FENSOME,^h SUZANNE FREDERICQ,ⁱ TIMOTHY Y. JAMES,^j SERGEI KARPOV,^k
PAUL KUGRENS,¹ JOHN KRUG,^m CHRISTOPHER E. LANE,ⁿ LOUISE A. LEWIS,^o JEAN LODGE,^p DENIS H. LYNN,^q
DAVID G. MANN,^r RICHARD M. MCCOURT,^s LEONEL MENDOZA,^t ØJVIND MOESTRUP,^u
SHARON E. MOZLEY-STANDRIDGE,^v THOMAS A. NERAD,^w CAROL A. SHEARER,^x ALEXEY V. SMIRNOV,^y

FREDERICK W. SPIEGEL^z and MAX F. J. R. TAYLOR^{aa}

^aDepartment of Biology, Dalhousie University, Halıfax, NS B3H 4J1, Canada, and ^bCenter for Ultrastructural Research, Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA, and

^cBigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575, USA, and

^dLamont-Dogherty Earth Observatory, Palisades, New York 10964, USA, and

^eDepartment of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada, and

^fWadsworth Center, New York State Department of Health, Albany, New York 12201, USA, and

^gBiologie des Protistes, Université Blaise Pascal de Clermont-Ferrand, F63177 Aubiere cedex, France, and

^hNatural Resources Canada, Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography,

PO Box 1006 Dartmouth, NS B2Y 4A2, Canada, and

iDepartment of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, USA, and
jDepartment of Biology, Duke University, Durham, North Carolina 27708-0338, USA, and
kBiological Faculty, Herzen State Pedagogical University of Russia, St. Petersburg 191186, Russia, and
Department of Biology, Colorado State University, Fort Collins, Colorado 805232, USA, and
Centre for Biodiversity and Conservation Biology, Mycology Section, Royal Ontario Museum, Toronto, ON M5S 2C6 and
Department of Botany, University of Toronto, Toronto, ON M5S 3B2, Canada, and

ⁿDepartment of Biochemistry, Dalhousie University, Halıfax, NS B3H 4J1, Canada, and ^oDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA, and ^pCenter for Forest Mycology Research, USDA Forest Service, Forest Products Laboratory, Luquillo, Puerto Rico, and ^qDepartment of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada, and ^rRoyal Botanic Garden, Edinburgh, EH3 5LR, United Kingdom, and

^sThe Academy of Natural Sciences, Philadelphia, Pennsylvania 19103, USA, and ^tMedical Technology Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824-1030, USA, and

^uDepartment of Phycology, Kobenhavns Universitet, Copenhagen DK-1353, Denmark, and

^vDepartment of Plant Biology, University of Georgia, Athens, Geogia 30606, USA, and

^wGeorge Mason University, PWII campus, Manassas, Virginia 20110, USA, and

^xDepartment of Plant Biology, University of Illinois, Urbana, Illinois 61801, USA, and

^yDepartment of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia, and

^zDepartment of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA, and

^{aa}Department of Oceanography, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

ABSTRACT. This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic studies. We propose a scheme that is based on nameless ranked systematics. The vocabulary of the taxonomy is updated, particularly to clarify the naming of groups that have been repositioned. We recognize six clusters of eukaryotes that may represent the basic groupings similar to traditional "kingdoms." The multicellular lineages emerged from within monophyletic protist lineages: animals and fungi from Opisthokonta, plants from Archaeplastida, and brown algae from Stramenopiles.

Key Words. Algae, amoebae, ciliates, flagellates, fungi, microbiology, microorganisms, parasites, plankton, protozoa, systematics, taxonomy.

S INCE the previous classification proposed by the Society of Protozoologists (Levine et al. 1980), there have been many changes to our understanding of relatedness among phylogenetic lineages of eukaryotes. Many traditional groups are no longer valid and have been abandoned (see Hausmann, Hülsmann, and

Corresponding Author: Denis H. Lynn, Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada—Telephone number: (519) 826 5724; Fax number: (519) 826 5725; e-mail: ddr@uoguelph.ca

Radek 2003 for a recent historical review of classification schemes proposed since then). In particular, the classical scheme of Bütschli (1880–1889), which divided Protozoa into Sarcodina (amoeboid organisms), Sporozoa (a parasitic group), Mastigophora (flagellated species), and Infusoria (ciliates), was abandoned decades ago by protistologists. It is, unfortunately, still used by non-protistologists. Despite some initial controversies, data from modern morphological approaches, biochemical pathways, and molecular phylogenetics are generally complementary. This has resulted in a classification scheme that we believe will have some stability in the near term.

The proposed classification scheme recognizes taxa that are considered to be evolutionarily related and the remaining paraphyletic taxa are identified. The highest ranking groups recognized have been summarized recently by Simpson and Roger (2002, 2004). Molecular phylogenies group eukaryotes into six clusters: (1) the Opisthokonta, grouping the animals, fungi, choanoflagellates, and Mesomycetozoa; (2) the Amoebozoa, grouping most traditional amoebae, slime moulds, many testate amoebae, some amoebo-flagellates, and several species without mitochondria; (3) the Excavata, grouping oxymonads, parabasalids, diplomonads, jakobids, and several other genera of heterotrophic flagellates, and possibly including the Euglenozoa and Heterolobosea; (4) the Rhizaria, grouping the Foraminifera, most of the traditional Radiolaria, and the Cercozoa with filose pseudopodia, such as many amoebo-flagellates and some testate amoebae; (5) the Archaeplastida, grouping the Glaucophyta, red algae, green algae, and Plantae; (6) the Chromalveolata, grouping the Alveolata (ciliates, dinoflagellates, Apicomplexa), the Stramenopiles (brown algae, diatoms, many zoosporic fungi, and the opalinids amongst others), with the Haptophyta and Cryptophyceae. It is argued that chromalveolates are derived from a single symbiosis of a phagotrophic heterotrophic eukaryote with a photosynthetic red alga eukaryote (Keeling 2003). The plastid was secondarily lost in several lineages (Delwiche et al. 2004). Whereas each of these lineages is monophyletic, the grouping of Alveolata and Stramenopiles with Haptophyta and Cryptophyceae may not be monophyletic. It remains contentious whether the Ciliophora had an ancestral Archaeplastida endosymbiont.

Several terms, highlighted below in bold, were identified as being problematic or requiring clarification. Others are no longer recognized as formal taxa, but remain useful terms. We recommend that they be spelled without capitalization. They include algae (phototrophic protists), zoosporic fungi (an eclectic mix of heterotrophic and saprotrophic groups), and protozoa (predominantly non-filamentous heterotrophic species). One must recognize that many species in these groups are mixotrophic and cannot exclusively be considered as autotrophic or heterotrophic. This also weakens the usefulness of terms such as phytoplankton and zooplankton. There are numerous examples that blur the boundary between autotrophs and heterotrophs: some heterotrophs retain their prey's plastids; other heterotrophs form symbioses with photosynthetic species; and many photosynthetic species are also phagotrophic and osmotrophic. There are also cases of secondary loss of plastids, with partial retention of a plastid remnant, as for the Apicomplexa. We no longer formally recognize Haeckel's taxon Protista (Haeckel 1866) and Protoctista from Hogg's informal term protoktistae (Hogg 1860). The popular term protist is retained to describe eukaryotes with a unicellular level of organisation, without cell differentiation into tissues. Where vegetative cell differentiation occurs in protists, it is restricted to sexual reproduction, alternate vegetative morphology, and quiescent or resistant stages, such as cysts. In other words, task sharing by tissues, a property of multicellular species, does not occur in protists. Based on this new definition, we clearly recognize that some algae are multicellular. Protist morphology is varied and includes single independent cells that may or may not be motile, filamentous species, colonial (linked by a common stalk, or sheath, or cytoplasmic extensions), sheets of cells (phyllose), and parenchymatous or otherwise attached cells. Multinucleate forms (including coenocytic, plasmodial, hyphal, syncytial, or siphonous forms) occur in many taxa. We recognize prokaryotes to include the Archaea and the Eubacteria, with bacteria being a convenient common term for prokaryotes (Cavalier-Smith 2002; Walsh and Doolittle 2005). Eukaryotes, the Eukaryota Chatton, 1925, are distinguished from prokaryotes by the presence of a nucleus. The nucleus is defined as an organelle bounded by a double membrane, the outer being derived from the endomembrane network, with the nuclear pore complex traversing both membranes, and with one or more linear chromosomes typically packaged by histones and usually with a centromere and telomeres. We recommend restricting the use of **cyst** to vegetative quiescent stages, while restricting the use of **spore** for reproductive stages. The eukaryote motility organelle is the **cilium**, or "eukaryotic flagellum," which consists of a cell membrane-bound extension supported by a microtubular-based axoneme and a basal body or kinetosome with associated cytoskeletal elements serving as anchors.

Overall, we have tried to be conservative with the classification by avoiding uncertain subdivision of lineages, and speculative clustering of the clades. Two groups warrant caution at this time. One is the grouping of the Cryptophyceae, Haptophyta, Stramenopiles, and Alveolata, together called the chromalveolates (Delwiche 1999; Fast et al. 2002; Harper and Keeling 2003; Harper, Waanders, and Keeling 2005; Yoon et al. 2002) and the other is the grouping of the Euglenozoa and Heterolobosea, together with other excavates (Simpson and Roger 2004). However, we show what these highest ranking clusters seem to be, based on current molecular phylogenies (Table 1). We have included in our descriptions in Table 2 the apomorphies for each group, where possible. Groups that are probably still paraphyletic are indicated with (P). For several groups, in particular within the Cercozoa, formal diagnosis did not exist and we provided descriptions based on characters that seemed to hold the group together. Groups that did not exist in the traditional taxonomy based on morphological characters but were established based on molecular phylogenetics, are indicated as ribogroups (R). Where a group is currently only known from one described species, it is indicated as being monotypic (M). We further understand that many described morphospecies are probably clusters of several biologically distinct entities.

We adopted a hierarchical system without formal rank designations, such as "class," "sub-class," "super-order," or "order" (Table 2). The decision to do so has been primarily motivated by utility, to avoid the common problem of a single change causing a cascade of changes to the system. The hierarchy is represented by indented paragraphs. We believe this to be more utilitarian, and less problematic than traditional conventions, as it is not constrained by formally attributing a limited number of rank names. This approach has the advantage of being more flexible and easier to modify. For this presentation, we limited our descriptions to the first four highest ranks for most groups. Several genera and groups remain with uncertain affiliations within the protists, and they have been listed separately (Table 3). It is comforting that this list is considerably shorter than the one provided by Patterson (2002). The most significant change has been the identification of several monophyletic lineages within the protists. The traditional "Kingdoms," such as Metazoa, Fungi, and Plantae, are now clearly recognized as being derived from within monophyletic protist lineages (Table 1, 2). It is now clear that the Animalia and Fungi arose within the Opisthokonta, and the plants from within Charophyta. Therefore, traditional classification schemes and modern cladistics were difficult to reconcile without having "Kingdoms" within "Kingdoms."

The rules followed to establish this new taxonomy were few and simple. We have used the older name that describes each group, unless its composition was substantially modified. In these cases, we have used a newer term and its appropriate authorship. In cases where several terms were in popular use to describe the same taxon, we often used the older term, emended if necessary; the other terms, whether synonymous or not, are placed in brackets. In cases where ranks were created to include a single lower rank, the higher ranks were eliminated as superfluous. Therefore,

Table 1. Highest ranks of the eukaryotes with the next two ranks as presented in Table 2.

Super-groups	First rank	Second rank, examples
Amoebozoa	Tubulinea Flabellinea Stereomyxida Acanthamoebidae Entamoebida Mastigamoebidae Pelomyxa	Leptomyxida, Testacealobosia, Tubulinida Cochliopodium, Dactylopodia, Thecamoebida, Vanellida
	Eumycetozoa	Dictyostelia, Myxogastria, Protostelia
Opisthokonta	Fungi	Ascomycota, Basidiomycota, Chytridiomycetes, Glomeromycota, Microsporidia, Urediniomycetes, Ustilaginomycetes, Zygomycota
	Mesomycetozoa Choanomonada Metazoa*	Aphelidea, <i>Capsaspora</i> , <i>Corallochytrium</i> , Ichthyosporea, <i>Ministeria</i> , Nucleariida Acanthoecidae, Monosigidae, Salpingoecidae Porifera, <i>Trichoplax</i> , Mesozoa, Animalia
Rhizaria	Cercozoa	Cercomonadida, Chlorarachniophyta, Nucleohelea, Phaeodarea, Phytomyxea, Silicofilosea
	Haplosporidia Foraminifera <i>Gromia</i>	Subdivisions uncertain
	Radiolaria	Acantharia, Polycystinea, Sticholonche
Archaeplastida	Glaucophyta Rhodophyceae Chloroplastida	Subdivisions uncertain Charophyta*, Chlorodendrales, Chlorophyta, <i>Mesostigma</i> , Prasinophytae
Chromalveolata	Cryptophyceae Haptophyta Stramenopiles Alveolata	Cryptomonadales, Goniomonadales Pavlovophyceae, Prymnesiophyceae Actinophryidae, Bacillariophyta, Bolidomonas, Bicosoecida, Chrysophyceae, Dictyochophyceae, Eustigmatales, Hypochytriales, Labyrinthulomycetes, Opalinata, Pelagophyceae, Peronosporomycetes, Phaeophyceae*, Phaeothamniophyceae, Pinguiochrysidales, Raphidiophyceae, Schizocladia, Synurales, Xanthophyceae Apicomplexa, Ciliophora, Dinozoa
Excavata	Fornicata	Carpediemonas, Eopharyngia
	<i>Malawimonas</i> Parabasalia	Cristamonadida, Spirotrichonymphida, Trichomonadida, Trichonymphida
	Preaxostyla Jakobida Heterolobosea Euglenozoa	Oxymonadida, <i>Trimastix</i> Histionidae, <i>Jakoba</i> Acrasidae, Gruberellidae, Vahlkampfiidae Euglenida, Diplonemea, Kinetoplastea

^aClades with multicellular groups.

in several instances, we have placed in brackets ranks of the traditional codes of nomenclature, where they were no longer necessary. In this scheme, monotypic taxa are represented by the genus only and each receives the highest rank within its group. The presence of taxonomic endings that conveyed hierarchical information in the traditional codes are, in this classification, considered an accident of history and the endings are not intended to carry any hierarchical meaning. The formal names provided in this classification, with the genera they cluster, were based on accepted monophyly according to the information available. In some instances, the term used required significant modification, and these were emphasised by "emend." Where a new term was introduced in this classification, it was identified with "Adl et al. 2005" as the authority, or by the submitting author (e.g. Mann in Adl et al., 2005). They are to be cited as emended in this publication. The descriptions provided are not intended to substitute for formal diagnoses. They are provided primarily to identify common morphological features, such as synapomorphies and apomorphies, within monophyletic lineages.

This classification (Table 2) provides formal names within a modern framework, in lieu of the imprecise, informal, sometimes redundant or parallel vocabulary that has accumulated. When referring to a rank in this nameless-rank system, the position of the organism referred to should be followed by two or three higher ranks placed in brackets, highest rank first. For example, to clarify the position of *Paramecium*, it could be written as *Paramecium* [Alveolata: Ciliophora], or to locate the genus more precisely as *Paramecium* [Ciliophora: Oligohymenophora: Peniculia].

While this revised classification of protists is proposed by the International Society of Protistologists, it should be noted that it is the work of a committee that worked in collaboration with specialists from many societies (phycologists, mycologists, parasitologists, and other protistologists), and that many experts were consulted on issues as needed. However, it should not be assumed that all contributors agreed on all points. The final synthesis is, nonetheless, a classification that we recommend as the basis for future revisions. (cont'd p. 446)

Table 2. Classification of the higher ranks of the protists and multicellular groups. The authority to whom the name is attributed appears immediately after the taxon name. In the square brackets following are commonly used names for the group that we did not accept and their taxonomic authority. References to the recent literature can be found in Appendix 1 under the major monophyletic clusters. Citations in the Notes to this table can be found in the LITERATURE CITED. If the taxon description has been emended herein, the authority name is followed by "emend. Adl et al., 2005". Finally, notation is made of some features of the group as follows: (M)—monotypic group with only one described species; (P)—paraphyletic group; and (R)—ribogroup, usually based on molecular phylogenetic analyses of rRNA genes. Throughout this table, reference to flagellum refers to the eukaryotic flagellum or cilium.

AMOEBOZOA Lühe, 1913, emend. Cavalier-Smith, 1998

Amoeboid locomotion generally with non-eruptive morphologically variable pseudopodia (lobopodia); sub-pseudopodia common in some groups; cells "naked" or testate; tubular cristae, often branched (ramicristate), secondarily lost in some; usually uninucleate, rarely binucleate, sometimes multinucleate; cysts common, morphologically variable; cell inclusions (parasomes and trichocysts) of diagnostic value in some; flagellate stages if present, rarely bikont, usually with one kinetid bearing a single flagellum.

- Tubulinea Smirnov et al., 2005 (R)
 - Naked or testate amoeboid organisms producing tubular sub-cylindrical pseudopodia or capable of altering shape from flattened and expanded to a sub-cylindrical one; mono-axial flow of the cytoplasm in entire cell or each pseudopodium; without centrosomes; locomotion based on actino-myosin cytoskeleton; cytoplasmic microtubules, if present, rare and never in bundles; without flagellate stages.
 - •• Tubulinida Smirnov et al., 2005 (R)
 Without test; produce sub-cylindrical pseudopodia or are monopodial; without alteration of the locomotive morphology; non-adhesive uroid. Amoeba, Cashia, Chaos, Deuteramoeba, Glaeseria, Hartmannella, Hydramoeba, Nolandella, Parachaos, Polychaos, Saccamoeba, Trichamoeba.
 - •• Leptomyxida Pussard and Pons, 1976, emend. Page, 1987 (R)
 Locomotive form generally a flattened, reticulate or highly branched sheet; most active locomotive form sub-cyclindrical; with adhesive uroid; uninucleate, sometimes multinucleate; glycocalyx thin and amorphous; cysts common, double-walled, without pores. Flabellula, Gephyramoeba, Leptomyxa, Paraflabellula, Rhizamoeba.
 - •• Testacealobosia De Saedeleer, 1934

Test outside cell membrane encloses cell, with one (rarely more) distinct opening; although sex has not been conclusively demonstrated, meiosis has been reported in at least one species. **Note 1**.

••• Arcellinida Kent, 1880

Test outside cell membrane, with single distinct opening and composed of organic matrix, which may be encrusted with mineral particles (silt) or other mineral debris, such as diatom shells; encystment inside test. *Arcella, Centropyxis, Difflugia*.

- ••• Incertae sedis Testacealobosia
 - Trichosphaerium Möbius, 1889 [Trichosidae] (M)

Multinucleate with synchronous divisions by closed mitosis; two life phases —with calcite spicules in one phase and outer layer fibrillar overlain with mucin and embedded spicules in the other phase; multiple semi-permanent openings for pseudopodia (described as tactile dactylopods). *Trichosphaerium*.

- •• Incertae sedis Tubulinea: Echinamoeba.
- Flabellinea Smirnov et al., 2005 (P)

Flattened locomotive amoebae, without tubular sub-cylindrical pseudopodia; the locomotive form is never altered; cytoplasmic flow poly-axial or without pronounced axis; locomotion based on actino-myosin cytoskeleton; without centrosome; without flagellate stages.

^{1.} AMOEBOZOA: Testacealobosia: The testate amoebae in this group are poorly studied, with very little taxonomic sampling in molecular phylogenies. Although some genera clearly belong to the Arcellinida, for many genera, we simply do not know. The rank is retained because without doubt, there are undescribed subdivisions in this clade besides the Arcellinida.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

AMOEBOZOA cont'd.

• Dactylopodida Smirnov et al., 2005 (R)

Flattened locomotive form an irregular triangle with broad hyaline margin; hyaline sub-pseudopodia finger-like (i.e. dactylopodia) emerge from the edge of the hyaline cytoplasm; uninucleate with central nucleolus; parasomes in *Neoparamoeba* and *Paramoeba*; cell coat variable, consists of microscales, hexagonal or pentagonal glycostyles, or fibrous. *Korotnevella, Mayorella, Neoparamoeba, Paramoeba, Pseudoparamoeba, Vexillifera*. Other possible genera: *Boveella, Dactylosphaerium, Oscillodignum, Podostoma, Strioluatus, Subulamoeba, Trienamoeba*.

• Vannellida Bovee, 1979 (R)

Flattened, fan-shaped to spatulate in locomotion; frontal area of the hyaloplasm occupying up to half of the area of the cell; posterior granuloplasm accumulated in a "hump" often raised off the substratum; single nucleus, with vesicular or peripheral nucleoli; single-walled cysts in some species; cell coat a layer of hexagonal prismatic structures (*Platyamoeba*), with short glycostyles (*Clydonella*, *Lingulamoeba*) or pentagonal glycostyles, with or without simple filaments (*Vannella*). *Clydonella*, *Lingulamoeba*, *Platyamoeba*, *Vannella*. Other possible genera: *Discamoeba*, *Pessonella*, *Unda*.

- •• Thecamoebida Schaeffer, 1926, emend. Smirnov and Goodkov, 1993 (P) Locomotive form oblong with hyaline antero-lateral crescent, usually less than half the body length; without sub-pseudopodia; single nucleus (except *Sappinia*, which has several pairs of closely adjacent nuclei); nucleus vesicular or with several peripheral nucleoli; dorsal surface wrinkled (*Parvamoeba*, *Thecamoeba*) or smooth (other genera); cell coat amorphous, with glycostyles or fibrous. *Dermamoeba*, *Paradermamoeba*, *Parvamoeba*, *Sappinia*, *Thecamoeba*.
- •• Cochliopodium Hertwig and Lesser, 1874

 Dorsal surface covered with a tectum comprised of elaborate microscales; cysts in some. Cochliopodium.
- •• Incertae sedis Flabellinea: Flamella, Ovalopodium, Paragocevia, Pellita, Pseudothecamoeba, Thecochaos. Other possible genera: Gibbodiscus.
- Stereomyxida Grell, 1966 (P?)
 Branched or reticulate plasmodial organisms; trilaminate centrosome. *Corallomyxa*, *Stereomyxa*.
- Acanthamoebidae Sawyer and Griffin, 1975 (R) Glycocalyx extremely thin; sub-pseudopodia prominent, flexible, and tapering to a fine or blunt tip (acanthopodia); uninucleate; non-adhesive uroid; cysts of most species double-walled, with operculate pores; locomotion based on actino-myosin cytoskeleton; centriole-like body present. *Acanthamoeba* (syn. *Comandonia*), *Balamuthia*, *Protacanthamoeba*.
- Entamoebida Cavalier-Smith, 1993
 Flagellum and centrioles absent; mitochondrion, peroxisomes, and hydrogenosomes absent; mitosis closed with endonuclear centrosome and spindle; reduced Golgi dictyosome. *Entamoeba*.
- Mastigamoebidae Goldschmidt, 1907
 Amachaid with savaral psaudonadia.

Amoeboid with several pseudopodia; sometimes body stiff without amoeboid motion, depending on conditions; single flagellum directed forward, with stiff vibrating beat; single kinetosome with cone of microtubules extending to nucleus; uninucleate, some species multinucleate; large nucleoli persist through division with intranuclear spindle; stages without flagellum occur; without mitochondria; cysts; occurring in microaerophilic to anaerobic habitats rich in dissolved nutrients. *Mastigella*, *Mastigamoeba*. Incertae sedis *Endolimax*, *Mastigina*.

Pelomyxa Greef, 1874 [Pelobiontida Page, 1976] (M)
 Multiple cilia; anaerobic; lacking mitochondria, peroxisomes, and hydrogenosomes; with structural vacuoles; polymorphic life cycle with multinucleate stages; with symbionts. Pelomyxa palustris.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

AMOEBOZOA cont'd.

• Eumycetozoa Zopf, 1884, emend. Olive, 1975 [Mycetozoa de Bary, 1873] "Fruiting body" producing amoeboid organisms, called slime moulds; amoebae of various types, all with acutely pointed sub-pseudopodia; tubular cristae; life cycle stages with uninucleate amoebo-flagellates; non-flagellate stages as uninucleate obligate amoebae, multinucleate (2–10 nuclei) obligate amoebae, and multinucleate (up to > 10⁷ nuclei) obligate amoebae; some amoeboid states absent from some life cycles, other types of amoebae derived from modifications of amoeboflagellate or derived from the obligate amoebae that develop following the amoeboflagellate stage; with two (or one) kinetosomes, with at least two microtubular roots from the dorsal fibrils of the anterior kinetosome; sub-aerial fruiting body either a sporocarp, developing from a single amoeboid cell (myxomycetes and protostelids), or a sorocarp, developing from an aggregate of amoeboid cells (dictyostelids).

•• Protostelia Olive, 1975 (P)

Sporocarps from single amoeba or nucleated fragment of a multinucleate obligate amoeba; sporocarp a hollow acellular stalk (length from <5 to $>100\,\mu\text{m}$) that supports 1–8 spores; spores monoclonal from cell division after the stalk has been secreted; trophic cells amoeboflagellates only, amoeboflagellates and obligate amoebae, or obligate amoebae only; filose pseudopodia; at least three separate origins of obligate amoebae likely, all morphologically and ultrastructurally distinct. Cavostellium, Ceratiomyxa, Ceratiomyxella, Microglomus, Nematostelium, Protostelium, Tychosporium.

• Myxogastria Macbride, 1899 [Myxomycetes Link, 1833, emend. Haeckel, 1866] Trophic stages free-living, multinucleate amoeboflagellate and coenocytic, saprobic multinucleate obligate amoeba (plasmodium); under poor conditions plasmodium sometimes becomes a sclerotium; sporocarps (<1 mm-ca 1 m) from multinucleate obligate amoeba, the plasmodium, or fragment of plasmodium; most with stalked sporangia but also sessile sporangia, plasmodiocarps, aethalia or pseudoaethalia; stalks when present acellular; meiosis in uninucleate spores with sculptured spore walls, with spores produced in masses; spores in some suspended by thread-like acellular capillitium; haploid gametic amoeboflagellates (in sexual species) germinate from spores to trophic state that may alternate between flagellated (swarm cell) and non-flagellated (myxamoeba) state, or dormant thin-walled microcysts; kinetid closely associated with nucleus, present until mitosis; anterior kinetosome with orthogonally attached posterior kinetosome; microtubule roots 1, 2, 3, 4, 5, and posterior parakinetosomal structure associated with kinetosome; suspended amoeboflagellates twisted and obconic with distinct uroid; anteriorly directed flagellum and shorter recurved posterior flagellum in groove underlain by microtubule arrays 4, 5; mitosis centric and open; plasmodium develops a from zygote in sexual species, directly from amoeboflagellate in apomictic species; small and unveined with 8–100 nuclei (protoplasmodium) or large and veined network with $10^2 - > 10^7$ nuclei with thick gel-like cortex shuttle in veins (phaneroplasmodium) or thin transparent veins (aphanoplasmodium); mitosis in plasmodium intra-nuclear with non-centric poles; dormancy as sclerotia of many macrocysts or as sporocarps. Traditional subdivisions may not represent monophyletic assemblages. Arcyria, Badhamia, Barbyella, Bréfeldia, Comatricha, Cribraria, Diachea, Diderma, Dydimium, Echinostelium, Fuligo, Lamproderma, Leocarpus, Lepidoderma, Licea, Lycogala, Macbrideola, Metatrichia, Perichaena, Physarella, Physarum, Stemonitis, Trichia, Tubulifera, Willkommlangea.

• Dictyostelia Lister, 1909, emend. Olive, 1970

Cellular slime moulds, with stalked fruiting bodies from aggregation of amoebae; sorocarps of stalks with terminal sori of haploid spores; stalks (sorophores), acellular (*Acytostelium*), cellular, and unbranched to sparsely branched (*Dictyostelium*) or cellular with whorls of branches (*Polysphondylium*); stalk cells forming cell wall and dying; spores usually ellipsoid, occasionally reniform or spherical; trophic amoebae, non-flagellated, haploid, uninucleate; nucleus with reticulate peripheral

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

AMOEBOZOA cont'd.

• Dictyostelia cont'd.

nucleolus; microtubular cytoskeleton of amoebae radiating from lamellar discoid organelle near nucleus; amoebae of some species entering dormant stage as thin-walled microcysts; upon starvation, populations of amoebae becoming aggregation-competent, aggregating into a multicellular aggregation centre in response to a chemical attractant called an acrasin; acrasins vary according to taxon; aggregated cells differentiating directly into subaerial sorogens that become sorocarps, or migrating along the substrate as slugs, prior to differentiating into sorogens that culminate as sorocarps; stalks produced by both migrating slugs and sorogens in most species, although a few species have stalkless migration; stalk tubes secreted by inner ends of cells at at least the anterior end of the slug/sorogen; in taxa with cellular stalks an anterior population of prestalk cells becoming enclosed in the stalk tube as the slug/ sorogen advances, enlarging, secreting walls, vacuolating, and dying as mature stalk cells; remaining posterior prespore cells developing into spores suspended in a slime matrix; sexual zygote amoebae forming and acting as aggregation centres for haploid amoebae, which are ingested by the zygote; entire small aggregate secreting a thick wall and then becoming a dormant macrocyst once all the haploid amoebae are ingested; meiosis occuring when dormancy of macrocyst is broken; haploid amoebae germinating from macrocyst. Classical ranks are not monophyletic. Acytostelium, Dictyostelium, Polysphondylium. Incertae sedis Coenonia.

- •• Incertae sedis Eumycetozoa: Copromyxa, Copromyxella, Fonticula.
- Incertae sedis AMOEBOZOA: Filamoeba, Gocevia, Hartmannia, Janickia, Malamoeba, Malpigamoeba, Multicilia, Stygamoeba.
- Incertae sedis AMOEBOZOA: Spongomonadida Hibberd, 1983, emend. Karpov, 1990
 Sessile feeding cells, solitary or colonial, often embedded in mucoid matrix with endogenous globules; cells ovoid with one or two similar parallel flagella, emerging apically and surrounded by a cytoplasmic collar or asymmetric protrusion; vesicular tubular cristae; kinetosome microtubular rootlet tending to radial symmetry; forming rounded or branching colonies. Note 2.
 - •• *Phalansterium* Stein, 1878
 Single kinetosome and cilium; cilium surrounded by a collar of cytoplasm, used in feeding; often colonial in a gelatinous matrix. *Phalansterium*.
 - •• Spongomonadidae Karpov, 1990 Biflagellated with asymmetrical cell projection at anterior. *Rhipidodendron, Spongomonas*.

OPISTHOKONTA Cavalier-Smith, 1987, emend. Cavalier-Smith and Chao, 1995, emend. Adl et al., 2005

Single posterior cilium without mastigonemes, present in at least one life cycle stage, or secondarily lost; with pair of kinetosomes or centrioles, sometimes modified; flat cristae in the unicellular stage.

- Fungi Linnaeus 1753, emend. Cavalier-Smith, 1981, 1987
 Heterotrophic, not phagotrophic; often with walls and multinucleate hyphae; walls, when present, with β-glucan and usually chitin, at least in spore walls; AAA lysine biosynthesis pathway; mitochondria and peroxisomes present, except in Microsporidia; flattened cristae; plastids and tubular mastigonemes absent.
 - Basidiomycota de Barry 1866, emend. Schaffer, 1975
 Mycelium present, but some with a yeast state primarily in the Tremellomycetidae;
 basidia produced in a fertile layer with or without fleshy sporocarp; basidia whole or divided longitudinally, typically with four spores per basidium but ranging from

^{2.} AMOEBOZOA: Spongomonadidae: Initially in Rhizaria, placement follows small subunit rRNA phylogenies; *Spongomonas* sp. 7A and *Spongomonas minima* UT1 (Cavalier-Smith and Chao, 2003) were not correctly identified (Ekelund and Karpov, unpublished).

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

• Basidiomycota cont'd.

one to eight; fusion of compatible mycelia of opposite mating types results in a dikaryotic mycelium in which nuclei of the parent mycelia remain paired but not fused; karyogamy quickly followed by meiosis, one or more mitotic divisions and migration of the nuclei into the developing basidiospores; asexual reproduction may occur through production of conidiospores or via spores produced on basidia from nuclei that have not undergone karyogamy and meiosis (secondary homothallism); cell wall with xylose; septa with swelling near pore; septal pore caps (parenthesomes—multilayered endoplasmic reticulum) usually present, elaborate in Tremellomycetidae; clamp connections present in hyphae or at base of basidia in some groups. Subdivisions not shown. Agaricus, Auricularia, Boletes, Cantharellus, Dacrymyces, Fistullina, Gautieria, Hyphodontia, Jaapia, Laccaria, Lycoperdon, Phlebia, Polyporus, Russula, Tremella.

• Urediniomycetes Swann and Taylor, 1995

Mycelial or yeast states; many are plant pathogens (rusts), animal pathogens, non-pathogenic endophytes, and rhizosphere species; karyogamy typically in probasidium or teliospore, followed by meiosis in a separate compartment (metabasidia), but in some it occurs in the same compartment (holobasidia); holobasidia remain whole or fragment at septation after meiosis (phragmobasidia); metabasidia typically transversely septate with basidiospore borne laterally; cell wall with xylose; parenthesome pore caps absent but with microbodies at septal pores; septal pores occluded by a plug; centrosome multilayered. Subdivisions not shown. *Agaricostilbum*, *Caeoma*, *Melampsora*, *Rhodotorula*, *Uromyces*.

• Ustilaginomycetes Bower, Oberw, and Vánky, 1997

Mycelial in the parasitic phase, and many with saprobic yeast or ballisticonidial states; plant parasites causing rusts and smuts; meiospores produced on septate or aseptate basidia; cell wall carbohydrates dominated by glucose; xylose absent; parenthesomes absent at septal pores; swellings absent at septal pores except in *Tilletia*; centrosomes globose, unlayered. Subdivisions not shown. *Malassezia*, *Tilletia*, *Ustilago*.

• Ascomycota Berkeley, 1857

Sexual reproduction within asci (saccate structures); meiosis usually followed by mitosis to produce from one to over 1,000 ascospores, but usually eight; ascospore walls form inside ascus; mating types heterothallic, homothallic (selfing) or both; may reproduce sexually (teleomorph) or asexually (anamorph) only, or both sexually and asexually (holomorph); asci cylindrical, fusiform, clavate or globose, persistent or evanescent, with or without a fruiting structure (ascoma, -ata); asci developing directly from ascogenous hyphae, from a crozier or from a single cell; asexual reproduction by conidiospores (mitospores) formed by fragmentation of vegetative hyphae (thallic), blastically from single cells, hyphae, or conidiophores; vegetative body of single cells or tubular, septate filaments (hyphae); septa with simple pores, except for those associated with ascogenous hyphae and asci; cell walls lamellate with a thin electron-dense outer layer and a relatively thick electron-transparent inner layer, consisting of varying proportions of chitin and glucans; saprobes, endophytes, parasites (especially on plants) or lichen forming. **Note 3**.

••• Neolecta Spegazzini, 1881 [Neolectomycetes Eriksson and Winka, 1997] Mycelium present, multinucleate; ascomata apothecial, stalked, fleshy; interascal tissue absent; cylindrical asci formed from binucleate cells that

3. FUNGI: Information on the Ascomycota was compiled from the following references: Alexopoulos et al. (1996); Eriksson and Winka (1997, 1998); Eriksson et al. (2004); Kirk et al. (2001); Liu and Hall (2004); and Lutzoni et al. (2004). The Ascomycota is the largest group of fungal species. Many species remain to be discovered and relationships among most existing species are not well understood. For many groups, classification is currently unsettled with several different taxonomic systems in use. For periodic updates on the classification the reader is referred to Myconet (http://www.umu.se/myconet/Myconet.html). For references on taxonomic treatments of specific groups see Kirk et al. (2001).

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••• Neolecta cont'd.

undergo karyogamy, meiosis and one mitotic division to produce eight cylindrical ascospores, thin-walled, walls blueing in iodine, ascus apex truncate, slightly thickened below ascus wall, with wide apical slit, persistent; ascospores ellipsoidal to globose, hyaline, aseptate; anamorph unknown; saprobic; found in wet mixed woodlands. *Neolecta*.

••• Taphrinomycotina Eriksson and Winka, 1997

Mycelium present or absent; asci produced from binucleate cells; do not form croziers or interascal tissue.

•••• *Pneumocystis* Delanoë and Delanoë, 1912 [Pneumocystidomycetes Eriksson and Winka, 1997]

Mycelium and ascomata absent; vegetative cells thin-walled, irregularly shaped, uninucleate, dividing by fission; sexual reproduction initiated by fusion of two vegetative cells followed by karyogamy, cyst wall formation, meiosis, and in some, one mitotic division, to produce four to eight nuclei that are delimited by the cyst (ascus) vesicle; ascospore walls are deposited between the delimiting membranes; cyst walls rupture to release ascospores; extracellular parasite of mammalian lungs. *Pneumocystis*.

•••• Schizosaccharomycetes Eriksson and Winka, 1997

Mycelium absent or poorly developed; ascomata absent; vegetative cells cylindrical, proliferating by mitosis followed by cell division to produce two daughter cells (fission); cell wall composition differs from that of species of Saccharomycetes; sexual reproduction initiated by fusion of two vegetative cells to form an ascus; karyogamy and meiosis occur within the ascus to produce four nuclei, which may or may not divide once again mitotically; ascospores aseptate, delimited by enveloping membrane system (EMS), wall formed within bilayers of EMS, wall blueing in iodine, hyaline or pigmented; saprophytes in sugary plant exudates; fermentation positive. *Schizosaccharomyces*.

•••• Taphrinomycetes Eriksson and Winka, 1997

Vegetative mycelium mostly absent; ascomata absent; interascal tissue absent; dikaryotic mycelium infects host and proliferates through host tissue; dikaryotic cells or mycelium develop directly into asci, often forming a palisade layer on the host; asci globose or ellipsoidal, eightspored; ascospores hyaline, aseptate; biotrophic on angiosperms forming galls or lesions; cells bud from ascospores to form a yeast-like, monokaryotic, saprobic anamorph. *Taphrina*.

••• Saccharomycetes Eriksson and Winka, 1997

Mycelium mostly absent or poorly developed; hyphae, when present, septate, with septa having numerous pores rather than a single septal pore; vegetative cells proliferating by budding or fission; walls usually lacking chitin except around bud scars; ascomata absent; sexual reproduction by fusion of two vegetative haploid cells or fusion of two haploid nuclei in a single cell or within diploid cells, followed by meiosis and, in some cases, one mitotic division to produce either four or eight nuclei; cells undergoing meiosis become asci, ascospores delimited by an enveloping membrane system (EMS), ascospore wall formed within bilayers of EMS; ascospores aseptate, colourless or pigmented, often with wall thickenings of various types; most osmotrophic, some species parasitic on animals. *Candida*, *Saccharomyces*.

••• Pezizomycotina Eriksson and Winka, 1997

Mycelium present; hyphae filamentous, septate; septa with simple pores and Woronin bodies; life cycle haploid with a dikaryotic stage immediately prior to sexual reproduction; ascomata discoid, perithecial, cleistothecial or occasionally lacking; antheridium (male sex organ) present or absent; ascogonium (female sex organ), ascogenous hyphae and crosiers present; the penultimate

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••• Pezizomycotina cont'd.

cell of the crozier, in which meiosis and usually one mitotic division occur, becomes the ascus; asci fissitunicate or not fissitunicate, cylindrical, clavate or saccate; asci frequently with ascospore discharge mechanism; ascospores (usually eight) surrounded by enveloping membrane system; ascospore morphology and pigmentation varied; asexual state present or absent, produced from vegetative hyphae in a thallic or blastic manner; mitospores (conidiospores) varied in morphology and pigmentation.

•••• Arthoniomycetes Eriksson and Winka, 1997

Ascomata usually apothecial, occasionally closed with an elongated poroid opening; peridium thin- or thick-walled; interascal tissue of branched paraphysoids in a gel matrix; asci thick-walled, fissitunicate, blueing in iodine, with or without a large apical dome; ascospores aseptate or septate, sometimes becoming brown and ornamented; anamorphs pycnidial; forming crustose lichens with green algae, lichenicolous or saprobic on plants. *Arthonia*.

•••• Dothideomycetes Eriksson and Winka, 1997

Ascomata variable (apothecial, perithecial, cleistothecial), formed lysigenously from stromatic tissue (ascolocular); interascal tissue present or absent, of branched paraphysoids or pseudoparaphyses; asci cylindrical to saccate, thick-walled, fissitunicate, rarely with apical structures; ascospores mostly septate or muriform, colorless to dark brown; anamorphs hyphomycetous or coelomycetous; saprobes, plant parasites, coprophilous or lichen forming. *Dothidea*.

•••• Chaetothyriomycetes Eriksson and Winka, 1997

Mycelium usually superficial of brown narrow hyphae; ascomata perithecial, often formed beneath a subiculum, spherical or flattened with or without a papilla, sometimes setose; papilla with a periphysate ostiole; interascal tissue of short apical periphysoids; hymenium usually blueing in iodine; asci fissitunicate, saccate; ascospores hyaline or brown, transversely septate or muriform; anamorphs hyphomycetous; epiphytic or biotrophic on leaves. *Chaetothyrium*.

•••• Eurotiomycetes Eriksson and Winka, 1997

Ascomata cleistothecial, sometimes absent; peridium thin, membranous or hyphal; interascal tissue absent; asci not fissitunicate, clavate or saccate, often evanescent; ascospores aseptate, with equatorial ornamentation; anamorphs hyphomycetous, important industrially and medically (Aspergillus, Penicillium); saprobic, pathogenic on animals. Eurotium, Talaromyces.

•••• Pezizomycetes Eriksson and Winka, 1997

Ascomata apothecial or cleistothecial, usually visible with unaided eye, leathery or fleshy; carotenoids (bright colours to dark) sometimes present; interascal tissue present (paraphyses); asci not fissitunicate, usually elongated, cylindrical (more or less globose in cleistothecial species), thin-walled, lacking obvious apical wall thickening or apical apparatus, with operculum or vertical slit (except in cleistothecial species), forcibly discharging ascospores except in cleistothecial species; ascospores usually ellipsoidal or globose, aseptate, hyaline to darkly pigmented, smooth or ornamented; anamorphs hyphomycetous, where known; saprobes on soil, dead wood or dung; some species hypogeous and mycorrhizal. *Ascobolus, Helvella, Morchella, Peziza, Sarcoscypha*.

•••• Laboulbeniomycetes Engler, 1898

Mycelium absent except in Pyxidiophorales; cellular thallus hyaline to dark, with basal haustorium present; ascomata perithecial, frequently

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

•••• Laboulbeniomycetes cont'd.

surrounded by complex appendages, translucent, ovoid, thin-walled; interascal tissue absent; asci few and basal, not fissitunicate, clavate, thin-walled, evanescent, maturing sequentially, usually with four ascospores; ascospores two-celled, hyaline, elongate, one end modified as attachment to host; anamorphs hyphomycetous, spermatial; ectoparasitic on insects, some may be coprophilous. *Laboulbenia*, *Pyxidiophora*.

•••• Lecanoromycetes Eriksson et al., 2001

Ascomata apothecial, discoid, perithecial or elongated, sometimes stalked or immersed, occasionally evanescent; interascal tissue of simple or branched paraphyses swollen at the apices, often with a pigmented or iodine-staining epithecium; hymenial gel often present; asci not fissitunicate, thick-walled, with a thickened, cap-like apex, often with an internal apical ocular chamber, ascus walls and thickened apex often stains blue with iodine; ascospores one to several septate, occasionally, multiseptate, rarely plurilocular, hyaline or pigmented; anamorphs pycnidial where known; mostly lichen forming with protococcoid algae, with thallus foliose, fructicose, crustose or occasionally absent; some lichenicolous, some saprobic. *Gyalecta, Lecanora*.

•••• Leotiomycetes Eriksson and Winka, 1997 [Leotiomycetes-1 sensu Lutzoni et al., 2004]

Ascomata apothecial, discoid, cleistothecial, elongated or rarely absent; apothecia stalked or sessile, frequently fleshy, sometimes hairy or with appendages, occasionally stromatic or sclerotioid; interascal tissue of simple paraphyses or absent; peridium thin-walled; asci typically inoperculate, cylindrical, thin-walled, not fissitunicate, occasionally with apical pore; apical apparatus variable; ascospores aseptate or transversely septate, hyaline or pigmented and longitudinally slightly asymmetrical; anamorphs occasionally present, hyphomycetous or coelomycetous; saprobes or plant parasites, some lichenized or lichenicolous. *Crinula*, *Leotia*, *Rhytisma*, *Sclerotinia*, *Sphaerotheca*, *Uncinula*.

•••• Lichinomycetes Reeb, Lutzoni, and Roux, 2004

Ascomata apothecial, discoid, sometimes immersed, occasionally clavate, stalked, setose, and fleshy, peridium often not well-defined; interascal tissue varied; hymenium often stains blue with iodine; asci thinwalled or apically thickened, not fissitunicate, without well-defined apical structures, usually with an iodine-staining outer gelatinized layer; ascospores one-septate or occasionally multiseptate, ellipsoidal to fusiform, hyaline or pigmented; anamorphs pycnidial; lichenized with cyanobacteria forming crustose, fruticose or foliose often gelatinized thalli. *Lichina, Peltula.*

•••• Orbiliomycetes Eriksson and Baral, 2003

Ascomata apothecial, small, waxy, translucent or lightly pigmented; interascal tissue of simple paraphyses, usually with knob-like apices, united by a matrix; asci minute, not fissitunicate, apex truncate, with J apical rings, often forked at the base; ascospores minute, cylindrical, hyaline, often aseptate; anamorphs hyphomycetous where known; saprobic, often on wet wood. *Halorbilia*, *Orbilia*.

•••• Sordariomycetes Eriksson and Winka, 1997, emend. Eriksson et al., 2004 Ascomata perithecial or cleistothecial, sometimes translucent, coloured or darkly pigmented, often hairy; peridium thin- or thick-walled, membranous or carbonaceous; paraphyses septate, simple or branched or absent; asci not fissitunicate, with or without apical structures, cylindrical, clavate or globose, persistent or evanescent; ascospores with or without at least

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

•••• Sordariomycetes cont'd.

one dark cell with germ pore, varied in shape and colour, with or without gelatinous sheaths or appendages; saprobic or parasitic on plants, coprophilous, fungicolous or lichenicolous. *Neurospora*, *Sordaria*.

• Microsporidia Balbiani, 1882

Obligate intracellular parasites, usually of animals; without mitochondria and peroxisomes; spores with inner chitin wall and outer proteinaceous wall; without kinetosomes, centrioles or cilia; centrosomal plaque; extrusive specialized polar tube for host penetration; sexual, asexual or both. Subdivisions uncertain at this time. Amblyospora, Amphiacantha, Buxtehudia, Caudospora, Chytridiopsis, Desportesia, Encephalitozoon, Enterocytozoon, Glugea, Hessea, Metchnikovella, Nosema, Spraguea, Vairimorpha.

- •• Glomeromycota Schüssler et al., 2001 [Glomales Morton and Benny, 1990; Glomomycetes Cavalier-Smith, 1998]
 Filamentous; primarily endomycorrhizal, arbuscular, sometimes with vesicles; without cilium; asexual spores outside host (chlamydospores, azygospores); without centrioles, conidia, and aerial spores. Acaulospora, Archaeospora, Diversispora, Entrophospora, Geosiphon, Gigaspora, Glomus, Pacispora, Paraglomus, Scutellospora.
- •• Zygomycota Fischer, 1892, emend. Benjamin, 1979, emend. Benny et al., 2001 Primarily filamentous, without septa (coenocytic), or septa occurring irregularly to regularly; lacking cilia; sexual reproduction by thick-walled zygospore, formed at the junction between complementary hyphae; endospores formed by internal cleavage of sporangia, except in Entomophthorales and some Zoopagales; septa associated with lens-shaped plug (lenticular cavity) in Dimargaritales, Harpellales, and Kickxellales.

••• Dimargaritales Benjamin, 1979

Hyphae regularly septate; septa containing a lenticular cavity; asexual reproduction by bisporous merosporangia; sexual reproduction by a zygospore, often ornamented; obligate haustorial parasites of fungi, especially Mucorales. *Dimargaris*, *Dispira*, *Spinalia*, *Tieghemiomyces*.

••• Harpellales Lichtwardt and Manier, 1978, emend. Benny et al., 2001 Endosymbiont of freshwater arthropods; basal cell attached to host, from which a filamentous thallus develops; hyphae septate, with or without branching; septa containing a lenticular cavity; asexual reproduction by lateral elongate monosporous trichospores; sexual reproduction by conical or biconical zygospores. *Harpella, Orphella, Smittium, Zygopolaris*.

••• Kickxellales Benjamin, 1979

Filamentous; hyphae possessing septa with a lenticular cavity; asexual reproduction by unispored sporangiola (merosporangia) produced on a sporocladium; saprobic or mycoparasitic, isolated from soil and dung. *Coemansia*, *Dipsacomyes*, *Kickxella*, *Linderina*, *Martensella*, *Martensiomyces*, *Spirodactylon*, *Spiromyces*.

••• Zoopagales Benjamin, 1979

Filamentous, hyphae coenocytic or septate; parasites of soil fungi, invertebrates and amoebae; asexual reproduction by conidia or merosporangia; sexual reproduction by globose zygospores with apposed suspensors. *Amoebophilus*, *Piptocephalis*, *Rhopalomyces*, *Sigmoideomyces*, *Stylopage*.

••• Basidiobolus Eidam, 1886

Filamentous; without cilium; uninucleate cells; sporophores with sub-sporangial vesicle; asexual reproduction by a forcibly discharged conidium; hyphae septate with uninucleate cells; sexual reproduction by thick-walled zygospore; possessing a centriole-like nuclear-associated organelle; isolated from soil and insectivorous animal dung. *Basidiobolus*.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••• Mucorales Schröter, 1897 (P?)

Filamentous fungi; generally saprotrophic, with exceptions; septa absent except in older hyphae; with plasmodesmata at septal pores; asexual reproduction with one to many spores in merosporangia, sporangiola, or sporangium; reproduction by zygospore, typically with opposed suspensors. Traditional subdivisions artificial. *Chaetocladium, Choanephora, Mortierella, Mucor, Phycomyces, Pilobolus, Syncephalestrum, Thamnidium*.

••• Endogonales Benjamin, 1979, emend. Morton and Benny, 1990 Filamentous, hyphae coenocytic; saprobic and ectomycorrhizal; zygospores with apposed suspensors produced in a subterranean sporocarp. *Densospora*, *Endogone*, *Pteridiospora*, *Sclerogone*, *Youngiomyces*.

••• Entomophthorales Schröter, 1897

Filamentous, primarily without septa; mostly parasites of insects, mites, and spiders; sexual reproduction by thick-walled zygospore, strictly homothallic, where known; asexual reproduction by conidia formed by blastosporogenesis; conidia forcibly discharged and often form secondary conidia. *Conidiobolus*, *Completoria*, *Entomophthora*, *Meristacrum*, *Neozygites*.

 Chytridiomycetes de Barry, 1863, emend. Sparrow, 1958, emend. Cavalier-Smith, 1981

Ciliated cells in at least one life cycle stage; both uni- and multiciliated; point of insertion varying, but the flagellum always posteriorly directed; main cell wall polysaccharides, chitin and β -1,3-1,6-glucan; AAA lysine biosynthesis pathway; glycogen storage product.

••• Blastocladiales Petersen, 1909

Uniciliated cells, with nuclear cap of ribosomes and cone-shaped nucleus, with the narrow end close to the kinetosome with root of 27 microtubules in sets of three; microtubules extend from kinetosome to nuclear cap, covering both nucleus and cap; without rumposome or electron-opaque material in kinetosome transition zone; when present, dormant kinetosome is reduced in size and positioned at a right angle from the kinetosome.

•••• Blastocladiaceae Petersen, 1909

Monocentric and/or polycentric with bipolar germination. *Allomyces*, *Blastocladia*, *Blastocladiella*, *Blastocladiopsis*, *Microallomyces*.

•••• Catenariaceae Couch, 1945

Filamentous and polycentric with monopolar germination. Catenomyces, Catenophlyctis, Caternaria.

••• Coelomomycetaceae Couch, 1945

Obligate parasites of insect larvae with an alternate gametophyte generation on copepods. *Coelomomyces*.

•••• Physodermataceae Sparrow, 1952

Obligate parasites of angiosperms in marsh and aquatic habitats; two types of thalli: 1) monocentric and epibiotic or 2) polycentric and endobiotic. *Physoderma*, *Urophlyctis*.

•••• Sorochytrium Dewel, 1985 [Sorochytriaceae Dewel, 1985] (M) Single species that parasitizes tardigrades; life cycle with endobiotic, eucarpic, polysporangiate thallus on live hosts, and extramatrical, polycentric thallus on dead hosts or in culture. Sorochytrium milnesiophtora.

••• Monoblepharidales Schroeter, 1893, emend. Barr, 2001

In the motile cell, the kinetosome root with two parts, a striated disk partially extending around the kinetosome and microtubules extending out into the cytoplasm from the proximal end of the kinetosome; dormant kinetosome

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••• Monoblepharidales cont'd.

parallel; with an electron-opaque plate in the kinetosome transition zone; a non-fenestrated rumposome present. **Note 4**.

- •••• Gonapodyaceae Sparrow, 1960 Sex anisogamous. *Gonopodya*.
- •••• Monoblepharidaceae Fischer 1892, emend. Mollicone and Longcore, 1999

Sex oogamous with a small male gamete fertilizing an oogonium. *Monoblepharella*, *Monoblepharis*.

•••• Oedogoniomycetaceae Barr, 1990

Asexual. Oedogoniomyces. Incertae sedis Harpochytrium.

••• Spizellomycetales Barr, 1980

Cell with nucleus either closely associated with the kinetosome or connected by its root; ribosomes dispersed in the cytoplasm; rumposome absent; dormant kinetosome at an angle to the ciliated kinetosome; without electron-opaque material in the kinetosome transition zone. **Note 5**.

- •••• Spizellomycetaceae Barr, 1980
 - Monocentric with endogenous thallus development. Gaertneriomyces, Karlingiomyces, Kochiomyces, Spizellomyces, Triparticular.
- •••• Olpidiaceae Schroeter, 1889

Monocentric with exogenous thallus development. Caulochytrium, Entophlyctis (P), Olpidium, Rhizophlyctis, Rozella.

••• Neocallimastigaceae Li, Heath, and Packer, 1993

Obligate anaerobes of the rumen and hindgut of herbivores; some species multiciliated; ribosomes aggregated mostly in the cell interior; with hydrogenosomes, without mitochondria; dormant kinetosomes absent in all species; complex electron-opaque saddle-like structure partially surrounding the kinetosome and extending to the plasma membrane; kinetosome root composed of an irregularly arranged array of microtubules that extend from a spur on the kinetosome into the cytoplasm; in the posterior portion of the cell, posterior-dome structure connected to the spur on the kinetosome by some of the root microtubules. *Anaeromyces*, *Caecomyces*, *Cyllamyces*, *Neocallimastix*, *Orpinomyces*, *Piromyces*.

••• Chytridiales Cohn, 1879, emend. Barr, 2001 (P)

Monociliated, occasionally with multiple cilia; cell shape varying from globose to subglobose or elongate, some amoeboid just before encystment; with lipid globule partially enclosed by a microbody, either fenestrated (rumposome) or non-fenestrated, sometimes associated with mitochondria; compact grouping of ribosomes partially or wholly surrounded by endoplasmic reticulum; nucleus not connected to the kinetosome pair; usually with 2–16 microtubules in the root, extending from the kinetosome to the rumposome; series of fibres connect kinetosome pair. Allochytridium, Asterophlyctis, Catenochytridium, Chytridium, Chytriomyces, Cladochytrium, Endochytrium, Entophlyctis (P), Lacustromyces, Nephrochytrium, Nowakowskiella, Obelidium, Phylctorhiza,

^{4.} FUNGI: Monoblepharidales: Emerson and Whisler (1968) placed *Harpochytrium* in the order Harpochytriales along with Oedogoniomyces. The order was later abandonded by Barr (1990) and the two genera were moved to separate orders. Barr (1990) erected a family, Harpochytriaceae, for *Harpochytrium* in the order Chytridiales. Since then cell ultrastructure and sequence data (18S rDNA and mitochondrial genes) have supported the inclusion of the genus in the Monoblepharidales. No decision has been made as to which family the genus should be placed.

^{5.} FUNGI: Spizellomycetales: Barr (2001) suggested that thallus development, which can vary greatly among and between genera and species, should be abandoned in favour of ultrastructure for classifying families. *Karlingiomyces* has been placed in a clade outside of the Spizellomycetales based on 18S rDNA sequence data by James et al. (2000).

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••• Chytridiales cont'd.

Physocladia, Podochytrium, Polychytrium, Polyphagus, Rhizoclosmatium,
Rhizophydium, Septochytrium, Synchytrium. Note 6.

Mesomycetozoa Mendoza et al., 2002, emend. Adl et al., 2005 [Choanozoa Cavalier-Smith, 1981] (R) (P)

Usually flat cristae (exceptions e.g. Aphelidea, *Ichthyophonus*); at least one life cycle stage with spherical cells, posteriorly monoflagellated or amoeboid; some with parasitic spherical, non-flagellated stages and endospores; trophic stages with cell wall in some.

• Aphelidea Gromov, 2000

Intracellular phagotrophic parasites of algae with complex life cycle; amoeboid cell invades host through apophysa of spore, attached to host cell surface; characteristic central food vacuole with excretory body; cell division leads to flagellate or amoeboid dispersal cells released from host; tubular or lamellar cristae. *Amoeboaphelidium, Aphelidium, Pseudoaphelidium.*

- •• Corallochytrium Raghu-Kumar, 1987 (M) Spherical single cells 4.5–20.0 µm in diameter; binary fissions releasing numerous elongated amoeboid cells; marine saprotrophic, usually recovered from coral reefs in the Indian Ocean. Corallochytrium limacisporum.
- •• Capsaspora Hertel et al., 2002 (M)
 Amoeboid 3.0–7.0 μm in diameter; single nucleus one-third to one-half size of cell, with central nucleolus; without flagellated stages; flat cristae; long, straight, unbranched pseudopodia, called "feeding peduncles"; without mucous sheath; capable of penetrating tegument of trematode larvae; cell wall with chitin, elastin or collagen. Capsaspora owczarzaki.
- •• Ichthyosporea Cavalier-Smith, 1998 [Mesomycetozoea Mendoza et al., 2002] Single-celled trophic organisms (some with hyphal, multinucleated filaments, *Icthyophonus*); flat cristae but some may have tubular cristae; if present, single flagellum; without collar or cortical alveoli; some species form only elongate amoeboid cells; most animal parasites, some free living and saprotrophic (*Sphaeroforma*, LKM51 isolate); chitin reported but controversial.
 - ••• Rhinosporideacae Mendoza et al., 2001 [Dermocystida Cavalier-Smith, 1998] (R) If present, posterior flagellum; flat cristae; when parasite of animals, spherical phenotypes with several 2–20 µm endospores that are eventually released and become mature cells with endospores to continue the parasitic cycle. Amphibiocystidium ranae, Dermocystidium, Rhinosporidium seeberi, Sphaerothecum destruens.
 - ••• Ichthyophonae Mendoza et al., 2001 [Ichthyophonida Cavalier-Smith, 1998; Amoebidiidae Reeves, 2003] (R)

 Parasites of fish, arthropods, and insects, or free-living and saprotrophic; usually with flat cristae but *Ichthyophonus* with tubular cristae; some characteristic amoeboid cells, but in others amoeboid cells absent or unreported; monoflagellated stage only in *Pseudoperkinsus tapetis*, but controversial. *Amoebidium parasiticum*, *Anurofeca richardsi*, *Ichthyophonus*, *Pseudoperkinsus tapetis*, *Psorospermium haeckeli*, *Sphaeroforma arctica*, Isolate LKM51, Isolate Ikaite un-c53.

6. FUNGI: Chytridiales: Subdivisions in this group are considered artificial constructs and further work is needed to revise the current classification scheme. The numbers of families also differ between Sparrow's second edition of the Aquatic Phycomycetes (1960) and Karling's Chytridiomycetarum Iconographia (1977). Although Karling did not intend his work to act as a monograph, taxonomic changes were made that need to be considered in any update of the group. Since neither Sparrow nor Karling's family-level organization schemes are considered phylogenetically valid it is not worthwhile to suggest one over the other at the present time. In addition, parsimony and maximum likelihood analysis of 18S rDNA suggest that the order itself is not monophyletic and could possibly be broken up into several different orders (James et al. 2000).

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

 Ministeria Patterson et al., 1993, emend. Tong, 1997 [Ministeriida Cavalier-Smith, 1997]

Marine isolates known only; $<5~\mu m$ with equally spaced, unbranched filopodia radiating from spherical bodies; flat cristae; flagellum has been suggested but controversial. *Ministeria*.

• Nucleariida Cavalier-Smith, 1993
Amoeboid with rounded body, from which elongated filopodia extend; flat cristae.

Nuclearia.

• Choanomonada Kent, 1880

Phagotrophic with collar of microvilli around a single flagellum; radial symmetry; solitary or colonial; flat cristae; central filament in kinetosome transition zone. This group is traditionally divided into three groups based on the presence or absence of a cellulose theca or lorica of siliceous strips. **Note 7**.

- Monosigidae Zhukov and Karpov, 1985 [Codonosigidae Kent, 1880] Naked. *Codonosiga*, *Monosiga*, *Sphaeroeca*.
- •• Salpingoecidae Kent, 1880 Cellulose theca. *Salpingoeca*, *Stelexomonas*.
- Acanthoecidae Norris, 1965 Lorica of siliceous strips. *Bicosta*, *Stephanoeca*.

Metazoa Haeckel, 1874

Multicellular; cells typically held together by intercellular junctions; extracellular matrix with fibrous proteins, typically collagens, between two dissimilar epithelia (except in Mesozoa and Placozoa); sexual with production of an egg cell that is fertilized by a smaller, often monociliated, sperm cell; phagotrophic and osmotrophic; without cell wall.

• Porifera Grant, 1836 [Parazoa Sollas, 1884] (P?)

Cells without walls; flat cristae; sexual species, mostly hermaphroditic, releasing monociliated sperm or producing amoeboid egg cells at different times; zygotes forming ciliated dispersal larvae that resemble blastulae; sessile adult; asexual reproduction by gemmules; differentiation of larva to a variety of cell types, including choanocytes, amoeboid cells, and digestive secretory cells; cell types transformable into other types as necessary; cells more or less independent; supporting matrix typically with collagen-IV, secreted by amoeboid cells; without mesoderm, nervous tissue, desmosomes, localised gonad, or glandular digestive cells.

- ••• Silicispongia Schmidt, 1862 [Silicea Bowerbank, 1864] Usually with matrix of siliceous spicules.
 - •••• Hexactinellida Schmidt, 1870

Siliceous spicules triaxonic, hexactinic; cells forming extensive multinucleate syncytium, with some differentiated cells; electrical conductance across body; non-contractile body; larvae (poorly known) with medial region of ciliated cells. *Euplectella*, *Farrea*, *Hyalonema*, *Lophocalyx*, *Monoraphis*, *Semperella*.

•••• Demospongiae Sollas, 1885, emend. Borchiellini et al., 2004
Spongin and siliceous spicules in matrix, except in Myxospongiae; spicules not triaxonic, with hollow triangular canal and four rays, not perpendicular; larva with outer monociliated cells, except at posterior pole; one family (Cladorhizidae) with external digestion by amoeboid cell aggregation on captured crustacean prey. Aplysina, Axinella, Ca-

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

- •••• Demospongiae cont'd. cospongia, Chondrosia, Cliona, Euspongia, Halisarca, Hippospongia, Oscarella, Plakina, Spongilla, Suberites. Excludes Homoscleromorpha.
- •••• Homoscleromorpha Lévi, 1973, emend. Borchiellini et al., 2004 (R) No unambiguous characters congruent with molecular phylogenies. Node: includes Oscarella lobularis, excludes Beroe ovata, Geodia cydonium, Hydra viridis, Leucosolenia variabilis, Oopsacas minuta.
- ••• Calcispongia Johnston, 1842 [Calcarea Bowerbank, 1864]
 Calcium carbonate spicules; larva with outer monociliated cells, larger at posterior; invagination of anterior cells at attachment of posterior to substrate.
 - •••• Calcinea Hartman, 1958, emend. Borchiellini et al., 2004 (R) Unambiguous characters congruent with molecular phylogenies unclear. *Clathrinida, Murrayona*.
 - •••• Calcaronea Hartman, 1958, emend. Borchiellini et al., 2004 (R)
 Unambiguous characters congruent with molecular phylogenies unclear.

 Grantiopsis-Paralurilla, Vosmacropsis-Sycettusa, includes Heteropiidae, Staurorrhaphidae, Minchinellidae.
- •• Trichoplax von Schultze, 1883 [Placozoa Grell, 1971] (M)

 Two layers of epithelial cells, with a middle layer of syncytial contractile fibrous cells, and undifferentiated cells; with digestive glandular cells; belt desmosomes (zonulae adherentes) connecting adjacent cells; without extracellular matrix; collagen fibres absent; without endoderm, ectoderm, mesoderm or nerve cells; cilia of ventral cells with two orthogonal kinetosomes with 1–2 lateral and one vertical fibrillar rootlets; egg cell and non-ciliated sperm in mid-layer; asexual binary division of body possible. Trichoplax adhaerens.
- •• Mesozoa van Beneden, 1877 (P)

 Multicellular with pluriciliated cells in epithelium; gap junctions, septate junctions and two types of adherens junctions present—(1) maculae adherentes-like and (2) zonulae adherentes-like; double-stranded ciliary necklace; kinetosome pair with rootlet horizontal, pointing anterior; without digestive tissues; only osmotrophic endoparasites known; sexual with testis and egg cells; without gastrulation; without basal membrane or extracellular matrix; tubular cristae.
 - ••• Orthonectida Giard, 1880
 Epithelial cells in rings of alternating pluriciliated and non-ciliated cells; contractile cells, with differentiated testis and egg cells. *Ciliocincta*, *Rhopalura*, *Stoecharthrum*.
 - ••• Rhombozoa Krohn, 1839

 Pluriciliated epithelial cells surrounding a single non-ciliated, long central cell (axial cell); egg cells forming inside axial cell and fertilized by non-ciliated sperm; asexual reproduction by successive mitoses of an axoblast cell in the axial cell. *Dicyema, Dicyemennea*.
- Animalia Linnaeus, 1758, emend. Adl et al., 2005 [Eumetazoa Bütschli, 1910] Reproduction through an egg cell, usually fertilized by a monociliated sperm cell with acrosome; embryonic development with blastula and gastrulation, with differentiation into endoderm, ectoderm, mesoderm, and neuroderm; tissues organized into organs that share tasks for the individual, unless secondarily lost; some secondarily reduced to small number of cells (e.g. Myxozoa Grassé, 1970); coordination of cells and tissues by membrane receptors that respond to ligands through elaborate signal transduction; characteristic cell—cell junctions with belt desmosomes (zonulae adherentes); basal lamina and extracellular matrix with collagen and other fibrous proteins (laminin, nidogen, and perlecan); heterotrophic nutrition with secretion of digestive enzymes and osmotrophy through a digestive tract; without cell wall; ectoderm completely surrounding body, and endoderm surrounding a digestive tract; sensory cells in epithelium; nervous tissue in organized net-

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

Animalia cont'd.
 work; epithelial contractile cells between endoderm—ectoderm use actin-myosin.
 Subdivisions not shown.

RHIZARIA Cavalier-Smith, 2002

With fine pseudopodia (filopodia) varying as simple, branching, anastomosing, or supported by microtubules (axopodia).

- Cercozoa Cavalier-Smith, 1998, emend. Adl et al., 2005 (R)
 Diverse clade lacking distinctive morphological or behavioural characters; biciliated and/or amoeboid, usually with filopodia; most with tubular cristae; cysts common; kinetosomes connecting to nucleus with cytoskeleton; usually with microbodies and extrusomes.
 - •• Cercomonadida Poche, 1913, emend. Vickerman, 1983, emend. Mylnikov, 1986 Amoeboflagellates without cell wall; two heterodynamic flagella without mastigonemes; pseudopodia used for feeding; some species have complex life cycle including multinuclear and multiflagellar plasmodium stage; cysts occur; kinetosomes connected to the nucleus; tubular cristae; with microbodies and extrusomes.
 - ••• Cercomonadidae Kent, 1880, emend. Mylnikov and Karpov, 2004 [Cercobodonidae Hollande, 1942] (P?)
 Gliding cells with two flagella; posterior flagellum adhering to the cell; with transient pseudopodia. *Cercomonas*, *Helkesimastix*, *Neocercomonas*. **Note 8**.
 - ••• Heteromitidae Kent, 1880, emend. Mylnikov, 1990, emend. Mylnikov and Karpov, 2004 [Bodomorphidae Hollande, 1952]
 Rigid cells with two subapical non-adherent flagella but anterior flagellum sometimes absent; often gliding on posterior flagellum; phagocytosis with transient pseudopodia (e.g. *Heteromita* Dujardin, 1841, emend. Mylnikov and Karpov, 2004 (= *Bodomorpha* Hollande, 1952 = *Sciviamonas* Ekelund and Patterson, 1997); kinetosome microtubular cone absent. *Allantion, Cholamonas, Heteromita, Katabia, Protaspis, Sainouron*.
 - •• Silicofilosea Adl et al., 2005 [Imbricatea Cavalier-Smith and Chao, 2003] Secreted surface silica scales; tubular cristae.
 - ••• Thaumatomonadida Shirkina, 1987 [Thaumatomastigidae Patterson and Zölfell, 1991]

 Heterotrophic usually gliding cells that may swim also; with flattened cell body and with two heterodynamic flagella inserting subapically and/or ventrally; some unikont; with extrusomes; filopodia produced subapically or from ventral groove; cysts; multinucleate and multiflagellate stages known. Subdivisions unknown. Allas, Gyromitus, Thaumatomonas, Thaumatomastix.
 - ••• Euglyphida Copeland, 1956, emend. Cavalier-Smith, 1997 Secreted silica plates bound by an organic cement into a test. Subdivisions based on morphology.
 - •••• Euglyphidae Wallich, 1864
 Thin, round to elliptical scales. Assulina, Euglypha, Placosista, Pareuglypha, Sphenoderia, Tracheleuglypha, Trachelocorythion.
 - •••• Trinematidae Hoogenraad and De Groot, 1940
 Test with bilateral symmetry; opening invaginated in some. *Corythion*, *Deharvengia*, *Pileolus*, *Playfairina*, *Trinema*.

8. RHIZARIA: Cercomonadidae: The contemporary concept of *Cercomonas* Dujardin, 1841 was recently revised along molecular phylogenetic lines: the new taxon *Neocercomonas* is distinguishable from *Cercomonas* (= *Dimastigamoeba* Blochmann, 1894 = *Prismatomonas* Massart, 1920 = *Reptomonas* Kent, 1880 = *Cercomastix* Lemmermann, 1913 = *Cercobodo* Krassiltschik, 1886 = *Dimorpha* Klebs, 1892) by sequence data and other criteria (Ekelund et al. 2004).

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

•••• Cyphoderiidae de Saedeleer, 1934 Scales circular to oval; test aperture angled, some with collar. Campascus, Corythionella, Cyphoderia, Messemvriella, Pseudocorythion, Schaudinnula.

•••• Paulinellidae de Saedeller, 1934 Scales long, with length perpendicular to opening; with cyanelle. Paulinella.

•••• Incertae sedis Euglyphida: Ampullataria, Euglyphidion, Heteroglypha, Matsakision.

• Chlorarachniophyta Hibberd and Norris, 1984

Amoeboid with plastids of secondary origin; plastid containing chlorophylls *a* and *b*, associated with a nucleomorph and surrounded by four membranes in total; usually reticulate pseudopodia with extrusomes; cell bodies often anastomosing; with a biflagellated dispersal stage. *Bigelowiella*, *Chlorarachnion*, *Cryptochlora*.

•• Phytomyxea Engler and Prantl, 1897, emend. Cavalier-Smith, 1993 (includes Plasmodiophorida Cook, 1928, emend. Cavalier-Smith, 1993)

Parasites or parasitoids of plants or stramenopiles; with amoeboid or plasmodial feeding cells producing biflagellate or tetraflagellate cells; some with specialized solid extrusome—"satchel"—for penetrating host cells; with distinctive cruciform mitotic profile due to elongate persistent nucleolus lying orthogonal to metaphase plate. Plasmodiophora, Phagomyxa, Pongomyxa, Sorosphaera, Spongospora.

• Phaeodarea Haeckel, 1879 [Tripylea Hertwig, 1879]

Central capsule with thickened, double-layered, capsular wall containing two kinds of pores or openings; large opening known as an "astropylum" or oral pore with a protruding mass of cytoplasm, and smaller, typically lateral openings, as "parapylae", with thinner protruding strands of cytoplasm; dense mass of darkly pigmented granular cytoplasm, the "phaeodium," containing undigested debris, suspended in the extracapsulum; mineral skeletons, when present, composed of scattered spicules or hollow silica bars, joined by organic material; a wide variety of forms, including geodesic frameworks, spherical to polyhedral shells, or more solid, porous clam-shaped, bivalve shells; tubular cristae.

••• Phaeoconchia Haeckel, 1879

Central capsule enclosed within bivalve lattice shell composed of dorsal and ventral boat-shaped valves, which are completely separated and rarely connected by a ligament on the aboral pole. *Coelodendrum*, *Coelographis*, *Conchellium*, *Conchopsis*.

••• Phaeocystina Haeckel, 1879

Central capsule suspended in the centre of the extra-capsular cytoplasmic network; skeleton absent or incomplete, composed of numerous solitary, scattered pieces or spicules without organic connections. *Aulacantha*, *Aulographis*, *Cannoraphis*.

••• Phaeogromia Haeckel, 1879

Central capsule located eccentrically, aborally, in simple lattice shell typically provided with large shell opening placed on the oral pole of the main axis; capsule opening surrounded by "teeth" or by peculiar elongate extensions known as "feet", sometimes with elaborate branches. *Castanella*, *Challengeron*, *Haeckeliana*, *Medusetta*, *Tuscarora*.

••• Phaeosphaeria Haeckel, 1879

Central capsule located in the centre of a simple or double spherical lattice shell, not bivalve, with a simple shell opening, lacking "feet" or "teeth". *Aulosphaera, Cannosphaera, Sagosphaera*.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

- Nucleohelea Cavalier-Smith, 1993

 Amorphous centrosome adjacent to nuclear envelope (axoplast); axopodial pseudopods supported by microtubules; tubular cristae.
 - ••• Clathrulinidae Claus, 1874 [Desmothoracida Hertwig and Lesser, 1874] Extracellular capsule or lorica attached to substrate, with axopodia emerging from perforations; kinetocyst extrusomes along axopodia; tubular cristae; biciliated and amoeboid stages; can be colonial. *Cienkowskia*, *Clathrulina*, *Hedriocystis*. Incertae sedis *Servetia*.
 - ••• Gymnosphaerida Poche, 1913, emend. Mikrjukov, 2000

 Axopodial microtubules in irregular hexagonal prism; kinetocyst and other types of extrusomes along axopodia; tubular cristae; in some genera, cells attached to substrate with cytoplasmic stalk; free-swimming as amoeboid or motile biciliated cells; one or more nuclei, often located in the amoeboid base of stalk when present; complex life cycle unresolved. *Actinocoryne*, *Gymnosphaera*, *Hedraiophrys*. Incertae sedis *Actinolophus*, *Wagnerella*.
- •• Incertae sedis Cercozoa: Cryothecomonas, Gymnophrys, Lecythium, Massisteria, Metopion, Proleptomonas, Pseudodifflugia.
- Haplosporidia Caullery and Mesnil, 1899
 Plasmodial endoparasites of marine and sometimes freshwater animals; distinctive lidded spores; during spore development, spore wall produced inside of outer membrane of invaginated area; without polar capsules or polar filaments; spore anterior opening covered by hinged operculum; intra-nuclear spindle, a rudiment of which persists in interphase nuclei ("kernstab"); tubular cristae. Haplosporidium, Minchinia, Urosporidium.
- Foraminifera d'Orbigny, 1826 Filopodia with granular cytoplasm, forming branching and anastomosing network (reticulopodia); bidirectional rapid ($\sim 10 \,\mu\text{m/s}$) transport of intracellular granules and plasma membrane domains; tubular cristae; fuzzy-coated organelle of unknown function in reticulopodia; polymorphic assemblies of tubulin as (i) conventional microtubules singly or in loosely organized bundles, (ii) single helical filaments, and (iii) helical filaments packed into paracrystalline arrays; majority of forms possess a test, which can be organic walled, agglutinated, or calcareous; wall structure in naked and single-chambered forms quite variable—for "naked" athalamids, such as *Reticulomyxa*, thicker veins vested with an amorphous, mucoid material; for thecate (soft-walled) species, such as members of the genus Allogromia, proteinaceous with little or no foreign material; for agglutinated species, foreign materials bound with an amorphous or fibrous organic matrix; for multi-chambered (polythalamous) forms, walls containing agglutinated material or mineralized with calcite, aragonite, or silica; life cycle often comprising an alternation of asexually reproducing agamont and sexually reproducing gamont; includes at least some Xenophyophorea Schulze, 1904, and some athalamids, such as Reticulomyxa Nauss, 1949; previous subdivisions of single-chambered members no longer valid, but certain multi-chambered groups (e.g. rotaliids and miliolids) are monophyletic. Allogromia, Ammonia, Biomyxa, Carpenteria, Cycloclypeus, Globigerinella, Komokiacea, Lana, Lenticula, Nodogenerina, Textularia. Note 9.
- 9. Foraminifera: The division of the Foraminifera into subgroups is problematic; existing morphology-based schemes (e.g. Loeblich and Tappan 1988) are not fully consistent with molecular phylogenetic data. SSU rRNA possesses unique inserts (Pawlowski 2000); one that maps to the 3' major domain (Region II) represents a molecular synapomorphy for the group (Habura et al. 2004). SSU rRNA phylogenetic analyses (Pawlowski et al. 2002) reveal an early radiation of naked (athalamid) and single-chambered (monothalamous) forms. Such studies also show that at least one member of the Xenophyophorea, previously incertae sedis, branches within this early radiation (Pawlowski et al. 2003a). Molecular analyses reveal that polythalamous tests evolved at least twice: in the lineage leading to a large radiation of agglutinated textulariids and calcareous rotaliids, and in the lineage leading to miliolids, characterized by microgranular, low-Mg calcitic walls (Pawlowski et al. 2003b).

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

• Gromia Dujardin, 1835

Test of organic material, brown and opaque, with single aperture; filopodia branched, with non-granular cytoplasm; filopodia anastomose but not into a reticulum; multinucleate; tubular cristae; flagellated dispersal cells or gametes. *Gromia*.

• Radiolaria Müller, 1858, emend. Adl et al., 2005 Cells with distinctive organic, non-living, porous capsular wall surrounding the intracapsulum, which contains the nucleus or nuclei and cytoplasmic organelles; tubular cristae; axopodia supported by internal microtubules, extending distally through the capsular wall pores and connecting to a frothy external layer, the extracapsulum; extracapsulum containing digestive vacuoles and in some cases algal and/or cyanobacterial symbionts; skeletons, when present, of amorphous silica (opal) or strontium sulphate (in Acantharia) and varying in shape from simple scattered spicules to highly ornate geometric-shaped shells, within and/or surrounding the central capsule; the siliceous skeleton is secreted within a specialized cytoplasmic envelope (cytokalymma)

that dynamically determines the shape of the skeletal matter. **Note 10**.

- •• Polycystinea Ehrenberg, 1838, emend. Haeckel, 1887

 Central capsule spherical to ovate with round pores in the capsular wall either distributed uniformly on the surface of a spherical capsular wall or localized at one pole of an ovate capsular wall; skeleton either absent or when present, composed of spicules or forming elaborate geometric-shaped, porous or latticed shells.
 - ••• Spumellaria Ehrenberg, 1875, emend. Haeckel, 1887, emend. Riedel, 1967 Central capsule typically spherical with uniformly distributed round pores in the capsular wall; skeleton either absent or when present, composed of spicules or forming latticed shells, either single or multiple and concentrically arranged.
 - •••• Collodaria Haeckel, 1887 Skeleton either absent or when present, composed of scattered spicules within the extra-capsulum; solitary or colonial forms. *Collosphaera*, *Collozoum*, *Lampoxanthium*, *Physematium*, *Siphonsphaera*, *Sphaerozoum*, *Thalassicolla*.
 - •••• Sphaerellaria Haeckel, 1887
 Skeleton a porous or latticed shell; skeleton single or multiple, and of various shapes: spherical, discoidal, quadrangular, trigonal, or bilocular. Actinomma, Didymocyrtis, Euchitonia, Hexacontium, Hexalonche, Hexastylus, Octodendron, Plegmosphaera, Saturnalis, Spongaster, Spongosphaera.
 - ••• Nassellaria Ehrenberg, 1875, emend. Haeckel, 1887

 Central capsule ovate with pores localized at one pole; skeleton, when present, composed of a simple tripod, a sagittal ring without tripod or porous helmetshaped "cephalis" enclosing the central capsule.
 - •••• Plectellaria Haeckel, 1887

 Skeleton absent or when present, simple tripod or sagittal ring.

 Lophospyris, Plagonium, Tetraplecta, Zygocircus.
 - •••• Cyrtellaria Haeckel, 1887
 Skeleton, a helmet-shaped "cephalis", bilocular with sagittal constriction, or multilocular and segmented with two or more constrictions, or simple without constriction and lobes. Botryostrobus, Callimitra, Cornutella, Eucyrtidium, Lamprocyclas, Pterocanium, Spirocyrtis, Theopilium.

10. Radiolaria: We have retained the name Radiolaria as a practical decision since it is widely recognized as a placeholder for this group. Until recently the Radiolaria were considered to be polyphyletic. Since Radiolaria are of particular interest to biologists and micropaleontologists, the higher order taxonomic scheme presented here is one that hopefully will be of value to both groups.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

•• Sticholonche Hertwig, 1877 [Taxopodida Fol, 1883]

Axopodial pseudopods without kinetocysts, used for motility as oars; axopodial microtubules originate from depressions in nuclear envelope; microtubules in axoneme arranged in irregular hexagons; periplasm of siliceous tangential spicules, with external radial spicules; tubular cristae. Sticholonche.

• Acantharia Haeckel, 1881, emend. Mikrjukov, 2000

Cell surrounded by fibrillar capsule outside of cell membrane; axopodia, spicules, and amoeboid anastomosing dynamic network of irregular pseudopodia extending from the capsule; this outer network (ectoplasm) surrounded by fibrillar periplasmic cortex; inner cell region inside capsule (endoplasm) holding the organelles; axopodia, supported by microtubular arrays, with kinetocyst extrusomes and with a centroplast-type centrosome at base of each spicule; 20 radial spicules of strontium sulphate merged at cell centre; spicule tips attached to contractile myonemes at periplasm; tubular cristae; often with algal symbionts in endoplasm, and captured prey in ectoplasm network; asexual reproduction unknown; sexual reproduction involving consecutive mitotic and meiotic divisions that ultimately release 10^2-10^3 biciliated isogametic cells; only marine isolates known.

••• Arthracanthida Schewiakoff, 1926

Thick capsule clearly demarcates pigmented endoplasm from ectoplasm; axopodia with hexagonal microtubule arrays; many nuclei in endoplasm; algal symbionts in all known species, except at reproduction; sexual reproduction without gamontocyst. *Acanthometra*, *Daurataspis*, *Dictyacantha*, *Diploconus*, *Phractopelta*, *Phyllostaurus*, *Pleuraspis*, *Stauracantha*.

••• Chaunocanthida Schewiakoff, 1926

Pigmented endoplasm, clears towards periphery; many small nuclei in endoplasm; clear ectoplasm with periplasmic cortex; sexual reproduction in gamontocyst; small plaques synthesized in Golgi (lithosomes) forming the gamontocyst wall; litholophus stage prior to reproduction; hexagonal microtubular arrays in axopodia; contractile matrix at base of spicules. *Amphiacon*, *Conacon*, *Gigartacon*, *Heteracon*, *Stauracon*.

••• Holocanthida Schewiakoff, 1926

Pigmented endoplasm, clears towards periphery; many small nuclei in endoplasm; sexual reproduction in gamontocyst; with lithosomes forming the gamontocyst wall; dodecagonal microtubular arrays in axopodia. *Acanthochiasma*, *Acanthocolla*, *Acanthoplegma*.

••• Symphyacanthida Schewiakoff, 1926

Pigmented endoplasm, clears towards periphery; ectoplasm clear; single large central nucleus; outer endoplasm with anastomosing pseudopodia; capsule and periplasmic cortex visible with light microscopy; sexual reproduction in gamontocyst with lithosomes forming the gamontocyst wall. *Amphilithium*, *Astrolonche*, *Pseudolithium*.

ARCHAEPLASTIDA Adl et al., 2005

Photosynthetic plastid with chlorophyll a from an ancestral primary endosymbiosis with a cyanobacterium; plastid secondarily lost or reduced in some; usually with cellulose cell wall; flat cristae; starch storage product.

- Glaucophyta Skuja, 1954 [Glaucocystophyta Kies and Kremer, 1986] Plastid in the form of a cyanelle; cyanelle distinct from the chloroplasts of other organisms in that like cyanobacteria it has a peptidoglycan wall between its two membranes; chlorophyll *a* only, with phycobiliproteins and other pigments; flagellate and non-flagellate species or life cycle stages. *Cyanophora, Glaucocystis, Gloeochaete*.
- Rhodophyceae Thuret, 1855, emend. Rabenhorst, 1863, emend. Adl et al., 2005 [Rhodophyta Wettstein, 1901; Rhodoplantae Saunders and Hommersand, 2004]

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

ARCHAEPLASTIDA cont'd.

• Rhodophyceae cont'd.

Without flagellated stages, and without centrioles or flagella basal bodies or other 9+2 microtubular structures—presence of polar rings instead; two-membraned simple chloroplasts lacking external endoplasmic reticulum, unstacked thylakoids with phycobilisomes, and chlorophyll a only; cytoplasmic carbohydrate reserve floridean starch; chromosomal and inter-zonal microtubules not converging towards polar rings, so spindle poles very broad; telophase spindle and nuclear envelope persisting with closed mitosis; mitotic nucleus surrounded by own envelope and perinuclear endoplasmic reticulum; cell wall may be of cellulose; cells in filamentous forms linked by pit plugs, formed between cells after incomplete cell division; sexual reproduction typically öogamous; triphasic life history common. Subdivisions of this group unknown at this time. Traditional subgroups are artificial constructs, and no longer valid. Bonnemaisonia, Ceramium, Dasya, Dasyphloea, Eucheuma, Gracilaria, Nemalion, Nizymenia, Porphyra, Rhodophysema, Rhodymenia, Sphaerococcus.

- Chloroplastida Adl et al., 2005 [Viridiplantae Cavalier-Smith, 1981; Chlorobionta Jeffrey, 1982, emend. Bremer, 1985, emend. Lewis and McCourt, 2004; Chlorobiota Kendrick and Crane, 1997] Plastid with chlorophylls *a* and *b*; pyrenoid often present inside plastid; cell wall with cellulose usually present; with centrioles. **Note 11**.
 - •• Chlorophyta Pascher, 1914, emend. Lewis and Mc Court, 2004
 Flagella of swimming cells in pairs or multiples of two; stellate structure linking nine pairs of microtubules at basal body transition zone; thylakoids single or stacked; plastid with two membranes without periplastid endoplasmic reticulum; starch inside plastid; glycolate dehydrogenase present; cell wall, when present, of cellulose; cell division without phragmoplast.
 - ••• Ulvophyceae Mattox and Stewart, 1984 (P?)
 Swimming cells with one or two pairs of flagella, without mastigonemes; basal bodies with four microtubular rootlets in cruciate arrangement, and smaller roots of two sizes, alternating between two or more microtubules; flagella with scales and rhizoplasts; cell wall more or less calcified; cell division by furrowing with mitotic spindle closed, centric and persistent; phycoplast absent; thallus can be branched or unbranched, mono- or distromatic sheet (phyllose), or cushiony forms of compacted tubes; thallus often multinucleate and siphonous; free-living diplobiontic life cycle, iso- or heteromorphic. Acetabularia, Caulerpa, Chladophora, Codium, Pithophora, Pseudonochloris, Rhizoclonium.
 - ••• Trebouxiophyceae Friedl, 1995 [Pleurastrophyceae Mattox et al., 1984; Microthamniales Melkonian, 1990]
 Swimming cells with one or two pairs of flagella, without mastigonemes; basal bodies with four microtubular rootlets in cruciate arrangement, including a multilayered structure, and a smaller root, alternating between two or more microtubules; basal bodies with prominent rhizoplast, cruciate, displaced counter-clockwise; counter-clockwise basal body orientation; closed mitosis with metacentric spindle, semi-closed mitosis, cytokinesis with phycoplast; asexual reproduction by autospores or zoospores; sexual reproduction reported; lichenose and free-living forms; osmotrophy and autotrophy. Botryococcus, Chlorella, Choricystis, Coccomyxa, Microthamnion, Nannochloris, Oocystis, Pabia, Prasiola, Prototheca, Trebouxia.
 - ••• Chlorophyceae Christensen, 1994 Swimming cells with one to hundreds of flagella, without mastigonemes; when two or four flagella, basal bodies with four microtubular rootlets in cruciate

^{11.} ARCHAEPLASTIDA: Chloroplastida: We did not accept the terms Chlorobiota and Chlorobionta because there are many green species outside of the Archaeplastida. We did not accept the term Viridiplantae (green plant) because most of these species are not plants, traditionally or as defined here.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

ARCHAEPLASTIDA cont'd.

••• Chlorophyceae cont'd.

arrangement, alternating between two and more microtubules; basal bodies displaced clockwise or directly opposed; rhizoplast connects basal bodies and extends to nucleus; in colonial forms, basal bodies re-oriented to face outside of colony; closed mitosis; cytokinesis has phycoplast with microtubules, sometimes with furrowing, with formation of plasmodesmata cell–cell connections; haplobiontic life cycle; sexual reproduction by isogamy, anisogamy or öogamy; asexual reproduction by aplanospores, akinetes, or autosporic; osmotrophy and autotrophy. Bracteacoccus, Chlamydomonas (P), Desmodesmus, Floydiella, Hydrodictyon, Oedegonium, Pediastrum, Scenedesmus, Volvox. Incertae sedis: Carteria, Cylindrocapsa, Hafniomonas, Mychanastes, Treubaria, Trochiscia.

• Chlorodendrales Fritsch, 1917

Pair of flagella, inserted in a flagellar pit; flagella beat in breast-stroke pattern; basal body rootlets structure in X2X2 configuration; with organic extracellular scales, outer layer of scales fused to form a theca; metacentric spindle collapses at telophase; nutrition by autotrophy and osmotrophy. *Scherffelia*, *Tetraselmis*.

- •• Prasinophytae Cavalier-Smith, 1998, emend. Lewis and McCourt, 2004 (P) Flagella, 1, 2, 4 or 8, inserted in a flagellar pit; basal body rootlet structure diverse; rhizoplast extends beyond nucleus; flagella forward and pulling, or undulating and pushing; flagella with lateral mastigonemes; cells with 1–7 distinct types of organic extracellular scales, sometimes elaborate, covering cell wall and flagella; some with extrusomes; cysts in some; mitosis variable, most with persistent telophase spindle; sexual reproduction at least in *Nephroselmis olivacea*; nutrition by autotrophy and osmotrophy. *Crustomastix*, *Halosphaera*, *Nephroselmis*, *Pedinomonas*, *Pyramimonas*.
- •• Mesostigma Lauterborn, 1894, emend. McCourt in Adl et al., 2005 [Mesostigmata Turmel, Otis, and Lemieux, 2002]

 Asymmetrical cell with pair of lateral flagella emerging from a pit, without mastigonemes; basal body transition region with similarity to Streptophytina; multilayered structure anchor associated with basal body; with chlorophylls a and b; plastid with two membranes without periplastid endoplasmic reticulum; starch inside plastid; with glycolate oxidase; flagellar peroxisome present; cell wall of cellulose; organic scales cover cell wall and flagella. Mesostigma. Note 12.
- •• Charophyta Karol et al., 2001, emend. Lewis and McCourt, 2004 [Charophyceae Smith, 1938, emend. Mattox and Stewart, 1984]

 Asymmetric motile cells, when present, with pair of flagella without mastigonemes; basal bodies with distinctive multilayered structure of microtubular rootlet and cytoskeletal anchor; thylakoids stacked; plastid with two membranes without periplastid endoplasmic reticulum; starch inside plastid; open mitosis; usually with phycoplast, but some with phragmoplast and cell plate; with primary plasmodesmata between adjacent cells in filamentous forms; filaments branching or non-branching; with nonmotile vegetative phase; some with multinucleate cells; with or without sexual reproduction; sexual species with haplobiontic life cycle; with desiccation-resistant cysts (zygospores); glycolate oxidase in peroxisomes; Cu/Zn superoxide dismutase; flagellar peroxisome. Sub-divisions other than Streptophytina not shown. Chaetosphaeridium, Chlorokybus, Coleochaete, Klebsormidium, Spirogyra.
 - ••• Streptophytina Lewis and McCourt, 2004
 Pair of basal bodies with two dissimilar rootlets, including a multilayered structure and a smaller rootlet; open mitosis with persistent mitotic spindle and phragmoplast at cell division; with cellulose-synthesizing rosettes; primary plasmodesmata between cells; multicellular with vegetative growth from api-

^{12.} ARCHAEPLASTIDA: *Mesostigma*: This genus belongs at the base of the Chlorophyta and Charophyta. It is unclear at this time whether it is a sister lineage to both, or whether it is basal in the Charophyta.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

ARCHAEPLASTIDA cont'd.

••• Streptophytina cont'd.

cal cell at end of branches and main axis; sexual reproduction with öogamy and egg jacket, and sperm twisted; cell divisions patterned in three-dimensional space.

- •••• Charales Lindley, 1836 [Charophytae Engler, 1887]
 - Thallus attached to substrate with rhizoids; thallus a central axis of multinucleate internodal cells, with whorls of branchlets radiating from mono-nucleate cells at nodes; calcium carbonate accumulates in cell wall of many species; haplobiontic life cycle; sexual reproduction öogamous with sperm cells; differentiated sperm- and egg-producing organs. *Chara, Nitella*.
- •••• Plantae Haeckel, 1866 [Cormophyta Endlicher, 1836; Embryophyta Endlicher, 1836, emend. Lewis and McCourt, 2004] Flagellar basal bodies, when present, with distinctive multilayered structure of microtubules and cytoskeletal anchor; open mitosis with phragmoplast at cytokinesis; plasmodesmata and other characteristic cell–cell junctions; pyrenoids absent in most members; diplobiontic life cycle, with vegetative propagation possible in many; alternation of generations, with fertilization of egg by sperm inside protective test; embryology with tissue differentiation coordinated by hormones; differentiated sperm and egg cells, may be on different sexual individuals, on different organs of the same individual, or in the same organ. Subdivisions not shown.

CHROMALVEOLATA Adl et al., 2005 (P?)

Plastid from secondary endosymbiosis with an ancestral archaeplastid; plastid secondarily lost or reduced in some; with tertiary reacquisition of a plastid in others. **Note 13**.

- Cryptophyceae Pascher 1913, emend. Schoenichen, 1925 [Cryptophyta Cavalier-Smith, 1986]
 - Autotrophic, mixotrophic, and heterotrophic with ejectisomes (trichocysts); cristae flat tubules; two flagella emerging subapically or dorsally, from right side of an anterior depression (vestibulum); longitudinal grooves (furrows) and/or tubular channels (gullets) or a combination of both, extending posteriorly from the vestibublum on the ventral side; gullet/furrow complexes lined with large ejectisomes; with or without plastid–nucleomorph complex; chloroplasts when present contain chlorophylls a and c_2 and phycobiliproteins, located in thylakoid lumen; chloroplast covering comprised of inner and superficial periplast components; (heterotrophic species formerly known as *Chilomonas* have been distributed to other genera); some genera diplomorphic (e.g. *Cryptomonas*, *Proteomonas*). **Note 14**.
- **13.** CHROMALVEOLATA: This proposed union of Alveolata Cavalier-Smith, 1991 with the Cryptophyceae, Haptophyta, and Stramenopiles (the Chromista *sensu* Cavalier-Smith, 1998) is tentative, based on arguments by Keeling (2003), Harper et al. (2005), and references therein. It remains unclear whether Ciliophora had an ancestral Archaeplastida endosymbiont.
- 14. CHROMALVEOLATA: Cryptophyceae: Ultrastructural features (see Kugrens et al. 2002): Associations formed from secondary endosymbioses with eukaryotes, the symbiont located in a membrane-bound compartment (periplastidial space), which is formed by an extension of the nuclear envelope (chloroplast or periplastidial endoplasmic reticulum). Periplastidial space contains one or two plastids, one or two nucleomorph(s) (reduced red algal nucleus), and starch grains. Single mitochondrion often extensive and reticulate in shape; cristae flattened. Two sizes of extrusive organelles (ejectisomes) coiled into ribbons and consist of a large and small component. Large and small ejectisomes associated with cell surface beneath the plasma membrane. Geometrically positioned plates or a continuous sheet of protein material always underlies the membrane; in some genera also occurring outside the plasma membrane. Small scales and/or fibrillar material may be attached to cell body and sometimes the flagella. Both flagella with stiff bipartite hairs. Basal body apparatus usually with striated or multi-lamellate root structure (rhizostyle) and several microtubular roots. Thylakoids usually in pairs, sometimes in threes, with phycobiliproteins in thylakoid lumen.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

- •• Cryptomonadales Pascher, 1913
 Chloroplasts or leucoplasts present. Campylomonas, Chroomonas, Cryptomonas, Hemiselmis, Rhodomonas.
- •• Goniomonadales Novarino and Lucas, 1993 Chloroplasts absent. *Goniomonas*.
- Haptophyta Hibberd, 1976, emend. Edvardsen and Eikrem, 2000 Solitary cells or in colonies or filaments; motile cells often possessing a haptonema (filiform appendage situated between flagella); characteristic cell covering of unmineralized and/or mineralized scales; motile cells with two flagella generally without appendages, inserted apically or subapically in a papilla or groove, or emerge from a papilla; 1–4 chloroplasts with thylakoids in groups of three; chloroplasts with immersed or bulging pyrenoid; nucleus usually posterior; outer membrane of nuclear envelope continuous with outer chloroplast membrane; major pigments chlorophylls a, c₁, and c₂ (c₃ in prymnesiophyceans), β-carotene, diadinoxanthin, and diatoxanthin; chrysolaminarin often the main storage product; eyespots recorded in a few genera (e.g. Pavlova, Diacronema); life cycles include either single phases or alternating stages; in those with alternating stages, palmelloid (colonial) or filamentous stages alternate with motile stages; sexual reproduction may be common in prymnesiophyceans; autotrophic, mixotrophic or heterotrophic cells with some species ichthyotoxic. Note 15.
 - •• Pavlovophyceae Cavalier-Smith, 1986, emend. Green and Medlin, 2000 Biflagellate with unequal flagella inserted subapically or laterally; scales absent; shorter flagellum may have a swelling with densely staining projections on the side adjacent to the cell; haptonema short, tapered, and non-coiling; single chloroplast, sometimes with an eyespot beneath the short flagellum. *Diacronema*, *Exanthemachrysis*, *Pavlova*.
 - •• Prymnesiophyceae Hibberd, 1976
 Unicellular or colonial flagellates with mineralized and/or unmineralized scales covering the cells; some species exhibit two stages in the life cycle, with either a colonial or filamentous stage alternating with a flagellate stage; haptonema may be long and coiling to short and non-coiling; flagella of equal or subequal lengths inserted apically or subapically.
 - ••• Prymnesiales Papenfuss, 1955

 Motile or non-motile cells, sometimes forming colonies; usually with two flagella and a coiling or flexible haptonema; covering of organic scales, sometimes absent; some alternate stages reported. *Chrysochromulina, Prymnesium*.
 - ••• Phaeocystales Medlin, 2000

 Motile cells with two flagella and short non-coiling haptonema; one to four chloroplasts per cell; the cell covered with scales of two sizes; life cycle consisting of non-motile and motile stages; non-motile cells colonial and embedded in gelatinous material. *Phaeocystis*.

15. CHROMALVEOLATA: Haptophyta. Ultrastructural features: The haptonema typically consists of 6–7 microtubules surrounded by a sheath of endoplasmic reticulum and linked to basal body bases by fibrous structures. It may be long and coiling, short and flexible, or occasionally absent. One to four chloroplasts per cell, an encircling girdle lamella is absent. A peripheral endoplasmic reticulum (PER) is situated underneath the plasma membrane, absent in the region of flagellar insertion, but extends into the haptonema. The cell covering has 1-4 types of scales in layers, composed of organic microfibrils or calcified (coccoliths), the latter often occurring over unmineralized scales. The Golgi apparatus situated in the anterior end of the cell near the basal bodies has a fan-like arrangement of cisternae that are perpendicular to the long axis of the cell, and are involved in scale biosynthesis.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••• Isochrysidales Pascher, 1910

Motile or non-motile cells; haptonema rudimentary or absent; motile cells covered with small organic scales; non-motile cells sometimes covered with coccoliths. *Emiliania*, *Gephyrocapsa*, *Isochrysis*.

••• Coccolithales Schwarz, 1932

Cells with calcified organic scales during some stage of the life cycle; single or alternating stages in the life cycle; haptonema short or highly reduced; some species lack chloroplasts. *Balaniger*, *Calciosolenia*, *Coccolithus*, *Hymenomonas*, *Pleurochrysis*, *Reticulosphaera*, *Wigwamma*.

- Stramenopiles Patterson, 1989, emend. Adl et al., 2005
 Motile cells typically biflagellate, typically with heterokont flagellation (i.e. anterior flagellum with tripartite mastigonemes in two opposite rows, and a posterior flagellum usually smooth); tubular cristae; typically four microtubular kinetosome roots. Note 16.
 - Opalinata Wenyon, 1926, emend. Cavalier-Smith, 1997, emend. Adl et al., 2005 [Slopalinata Patterson, 1986] Pluriciliated with double-stranded transitional helix at the transitional region between kinetosome and cilium; evenly spaced cortical ridges underlain by microtubules, ranging from singlet to ribbons; cyst forming.

••• Proteromonadea Grassé, 1952

One or two anterior pairs of anisokont flagella; uninucleate; endobionts in intestinal tract of amphibians, reptiles, and mammals. *Karotomorpha, Proteromonas*.

••• Opalinea Wenyon, 1926

Multiflagellated cells with flagella originating from an anterior morphogenetic centre, the falx, and forming oblique longitudinal rows or files; microtubular ribbons supporting longitudinal pellicular ridges between flagellar rows; two to many monomorphic nuclei; life cycle, complex, with sexual processes induced by hormones of host and linked to the host's life cycle; endobionts in amphibians and some fish. *Cepedea*, *Opalina*, *Protoopalina*, *Protozelleriella*, *Zelleriella*.

- ••• Blastocystis Alexieff, 1911, emend. Brumpt, 1912
 Without flagella; anaerobic; mitochondria without typical enzyme activities and cytochromes; 2 or more nuclei; can be pathogenic. Blastocystis.
- •• Bicosoecida Grassé, 1926, emend. Karpov, 1998
 Biflagellate with or without tripartite mastigonemes; without plastids; phagotrophic with cytostome supported by broad microtubular rootlet; predominantly sedentary, often attach to substrate with posterior flagellum; with or without lorica, solitary, and colonial. Adriamonas, Bicosoeca, Cafeteria, Cyathobodo, Pseudobodo, Pseudobedo, Siluania.

16. CHROMALVEOLATA: Chromista/Stramenopile: The terms Heterokonta, Chromista, and Stramenopile have been used by different authors to include different groups. They have also been used both as formal and informal terms to refer to various clusters of lineages. Regarding the spelling of stramenopile, it was originally spelled stramenopile. The Latin word for "straw" is—stra mi ne us, a, um, adj. [stramen], made of straw—thus, it should have been spelled straminopile. However, Patterson (1989) clearly stated that this is a common name (hence, lower case, not capitalized) and as a common name, it can be spelled as Patterson chooses. If he had stipulated that the name was a formal name, governed by rules of nomenclature, then his spelling would have been an orthogonal mutation and one would simply correct the spelling in subsequent publications (e.g. Straminopiles). But, it was not Patterson's desire to use the term in a formal sense. Thus, if we use it in a formal sense, it must be formally described (and in addition, in Latin, if it is to be used botanically). However, and here is the strange part of this, many people liked the name, but wanted it to be used formally. So they capitalized the first letter, and made it Stramenopiles; others corrected the Latin spelling to Straminopiles.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

• Labyrinthulomycetes Dick, 2001

Production of an ectoplasmic network of branched, anastomosing, wall-less filaments via a specialized organelle known as the bothrosome; Golgi-derived scales; biflagellate zoospores with lateral insertion in many species.

- ••• Labyrinthulaceae Haeckel, 1868
 Spindle-shaped vegetative cells distributed in an extensive ectoplasmic net; zoospores with eyespots; sexual reproduction. *Labyrinthula*.
- ••• Thraustochytriaceae Sparrow, 1943
 Small ectoplasmic net; presence of interphase centrioles in vegetative cells; no sexual reproduction; no eyespots. *Althornia*, *Aplanochytrium*, *Elnia*, *Japonochytrium*, *Schizochytrium*, *Thraustochytrium*, *Ulkenia*.
- •• Hyphochytriales Sparrow 1960 Single anteriorly directed flagellum with mastigonemes.
 - Anisolpidiaceae Karling, 1943, emend. Dick, 2001
 Thallus holocarpic. Anisolpidium, Canteriomyces.
 - ••• Hyphochytridiomycetaceae Fischer, 1892, emend. Karling, 1939 Thallus eucarpic and polycentric. *Hyphochytrium*.
 - ••• Rhizidiomycetaceae Karling, 1943

 Thallus eucarpic and monocentric. *Latrostium, Rhizidiomyces, Rhizidiomycopsis*.
- •• Peronosporomycetes Dick, 2001 [Öomycetes Winter, 1897, emend. Dick, 1976] Haplomitic-B nuclear cycle; lysine synthesized via the DAP pathway; lanosterol directly from squalene oxide; zoospores biflagellate and heterokont but rarely uniflagellate; flagella anteriorly inserted; anteriorly directed flagellum shorter; transitional plate of kinetosome sitting above the plasma membrane with a central bead; kinetid base structure with six parts, including four roots; öogamous reproduction that results in the formation of thick-walled sexual spores known as öospores, due to contact between male and female gametangia; thallus mainly aseptate; cell wall of glucan-cellulose, may have minor amount of chitin. Achyla, Leptomitus, Peronospora, Pythiogeton, Rhipidium, Saprolegnia. Incertae sedis: Ciliomyces, Crypticola, Ectrogella, Eurychasma, Haptoglossa, Lagena, Lagenisma, Myzocytiopsis, Olpidiopsis, Pontisma, Pythiella, Rozellopsis, Sirolpidium.
- •• Actinophryidae Claus, 1874, emend. Hartmann, 1926
 Axonemal pseudopodia emerging from amorphous centrosome near nuclei; axonemal microtubules in double interlocking coils; single central nucleus or several peripheral nuclei; tubular cristae; two types of extrusomes for prey-capture along axopodia; cysts covered with siliceous elements; autogamy reported within spores. Actinophrys, Actinosphaerium.
- •• Bolidomonas Guillou and Chrétiennot-Dinet, 1999 [Bolidophyceae Guillou et al., 1999]

Naked, unicellular flagellates; chloroplast with girdle lamella; outer chloroplast endoplasmic reticulum membrane with direct membrane connection to the outer nuclear envelope membrane; plastid DNA with ring-type genophore; no eyespot; plastid pigments include chlorophylls a and c_{1-3} , fucoxanthin, 19'-butanoyloxyfucoxanthin, diatoxanthin, and diadinoxanthin; swimming cells with two flagella, one anteriorly directed and one posteriorly directed; no microtubular or fibrillar kinetosome roots; flagellar transitional helix absent; no paraflagellar rod. *Bolidomonas*.

• Chrysophyceae Pascher, 1914

Predominately flagellates but also capsoid, coccoid, filamentous, and parenchymatous forms; cell coverings, when present, include organic scales, silica scales, organic lorica, and cellulose cell wall; chloroplast with girdle lamella; outer

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

• Chrysophyceae cont'd.

chloroplast endoplasmic reticulum membrane with direct membrane connection to the outer nuclear envelope membrane; plastid DNA with ring-type genophore; eyespots present or absent; plastid pigments include chlorophylls a and $c_{1,\,2}$, fucoxanthin, violaxanthin, anthaxanthin, and neoxanthin; swimming cells with two flagella, one anteriorly directed, one laterally directed; tripartite mastigonemes with short and long lateral hairs on the shaft; kinetosome usually with four microtubular kinetosome roots and one large striated root (rhizoplast); flagellar transitional helix with 4–6 gyres located above the major transitional plate; no paraflagellar rod.

••• Chromulinales Pascher, 1910

Swimming cells with only one flagellum visible by light microscopy; four microtubular kinetosome roots. *Chromulina*, *Chrysomonas*.

- ••• *Hibberdia* Andersen, 1989 [Hibberdiales Andersen, 1989] (M) Swimming cells with only one flagellum visible by light microscopy; three microtubular kinetosome roots. *Hibberdia magna*.
- ••• Ochromonadales Pascher, 1910 Swimming cells with two flagella visible by light microscopy. *Ochromonas*.

• Dictyochophyceae Silva, 1980

Single cells, colonial flagellates or amoebae; cells naked, with organic scales or with siliceous skeleton; chloroplasts, when present, with girdle lamella; plastid DNA with scattered granule-type genophore; no eyespot; plastid pigments include chlorophylls a and $c_{1,2}$, fucoxanthin, diatoxanthin, and diadinoxanthin; swimming cells usually with one flagellum, anteriorly directed and bearing tripartite tubular hairs; kinetosomes adpressed to nucleus; no microtubular or fibrillar kinetosome roots; flagellar transitional helix present or absent; when present, with 0–2 gyres located below the major transitional plate; paraflagellar rod present.

- ••• Dictyochales Haeckel, 1894
 Silica skeleton present on at least one life stage; with chloroplasts. *Dictyocha*.
- ••• Pedinellales Zimmermann, Møestrup, and Hällfors, 1984 Naked, organically scaled or loricate flagellates; with or without chloroplasts. Actinomonas, Apedinella, Ciliophrys, Mesopedinella, Palatinella, Pedinella, Pseudopedinella, Pteridomonas.
- ••• Rhizochromulinales O'Kelly and Wujek, 1994
 Vegetative cells amoeboid; zoospore flagellated; with chloroplasts. *Rhizochromulina*.

• Eustigmatales Hibberd, 1981

Coccoid organisms, single cells or colonies; cell walls present; chloroplast without girdle lamella; outer chloroplast endoplasmic reticulum membrane with direct membrane connection to the outer nuclear envelope membrane; plastid DNA with ring-type genophore; eyespot present but located outside of the chloroplast; plastid pigments include chlorophyll a, violaxanthin, and vaucherioxanthin; swimming cells with two flagella, one anteriorly directed and one posteriorly directed; four microtubular kinetosome roots and one large striated kinetosome root (rhizoplast); flagellar transitional helix with six gyres located above the major transitional plate; no paraflagellar rod. Botryochloropsis, Eustigmatos, Monodopsis, Nannochloropsis, Pseudocharaciopsis, Vischeria.

• Pelagophyceae Andersen and Saunders, 1993

Flagellate, capsoid, coccoid, sarcinoid or filamentous; cells naked or with organic thecae or cell walls; chloroplasts with girdle lamella; plastid DNA with scattered granule-type genophore; no eyespot; plastid pigments include chlorophylls a and $c_{1,2}$, fucoxanthin, 19'-hexanoyloxyfucoxanthin, 19'-butanoyloxyfucoxanthin,

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

• Pelagophyceae cont'd.

diatoxanthin, and diadinoxanthin; swimming cells with 1–2 flagella; anteriorly directed flagellum bearing bipartite or tripartite tubular hairs, second flagellum, when present, directed posteriorly; kinetosome(s) adpressed to nucleus; no microtubular or fibrillar kinetosome roots on uniflagellate cells; four microtubular roots on biflagellate cells; flagellar transitional helix present or absent; when present, with two gyres located below the major transitional plate; paraflagellar rod present or absent.

••• Pelagomonadales Andersen and Saunders, 1993 Flagellate or coccoid organisms; when flagellate, a single flagellum without a

second kinetosome; no kinetosome roots. Aureococcus, Aureoumbra, Pelagococcus, Pelagomonas.

••• Sarcinochrysidales Gayral and Billard, 1977

Sarcinoid, capsoid, flagellate or filamentous; cells typically with organic cell wall; flagellate cells with two flagella and four microtubular kinetosome roots. *Ankylochrisis, Nematochrysopsis, Pulvinaria, Sarcinochrysis.*

• Phaeothamniophyceae Andersen and Bailey in Bailey et al., 1998

Filamentous, capsoid, palmelloid, or coccoid; cells covered with an entire or two-pieced cell wall; chloroplast with girdle lamella; chloroplast endoplasmic reticulum membrane with direct membrane connection to the outer nuclear envelope membrane; plastid DNA with ring-type genophore; eyespots present; plastid pigments include chlorophylls *a* and *c*, fucoxanthin, heteroxanthin, diatoxanthin, and diadinoxanthin; swimming cells with two flagella, anteriorly directed flagellum bearing tripartite tubular hairs, posteriorly directed flagellum without tripartite hairs; four microtubular kinetosome roots but no striated kinetosome root (rhizoplast); flagellar transitional helix with 4–6 gyres located above the major transitional plate; no paraflagellar rod.

••• Phaeothamniales Bourrelly, 1954, emend. Andersen and Bailey in Bailey et al., 1998 (R)

Distinguished from the Pleurochloridales based on molecular phylogenetic analyses. *Phaeothamnion*.

••• Pleurochloridales Ettl, 1956 (R)

Distinguished from the Phaeothamniales based on molecular phylogenetic analyses. *Pleurochloridella*.

• Pinguiochrysidales Kawachi, Inouye, Honda, O'Kelly, Bailey, Bidigare, and Andersen, 2003

Flagellate or coccoid organisms; cells naked or enclosed in mineralized lorica; chloroplast with girdle lamella; outer chloroplast endoplasmic reticulum membrane with direct membrane connection to the outer nuclear envelope membrane; plastid DNA with scattered granule-type genophore; eyespots absent; plastid pigments include chlorophylls a and $c_{1,\,2}$, fucoxanthin, and violaxanthin; swimming cells with one or two flagella; tripartite hairs present or absent on immature flagellum; 3–4 microtubular kinetosome roots and one large striated kinetosome root (rhizoplast); flagellar transitional helix with two gyres located below the major transitional plate; no paraflagellar rod. Glossomastix, Phaeomonas, Pinguiochrysis, Pinguiococcus, Polypodochrysis.

• Raphidophyceae Chadefaud, 1950, emend. Silva, 1980

Naked flagellates; chloroplast with or without girdle lamella; outer chloroplast endoplasmic reticulum membrane with no (or very weak) direct membrane connection to the outer nuclear envelope membrane; plastid DNA with scattered granule-type genophore; eyespots absent; plastid pigments include chlorophylls a and $c_{1,2}$; carotenoid composition distinctly different between marine (M) and freshwater (FW) species—fucoxanthin (M), violaxanthin (M), heteroxanthin (FW),

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

- Raphidophyceae cont'd.
 - vaucherioxanthin (FW); swimming cells with two flagella, one anteriorly directed and bearing tripartite tubular hairs, one posteriorly directed and lacking tripartite hairs; microtubular kinetosome roots present but poorly characterized; one large striated kinetosome root (rhizoplast) present; flagellar transitional helix absent; no paraflagellar rod. *Chattonella*, *Fibrocapsa*, *Goniostomum*, *Haramonas*, *Heterosigma*, *Merotricha*, *Olisthodiscus*, *Vacuolaria*.
- •• Schizocladia Kawai, Maeba, Sasaki, Okuda, and Henry, 2003 (M)
 Branched filamentous growth; cell wall with alginates but lacking cellulose and plasmodesmata; anterior flagellum with tripartite mastigonemes, and posterior flagellum without mastigonemes; kinetosome transitional helix with 5–6 gyres located above the transitional plate; microtubular and striated roots undescribed; chloroplast with girdle lamella; outer chloroplast endoplasmic reticulum membrane with direct membrane connection to the outer nuclear envelope membrane; plastid-DNA with ring-type genophore; eyespot present; plastid pigments incude chlorophylls a and c and fucoxanthin (HPLC data absent); storage product unknown. Schizocladia ischiensis.
- Synurales Andersen, 1987
 - Predominately flagellates, benthic palmelloid colonies known; cells covered with bilaterally symmetrical silica scales; chloroplast with girdle lamella; chloroplast endoplasmic reticulum membrane with no (or very weak) direct membrane connection to the outer nuclear envelope membrane; plastid DNA with ring-type genophore; eyespots absent; plastid pigments include chlorophylls a and c_1 , fucoxanthin, violaxanthin, anthaxanthin, and neoxanthin; swimming cells usually with two anteriorly directed flagella, one bearing tripartite tubular hairs; tripartite hairs with short and long lateral hairs on the shaft; two microtubular kinetosome roots and one large striated kinetosome root (rhizoplast); flagellar transitional helix with 6–9 gyres located above the major transitional plate, no paraflagellar rod. *Chrysodidymus, Mallomonas, Synura, Tesselaria*.
- •• Xanthophyceae Allorge, 1930, emend. Fritsch, 1935 [Heterokontae Luther 1899; Heteromonadea Leedale, 1983; Xanthophyta Hibberd, 1990] Predominately coccoid or filamentous, rarely amoeboid, flagellate or capsoid; cell walls (probably cellulose) typical, either entire or H-shaped bisectional walls; chloroplast with girdle lamella; outer chloroplast endoplasmic reticulum membrane with direct membrane connection to the outer nuclear envelope membrane; plastid DNA with ring-type genophore; eyespots present or absent; plastid pigments include chlorophylls a and $c_{1,2}$, violaxanthin, heteroxanthin, and vaucherioxanthin; swimming cells with two flagella, one anteriorly directed and bearing tripartite tubular hairs, one posteriorly directed and lacking tripartite hairs; four microtubular kinetosome roots and one large striated kinetosome root (rhizoplast); flagellar transitional helix with six apparently double gyres located above the major transitional plate; no paraflagellar rod. **Note 17**.
 - ••• Tribonematales Pascher, 1939
 - Filamentous, coccoid, and capsoid forms, sometimes becoming parenchymatous or multinucleate with age; elaborate reproductive structures lacking; cell walls, when present, either with H-shaped overlapping cell wall pieces or with complete or entire cell walls. *Botrydium, Bumilleriopsis, Characiopsis, Chloromeson, Heterococcus, Ophiocytium, Sphaerosorus, Tribonema, Xanthonema*.
- 17. CHROMALVEOLATA: Xanthophyceae: Traditionally, subdivisions were based upon gross morphology and life stage (e.g. amoeboid = Rhizochloridales, coccoid = Mischococcales). However, molecular studies show that for all those examined to date, the traditional orders do not form monophyletic groups. Therefore, the classification herein is reduced to two groups until the matter is resolved. There is some evidence that the algae with H-shaped cell walls constitute one lineage of the Tribonematales and those with entire cell walls constitute a second lineage, but this observation has not yet been put forward in a classification.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••• Vaucheriales Bohlin, 1901

Siphonous filaments, with elaborate sexual reproductive structures (antheridia, öogonia). *Vaucheria*.

• Phaeophyceae Hansgirg, 1886

Filamentous, syntagmatic or parenchymatous; cell wall present, containing alginate compounds and cellulose; plasmodesmata or pores between cells in parenchymatous forms; chloroplasts with girdle lamella; outer chloroplast endoplasmic reticulum membrane with direct membrane connection to the outer nuclear envelope membrane; plastid DNA with ring-type genophore; eyespots present or absent; plastid pigments include chlorophylls a and $c_{1,2}$, fucoxanthin, and violaxanthin; swimming cells with two flagella usually inserted laterally, one anteriorly directed, one posteriorly directed; usually four microtubular kinetosome roots but no striated kinetosome root (rhizoplast); flagellar transitional helix typically with 6 gyres located above the major transitional plate; no paraflagellar rod; little to substantial tissue differentiation occurring in parenchymatous forms. Several subdivisions, separated on the basis of life history and gene sequence information, but taxonomic classification still in flux.

Ascoseirales Petrov, 1964

Sporophyte parenchymatous, with intercalary growth; several scattered discoid plastids with no pyrenoid; heteromorphic life cycle, gametophyte not free-living; isogamous sexual reproduction. *Ascoseira*.

••• Cutleriales Bessey, 1907

Gametophyte (larger) and sporophyte parenchymatous; several scattered discoid plastids with no pyrenoid; gametophyte with trichothallic growth, sporophyte with apical growth; heteromorphic life cycle; anisogamous sexual reproduction. *Cutleria* (P), *Microzonia*, *Zanardinia*.

••• Desmarestiales Setchell and Gardner, 1925

Gametophyte small and filamentous, sporophyte larger and pseudo-parenchymatous; several scattered discoid plastids with no pyrenoid; trichothallic growth; heteromorphic life cycle; öogamous sexual reproduction. *Arthrocladia*, *Desmarestia* (P), *Himantothallus*, *Phaeurus*.

••• Dictyotales Bory de Saint-Vincent, 1828

Gametophyte and sporophyte parenchymatous, with apical or marginal growth; several scattered discoid plastids and no pyrenoid; isomorphic life cycle; öogamous sexual reproduction. *Dictyota*, *Dilophus*, *Lobophora*, *Padina*, *Stypopodium*, *Taonia*, *Zonaria*.

••• Ectocarpales Bessey, 1907, emend. Silva and Reviers, 2000

Gametophyte and sporophyte uniseriate filaments (branched or unbranched), with diffuse growth; one or more ribbon-shaped plastids with pyrenoid; isomorphic life cycle; isogamous, anisogamous or öogamous sexual reproduction. *Acinetospora*, *Adenocystis*, *Chordaria*, *Ectocarpus*, *Scytosiphon*. Incertae sedis: *Asterocladon*, *Asteronema*.

••• Fucales Bory de Saint-Vincent, 1927

Sporophyte parenchymatous, with apical cell growth; several scattered discoid plastids and no pyrenoid; diploid life stage only, meiosis produces gametes; (mostly) öogamous sexual reproduction. *Ascophyllum, Bifurcaria, Cystoseira, Druvillaea, Fucus, Hormosira, Sargassum, Turbinaria.*

••• Ishige Yendo, 1907 [Ishigeacea Okamura, 1935; Ishigeales Cho, Lee, and Boo, 2004]

Isomorphic alternation of generations, with apical cell growth; scattered discoid plastids with no pyrenoids; terminal unilocular sporangia, or uniseriate plurilocular sporangia; cortex pseudoparenchymatous with assimilatory filaments phaeophycean hairs in cryptostigmata. *Ishige*.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••• Laminariales Migula, 1908

Gametophyte small and filamentous with apical growth; sporophyte large and parenchymatous, with intercalary growth; several scattered discoid plastids with no pyrenoid; heteromorphic life cycle; öogamous sexual reproduction (eggs sometimes flagellate). Akkesiophycus, Alaria, Chorda, Costaria, Laminaria, Lessonia, Pseudochoda.

••• Scytothamnales Peters and Clayton, 1998

Gametophyte large and parenchymatous, with intercalary growth; sporophyte small and filamentous, with apical growth; 1 or more stellate or axial plastids with pyrenoid; heteromorphic alternation of generations; anisogamous sexual reproduction. *Scytothamnus*, *Splachnidium*, *Stereocladon*.

••• Sphacelariales Migula, 1908

Gametophyte and sporophyte branched multiseriate filaments, with apical growth; several scattered discoid plastids and no pyrenoid; (usually) isomorphic alternation of generations; isogamous, anisogamous or öogamous sexual reproduction. *Chaetopteris*, *Halopteris*, *Onslowia*, *Sphacelaria*, *Stypocaulon*, *Verosphacella*.

••• Sporochnales Sauvageau, 1926

Gametophyte and larger sporophyte pseudoparenchymatous, with trichothallic growth; several scattered discoid plastids with no pyrenoid; heteromorphic alternation of generations; öogamous sexual reproduction. *Bellotia*, *Carpomitra*, *Nereia*, *Sporochonus*, *Tomaculopsis*.

••• Syringodermatales Henry, 1984

Gametophyte 2–4 cells, sporophyte parenchymatous with apical and marginal growth; several scattered discoid plastids with no pyrenoid; heteromorphic alternation of generations; gametophyte not free-living; isogamous sexual reproduction. *Syringoderma*.

••• Tilopteridales Bessey, 1907

Isomorphic alternation of generations with polystichous construction of the thallus, which grows by a trichothallic meristem; several scattered plastids, without pyrenoids; öogamous sexual reproduction. *Halosipon*, *Haplospora*, *Phaeosiphoniella*, *Phyllaria*, *Tilopteris*.

•• Bacillariophyta Haeckel, 1878 [Diatomea Dumortier, 1821]

Vegetative cells cylindrical with a circular, elongate or multipolar cross-section, lacking any trace of flagella, surrounded by a cell wall composed of tightly integrated silicified elements; cell wall comprised of two valves (at each end of the cell) and several girdle bands (hoops or segments covering the cylindrical "girdle" lying between the valves); chloroplasts usually present, bounded by four membranes, and with lamellae of three thylakoids and a ring nucleoid (rarely multiple nucleoids); flagellate cells (only present as the sperm of centric lineages) bearing a single anterior flagellum with a 9+0 axoneme and mastigonemes; life cycle diplontic and of unique pattern: slow size reduction (\sim years) during the vegetative phase, caused by an unusual internal wall morphogenesis, alternating with rapid (\sim days) size restitution via a growth phase (auxospore). **Note 18**.

18. CHROMALVEOLATA: Bacillariophyta: Traditionally, diatoms ($\gg 10^5$ species) are classified into "centric" and "pennate" on the basis of pattern (radial organization versus bilateral organization), pattern centre (ring-like annulus versus elongate sternum), and sexual reproduction (öogamous versus morphologically isogamous) (Round, Crawford, and Mann 1990). Molecular data (Kooistra et al. 2003; Medlin and Kaczmarska 2004) show the centrics as a whole to be paraphyletic, but relationships between the principal groups, and whether particular groups are monophyletic or paraphyletic, is currently unclear. Several major molecular clades are cryptic, with no or few morphological or life history traits that can be convincingly argued to be synapomorphies.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••• Coscinodiscophytina Medlin and Kaczmarska, 2004 (P)

Valve outline circular (rarely elliptical); valve pattern radiating from a central or subcentral circular annulus; rimoportulae usually present; girdle bands hoop-like or segmental; sexual reproduction öogamous, with non-motile eggs and uniflagellate sperm; auxospore with scales but no band-like elements; many small chloroplasts.

•••• Paralids Mann in Adl et al., 2005 (R)

Chain-forming, heavily silicified; valves circular, radially symmetrical; rimoportulae or tube processes small, restricted to the mantle; girdle bands hoop-like. *Paralia*.

•••• Melosirids Mann in Adl et al., 2005 (R)

Usually chain forming; valves circular, radially symmetrical; rimoportulae small, scattered on the valve face or marginal; girdle bands hoop-like or segmental. *Aulacoseira*, *Melosira*, *Stephanopyxis*.

•••• Coscinodiscids Mann in Adl et al., 2005 (R)

Solitary; valves generally circular, radiating from a central, subcentral or submarginal circular annulus; rimoportulae central, scattered on the valve face or marginal; girdle bands hoop-like. *Actinoptychus, Coscinodiscus*.

•••• Arachnoidiscids Mann in Adl et al., 2005 (R)

Solitary, heterovalvar; valves circular, radially symmetrical; valve centre with radial slits (apparently modified rimoportulae); girdle bands hoop-like. *Arachnoidiscus*.

•••• Rhizosolenids Mann in Adl et al., 2005 (R)

Chain-forming, rarely solitary; valves circular, radially symmetrical or with the pattern centre displaced towards one side; rimoportula single, associated closely with the annulus, sometimes developed into a spine; girdle bands segmental. *Guinardia*, *Leptocylindrus*, *Rhizosolenia*.

•••• Corethrids Mann in Adl et al., 2005 (R)

Solitary; valves circular; radially symmetrical; articulating spines secreted from around the valve margin; rimoportulae absent; girdle bands segmental. *Corethron*.

••• Bacillariophytina Medlin and Kaczmarska, 2004

Valve outline bipolar or multipolar, sometimes circular; valve pattern radiating from a central circular or elongate annulus or from a sternum; areas of special pores or slits often present, involved in mucilage secretion; rimoportulae present or absent; girdle bands usually hoop-like; sexual reproduction öogamous (with non-motile eggs and uniflagellate sperm) or isogamous (gametes without flagella, amoeboid); auxospore usually with band-like elements (perizonium or properizonium); chloroplasts many, few or one.

•••• Mediophyceae Jousé and Proshkina-Lavrenko in Medlin and Kaczmarska, 2004 (P)

Valve outline bipolar or multipolar, sometimes (secondarily?) circular; valve pattern radiating from a central circular or elongate annulus; rimoportulae central or marginal; sexual reproduction öogamous; auxospore with band-like elements (properizonium) or scales; chloroplasts usually many, small. *Chaetoceros, Cymatosira, Ditylum, Odontella, Skeletonema, Thalassiosira*.

•••• Bacillariophyceae Haeckel, 1878

Valve outline almost always bipolar; valve pattern organized bilaterally about an elongate axial rib (sternum), as in a feather; rimoportulae gen-

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

•••• Bacillariophyceae cont'd.

erally only one or two per valve or none, sometimes accompanied or (?) replaced by special slits (the "raphe") involved in motility; sexual reproduction morphologically isogamous (although sometimes with behavioural differentiation), involving gametangiogamy; auxospores usually with band-like elements in two series (transverse and longitudinal), forming a "perizonium"; chloroplasts usually only 1, 2 or a few and large, but sometimes many and small. *Asterionella*, *Eunotia*, *Navicula*, *Nitzschia*, *Rhaphoneis*.

• Alveolata Cavalier-Smith, 1991

Cortical alveolae; alveolae sometimes secondarily lost; with ciliary pit or micropore; cristae tubular or ampulliform.

• Dinozoa Cavalier-Smith, 1981, emend. Cavalier-Smith and Chao, 2004, emend. Adl et al., 2005

Usually with extranuclear spindle within cytoplasmic channels through the nucleus; cortical alveoli typically discrete and inflated; often with bipartite trichocysts with a dense square-sectioned basal rod and twisted hollow trichocyst filaments.

••• Dinoflagellata Bütschli, 1885, emend. Fensome, Taylor, Sarjeant, Norris, Wharton, and Williams, 1993

Cells with two flagella in the motile stage, one transverse and one longitudinal; typically, transverse flagellum ribbon like, with multiple waves beating to the cell's left, and longitudinal flagellum beating posteriorly, with only one or few waves; typically with dinokaryotic nucleus that lacks histones, and chromosomes that remain condensed during interphase.

•••• Dinophyceae Pascher, 1914

With a dinokaryon through the entire life cycle; cell cortex (amphiesma) containing alveolae (amphiesmal vesicles) that may or may not contain cellulosic thecal plates, the pattern thus formed (i.e. tabulation) being a crucial morphological criterion in recognizing affinities among dinophyceans.

•••• Gymnodiniphycidae Fensome et al., 1993

With numerous amphiesmal vesicles, arranged non-serially or in more than six latitudinal series or with the pellicle as the principal amphiesmal element or the amphiesmal structure uncertain but not comprising a theca divisible into six or fewer latitudinal plates. *Amphidinium*, *Gymnodinium*, *Ptychodiscus*, *Symbiodinium*, *Woloszynskia*.

•••• Peridiniphycidae Fensome et al., 1993

With a tabulation that accords with, or derives from, a pattern in which there are five or six latitudinal plate series; sagittal suture lacking. Alexandrium, Amphidinopsis, Amphidoma, Blepharocysta, Ceratium, Crypthecodinium, Gonyaulax, Heterocapsa, Peridinella, Peridinium, Pfiesteria, Pyrocystis.

- ••••• Dinophysiphycidae Möhn, 1984, emend. Fensome et al., 1993 With a cingulum, sulcus, and sagittal suture. Fossil taxa. *Dinophysis*, *Triposolenia*.
- ••••• Prorocentrales Lemmermann, 1910 [Prorocentrophycidae Fensome et al., 1993]

Without cingulum or sulcus; flagella apical, one wavy and one not; wavy flagellum clearly homologous with transverse flagellum of other dinoflagellates; thecal plates. Fossils unknown. *Prorocentrum*.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

- Phytodiniales Christensen, 1962, emend. Loeblich, 1970
 Principal life cycle stage a non-calcareous coccoid stage (vegetative cyst) or continuous-walled multicellular stage or an amoeboid stage present in a life cycle that also includes a coccoid stage. Fossils unknown. *Dinothrix*, *Hemidinium*.
- •••• Blastodiniales Chatton, 1906 [Blastodiniphyceae Fensome et al., 1993] Parasitic with dinokaryon during part of life cycle only; not highly vacuolated. Fossils unknown. *Crepidoodinium*, *Dissodinium*.
- •••• Noctilucales Haeckel, 1894 [Noctiluciphyceae Fensome et al., 1993] Dinokaryon during part of life cycle only; principal life cycle stage comprising a large free-living motile cell inflated by vacuoles. Fossils unknown. *Köfoidinium*, *Noctiluca*.
- •••• Syndiniales Loeblich III, 1976
 With motile cells (i.e. dinospores or gametes) with a dinokont arrangement of flagella, and in which the nucleus possesses histones. *Amoebophrya, Duboscquella, Merodinium, Syndinium*.
- ••• Oxyrrhis Dujardin, 1841 [Oxyrrhinaceae Sournia, 1984] (M)
 Without true cingulum and sulcus; intranuclear mitotic spindle; with amphiesmal vesicles and trichocysts; flagella inserted laterally. Oxyrrhis marina.
- ••• Perkinsidae Levine, 1978, emend. Adl et al., 2005

 Trophozoites parasitic, dividing by successive binary fissions; released trophozoites (termed hypnospores) developing outside host to form zoospores via the formation of zoosporangia or morphologically undifferentiated mononucleate cells via a hypha-like tube; zoospores with two flagella; apical organelles including an incomplete conoid (open along one side), rhoptries, micronemes, and micropores, and a microtubular cytoskeleton with both an anterior and posterior polar ring. Parvilucifera, Perkinsus.
- •• Apicomplexa Levine, 1980, emend. Adl et al., 2005

 At least one stage of the life cycle with flattened subpellicular vesicles and an apical complex consisting of one or more polar rings, rhoptries, micronemes, conoid, and subpellicular microtubules; sexuality, where known, by syngamy followed by immediate meiosis to produce haploid progeny; asexual reproduction of haploid stages occurring by binary fission, endodyogeny, endopolyogeny, and/or schizogony; locomotion by gliding, body flexion, longitudinal ridges, and/or flagella. All parasitic except Colpodellida.
 - ••• Colpodellida Cavalier-Smith, 1993

 Predatory flagellates on other protists; apical complex and rostrum; two flagella in known species; tubular cristae; microtubules beneath alveolae; micropore; cysts at least in some species. *Alphamonas*, *Colpodella*, *Voromonas*.
 - ••• Aconoidasida Mehlhorn, Peters, and Haberkorn, 1980 (P)
 Incomplete apical complex (conoid not present) in asexual motile stages; some diploid motile zygotes (öokinetes) with conoid; macrogametes and microgametes forming independently; heteroxenous.
 - ••••• Haemospororida Danilewsky, 1885
 Zygote motile (öokinete) with conoid; flagellated microgametes produced by schizogonous process; öocyst formed in which sporozoites develop. Mesnilium, Plasmodium.
 - •••• Piroplasmorida Wenyon, 1926
 Piriform, round, rod-shaped or amoeboid; conoid and flagella absent in all stages; without öocyst; probably sexuality associated with the formation of large axopodium-like "Strahlen". *Babesia*, *Theileria*.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••• Conoidasida Levine, 1988 (P)

Complete apical complex, including a conoid in all or most asexual motile stages; flagella, where present, found exclusively in microgametes (male gametes); with the exception of microgametes, motility generally via gliding with possibility of body flexion and undulation of longitudinal pellicular ridges; heteroxenous or homoxenous. This group is not monophyletic. Subdivisions are artificial and unclear at this time.

•••• Coccidiasina Leuckart, 1879 (P)

Mature gametes develop intracellularly; microgamont typically produces numerous microgametes; syzygy absent; zygote rarely motile; sporocysts usually formed within öocysts. *Cryptosporidium*, *Cyclospora*, *Eimeria*, *Hepatozoon*.

•••• Gregarinasina Dufour, 1828 (P)

Mature gamonts usually develop extracellularly; syzygy of gamonts generally occurring with production of gametocyst; similar numbers of macrogametes and microgametes maturing from paired gamonts in syzygy within the gametocyst; syngamy of mature gametes leading to gametocyst that contains few to many öocysts, each of which contain sporozoites; sporocysts absent; asexual replication (merogony) absent in some species. *Acuta, Cephalolobus, Gregarina, Levinea, Menospora, Nematocystis, Nematopsis, Steinina, Trichorhynchus*.

•• Ciliophora Doflein, 1901 [Ciliata Perty, 1852; Infusoria Bütschli, 1887] Cells with nuclear dimorphism, including a typically polygenomic macronucleus and at least one diploid micronucleus; somatic kinetids having a postciliary microtubular ribbon arising from triplet 9, a kinetodesmal fibril or striated rootlet homologue arising near triplets 5–8, and a transverse microtubular ribbon arising in the

tubular ribbon arising from triplet 9, a kinetodesmal fibril or striated rootlet homologue arising near triplets 5–8, and a transverse microtubular ribbon arising in the region of triplets 4–6; sexual reproduction, when present, by conjugation typically with mutual exchange of haploid gametic nuclei that fuse to form the synkaryon or zygotic nucleus.

••• Postciliodesmatophora Gerassimova and Seravin, 1976

Somatic dikinetids with postciliodesmata, an arrangement of laterally overlapping postciliary microtubular ribbons associated with somatic dikinetids.

•••• Karyorelictea Corliss, 1974

Two to many macronuclei containing approximately, sometimes slightly more than, the diploid amount of DNA; macronuclei not dividing but replaced at cell division by division of micronuclei; major postciliary ribbons separated by two groups of microtubules. *Kentrophoros*, *Loxodes*, *Trachelocerca*.

•••• Heterotrichea Stein, 1859

Polygenomic macronucleus dividing by extra-macronuclear microtubules; major postciliary ribbons separated by one microtubule. *Blepharisma*, *Climacostomum*, *Folliculina*, *Stentor*.

••• Intramacronucleata Lynn, 1996

Polygenomic macronucleus dividing by intramacronuclear microtubules.

•••• Spirotrichea Bütschli, 1889 (R)

Conspicuous right and left oral and/or pre-oral ciliature; left serial oral polykinetids leading, usually clockwise into the oral cavity, either around a broad anterior end or along anterior and left margins of the body; DNA replication in the macronucleus accomplished by a complicated migrating structure called a replication band in all but Protocruziidia and Phacodiniidia.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••••• *Protocruzia* Faria da Cunha and Pinto, 1922 [Protocruziidia de Puytorac et al., 1987]

Nuclear apparatus a cluster of similar-sized nuclei with paradiploid macronuclei surrounding one or more micronuclei; each macronucleus possibly organized as a single composite chromosome. *Protocruzia*.

••••• *Phacodinium* Prowazek, 1900 [Phacodiniidia Small and Lynn, 1985]

Somatic kineties of linear polykinetids; each kinetosome bearing a kinetodesmal fibril, and sometimes accompanied by a partner kinetosome in some regions of the body, thus resembling a cirrus. *Phacodinium*.

••••• Licnophora Claparède, 1867 [Licnophoria Corliss, 1957]
Body hour-glass shaped, both ends discoid; posterior disc adhesive, with peripheral rings of cilia; an anterior disc with serial oral polykinetids around oral region; ectosymbionts, temporarily attached to substrate or host by ciliated, mobile, posterior adhesive disc. Licnophora.

•••• Hypotrichia Stein, 1859

Ventral ciliature as cirri and dorsal ciliature as somatic dikinetids with a kinetodesmal fibril; during morphogenetic processes, only the ventral somatic infraciliature either turned over or replaced. *Aspidisca*, *Discocephalus*, *Euplotes*.

•••• Oligotrichia Bütschli, 1887

Oral polykinetids forming an open circle, typically with an anterior "collar" and a more ventral "lapel"; somatic kineties reduced in number and variable in pattern, forming bristles, girdles, and spirals. *Cyrtostrombidium*, *Laboea*, *Strombidium*.

•••• Choreotrichia Small and Lynn, 1985

Oral polykinetids forming a closed circle around the anterior end of the body, several often extending into the oral cavity; planktonic tintinnids are all loricate. *Codonella*, *Favella*, *Strombidinopsis*, *Strobilidium*, *Tintinnopsis*.

•••• Stichotrichia Small and Lynn, 1985

Ventral ciliature as cirri and dorsal ciliature as somatic dikinetids without a kinetodesmal fibril; during morphogenetic processes, entire ventral and dorsal somatic infraciliature turned over or replaced. *Halteria*, *Oxytricha*, *Stylonychia*.

•••• Armophorea Jankowski, 1964 (R)

Typically dependent upon methanogenic endosymbionts, suggesting that hydrogenases within this group may be monophyletic; at present, only established on similarities in nuclear and hydrogenosomal gene sequences for several included genera.

•••• Armophorida Jankowksi, 1964

Body usually twisted to left, often much so; oral region spiralled, with series of 3–5 perioral or perizonal somatic kineties along its edge. *Caenomorpha*, *Metopus*.

•••• Clevelandellida de Puytorac and Grain, 1976

Oral polykinetids with a fourth row of kinetosomes directly opposite those of the third, leading to their designation as heteromembranelles. *Clevelandella*, *Nyctotherus*, *Paracichlidotherus*.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

•••• Odontostomatida Sawaya, 1940

Small body usually laterally compressed, often bearing spines; somatic kineties typically of dikinetids, sometimes separated into anterior and posterior segments; oral cilia inconspicuous, usually < 10 oral polykinetids. *Discomorphella*, *Epalxella*.

•••• Litostomatea Small and Lynn, 1981

Somatic monokinetids with two transverse ribbons, a slightly convergent postciliary ribbon, and a laterally directed kinetodesmal fibril that does not overlap those of adjacent kineties; one transverse ribbon tangential to the kinetosome perimeter and extending anteriorly into the somatic ridge to the left of the kinetid while the other transverse ribbon is radial to the kinetosome perimeter and extending transversely into the adjacent somatic ridge.

•••• Haptoria Corliss, 1974

Toxicysts typically between transverse microtubules of oral dikinetids; oral region on body surface bordered by oral dikinetids; typically free-living predators of other protists, both ciliates and flagellates. *Didinium*, *Dileptus*, *Lacrymaria*, *Lagynophrya*.

•••• Trichostomatia Bütschli, 1889

Toxicysts absent; oral region or oral cavity densely ciliated, sometimes organized as "polykinetids"; typically endosymbionts in vertebrates. *Balantidium*, *Entodinium*, *Isotricha*, *Macropodinium*, *Ophryoscolex*.

•••• Phyllopharyngea de Puytorac et al., 1974

The ciliated stage with somatic kineties mostly as monokinetids that each have a lateral kinetodesmal fibril, a reduced (or absent) transverse microtubular ribbon (usually accompanied by a left-directed transverse fibre), and a somewhat convergent postciliary ribbon extending posteriorly to accompany ribbons of more anterior monokinetids; ribbon-like subkinetal nematodesmata arising from somatic monokinetids and extending, either anteriorly or posteriorly, beneath kineties as subkinetal ribbons; oral region with radially arranged microtubular ribbons, called phyllae.

•••• Cyrtophoria Fauré-Fremiet in Corliss, 1956

Oral ciliature typically composed of one preoral kinety and two circumoral kineties; true cytostome and cytopharynx surrounded by phyllae and rod-shaped nematodesmata; macronucleus heteromerous. *Brooklynella*. *Chilodonella*.

•••• Chonotrichia Wallengren, 1895

Sedentary and sessile forms with somatic cilia only on walls of perioral funnel or cone-shaped region, which may be flared or compressed; oral cilia absent or only as several inverted kineties next to cytostome; cytopharyngeal apparatus with phyllae, but no nematodesmata; macronucleus, heteromerous; unequal cell division typical, producing "bud" for dispersal; most species are ectosymbionts on crustacean appendages. *Chilodochona*, *Spirochona*, *Vasichona*.

•••• Rhynchodia Chatton and Lwoff, 1939

Oral apparatus a suctorial tube supported by radially arranged microtubular ribbons (= phyllae) enclosing toxic (?) extrusomes as haptotrichocysts; predators of other ciliates or endosymbiotic parasites of bivalve molluscs and other marine invertebrates. *Ignotocoma*, *Sphenophrya*.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

•••• Suctoria Claparède and Lachmann, 1858

Mature sessile trophonts, usually non-ciliated, with one to many tentacles that ingest prey; extrusomes at tentacle tips as haptocysts; tentacles supported by an outer ring of microtubules and an inner set of microtubular ribbons (= phyllae); unequal cell division typical with ciliated, migratory dispersal "larvae" or swarmers typically bearing neither tentacles nor stalk. *Acineta*, *Discophrya*, *Ephelota*, *Tokophrya*.

•••• Nassophorea Small and Lynn, 1981

Somatic cilia as monokinetids and dikinetids; monokinetid with an anterior, tangential transverse ribbon, a divergent postciliary ribbon, and anteriorly directed kinetodesmal fibril; somatic alveoli well-developed with paired alveolocysts sometimes present; oral nematodesmata are well developed as the cyrtos in several groups. *Microthorax*, *Nassula*, *Pseudomicrothorax*.

•••• Colpodea Small and Lynn, 1981

Ciliated somatic dikinetids with one transverse ribbon and at least one postciliary microtubule associated with the anterior kinetosome and one transverse ribbon, one postciliary ribbon, and one kinetodesmal fibril associated with the posterior kinetosome; posterior transverse ribbons extending posteriorly and overlapping one another, the so-called transversodesmata. *Bursaria*, *Colpoda*, *Pseudoplatyophrya*, *Woodruffia*.

•••• Prostomatea Schewiakoff, 1896

Oral dikinetids, radial to tangential to perimeter of oral area with postciliary microtubular ribbons that extend laterally from each dikinetid, overlapping one another, and, in some species, forming a circular microtubular band that supports the wall of a shallow pre-cytostomal cavity; associated oral ciliature as two or more assemblages of dikinetids, often called a "brush". *Coleps, Cryptocaryon, Holophrya, Prorodon, Urotricha*.

•••• Plagiopylea Small and Lynn, 1985 (R)

Somatic monokinetid with divergent postciliary microtubular ribbon, well-developed anterior-directed kinetodesmal fibril and a transverse ribbon extending laterally or anteriorly; cytoplasm typically containing conspicuous "sandwich" assemblages of methanogens and ciliate hydrogenosomes. *Lechriopyla*, *Plagiopyla*, *Sonderia*, *Trimyema*.

•••• Oligohymenophorea de Puytorac et al., 1974

Oral apparatus with a distinct right paroral dikinetid and typically three left oral polykinetids, residing in a ventral oral cavity or deeper infundibulum (secondarily lost (?) in Astomatia and some astomatous Hymenostomatia); somatic monokinetids with anteriorly directed overlapping kinetodesmal fibrils, divergent postciliary ribbons, and radial transverse ribbons (except in Peniculia).

•••• Peniculia Fauré-Fremiet in Corliss, 1956

Somatic kinetids with tangential transverse ribbons; cortical alveoli lie between kinetosomal rows of oral polykinetids; extrusome as typical fibrous trichocyst. *Frontonia*, *Paramecium*, *Stokesia*.

•••• Scuticociliatia Small, 1967

Paroral dikinetid with a, b, and c segments; stomatogenesis by proliferation of kinetosomes from the c segment or a "scutico"-vestige posterior to a and b segments, with varying involvement

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••••• Scuticociliatia cont'd. of kinetosomes in the a and b segments. *Anophryoides, Cyclidium, Philasterides, Pleuronema*.

••••• Hymenostomatia Delage and Hérouard, 1896
Stomatogenesis by proliferation of kinetosomes typically in the mid-ventral region of the cell body, posterior to and some distance from the parental oral apparatus. *Colpidium*, *Glaucoma*, *Ichthyophthirius*, *Tetrahymena*.

••••• Apostomatia Chatton and Lwoff, 1928
Ciliates with a polymorphic life cycle; usually as epibionts of marine Crustacea; novel cortical structures including a "rosette" organelle and the x, y, and z kineties. Foettingeria, Gymnodinioides, Hyalophysa.

••••• Peritrichia Stein, 1859
Body divided into three major areas: (1) oral, with a prominent peristome bordered by a dikinetid file (haplokinety) and an oral polykinetid that both originate in an oral cavity (infundibulum) at the base of which is the cytostome; (2) aboral, including kinetosomes as part of the scopula, which secretes the stalk of sessile species; and (3) telotroch band, permanently ciliated on mobile species. Carchesium, Epistylis, Vorticella, Zoothamnium.

••••• Astomatia Schewiakoff, 1896
Without cytostome; symbionts typically found in the digestive tract of annelids, especially oligochaetes; cortical cytoskeleton in the anterior region may be conspicuously developed as an attachment structure(s). *Anoplophrya*, *Haptophrya*.

•• Incertae sedis Alveolata: Colponema, Ellobiopsidae.

EXCAVATA Cavalier-Smith, 2002, emend. Simpson, 2003 (P?)

Typically with suspension-feeding groove (cytostome) of the "excavate" type (i.e. homologous to that in *Jakoba libera*), presumed to be secondarily lost in many taxa; feeding groove used for capture and ingestion of small particles from feeding current generated by a posteriorly directed flagellum (F1); right margin and floor of groove are supported by parts of the R1 microtubular root, usually also supported by non-microtubular fibres (B fibre, composite fibre), and the left margin by the R2 microtubular root and C fibre. **Note 19**.

- Fornicata Simpson, 2003

 Lacking typical mitochondria; with single kinetid and nucleus, or one pair each of kinetids and nuclei; two to four kinetosomes per kinetid; usually with a feeding groove or cytopharyngeal tube associated with each kinetid. Apomorphy: "B fibre" origin against R2 microtubular root.
 - •• Eopharyngia Cavalier-Smith, 1993
 Single kinetid and nucleus, or one pair each of kinetids and nuclei; usually four kinetosomes and flagella per kinetid (occasionally three or two); usually with feeding grooves or cytopharyngeal tubes; mitochondrial homologues and dictyosomes inconspicuous/transient.
 - ••• Diplomonadida Wenyon, 1926, emend. Brugerolle et al., 1975
 With a pair of kinetids and two nuclei, each kinetid usually with four kinetosomes and flagella (sometimes three or two), or uncommonly, one kinetid and

^{19.} EXCAVATA: There is strong evidence that Heterolobosea and Euglenozoa are closely related, and they are often united as a taxon Discicristata. However, some molecular evidence suggests a specific relationship between Heterolobosea and Jakobida. The relationships amongst these three groups are unresolved at this time.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

••• Diplomonadida cont'd.

nucleus; at least one flagellum per kinetid directed posteriorly, associated with a cytopharyngeal tube or groove, or lying axially within the cell; various non-microtubular fibres supporting the nucleus and cytopharyngeal apparatus; free-living or endobiotic, often parasitic. Apomorphy: diplomonad cell organisation.

- •••• Hexamitinae Kent, 1880, emend. Brugerolle et al., 1975
 With functional feeding apparatuses; with an alternate genetic code
 (TAR codon for glutamine). Hexamita, Spironucleus, Trepomonas.
- •••• Giardiinae Kulda and Nohynkova, 1978

 Without functional feeding apparatuses; one posteriorly directed flagellum from each kinetid (F1?) running through the length of the cell axially and intra-cytoplasmic; all endobiotic. *Giardia, Octomitus*.
- •••• Incertae sedis Diplomonadida: Enteromonadida Brugerolle, 1975

 Traditionally considered ancestral to or a sister group of other diplomonads, now suspected to fall within Hexamitinae, but probably polyphyletic. *Caviomonas*, *Enteromonas*, *Trimitus*.

••• Retortamonadida Grassé, 1952

Single flagellar apparatus with four kinetosomes and either two (*Retortamonas*) or four (*Chilomastix*) emergent flagella; one flagellum has 2–3 vanes and runs posteriorly, associated with a conspicuous ventral feeding groove with discrete posterior cytostome; cell surface underlain by a corset of microtubules; internal mitotic spindle partially described; all endobiotic, except one free-living species. Apomorphy: "lapel" structure as an electron-dense sheet supporting the anterior origin of the peripheral microtubules. *Chilomastix*, *Retortamonas*.

- •• Carpediemonas Ekebom, Patterson, and Vors, 1996 (M)
 Biflagellated free-living cells with broad ventral suspension-feeding groove, in which beats the longer posterior flagellum; in Carpediemonas membranifera the posterior flagellum bears three vanes; kinetid with three kinetosomes; a dictyosome; conspicuous acristate presumptive mitochondrial homologue. Carpediemonas.
- *Malawimonas* O'Kelly and Nerad, 1999 (M) Similar to *Carpediemonas* but not specifically related in molecular phylogenies; the one studied isolate (*Malawimonas jakobiformis*), with mitochondrion, two kinetosomes, a single ventral flagellar vane. *Malawimonas*.
- Parabasalia Honigberg, 1973

Cells with a parabasal apparatus; two or more striated parabasal fibres connecting the Golgi-dictyosomes to the flagellar apparatus; kinetid generally with four flagella/kinetosomes, but frequently with additional flagella (one to thousands); one kinetosome bears sigmoid fibres that connect to a pelta–axostyle complex; reduction or loss of the flagellar apparatus in some taxa, or multiplication of all, or parts, of the flagellar apparatus in several taxa; closed mitosis with an external spindle including a conspicuous microtubular paradesm; hydrogenosomes in place of mitochondria. Apomorphy: parabasal apparatus.

- •• Trichomonadida Kirby, 1947, emend. Brugerolle and Patterson, 2001 (P) Kinetid of 3–5 anterior kinetosomes and one posterior kinetosome, almost always bearing flagella, and with a conspicuous pelta–axostyle complex (exceptions *Dientamoeba*, *Histomonas*); recurrent flagellum often associated with a lamellar undulating membrane underlain by a striated costal fibre; almost certainly paraphyletic. *Cochlosoma*, *Dientamoeba*, *Monocercomonas*, *Pentatrichomonoides*, *Pseudotrichomonas*, *Trichomitopsis*, *Trichomonas*, *Tritrichomonas*.
- •• Cristamonadida Brugerolle and Patterson, 2001
 Parabasalids with a "crista" (crest) consisting of four privileged kinetosomes/flagella, and often hundreds or thousands of additional flagella; all kinetosomes except

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

• Cristamonadida cont'd.

the privileged are discarded at division; neither undulating membrane nor elongate costa, but one flagellum sometimes associated with a shorter "cresta" (Devescovinidae); pelta–axostyle system with one or several spiralled rows of microtubules in the axostylar trunk; parabasal apparatus with at least two main branches that may further subdivide; occasionally with multiple tetraflagellated karyomastigonts. Calonympha, Coronympha, Deltotrichonympha, Devescovina, Foaina, Joenia, Kofoidia, Lophomonas, Rhizonympha.

• Spirotrichonymphida Light, 1927

Parabasalids with two or more spiralled rows of linked flagellated kinetosomes; each row associated with a parabasal fibre, and beginning with a privileged kinetosome bearing sigmoid fibres connected to the anterior pelta–axostyle complex; axostyle simple or multiple, absent in some; at mitosis spindle paradesmosis arising between two kinetosome rows, with half the rows going to each daughter cell; from hindgut of lower termites. *Holomastigotes, Holomastigotoides, Microjoenia, Spironympha, Spirotrichonympha*.

• Trichonymphida Poche, 1913

Parabasalids with a rostrum composed of two juxtaposed hemi-rostra associated in bilateral symmetry or with a superimposed tetraradiate symmetry; each hemi-rostrum with a privileged kinetosome bearing sigmoid fibres and a flagellar area with hundreds to thousands of kinetosomes associated with multibranched parabasal apparatuses; pelta—axostyle complex originating at the top of the rostrum; at division, one parent hemi-rostrum going to each daughter cell; all living in the hindguts of lower termites or *Cryptocercus*. *Barbulanympha*, *Eucomonympha*, *Hoplonympha*, *Spirotrichosoma*, *Staurojoenina*, *Teranympha*, *Trichonympha*.

• Preaxostyla Simpson, 2003

Heterotrophic unicells with four flagella and kinetosomes per kinetid; lacking mitochondria. Apomorphy: "I fibre" with "preaxostylar" substructure (the oxymonad preaxostyle is homologous to the R1 root and I fibre of *Trimastix*).

• Oxymonadida Grassé, 1952

Single kinetid (occasionally multiple kinetids) consisting of two pairs of flagellated kinetosomes distantly separated by a pre-axostyle (microtubular root, R1, with paracrystalline lamina), from which arises a microtubular axostyle, which is contractile or motile in some taxa; microtubular pelta usually present; many taxa attach to host using an anterior holdfast; closed mitosis with internal spindle; gut endosymbionts, mostly in lower termites and *Cryptocercus*. Apomorphy: axostyle (non-homologous with that of Parabasalia). *Dinenympha, Monocercomonoides, Oxymonas, Polymastix, Pyrsonympha, Saccinobaculus, Streblomastix*.

• Trimastix Kent 1880

Free-living quadriflagellate bearing a broad ventral feeding groove, in which beats the posteriorly directed flagellum; posterior flagellum with two broad vanes; small dense organelles in place of mitochondria. *Trimastix*.

• Jakobida Cavalier-Smith, 1993, emend. Adl et al., 2005

Two flagella at the head of a broad ventral feeding groove, in which beats the posterior flagellum; posterior flagellum with a single dorsal vane (distinctive among excavates but possibly plesiomorphic).

•• Jakoba Patterson, 1990

Free-swimming cells, attaching temporarily to surfaces by the distal portion of the anterior flagellum; flat cristae. *Jakoba*.

• Histionidae Flavin and Nerad, 1993

Feeding cells sessile and loricate; tubular cristae. Apomorphy: lorica. *Histiona*, *Reclinomonas*. Incertae sedis *Stenocodon*, *Stomatochone*.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

- •• Incertae sedis Jakobida: Seculamonas nomen nudum.
- Heterolobosea Page and Blanton, 1985
 Heterotrophic amoebae with eruptive pseudopodia; amoeboid morphology usually dominant; some with flagellate form, usually with two or four parallel flagella, one genus, an obligate flagellate; flagellate form rarely capable of feeding or using a groovelike cytostome; closed mitosis with internal spindle; cristae flattened, often discoidal; discrete dictyosomes not observed. Apomorphy: eruptive pseudopodia, not homologous to pseudopodia in Amoebozoa.
 - •• Vahlkampfiidae Jollos, 1917 (P)

 Nucleolus persists through mitosis; single nucleus; one genus an obligate amoeba, another genus, an obligate flagellate; cysts common. *Heteramoeba*, *Naegleria*, *Percolomonas*, *Psalteriomonas*, *Tetramitus*, *Vahlkampfia*.
 - •• Gruberellidae Page and Blanton, 1985

 Nucleolus fragments during mitosis; uninucleate or multinucleate; flagellate form observed in unidentified species of *Stachyamoeba*. *Gruberella*, *Stachyamoeba*.
 - •• Acrasidae Poche, 1913

 Amoebae aggregate to form fruiting bodies; nucleus may or may not fragment.

 Apomorphy: formation of fruiting bodies. *Acrasis*, *Pocheina*.
 - •• Incertae sedis Heterolobosea: *Macropharyngimonas halophila* nomen nudum (= *Percolomonas salina* (Ruinen, 1938) Larsen and Patterson, 1990), *Pernina, Rosculus*.
- Euglenozoa Cavalier-Smith, 1981, emend. Simpson, 1997
 Cells with two (occasionally one, rarely more) flagella, inserted into an apical/subapical flagellar pocket; with rare exceptions, emergent flagella with paraxonemal rods; usually with tubular feeding apparatus associated with flagellar apparatus; basic flagellar apparatus pattern consisting of two functional kinetosomes and three asymmetrically arranged microtubular roots; mostly with discoidal cristae. Apomorphy: heteromorphic paraxonemal rods (tubular/whorled in anterior flagellum F2, parallel lattice in posterior flagellum F1).
 - •• Euglenida Bütschli, 1884, emend. Simpson 1997
 With a pellicle of proteinaceous strips, fused in some taxa; with unfused strips capable of active distortion (metaboly); where known, paramylon is the carbohydrate store. Apomorphy: pellicle of protein strips. **Note 20**.
 - ••• Heteronematina Leedale, 1967 (P)
 With ingestion apparatus capable of phagotrophy; lacking plastids; most glide on surfaces; a paraphyletic assemblage from which Euglenea and Aphagea are independently descended. *Dinema*, *Entosiphon*, *Peranema*, *Petalomonas*, *Ploeotia*.
 - ••• Euglenea Bütschli, 1884, emend. Busse and Preisfeld, 2002
 Phototrophic with plastids of secondary origin; some taxa secondarily osmotrophic; most swim. Apomorphy: plastid. *Euglena, Eutreptia, Phacus, Trachelomonas*.
 - ••• Aphagea Cavalier-Smith, 1993, emend. Busse and Preisfeld, 2002 Osmotrophic euglenids lacking photosensory apparatus and plastids; one or two emergent flagella; no ingestion apparatus. *Distigma, Rhabdomonas*.
 - •• Diplonemea Cavalier-Smith, 1993, emend. Simpson, 1997 Heterotrophic cells exhibiting pronounced metaboly; in trophic phase, flagella are short and lack paraxonemal rods; sometimes with dispersal phase with longer par-

^{20.} Euglenida: Relationships among phagotrophic euglenids are poorly understood. Most higher taxa proposed within the group are probably not monophyletic and/or are ill defined. No names of higher taxa are in wide use.

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

• Diplonemea cont'd.

axonemal rod-bearing flagella; apical papilla, feeding apparatus with "pseudovanes"; giant, flattened cristae. Apomorphy: paraxonemal rods absent in trophic phase, homologous to that in *Diplonema ambulator* Larsen and Patterson, 1990. *Diplonema, Rhynchopus*.

• Kinetoplastea Honigberg, 1963

Euglenozoa with a kinetoplast, which is a large mass (or masses) of fibrillar DNA (kDNA) in the mitochondrion, often in close association with the flagellar bases. Apomorphy: kinetoplast.

- ••• Prokinetoplastina Vickerman in Moreira, Lopez-Garcia, and Vickerman, 2004 (R) *Ichthyobodo* are ectoparasites of fish. *Perkinsiella* is an endosymbiont ("parasome") of certain amoebae. *Ichthyobodo*, *Perkinsiella*.
- ••• Metakinetoplastina Vickerman in Moreira, Lopez-Garicia, and Vickerman, 2004 (R)

Group identified by SSU rRNA phylogenies. With a node-based definition: the clade stemming from the most recent common ancestor of *Bodo*, *Crithidia*, *Cryptobia*, *Dimastigella*, *Leishmania*, *Procryptobia*, *Rhynchobodo*, *Trypanoplasma*, *Trypanosoma*.

•••• Neobodonida Vickerman in Moreira, Lopez-Garcia, and Vickerman 2004 (R)

Eu- or polykinetoplastic kDNA not in network; biflagellate, without conspicuous mastigonemes; posterior flagellum attached or free; phagotrophic or osmotrophic; preflagellar rostrum containing apical cytosome. Node: *Cruzella*, *Dimastigella*, *Neobodo*, *Rhynchobodo*, *Rhynchomonas*.

•••• Parabodonida Vickerman in Moreira, Lopez-Garcia, and Vickerman 2004 (R)

Eu- or pankinetoplastic kDNA not in network; biflagellate, without mastigonemes; posterior flagellum attached or free; phagotrophic or osmotrophic; cytostome, when present, anterolateral; free-living or commensal/parasitic. Node: *Cryptobia*, *Parabodo*, *Procryptobia*, *Trypanoplasma*.

•••• Eubodonida Vickerman in Moreira, Lopez-Garcia, and Vickerman, 2004 (R)

Eukinetoplast with kDNA not in network; biflagellate, anterior flagellum with non-tubular mastigonemes; phagotrophic; anterolateral cytostome surrounded by lappets; free living. *Bodo*.

•••• Trypanosomatida Kent, 1880, emend. Vickerman in Moreira, Lopez-Garcia, and Vickerman, 2004

Eukinetoplastic with kDNA network; uniflagellate with flagellum lacking mastigonemes and emerging from anterior pocket, or emerging laterally and attached to body; phagotrophic or osmotrophic; cytostome, when present, simple and close to flagellar pocket; exclusively parasitic. Node: Blastocrithidia, Crithidia, Endotrypanum, Herpetomonas, Leishmania, Leptomonas, Phytomonas, Rhynchoidomonas, Sauroleishmania, Trypanosoma, Wallaceina.

- ••• Incertae sedis Kinetoplastea: Bordnamonas, Cephalothamnium, Hemistasia.
- Incertae sedis Euglenozoa: Calkinsia, Postgaardi.

Incertae sedis EUKARYOTA

• Ancyromonas Kent, 1880

Benthic gliding cells with two unequal flagella; apical anterior flagellum may be very thin or absent; posterior flagellum inserted ventrally/laterally; anterior region forms

Table 2. Classification of the higher ranks of the protists and multicellular groups. cont'd.

EUKARYOTA cont'd.

• Ancyromonas cont'd.

lateral "snout" containing extrusomes; food particles ingested below snout; cell membrane supported by a thin theca reminiscent of that of Apusomonadidae; affinity with Apusomonadidae suggested by some SSU rRNA phylogenies. *Ancyromonas*.

- Apusomonadidae Karpov and Mylnikov, 1989 Gliding cells with two heterodynamic flagella, one inside a proboscis; flexible organic coverings (perhaps composed of two membranes); vesicular-tubular cristae; ventral groove with lateral folds for feeding, which may extend as pseudopodia; multinuclear plasmodia known; without known cyst stage. *Amastigomonas*, *Apusomonas* (= *Thecamonas* Larsen and Patterson, 1990 = *Rostromonas* Karpov and Zhukov, 1980).
- Centrohelida Kühn, 1926
 Axopodia supported by microtubules in hexagonal or triangular arrays; retractable axopodia by microtubule depolymerization; kinetocyst extrusomes along axopodia; centrosome as trilaminar disc with fibrous electron-dense cortex, called centroplast; flat cristae.
 - •• Acanthocystidae Claus, 1874
 Periplast of siliceous elements arranged in internal and external layers; internal layer of scales; external layer of scales possessing central sternum and additional structures or radial spicules with developed shaft. Acanthocystis, Choanocystis, Echinocystis, Pseudoraphidiophrys, Pseudoraphidocystis, Pterocystis.
 - •• Heterophryidae Poche, 1913
 Periplasmic mucous coat, with or without organic spicules. *Chlamydaster*, *Heterophrys*, *Oxnerella*, *Sphaerastrum*.
 - •• Raphidiophryidae Mikrjukov, 1996
 Periplast of siliceous scales or spicules arranged in one or more layers. *Parasphaerastrum*, *Polyplacocystis*, *Raphidiocystis*, *Raphidiophrys*.
- Collodictyonidae Brugerolle, Bricheux, Philippe, and Coffe, 2002
 Free-swimming cells with two or four equal apical flagella perpendicular to each other; phagocytosis of eukaryotic cells in a conspicuous cytostome; cytostome a gutter that extends to posterior end giving a double-horned appearance; flagellar transition zone long with a two-part axosome. Collodictyon, Diphylleia.
- Ebriacea Lemmermann, 1901 [Ebriidae Poche, 1913] Cells with two subapically inserting flagella; open internal skeleton of silica; phagotrophic, without plastids. *Ebria*, *Hermesinum*.
- Spironemidae Doflein, 1916 [Hemimastigophora Foissner, Blatterer, and Foissner, 1988]
 Flagella lateral arranged in two more or less complete rows, with up to about a dozen per row; sub-membranous thecal plates separate the flagella; thecal plates rotationally symmetrical, supported by microtubules; anterior differentiated into a capitulum for phagocytosis; cristae tubular and saccular; with bottle-shaped extrusomes. *Hemimastix*, *Spironema*, *Stereonema*.
- Free-swimming cells with two heterodynamic flagella inserting subapically/medially; cell membrane thickened by lamellar sheath; ingest eukaryotic prey through an apical cytostome supported by bands of longitudinal microtubules; extrusomes are large coiled-ribbon arrayed near kinetosomes, somewhat similar to those of Cryptophyceae; tubular cristae; plastids not observed. *Kathablepharis*, *Leucocryptos*.
- Stephanopogon Entz, 1884 [Pseudociliata Cavalier-Smith, 1993; Pseudociliatea Cavalier-Smith, 1981; Pseudociliatida Corliss and Lipscomb, 1982; Stephanopogonidae Corliss, 1961]
 Cells with many similar flagella arranged as unikinetids in rows; cytostome for
 - Cells with many similar flagella arranged as unikinetids in rows; cytostome for phagocytosis at anterior; single nucleus; discoidal cristae. *Stephanopogon*.

Table 3. Genera with uncertain affiliation within protists. Based on Patterson (2002), and modified from that presented on Tree of Life website http://tolweb.org (accessed December 16, 2004).

Acinetactis Embryocola Parastasiella Actinastrum Endemosarca Peliainia Endobiella Peltomonas Actinelius Endomonas Actinocoma Penardia Actinolophus Endospora Petasaria Adinomonas Endostelium Phagodinium Aletium Enteromyxa Phanerobia Alphamonas Eperythrocytozoon Phialonema Amphimonas Phloxamoeba Errera Amphitrema EuchitoniaPhyllomonas Amylophagus Euglenocapsa Physcosporidium Aphelidiopsis FromentellaPiridium Apogromia Glaucocystopsis Platytheca Globidiellum Pleuophrys Archaeosphaerodiniopsis Artodiscus Goniodinium Pleuromastix Asterocaelum Gymnococcus Pleurostomum Asthmatos Gymnophrydium Podactinelius Astrolophus Haematotractidium Podostoma Aulomonas Hartmannina Polysporella Aurospora HeliobodoPontomyxa Barbetia Heliomonas Protenterospora Protogenes Belaria Hermisenella Belonocystis Heterogromia Protomonas Berghiella Heteromastix Protomyxa Bertarellia Hillea Pseudoactiniscus Bertramia Histiophysis Pseudosporopsis Quadricilia Bjornbergiella Hyalochlorella **Bodopsis** Hyalodaktylethra Raphidiophryopsis Boekelovia Reticulamoeba Immnoplasma Branchipocola Isoselmis Rhabdospora Rhizomonas Campanoeca Kamera Kibisidytes Rhizoplasma Camptoptyche ChalarodoraKiitoksia Rhynchodinium Labyrinthomyxa Rigidomastix Chlamydomyxa CibdeliaLagenidiopsids Salpingorhiza Cichkovia Leptophrys Schewiakoffia Leukarachnion Cinetidomyxa Sergentella Cingula Liegeosia Serpentoplasma Cladomonas Ligniera Servetia ClathrellaLithocollaSpermatobium Clautriavia Luffisphaera Sphaerasuctans Lymphocytozoon Codonoeca Spiriopsis Coelosporidium Lymphosporidium Spirogregarian Copromonas Macappella Spongastericus Cristalloidophora Magosphaera Spongocyclia Cyanomastix Malpighiella Stephanomonas Cyclomonas Martineziella Strobilomonas Cytamoeba Megamoebomyxa Syncrypta Dallingeria Melanodinium Telonema Dictyomyxa Meringosphaera Tetragonidium Dimastigamoeba Microcometes Thalssomyxa Dinamoeba Microgromia Thaulirens DinemulaMonodus Thau matod in iumDingensia Mononema Theratromyxa Dinoasteromonas Myrmicisporidium Thylakomonas Dinoceras Myxodictyum Topsentella Naupliicola Dinomonas Toshiba Diplocalium Nephrodinium Toxocystis Diplomita Neurosporidium Triangulomonas Ovicola Diplophysalis Trichonema Diploselmis Pachydinium Trizona $\hat{Dobellina}$ Palisporomonas TrophosphaeraDucelleria Pansporella UrbanellaEchinococcidium Paradinemula Wagnerella Paramastix Ectobiella X-cells Elaeorhanis Paramonas Elleipsisoma Paraplasma

Primary responsibilities for the various groups were as follows: Amoebozoa—S. M. Adl, T. A. Nerad, A. V. Smirnov, F. W. Spiegel; Opisthokonta—S. M. Adl, T. Y. James, S. Karpov, J. Krug, J. Lodge, L. Mendoza, S. E. Mozley-Standridge, C. A. Shearer; Rhizaria—S. M. Adl, O. R. Anderson, S. S. Bowser, S. Karpov, A. G. B. Simpson; Archaeplastida—S. M. Adl, S. Fredericq, L. A. Lewis, R. M. McCourt; Chromalveolata—S. M. Adl, R. A. Andersen, J. R. Barta, R. A. Fensome, S. Karpov, P. Kugrens, C. E. Lane, D. H. Lynn, D. G. Mann, Ø. Moestrup, Max Taylor; Excavata—A. G. B. Simpson, M. A. Farmer, G. Brugerolle; Incertae sedis Eukaryota—S. M. Adl, S. Karpov, T. A. Nerad, A. G. B. Simpson.

ACKNOWLEDGMENTS

We acknowledge the critical evaluations of Andrew Roger (Dalhousie University) for the overall structure of this classification. This is a Geological Survey of Canada contribution 2004375.

LITERATURE CITED

- Alexopoulos, C. J., Mims, C. W. & Blackwell, M. 1996. Introductory Mycology. 4th ed. John Wiley & Sons, New York.
- Barr, D. J. S. 1990. Phylum Chytridiomycota. *In*: Margulis, L., Corliss, J. O., Melkonian, M. & Chapman, D. J. (ed.), Handbook of Protoctista. Jones & Bartlett, Boston. p. 454–466.
- Barr, D. J. S. 2001. Chytridiomycota. *In*: McLaughlin, D. J., McLaughlin, E. G. & Lemke, P. A. (ed.), The Mycota. VIIA. Systematics and Evolution. Springer Verlag, Berlin. p. 93–112.
- Bütschli, O. 1880–1889. Protozoa. Abt. I (1880–1882) Sarkodina und Sporozoa. Abt. II (1883–1887) Mastigophora. Abt. III (1887–1889) Infusoria und System der Radiolaria. *In*: Bronn, H. G. (ed.), Klassen und Ordnung des Thier-Reichs. Vol. 1, C. F. Winter, Leipzig. Pp. 1–616, 617–1097, 1098–2035.
- Cavalier-Smith, T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. *Int. J. Syst. Evol. Microbiol.*, 52:297–354.
- Cavalier-Smith, T. & Chao, E. E. 1997. Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae. Arch. Protistenkd., 147:227–236.
- Cavalier-Smith, T. & Chao, E. E. 2003. Molecular phylogeny of centrohelid Heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss. J. Mol. Evol., 56:387–396.
- Delwiche, C. F. 1999. Tracing the thread of plastid diversity through the tapestry of life. *Am. Nat.*, **154**:S164–S177.
- Delwiche, C. F., Andersen, R. A., Bhattacharya, D., Mishler, B. & McCourt, R. M. 2004. Algal evolution and the early radiation of green plants. *In*: Cracraft, J. & Donoghue, M. J. (ed.), Assembling the Tree of Life. Oxford University Press, New York. p. 121–137.
- Ekelund, F., Daugbjerg, N. & Fredslund, L. 2004. Phylogeny of Heteromita, Cercomonas and Thaumatomonas based on SSU rDNA sequences, including the description of Neocercomonas jutlandica sp. nov., gen. nov. Eur. J. Protistol., 40:119–135.
- Emerson, R. & Whisler, H. C. 1968. Cultural studies of *Oedogoniomyces* and *Harpochytrium* and a proposal to place them in a new order of aquatic Phycomycetes. *Arch. Mikrobiol.*, **61**:195–211.
- Eriksson, O. E. & Winka, K. 1997. Supraordinal taxa of Ascomycota. *Myconet*, 1:1–16. http://www.umu.se/myconet/Myconet.html.
- Eriksson, O. E. & Winka, K. 1998. Families and higher taxa of Ascomycota. *Myconet*, 1:17–24. http://www.ekbot.umu.se/pmg/18s/fam.rtf. html.
- Eriksson, O. E., Baral, H. O., Currah, R. S., Hansen, K., Kurtzman, C. P., Læssøe, T. & Rambold, G. 2004. Outline of Ascomycota. *Myconet*, **10**:1–99. http://www.umu.se/myconet/Myconet.html.
- Fast, N. M., Xue, L., Bingham, S. & Keeling, P. J. 2002. Re-examining alveolate evolution using multiple protein molecular phylogenies. J. Eukaryot. Microbiol., 49:30–38.
- Habura, A., Rosen, D. R. & Bowser, S. S. 2004. Predicted secondary structure of the foraminiferal SSU 3' major domain reveals a molecular

- synapomorphy for granuloreticulosean protists. *J. Eukaryot. Microbiol.*, **51**:464–471.
- Haeckel, E. 1866. Generelle Morphologie der Organismen, Vol. 1, 574 p., Vol. 2, 462 p. Reimer, G., Berlin.
- Harper, J. T. & Keeling, P. J. 2003. Nucleus-encoded, plastid-targeted glyceraldehydes-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolates plastids. *Mol. Biol. Evol.*, 20: 1730–1735.
- Harper, J. T., Waanders, E. & Keeling, P. J. 2005. On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. *Int. J. Syst. Evol. Microbiol.*, 55:487–496.
- Hausmann, K., Hülsmann, N. & Radek, R. 2003. Protistology. 3rd ed. Schweizerbart'sche, Stuttgart. 379 p.
- Hogg, J. 1860. On the distinctions of a plant and an animal, and on a fourth kingdom of nature. *Edinburgh New Philos. J.*, **12**(N.S.): 216–225.
- James, T. Y., Porter, D., Leander, C. A., Vilgalys, R. & Longcore, J. E. 2000. Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. *Can. J. Bot.*, 78:336–350.
- Karling, J. S. 1977. Chytridiomycetarum Iconographia. Lubrecht & Cramer, Monticello, New York.
- Keeling, P. J. 2003. Congruent evidence from α-tubulin and β-tubulin gene phylogenies for a zygomycete origin of microsporidia. *Fungal Genet. Biol.*, **38**:298–309.
- Kirk, P. M., Cannon, P. F., David, J. C. & Stalpers, J. A. 2001. Ainsworth & Bisby's Dictionary of the Fungi. 9th ed. CAB International, Wallingford, Oxon, UK.
- Kooistra, W. H. C. F., De Stefano, M., Mann, D. G. & Medlin, L. K. 2003. The phylogeny of the diatoms. *Progr. Mol. Subcell. Biol.*, 33: 59–97.
- Kugrens, P., Lee, R. E. & Hill, D. R. A. 2002. Order Cryptomonadida. In: Lee, J. J., Leedale, G. F. & Bradbury, P. (ed.), An Illustrated Guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, KS. (Year 2000). p. 1111–1125.
- Levine, N. D., Corliss, J. O., Cox, F. E. G., Deroux, G., Grain, J., Honigberg, B. M., Leedale, G. F., Loeblich, A. R., Lom, J., Lynn, D. H., Merinfeld, D., Page, F. C., Poljansky, G., Sprague, V., Vavra, J. & Wallace, F. G. 1980. A newly revised classification of the Protozoa. *J. Protozool.*, 27:37–58.
- Liu, Y. J. & Hall, B. D. 2004. Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. *Proc. Natl. Acad. Sci.* (USA), 101:4507–4512.
- Loeblich, A. R. & Tappan, H. 1988. Foraminiferal Genera and their Classification. Vols. 1–2. Van Nostrand Reinhold, New York.
- Lutzoni, F., Kauff, F., Cox, C. J., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T. Y., Baloch, E., Grube, M., Reeb, V., Hofstetter, V., Schoch, C., Arnold, A. E., Miadlikowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett, M., Shoemaker, R., Sung, G.-H., Lücking, R., Lumbsch, T., O'Donnell, K., Binder, M., Diederich, P., Ertz, D., Gueidan, C., Hansen, K., Harris, R. C., Hosaka, K., Lim, Y.-W., Matheny, B., Nishida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J., Sugiyama, J., Yahr, R. & Vilgalys, R. 2004. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am. J. Bot., 91:1446–1480.
- Medlin, L. K. & Kaczmarska, I. 2004. Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. *Phycologia*, 43:245–270.
- Patterson, D. J. 1989. Stramenopiles, chromophytes from a protistan perspective. *In*: Green, J. C., Leadbeater, B. S. C. & Diver, W. L. (ed.), The Chromophyte Algae, Problems and Perspectives. Clarendon Press, Oxford. p. 357–379.
- Patterson, D. J. 2002. Changing views of protistan systematics: the taxonomy of protozoa—an overview. *In*: Lee, J. J., Leedale, G. F. & Bradbury, P. (ed.), An Illustrated Guide to the Protozoa. 2nd ed. Allen Press, Society of Protozoologists, Lawrence, KS. p. 2–9.
- Pawlowski, J. 2000. Introduction to the molecular systematics of foraminifera. *Micropaleontology*, 46(Suppl. 1):1–12.
- Pawlowski, J., Holzmann, M., Fahrni, J. & Richardson, S. L. 2003a. Small subunit ribosomal DNA suggests that the Xenophorean Syringammina corbicula is a foraminiferan. J. Eukaryot. Microbiol., 50: 483–487.

- Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Cedhagen, T., Habura, A. & Bowser, S. S. 2002. Phylogeny of allogromiid Foraminifera inferred from SSU rRNA gene sequences. J. Foram. Res., 32: 334-343.
- Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Gooday, A. J., Cedhagen, T., Habura, A. & Bowser, S. S. 2003b. The evolution of early Foraminifera. Proc. Natl. Acad. Sci. (USA), 100:11494-11498.
- Round, F. E., Crawford, R. M. & Mann, D. G. 1990. The Diatoms. Biology and Morphology of the Genera. Cambridge University Press, Cambridge. Simpson, A. G. B. & Roger, A. J. 2002. Eukaryotic evolution: getting to
- the root of the problem. Curr. Biol., 12:R691-R693.

- Simpson, A. G. B. & Roger, A. 2004. Excavata and the origin of the amitochondriate eukaryotes. In: Hirt, P. H. & Horner, D. S. (ed.), Organelles, Genomes and Eukaryotic Phylogeny. CRC Press, Boca Raton. p. 27-53.
- Sparrow, F. K. 1960. The Aquatic Phycomycetes. University of Michigan Press, Ann Arbor, MI.
- Walsh, D. A. & Doolittle, F. W. 2005. The real "domains" of life. Curr. Biol., 15:R237-R240.
- Yoon, H. S., Hackett, J. D., Pinto, G. & Bhattacharya, D. 2002. The single ancient origin of chromist plastids. Proc. Natl. Acad. Sci., 99:15507-

APPENDIX 1.

SELECTED REFERENCES TO PROTIST GROUPS

ALVEOLATA

- Cavalier-Smith, T. & Chao, E. E. 2004. Protalveolate phylogeny and systematics and the origins of Sporozoa and dinoflagellates. Eur. J. Protistol., 40:185–212.
- Fast, N.M, Xue, L., Bingham, S. & Keeling, P. J. 2002. Re-examining alveolate evolution using multiple protein molecular phylogenies. J. Eukaryot. Microbiol., 49:30–38.
- Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I. & Williams, G. L. 1993. A classification of fossil and living dinoflagellates. *Micropaleontology*, Special Paper No. 7, 351 p.
- Fensome, R. A., Saldarriaga, J. F. & Taylor, F. J. R. 1999. Dinoflagellate phylogeny revisited: reconciling morphological and molecular-based phylogenies. *Grana*, 38:66–80.
- Lynn, D. H. 2004. Morphology or molecules: how do we identify the major lineages of ciliates (Phylum Ciliophora)? Eur. J. Protistol., 39(Year 2003):356–364.
- Lynn, D. H. & Corliss, J. O. 1991. Ciliophora. In: Harrison, F. W. & Corliss, J. O. (ed.), Microscopic Anatomy of Invertebrates. Alan R. Liss, New York. Ch. 5, p. 333–467.
- Lynn, D. H. & Small, E. B. 2002. Phylum Ciliophora. *In*: Lee, J. J., Leedale, G. F. & Bradbury, P. (ed.), An Illustrated Guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, KS. p. 371–656.
- Puytorac, P. de, Batisse, A., Deroux, G., Fleury, A., Grain, J., Laval-Peuto, M. & Tuffrau, M. 1993. Proposition d'une nouvelle classification du phylum des protozoaires Ciliophora Doflein, 1901. C. R. Acad. Sci., Paris, 316:716–720.

AMOEBOZOA

- Amaral Zettler, L. A., Nerad, T. A., O'Kelly, C. J., Peglar, M. T., Gillevet, P. M., Silberman, J. D. & Sogin, M. L. 2000. A molecular reassessment of the leptomyxid amoebae. *Protist*, 151:275–282.
- Bolivar, I., Fahrni, J. F., Smirnov, A. & Pawlowski, J. 2001. SSU rRNA-based phylogenetic position of the genera *Amoeba* and *Chaos* (Lobosea, Gymnamoebia): the origin of Gymnamoebae revisited. *Mol. Biol. Evol.*, **18**:2306–2314.
- Cavalier-Smith, T. 1998. A revised six-kingdom system of life. *Biol. Rev.*, 73:203–266.
- Cavalier-Smith, T. & Chao, E. E. 2003. Molecular phylogeny of centrohelid Heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss. J. Mol. Evol., 56:387–396.
- Edgcomb, V. P., Simpson, A. G., Zettler, L. A., Nerad, T. A., Patterson, D. J., Holder, M. E. & Sogin, M. L. 2002. Pelobionts are degenerate protists: insights from molecules and morphology. *Mol. Biol. Evol.*, 19:978–982.
- Fahrni, J. F., Bolivar, I., Berney, C., Nassonova, E., Smirnov, A. & Pawlowski, J. 2003. Phylogeny of lobose amoebae based on actin and small-subunit ribosomal RNA genes. *Mol. Biol. Evol.*, 20:1881–1886.
- Meisterfeld, R. 2002. Order Arcellinida Kent 1880. In: Lee, J. J., Leedale, G. F. & Bradbury, P. (ed.), An Illustrated Guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, KS. (Year 2000). p. 827–860.
- Milyutina, I. A., Aleshin, V. V., Mikrjukov, K. A., Kedrova, O. S. & Petrov, N. B. 2001. The unusually long small subunit ribosomal RNA gene found in amitochondriate amoeboflagellate *Pelomyxa palustris*: its rRNA predicted secondary structure and phylogenetic implication. *Gene*, 272:131–139.
- Olive, L. S. 1970. The Mycetozoa: a revised classification. *Bot. Rev.*, **36**:59–87.
- Olive, L. S. 1975. The Mycetozoans. Academic Press, New York.
- Page, F. C. 1987. The classification of "naked" amoebae (Phlyum Rhizopoda). Arch. Protistenkd., 133:199–217.
- Page, F. C. 1991. Nackte Rhizopoda. *In:* Page, F. C. & Siemensma, F. J. (ed.), Nackte Rhizopoda und Heliozoa. Gustav Fischer Verlag, Stuttgart. New York.
- Peglar, M. T., Amaral Zettler, L. A., Anderson, O. R., Nerad, T. A., Gillevet, P. M., Mullen, T. E., Frasca Jr., S., Silberman, J. D., O'Kelly, C. J. & Sogin, M. L. 2003. Two new small-subunit ribosomal RNA gene

- lineages within the subclass Gymnamoebia. *J. Eukaryot Microbiol.*, **50**:224–332.
- Smirnov, A. V. 1999. An illustrated survey of gymnamoebae—Euamoebida and Leptomyxida (Rhizopoda, Lobosea), isolated from an anaerobic sediments of the Nivaa Bay (Baltic Sea, The Sound). *Ophelia*, 50:113–148.
- Smirnov, A. V. & Goodkov, A. V. 1993. *Paradermanoeba valamo* gen. n., sp., n. (Gymnamoebia, Thecamoebidae)—a freshwater amoeba from bottom sediments. *Zool. Zh.*, **72**:5–11.
- Smirnov, A. V., Nassonova, E. S., Berney, C., Fahrni, J., Bolivar, I. & Pawlowski, J. 2005. Molecular phylogeny and classification of the lobose amoebae. *Protist*, 156:129–142.
- Spiegel, F. W. 1990. Phylum plasmodial slime molds, Class Protostelida.In: Margulis, L., Corliss, J. O., Melkonian, M. & Chapman, D. (ed.),Handbook of Protoctista. Jones & Bartlett, Boston. p. 484–497.

APUSOMONADIDAE

- Cavalier-Smith, T. & Chao, E. E. 1995. The opalozoan *Apusomonas* is related to the common ancestor of animals, fungi and choanoflagellates. *Proc. Roy. Soc. Lond. B*, **261**:1–6.
- Cavalier-Smith, T. & Chao, E. E. 2003. Phylogeny of Choanozoa, Apusozoa, and other Protozoa and early eukaryote megaevolution. *J. Mol. Evol.*, **56**:540–563.
- Karpov, S. A. & Myl'nikov, A. P. 1989. Biology and ultrastructure of colourless flagellates Apusomonadida ord. n. Zool. Zhurn., 68:5–17. (in Russian)
- Patterson, D. J., Vørs, N., Simpson, A. G. B. & O'Kelly, C. 2002. Residual heterotrophic flagellates. *In*: Lee, J. J., Leedale, G. F. & Bradbury, P. (ed.), An Illustrated Guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, KS. (Year 2000). p. 1302–1327.

ARCHAEPLASTIDA

- Bremer, K. 1985. Summary of green plant phylogeny and classification. *Cladistics*, **1**:369–385.
- Lewis, L. A. & McCourt, R. M. 2004. Green algae and the origin of land plants. Am. J. Bot., 91:1535–1556.
- McCourt, R. M., Delwiche, C. F. & Karol, K. G. 2004. Charophyte algae and land plant origins. *Tr. Ecol. Evol.*, **19**:661–666.
- Saunders, G. W. & Hommersand, M. H. 2004. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Am. J. Bot., 91:1494–1507.

CHROMALVEOLATA/STRAMENOPILES/ CRYPTOPHYCEAE/HAPTOPHYTA

- Cho, G. Y., Lee, S. H. & Boo, S. M. 2004. A new brown algal order, Ishigeales (Phaeophyceae), established on the basis of plastid protein-coding rbcL, psaA, and psbA region comparisons. *J. Phycol.*, **40**: 921–936.
- Delwiche, C. F. 1999. Tracing the thread of plastid diversity through the tapestry of life. *Am. Nat.*, **154**:S164–S177.
- Draisma, S. G. A., Peters, A. F. & Fletcher, R. L. 2003. Evolution and taxonomy in the Phaeophyceae: effects of the molecular age on brown algal systematics. *In*: Norton, T. A. (ed.), Out of the Past. Collected Reviews to Celebrate the Jubilee of the British Phycological Society. The British Phycological Society, Belfast. p. 87–102.
- Draisma, S. G. A., Prud'homme van Reine, W. F., Stam, W. T. & Olsen, J. L. 2001. A reassessment of phylogenetic relationships in the Phaeophyceae based on RUBISCO large subunit and ribosomal DNA sequences. J. Phycol., 37:586–603.
- Fresnel, J. & Probert, I. 2005. The ultrastructure and life cycle of the coastal coccolithophorid *Ochrosphaera neapolitana* (Prymnesiophyceae). *Eur. J. Phycol.*, **40**:105–122.
- Harper, J. T. & Keeling, P. J. 2003. Nucleus-encoded, plastid-targeted glyceraldehydes-3-phosphate dehycrogenase (GAPDH) indicates a single origin for chromalveolates plastids. *Mol. Biol. Evol.*, 20: 1730–1735.
- Hoef-Emden, K. & Melkonian, M. 2003. Revision of the genus *Cryptomonas* (Cryptophyceae): a combination of molecular phylogeny and

- morphology provides insights into a long-hidden dimorphism. *Protist*, **154**:371–409.
- Keeling, P. J. 2003. Congruent evidence from α-tubulin and β-tubulin gene phylogenies for a zygomycete origin of microsporidia. *Fungal Genet. Biol.*, **38**:298–309.
- Kooistra, W. H. C. F., De Stefano, M., Mann, D. G. & Medlin, L. K. 2003. The phylogeny of the diatoms. *Progr. Mol. Subcell. Biol.*, 33:59–97.
- Kugrens, P. & Lee, R. E. 1987. An ultrastructural survey of cryptomonad periplasts using quick-freezing freeze-fracture techniques. J. Phycol., 23:365–376.
- Kugrens, P., Clay, B. L. & Lee, R. E. 1999. Ultrastructure and systematics of two new freshwater red cryptomonads, *Storeatula rhinosa*, sp. nov. and *Pyrenomonas ovalis*, sp. nov. *J. Phycol.*, 35:1079–1089.
- Kugrens, P., Lee, R. E. & Hill, D. R. A. 2002. Order Cryptomonadida. In: Lee, J. J., Leedale, G. F. & Bradbury, P. (ed.), An Illustrated Guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, KS. (Year 2000). p. 1111–1125.
- Medlin, L. K. & Kaczmarska, I. 2004. Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. *Phycologia*, 43:245–270.
- Novarino, G. 2003. A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea). *Hydrobiologia*, **502**: 225–270.
- Patterson, D. J. 1989. Stramenopiles, chromophytes from a protistan perspective. *In*: Green, J. C., Leadbeater, B. S. C. & Diver, W. L. (ed.), The Chromophyte Algae, Problems and Perspectives. Clarendon Press, Oxford. p 357–379.
- Peters, A. F. & Ramírez, M. E. 2001. Molecular phylogeny of small brown algae, with special reference to the systematic position of *Caepidium antarcticum* (Adenocystaceae, Ectocarpales). *Cryptogamie*, Algol., 22:187–200.
- Peters, A. F. & Clayton, M. N. 1998. Molecular and morphological investigation of three brown algal genera with stellate plastids: evidence for Scytothamnales ord. nov. (Phaeophyceae). *Phycologia*, 37:106–113.
- Round, F. E., Crawford, R. M. & Mann, D. G. 1990. The Diatoms. Biology and Morphology of the Genera. Cambridge University Press, Cambridge.
- Rousseau, F. & de Reviers, B. 1999a. Phylogenetic relationships within the Fucales (Phaeophyceae) based on combined partial SSU+LSU rDNA sequence data. Eur. J. Phycol., 34:53-64.
- Rousseau, F. & de Reviers, B. 1999b. Circumscription of the order Ectocarpales (Phaeophyceae): bibliographical synthesis and molecular evidence. Cryptogamie, Algol., 20:5–18.
- Rousseau, F., Burrowes, R., Peters, A. F., Kuhlenkamp, R. & de Reviers, B. 2001. A comprehensive phylogeny of the Phaeophyceae based on nrDNA sequences resolves the earliest divergences. C. R. Acad. Sci. Paris III, 324:305–319.
- Silva, P. C. & de Reviers, B. 2000. Ordinal names in the Phaeophyceae. Cryptogamie, Algol., 21:49–58.
- Sym, S. & Kawachi, M. 2000. Ultrastructure of Calyptrosphaera radiata, sp. nov. (Pyrmnesiophyceae, Haptophyta). Eur. J. Phycol., 35:283–293.
- Yoon, H. S., Hackett, J. D., Pinto, G. & Bhattacharya, D. 2002. The single ancient origin of chromist plastids. *Proc. Natl. Acad. Sci. (USA)*, 99:15507–15512.

EXCAVATA

- Busse, I. & Preisfeld, A. 2002. Systematics of primary osmotrophic euglenids: a molecular approach to the phylogeny of *Distigma* and *Astasia* (Euglenozoa). *Int. J. Syst. Evol. Microbiol.*, **53**:617–624.
- O'Kelly, C. J., Silberman, J. D., Amaral Zettler, L. A., Nerad, T. A. & Sogin, M. L. 2003. *Monopylocystis visvesvarai*. n. gen., n. sp. and *Sawyeria marylandensis* n. gen., n. sp: two new amitochondrial heterolobosean amoebae from anoxic environments. *Protist*, **154**:281–290.
- Moreira, D., Lopez-Garcia, P. & Vickerman, K. 2004. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. *Int. J. Syst. Evol. Microbiol.*, 54:1861–1865.
- Simpson, A. G. B. 1997. The identity and composition of the Euglenozoa. Archiv. Protist., 148:318–328.

- Simpson, A. G. B. 2003. Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). *Int. J. Syst. Evol. Microbiol.*, **53**:1759–1779.
- Simpson, A. G. B. & Roger, A. J. 2004. Excavata and the origin of the amitochondriate eukaryotes. *In*: Hirt, P. H. & Horner, D. S. (ed.), Organelles, genomes and eukaryotic phylogeny. CRC Press, Boca Raton, FL. p. 27–53.
- Simpson, A. G. B., Gill, E. E., Callahan, H. A., Litaker, R. W. & Roger, A. J. 2004. Early evolution within kinetoplastids (Euglenozoa) and the late emergence of trypanosomatids. *Protist*, 155:407–422.

FORAMINIFERA

- Archibald, J. M., Longet, D., Pawlowski, J. & Keeling, P. J. 2003. A novel polyubiquitin structure in Cercozoa and Foraminifera: evidence for a new eukaryotic supergroup. *Mol. Biol. Evol.*, 20:62–66.
- Bowser, S. S. & Travis, J. L. 2002. Reticulopodia: structural and behavioral basis for the suprageneric placement of Granuloreticulosan protists. *J. Foram. Res.*, **32**:440–447.
- Habura, A., Rosen, D. R. & Bowser, S. S. 2004. Predicted secondary structure of the foraminiferal SSU 3' major domain reveals a molecular synapomorphy for granuloreticulosean protists. *J. Eukaryot. Microbiol.*, 51:464–471.
- Keeling, P. J. 2001. Foraminifera and Cercozoa are related in actin phylogeny: two orphans find a home? Mol. Biol. Evol., 18:1551–1557.
- Lee, J. J., Pawlowski, J., Debenay, J.-P., Whittaker, J., Banner, F., Gooday, A. J., Tendal, O., Haynes, J. & Faber, W. W. 2002. Phylum Granuloreticulosa. *In*: Lee, J. J., Leedale, G. F. & Bradbury, P. (ed.), An Illustrated Guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, KS. (Year 2000). p. 872–951.
- Loeblich, A. R. & Tappan, H. 1988. Foraminiferal Genera and their Classification. Vols. 1–2. Van Nostrand Reinhold, New York.
- Longet, D., Archibald, J. M., Keeling, P. J. & Pawlowski, J. 2003. Foraminifera and Cercozoa share a common origin according to RNA polymerase II phylogenies. *Int. J. Syst. Evol. Microbiol.*, 53:1735–1739.
- Pawlowski, J. 2000. Introduction to the molecular systematics of foraminifera. *Micropaleontology*, 46(Suppl. 1):1–12.
- Pawlowski, J., Holzmann, M., Fahrni, J. & Richardson, S. L. 2003a. Small subunit ribosomal DNA suggests that the Xenophorean Syringammina corbicula is a foraminiferan. J. Eukaryot. Microbiol., 50:483–487.
- Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Cedhagen, T., Habura, A. & Bowser, S. S. 2002. Phylogeny of allogromiid Foraminifera inferred from SSU rRNA gene sequences. J. Foram. Res., 32:334–343.
- Pawlowski, J., Holzmann, M., Berney, C., Fahrni, J., Gooday, A. J., Cedhagen, T., Habura, A. & Bowser, S. S. 2003b. The evolution of early Foraminifera. *Proc. Natl. Acad. Sci. (USA)*, 100:11494–11498.
- Sen Gupta, B. K. 1999. Modern Foraminifera. Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Travis, J. L. & Bowser, S. S. 1991. The Motility of Foraminifera. *In*: Lee, J. J. & Anderson, O. R. (ed.), Biology of Foraminifera. Academic Press, London. p. 91–155.

FUNGI

- Alexopoulos, C. J., Mims, C. W. & Blackwell, M. 1996. Introductory Mycology. 4th ed. John Wiley & Sons, New York.
- Barr, D. J. S. 1990. Phylum Chytridiomycota. *In*: Margulis, L., Corliss, J. O., Melkonian, M. & Chapman, D. J. (ed.), Handbook of Protoctista. Jones & Bartlett, Boston. p. 454–466.
- Barr, D. J. S. 2001. Chytridiomycota. *In*: McLaughlin, D. J., McLaughlin, E. G. & Lemke, P. A. (ed.), The Mycota. VIIA. Systematics and Evolution. Springer Verlag, Berlin. p. 93–112.
- Bauer, R., Oberwinkler, F. & Vinky, K. 1997. Ultrastructure markers and systematics in smut fungi and allied taxa. *Can. J. Bot.*, **73**:1273–1275.
- Bauer, R., Begerow, D., Oberwinkler, F., Piepenbring, M. & Berbee, M. L. 2001. Ustilaginomycetes. *In*: McLaughlin, D. J., McLaughlin, E. G. & Lemke, P. A. (ed.), The Mycota VII: Part B. Systematics and Evolution. Springer Verlag, Berlin. p. 57–83.

- Begerow, D., Baur, R. & Oberwinkler, F. 1997. Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. *Can. J. Bot.*, **75**:2045–2056.
- Benny, G. L. 2001. Zygomycota: Trichomycetes. *In*: McLaughlin, D. J., McLaughlin, E. G. & Lemke, P. A. (ed.), The Mycota VII. Systematics and Evolution. Part A. Springer-Verlag, New York. p. 147–160.
- Benny, G. L., Humber, R. A. & Morton, J. B. 2001. Zygomycota: Zygomycetes. *In*: McLaughlin, D. J., McLaughlin, E. G. & Lemke, P. A. (ed.), The Mycota VII. Systematics and Evolution. Part A. Springer-Verlag, New York. p. 113–146.
- Cavalier-Smith, T. 2001. What are fungi? *In*: McLaughlin, D. J., McLaughlin, E. G. & Lemke, P. A. (ed.), The Mycota VII, Part A, Systematics. Springer-Verlag, New York. p. 3–37.
- Dick, M. W. 2001. Straminipilous Fungi: Systematics of the Peronosporomycetes including Accounts of the Marine Straminipilous Protists, the Pasmodiophorids and Similar Organisms. Kluwer Academic Publishers, Dordrecht.
- Eriksson, O. E. & Winka, K. 1997. Supraordinal taxa of Ascomycota. *Myconet*, 1:1–16. http://www.umu.se/myconet/Myconet.html
- Eriksson, O. E. & Winka, K. 1998. Families and higher taxa of Ascomycota. *Myconet*, 1:17–24. http://www.ekbot.umu.se/pmg/18s/fam.rtf. html
- Eriksson, O. E., Baral, H. O., Currah, R. S., Hansen, K., Kurtzman, C. P., Læssøe, T. & Rambold, G. 2004. Outline of Ascomycota. *Myconet*, **10**:1–99. http://www.umu.se/myconet/Myconet.html
- Emerson, R. & Whisler, H. C. 1968. Cultural studies of *Oedogoniomyces* and *Harpochytrium* and a proposal to place them in a new order of aquatic Phycomycetes. *Arch. Mikrobiol.*, **61**:195–211.
- Fast, N. M., Logsdon, J. M. Jr. & Doolittle, W. F. 1999. Phylogenetic analysis of the TATA box binding protein (TBP) gene from *Nosema locustae*: evidence for a Microsporidia-Fungi relationship and spliceosomal intron loss. *Mol. Biol. Evol.*, 16:1415–1419.
- Gargas, A., DePriest, P. T., Grube, M. & Tehler, A. 1995. Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny. *Science*, **268**:1492–1495.
- Hirt, R. P., Logsdon, J. M. Jr., Healy, B., Dorey, M. W., Doolittle, W. F. & Embley, T. M. 1999. Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. *Proc. Natl. Acad. Sci. (USA)*, 96:580–585.
- James, T. Y., Porter, D., Leander, C. A., Vilgalys, R. & Longcore, J. E. 2000. Molecular phylogenetics of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. *Can. J. Bot.*, 78:336–350.
- Karling, J. S. 1977. Chytridiomycetarum Iconographia. Lubrecht & Cramer, Monticello, New York.
- Keeling, P. J. 2003. Congruent evidence from α tubulin and β tubulin gene phylogenies for a zygomycete origin of microsporidia. *Fungal Genet. Biol.*, **38**:298–309.
- Kirk, P. M., Cannon, P. F., David, J. C. & Stalpers, J. A. 2001. Ainsworth & Bisby's Dictionary of the Fungi. 9th ed. CAB International, Wallingford, Oxon, UK.
- Liu, Y. J. & Hall, B. D. 2004. Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. *Proc. Natl. Acad. Sci.* (USA), 101:4507–4512.
- Lumbsch, H. T., Schmitt, I., Lindemuth, R., Miller, A., Mangold, A., Fernandez, F. & Huhndorf, S. 2000. Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (Leotiomyceta). *Mol. Phylogenet. Evol.*, 34:512–524.
- Lutzoni, F., Kauff, F., Cox, C. J., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T. Y., Baloch, E., Grube, M., Reeb, V., Hofstetter, V., Schoch, C., Arnold, A. E., Miadlikowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett, M., Shoemaker, R., Sung, G.-H., Lücking, R., Lumbsch, T., O'Donnell, K., Binder, M., Diederich, P., Ertz, D., Gueidan, C., Hansen, K., Harris, R. C., Hosaka, K., Lim, Y.-W., Matheny, B., Nishida, H., Pfister, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J., Sugiyama, J., Yahr, R. & Vilgalys, R. 2004. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am. J. Bot., 91:1446–1480.
- Moncalvo, J.-M. 2005. Molecular systematics—major fungal phylogenetic groups and fungal species concepts. *In*: Xu., J.-P. (ed.), Evolutionary Genetics of Fungi. Horizon Scientific Press, Wymondham, Norfolk, UK. (in press)

- Nishida, H. & Sugiyama, J. 1994. Archiascomycetes: detection of a major new linage within the Ascomycota. *Mycoscience*, 35:361–366.
- Schüßler, A., Schwarzott, D. & Walker, C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. *Mycol. Res.*, 105: 1413–1421.
- Shaffer, R. L. 1975. The major groups of Basidiomycetes. *Mycologia*, 75:1011–1018.
- Sparrow, F. K. 1960. The Aquatic Phycomycetes. University of Michigan Press, Ann Arbor, MI.
- Swann, E. C. & Taylor, J. W. 1995. Phylogenetic perspectives on Basidiomycete systematics: evidence from the 18S rRNA gene. *Can. J. Bot.*, 73(Suppl. 1):S862–S868.
- Swann, E. C., Frieders, E. M. & McLaughlin, D. J. 2001. Urediniomycetes. *In*: McLaughlin, D. J., McLaughlin, E. G. & Lemke, P. A. (ed.), The Mycota VII Part B. Systematics and Evolution. Springer Verlag, Berlin. p. 37–83.
- Tanabe, Y., O'Donnell, K., Saikawa, M. & Sugiyama, J. 2000. Molecular phylogeny of parasitic Zygomycota (Dimargaritales, Zoopagales) based on nuclear small subunit ribosomal DNA sequences. *Mol. Phylogenet. Evol.*, 16:253–262.
- Tanabe, Y., Saikawa, M., Watanabe, M. M. & Sugiyama, J. 2004. Molecular phylogeny of Zygomycota based on EF-1 and RPB1 sequences: limitations and utility of alternative markers to rDNA. *Mol. Phylogenet. Evol.*, 30:438–449.

HELIOZOA

- Cavalier-Smith, T. & Chao, E. E. 2003. Molecular phylogeny of centrohelid Heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss. J. Mol. Evol., 56:387–396.
- Mikrjukov, K. A. 2000. System and phylogeny of Heliozoa: should this taxon exist in modern systems of protists? *Zool. Zhur.*, **79**:883–897.
- Nikolaev, S. I., Berny, C., Fahrni, J., Bolivar, I., Polet, S., Myl'nikov, A. P., Aleshin, V. V., Petrov, N. B. & Pawlowski, J. 2004. The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. *Proc. Natl. Acad. Sci. (USA)*, 101:8066–8071.
- Nikolaev, S. I., Berny, C., Fahrni, J., Myl'nikov, A. P., Petrov, N. B. & Pawlowski, J. 2003. Genetic relationships between desmothoracid Heliozoa and Gymnophryid amoebas as evidenced by comparison of the nucleotide sequences of 18S rRNA genes. *Doklady Biol. Sci.*, 393: 553–556.

OPISTHOKONTA (SEE ALSO FUNGI)

- Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud'homme, B. & de Rosa, R. 2000. The new animal phyogeny: reliability and implications. *Proc. Natl. Acad. Sci. (USA)*, 97:4453–4456.
- Borchiellini, C., Chombard, C., Manuel, M., Alivon, E., Vacelet, J. & Boury-Esnault, N. 2004. Molecular phylogeny of Demospongiae: implications for classification and scenarios of character evolution. *Mol. Phylogenet. Evol.*, 32:823–837.
- Borchiellini, C., Manuel, M., Alivon, E., Le Parco, Y., Vacelet, J. & Boury-Esnault, N. 2003. Phylogeny and evolution of calcareous sponges: monophyly of Calcinea and Calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. *Syst. Biol.*, **52**:311–333.
- Cavalier-Smith, T. & Chao, E. E. 1995. The opalozoan *Apusomonas* is related to the common ancestor of animals, fungi and choanoflagellates. *Proc. Roy. Soc. Lond. B*, **261**:1–6.
- Cavalier-Smith, T. & Chao, E. E. 1997. Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae. *Arch. Protistenkd.*, **147**:227–236.
- Cavalier-Smith, T. & Chao, E. E. 2003. Phylogeny of Choanozoa, Apusozoa, and other Protozoa and early eukaryote megaevolution. J. Mol. Evol., 56:540–563.
- Eriksson, O. E., Baral, H.-O., Currah, R. S., Hansen, K., Kurtzman, C. P., Rambold, G. & Laessøe, T. 2004. Outline of Ascomycota. *Myconet*, **10**:1–99.
- Gromov, B. V. 2000. Algal parasites of the genera *Aphelidium*, *Amoeboaphelidium*, and *Pseudoaphelidium* from the Cienkovski's "Monadinea" group as representatives of a new class. *Zool. Zhurn.*, **79**: 517–525.

- Hertel, L. A., Bayne, C. J. & Loker, E. S. 2002. The symbiont Capsaspora owczarzaki, nov. gen. nov. sp., isolated from three strains of the pulmonate snail Biomphalaria glabrata is related to members of the Mesomycetozoea. Int. J. Parasitol., 32:1183–1191.
- Karpov, S. A. & Leadbeater, B. S. C. 1997. Cell and nuclear division in freshwater choanoflagellate *Monosiga ovata*. Eur. J. Protistol., 33: 323–334.
- Karpov, S. A. & Leadbeater, B. S. C. 1998. The cytoskeleton structure and composition in choanoflagellates. J. Eukaryot. Microbiol., 45:361–367.
- Leadbeater, B. S. C. & Thomson, H. 2002. Choanoflagellata. *In*: Lee, J. J., Leedale, G. F. & Bradbury, P. (ed.), An Illustrated Guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, KS. (Year 2000). p. 14–38.
- Medina, M., Collins, A. G., Silberman, J. D. & Sogin, M. L. 2001. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. *Proc. Natl. Acad. Sci. (USA)*, 98:9707–9712.
- Mendoza, L., Taylor, J. W. & Ajello, L. 2002. The class Mesomycetozoa: a heterogeneous group of microorganisms at the animal-fungal boundary. Ann. Rev. Microbiol., 56:315–344.
- Mollicone, M. R. & Longcore, J. E. 1999. Zoospore ultrastructure of Gonapodya polymorpha. Mycologia, 91:727–734.
- Raghu-Kumar, S. 1987. Occurrence of the thraustochytrid, Coral-lochytrium limacisperum gen. et sp. nov. in the coral reef lagoons of the Lakshadweep Islands in the Arabian Sea. Bot. Mar., 30:83–89.
- Ruiz-Trillo, I., Inagaki, Y., Davis, L. A., Landfald, B. & Roger, A. J. 2004. Capsaspora owczazaki is an independent opisthokont lineage. Curr. Biol., 14:R946–R947.
- Tong, S. M. 1997. Heterotrophic flagellates and other protists from Southampton waters, UK. Ophelia, 47:71–131.
- Wallberg, A., Thollesson, M., Farris, J. S. & Jondelius, U. 2004. The phylogenetic position of the comb-jellies (Ctenophora) and the importance of taxonomic sampling. *Cladistics*, 20:558–578.
- Zhukov, B. F. & Karpov, S. A. 1985. Freshwater choanoflagellates. L. Nauka (in Russian with English contents)
- Zrvavy, J., Mihulka, S., Kepka, P. & Bezdek, A. 1998. Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics, 14:249–285.

RADIOLARIA

- Amaral Zettler, L., Sogin, M. L. & Caron, D. A. 1997. Phylogenetic relationships between the Acantharea and the Polycystinea: a molecular perspective on Haeckel's Radiolaria. *Proc. Natl. Acad. Sci. (USA)*, **94**:1141–1416.
- Anderson, O. R. 1983. Radiolaria. Springer-Verlag, New York.
- Anderson, O. R., Nigrini, C., Boltovskoy, D., Takahashi, K. & Swanberg, N. R. 2002. Class Polycystinea. *In:* Lee, J. J., Leedale, G. F. & Bradbury, P. (ed.), An Illustrated Guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, KS. (Year 2000). p. 994–1022.
- Polet, S., Berney, C., Fahrni, J. & Pawlowski, J. 2004. Small-subunit ribosomal RNA gene sequences of *Phaeodarea* challenge the monophyly of Haeckel's Radiolaria. *Protist*, 155:53–63.
- Riedel, W. R. 1971. Systematic classification of polycystine Radiolaria. In: Riedel, W. R. & Funnell, B. M. (ed.), The Micropaleontology of Oceans. Cambridge University Press, Cambridge. p. 649–660.
- Takahashi, K. & Anderson, O. R. 2002. Class Phaeodaria. *In*: Lee, J. J., Leedale, G. F. & Bradbury, P. (ed.), An Illustrated Guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, KS. (Year 2000). p. 981–994.

RHIZARIA (SEE ALSO FORAMINIFERA AND RADIOLARIA)

Cavalier-Smith, T. & Chao, E. E. 1997. Sarcomonad ribosomal RNA sequences, rhizopod phylogeny, and the origin of euglyphid amoebae. *Arch. Protistenkd.*, **147**:227–236.

- Cavalier-Smith, T. & Chao, E. E. 2003. Phylogeny and classification of phylum Cercozoa (Protozoa). *Protist*, 154:341–358.
- Ekelund, F., Daugbjerg, N. & Fredslund, L. 2004. Phylogeny of *Heteromita, Cercomonas* and *Thaumatomonas* based on SSU rDNA sequences, including the description of *Neocercomonas jutlandica* sp. nov., gen. nov. *Eur. J. Protistol.*, 40:119–135.
- Flavin, M., O'Kelly, C. J., Nerad, T. A. & Wilkinson, G. 2000. Cholamonas cyrtodiopsidis gen.n., sp., (Cercomonadida), an endocommensal, mycophagous heterotrophic flagellate with a doubled kinetid. Acta Protozool., 39:51–60.
- Hibberd, D. J. 1983. Ultrastructure of the colonial colourless zooflagellates Phalansterium digitatum Stein (Phalansteriida ord. nov.) and Spongomonas uvella Stein (Spongomonadida ord. nov.). Protistologica. 19:523–535
- Hibberd, D. J. 1985. Observations on the ultrastructure of the species of Pseudodendromonas Bourrelli (P. operculifera and P. insignis) and Cyathobodo Petersen et Hansen (C. peltatus and C. gemmatus), Pseudodendromonadida ord.nov. Arch. Protistenk., 129:3–11.
- Karpov, S. A. 1990. Analysis of the orders Phalansteriida, Spongomonadida and Thaumatomonadida. Zool. Zhurn., 69:5–12. (in Russian)
- Karpov, S. A. 2000. Ultrastructure of the aloricate bicosoecid *Pseudobodo tremulans*, with revision of the order Bicosoecida. *Protistology*, 1: 100–108.
- Karpov, S. A. & Zhukov, B. F. 1987. Cytological peculiarities of colourless flagellate *Thaumatomonas lauterborni*. *Tsitologia*, 29:1168–1171. (in Russian)
- Karpov, S. A., Ekelund, F. & Moestrup, Ø. 2003. Katabia gromovi nov. gen. nov sp.—a new soil flagellate with affinities to Heteromita (Cercomonadida). Protistology, 3:30–41.
- Karpov, S. A., Kersanach, R. & Williams, D. M. 1998. Ultrastructure and 18S rRNA gene sequence of a small heterotrophic flagellate *Siluania monomastiga* gen. et sp. nov. (Bicosoecida). *Eur. J. Protistol.*, 34: 415–425.
- Mikrjukov, K. A. 2000. System and phylogeny of Heliozoa: should this taxon exist in modern systems of protists? *Zool. Zhur.*, **79**:883–897.
- Moreira, D., Lopez-Garcia, P. & Vickerman, K. 2004. An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. *Int. J. Syst. Evol. Microbiol.*, 54:1861–1875.
- Mylnikov, A. P. 1990. Characteristic features of the ultrastructure of the colourless flagellate *Heteromita* sp. *Tsitologiya*, **32**:567–571.
- Mylnikov, A. P. & Karpov, S. A. 2004. Review of the diversity and taxonomy of cercomonads. *Protistology*, 3:201–217.
- Nikolaev, S. I., Berny, C., Fahrni, J., Bolivar, I., Polet, S., Myl'nikov, A. P., Aleshin, V. V., Petrov, N. B. & Pawlowski, J. 2004. The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. *Proc. Natl. Acad. Sci. (USA)*, 101:8066–8071.
- Nikolaev, S. I., Berny, C., Fahrni, J., Myl'nikov, A. P., Petrov, N. B. & Pawlowski, J. 2003. Genetic relationships between desmothoracid Heliozoa and Gymnophryid amoebas as evidenced by comparison of the nucleotide sequences of 18S rRNA genes. *Doklady Biol. Sci.*, 393:553–556.
- Nikolaev, S. I., Berny, C., Fahrni, J., Myl'nikov, A. P., Aleshin, V. V., Petrov, N. B. & Pawlowski, J. 2003. Gymnophrys cometa and Lecythium sp. are core Cercozoa: evolutionary implications. Acta Protozoologica, 42:183–190.
- Patterson, D. J., Vørs, N., Simpson, A. G. B. & O'Kelly, C. 2002. Residual heterotrophic flagellates. *In*: Lee, J. J., Leedale, G. F. & Bradbury, P. (ed.), An Illustrated Guide to the Protozoa. 2nd ed. Society of Protozoologists, Lawrence, KS. (Year 2000). p. 1302–1327.
- Riedel, W. R. 1967. Some new families of Radiolaria. *Proc. Geol. Soc. Lond.*, **1640**:148–149.
- Shirkina, N. I. 1987. On the biology of *Thaumatomonas lauterborni* de Saedeleer, 1931 (Zoomastigophorea Calkins; Protozoa). Information Bulletin Biology of Inland Waters. *Nauka (Leningrad)*, **49**:25–29. (in Russian)

Received: 05/20/05; accepted: 05/28/05

INDEX FOR VOLUME 52/5

Genera with uncertain affiliation are listed alphabetically in Table 3 (p. 445)

Acanthamoeba 403	Ampullataria 417	Balaniger 425
Acanthamoebidae 403	Anaeromyces 412	Balantidium 437
Acantharia 419, 420	Ancyromonas 443, 444	Barbulanympha 441
Acanthochiasma 420	Animalia 415, 416	Barbyella 404
Acanthocolla 420	Anisolpidiaceae 426	Basidiobolus 410
Acanthocystidae 444	Anisolpidium 426	Basidiomycota 405, 406
Acanthocystis 444	Ankylochrisis 428	Bellotia 431
Acanthoecida 414	Anophryoides 439	Beroe ovata 415
Acanthoecidae 414	Anoplophrya 439	Bicosoeca 425
Acanthometra 420	Anurofeca richardsi 413	Bicosoecida 425
Acanthoplegma 420	Apedinella 427	Bicosta 414
Acaulospora 410	Aphagea 442	Bifurcaria 430
Acetabularia 421	Aphelidea 413	Bigelowiella 417
Achyla 426	Aphelidium 413	Biomyxa 418
Acineta 438	Apicomplexa 434	Blastocladia 411
Acinetospora 430	Aplanochytrium 426	Blastocladiaceae 411
Aconoidasida 434 Acrasidae 442	Aplysina 414	Blastocladiales 411
	Apostomatia 439	Blastocladiella 411
Acrasis 442	Apusomonadidae 444	Blastocladiopsis 411
Actinocoryne 418	Apusomonas 444	Blastocrithidia 443
Actinolophus 418 Actinomma 419	Arachnoidiscids 432 Arachnoidiscus 432	Blastocystis 425
Actinomma 419 Actinomonas 427		Blastodiniales 434
	Arcella 402 Arcellinida 402	Blastodiniphyceae 434
Actinophryidae 426		Blepharisma 435
Actinophrys 426 Actinoptychus 432	Archaeospora 410	Blepharocysta 433
Actinosphaerium 426	ARCHAEPLASTIDA 401, 420–423 Arcyria 404	Bodo 443
Acuta 435	Armophorea 436	<i>Bodomorpha</i> 416 Bodomorphidae 416
Acytostelium 404	Armophorida 436	Boletes 406
Adenocystis 430	Arthonia 408	Bolidomonas 426
Adriamonas 425	Arthoniomycetes 408	Bolidophyceae 426
Agaricostilbum 406	Arthracanthida 420	Bonnemaisonia 421
Agaricus 406	Arthrocladia 430	Bordnamonas 443
Akkesiophycus 431	Ascobolus 408	Botrydium 429
Alaria 431	Ascomycota 406	Botryochloropsis 427
Alexandrium 433	Ascophyllum 430	Botryococcus 421
Allantion 416	Ascoseira 430	Botryostrobus 419
Allas 416	Ascoseirales 430	Boveella 403
Allochytridium 412	Aspergillus 408	Bracteacoccus 422
Allogromia 418	Aspidisca 436	Brefeldia 404
Allomyces 411	Assulina 416	Brooklynella 437
Alphamonas 434	Asterionella 433	Bumilleriopsis 429
Althornia 426	Asterocladon 430	Bursaria 438
Alveolata 423, 433, 439	Asteronema 430	Buxtehudia 410
Amastigomonas 444	Asterophlyctis 412	Cacospongia 414, 415
Amblyospora 410	Astomatia 438, 439	Caecomyces 412
Ammonia 418	Astrolonche 420	Caeoma 406
Amoeba 402	Aulacantha 417	Caenomorpha 436
Amoebidiidae 413	Aulacoseira 432	Cafeteria 425
Amoebidium parasiticum 413	Aulographis 417	Calcarea 415
Amoeboaphelidium 413	Aulosphaera 417	Calcaronea 415
Amoebophilus 410	Aureococcus 428	Calcinea 415
Amoebophrya 434	Aureoumbra 428	Calciosolenia 425
AMOEBOZOA 401, 402–405, 442	Auricularia 406	Calcispongia 415
Amphiacantha 410	Axinella 414	Calkinisia 443
Amphiacon 420	Babesia 434	Callimitra 419
Amphibiocystidium ranae 413	Bacillariophyceae 432, 433	Calonympha 441
Amphidinium 433	Bacillariophyta 431	Campascus 417
Amphidinopsis 433	Bacillariophytina 432	Campylomonas 424
Amphidoma 433	Badhamia 404	Candida 407
Amphilithium 420	Balamuthia 403	Cannoraphis 417

Cannosphaera 417 Chlorokybus 422 Collozoum 419 Canteriomyces 426 Chloromeson 429 Colpidium 439 Cantharellus 406 Chlorophyceae 421, 422 Colpoda 438 Capsaspora 413 Chlorophyta 421 Colpodea 438 Capsaspora owczarzaki 413 Chloroplastida 421 Colpodella 434 Carchesium 439 Colpodellida 434 Choanocystis 444 Carpediemonas 440 Choanomonada 414 Colponema 439 Carpediemonas membranifera 440 Choanephora 411 Comandonia 403 Carpenteria 418 Choanozoa 413 Comatricha 404 Carpomitra 431 Cholamonas 416 Completoria 411 Carteria 422 Chondrosia 415 Conacon 420 Cashia 402 Chonotrichia 437 Conchellium 417 Castanella 417 Chorda 431 Conchopsis 417 Conidiobolus 411 Catenariaceae 411 Chordaria 430 Catenochytridium 412 Choreotrichia 436 Conoidasida 435 Choricystis 421 Copromyxa 405 Catenomyces 411 Catenophlyctis 411 CHROMALVEOLATA 401, 423-439 Copromyxella 405 Caternaria 411 Chromista 423, 425 Corallochytrium 413, 430 Caudospora 410 Chromulina 427 Corallochytrium limacisporum 413 Chromulinales 427 Corallomyxa 403 Caulerpa 421 Caulochytrium 412 Chroomonas 424 Corethrids 432 Caviomonas 440 Chrysochromulina 424 Corethron 432 Cavostellium 404 Chrysodidymus 429 Cormophyta 423 Centrohelida 444 Chrysomonas 427 Cornutella 419 Centropyxis 402 Chrysophyceae 426, 427 Coronympha 441 Cepedea 425 Chytridiales 412, 413 Corythion 416 Cephalolobus 435 Chytridiomycetes 411 Corvthionella 417 Cephalothamnium 443 Chytridiopsis 410 Coscinodiscids 432 Ceramium 421 Chytridium 412 Coscinodiscophytina 432 Ceratiomyxella 404 Chytriomyces 412 Coscinodiscus 432 Ceratium 433 Cienkowskia 418 Costaria 431 Ceratomyxa 404 Ciliata 435 Craspedida 414 Cercobodo 416 Ciliocincta 415 Crepidoodinium 434 Cercomastix 416 Ciliomyces 426 Cribraria 404 Cercomonadida 416 Ciliophora 423, 435 Crinula 409 Cristamonadida 440, 441 Cercomonadidae 416 Ciliophrys 427 Cercomonas 416 Cladochytrium 412 Crithidia 443 Cercozoa 416, 418 Cladorhizidae 414 Crustomastix 422 Chaetoceros 432 Clathrinida 415 Cruzella 443 Chaetocladium 411 Clathrulina 418 Cryothecomonas 418 Chaetopteris 431 Clathrulinidae 418 Crypthecodinium 433 Chaetosphaeridium 422 Clevelandella 436 Crypticola 426 Chaetothyriomycetes 408 Clevelandellida 436 Cryptobia 443 Chaetothyrium 408 Cryptocaryon 438 Climacostomum 435 Challengeron 417 Cliona 415 Cryptocercus 441 Chaos 402 Clydonella 403 Cryptochlora 417 Chara 423 Coccidiasina 435 Cryptomonadales 424 Characiopsis 429 Coccolithales 425 Cryptomonas 423 Charales 423 Coccolithus 425 Cryptophyceae 423 Charophyceae 422 Coccomyxa 421 Cryptophyta 423 Charophyta 422 Cochliopodium 403 Cryptosporidium 435 Cutleria 430 Charophytae 423 Cochlosoma 440 Chattonella 429 Codium 421 Cutleriales 430 Chaunocanthida 420 Codonella 436 Cyanophora 420 Chilodochona 437 Codonosiga 414 Cyathobodo 425 Chilodonella 437 Coelodendrum 417 Cyclidium 439 Chilomastix 440 Coelographis 417 Cycloclypeus 418 Chilomonas 423 Coelomomyces 411 Cyclospora 435 Chladophora 421 Coelomomycetaceae 411 Cylindrocapsa 422 Chlamydaster 444 Coemansia 410 Cyllamyces 412 Chlamydomonas (P) 422 Coenonia 405 Cymatosira 432 Coleochaete 422 Cyphoderia 417 Chlorarachnion 417 Coleps 438 Cyphoderiidae 417 Chlorarachniophyta 417 Chlorella 421 Collodaria 419 Cyrtellaria 419 Chlorobionta 421 Collodictyon 444 Cyrtophoria 437 Chlorobiota 421 Collodictyonidae 444 Cyrtostrombidium 436 Chlorodendrales 422 Collosphaera 419 Cystoseira 430

Dacrymyces 406	Dissodinium 434	Eustigmatos 427
Dactylopodida 403	Distigma 442	Eutreptia 442
Dactylosphaerium 403	Ditylum 432	Exanthemachrysis 424
Dasya 421	Diversispora 410	EXCAVATA 401, 439-443
Dasyphloea 421	Dothidea 408	Farrea 414
Daurataspis 420	Dothideomycetes 408	Favella 436
Deharvengia 416	Druvillaea 430	Fibrocapsa 429
Deltotrichonympha 441	Duboscquella 434	Filamoeba 405
Demospongiae 414, 415	Dydimium 404	Fistullina 406
Densospora 411	Ebria 444	Flabellinea 403
Dermamoeba 403	Ebriacea 444	Flahellula 402
Dermocystida 413	Echinamoeba 402	Flamella 403
Dermocystidium 413	Echinocystis 444	Floydiella 422
Desmarestia 430	Echinostelium 404	Foaina 441
Desmarestiales 430	Ectocarpales 430	Foettingeria 439
Desmodesmus 422	Ectocarpus 430	Folliculina 435
Desmothoracida 418	Ectrogella 426	Fonticula 405
Desportesia 410	Eimeria 435	Foraminifera 418
Deuteramoeba 402	Ellobiopsidae 439	Fornicata 439
Devescovina 441	Elnia 426	Frontonia 438
Devescovinidae 441	Embryophyta 423	Fucales 430
Diachea 404	Emiliania 425	Fucus 430
Diacronema 424	Encephalitozoon 410	Fuligo 404
Diatomea 431	Endochytrium 412	FUNGI 405, 406, 412–413
Dictyacantha 420	Endogonales 411	Gaertneriomyces 412
Dictyocha 427	Endogone 411	Gautieria 406
Dictyochales 427	Endolimax 403	Geodia cydonium 415
Dictyochophyceae 427	Endotrypanum 443	Geosiphon 410
Dictyostelia 404, 405	Entamoeba 403	Gephyramoeba 402
Dictyostelium 404, 405	Entamoebida 403	Gephyrocapsa 425
Dictyota 430	Enterocytozoon 410	Giardia 440
Dictyotales 430	Enteromonadida 440	Giardiinae 440
Dicyema 415 Dicyemennea 415	Enteromonas 440	Gibbodiscus 403
Diderma 404	Entodinium 437	Gigartacon 420
Didinium 437	Entomophthora 411 Entomophthorales 410, 411	Gigaspora 410
Didymocyrtis 419	Entophlyctis 412	Glaeseria 402 Glaucocystis 420
Dientamoeba 440	Entosiphon 442	Glaucocystophyta 420
Difflugia 402	Entrophospora 410	Glaucoma 439
Dileptus 437	Eopharyngia 439	Glaucophyta 420
Dilophus 430	Epalxella 437	Globigerinella 418
Dimargaris 410	Ephelota 438	Gloeochaete 420
Dimargaritales 410	Epistylis 439	Glomales 410
Dimastigamoeba 416	Eubodonida 443	Glomeromycota 410
Dimastigella 443	Eucheuma 421	Glomomycetes 410
Dimorpha 416	Euchitonia 419	Glomus 410
Dinema 442	Eucomonympha 441	Glossomastix 428
Dinenympha 441	Eucyrtidium 419	Glugea 410
Dinoflagellata 433	Euglena 442	Gocevia 405
Dinophyceae 433	Euglenea 442	Gonapodyaceae 412
Dinophysiphycidae 433	Euglenida 442	Goniomonadales 424
Dinophysis 433	Euglenozoa 439, 442, 443	Goniomonas 424
Dinothrix 434	Euglypha 416	Goniostomum 429
Dinozoa 433	Euglyphida 416, 417	Gonopodya 412
Diphylleia 444	Euglyphidae 416	Gonyaulax 433
Diploconus 420	Euglyphidion 417	Gracilaria 421
Diplomonadida 439, 440	EUKARYOTA 443, 444	Grantiopsis-Paralurilla 415
Diplonema 443	Eumetazoa 415	Gregarina 435
Diplonema ambulator 443	Eumycetozoa 404, 405	Gregarinasina 435
Diplonemea 442, 443	Eunotia 433	Gromia 419, 419
Dipsacomyes 410	Euplectella 414	Gruberella 442
Discamoeba 403	Euplotes 436	Gruberellidae 442
Discicristata 439	Eurotiomycetes 408	Guinardia 432
Diagram I I 126	*	
Discocephalus 436	Eurotium 408	Gyalecta 409
Discomorphella 437	Eurotium 408 Eurychasma 426	Gyalecta 409 Gymnodinioides 439
-	Eurotium 408	Gyalecta 409

Gymnophrys 418	Histionidae 441	Labyrinthulomycetes 426
Gymnosphaera 418	Histomonas 440	Laccaria 406
Gymnosphaerida 418	Holocanthida 420	Lacrymaria 437
Gyromitus 416	Holomastigotes 441	Lacustromyces 412
Haeckeliana 417	Holomastigotoides 441	Lagena 426
Haemospororida 434	Holophrya 438	Lagenisma 426
Hafniomonas 422	Homoscleromorpha 415	Lagynophrya 437
Halisarca 415	Hoplonympha 441	Laminaria 431
Halopteris 431	Hormosira 430	Laminariales 431
Halorbilia 409	Hyalodiscus 403	Lampoxanthium 419
Halosipon 431	Hyalonema 414	Lamprocyclas 419
Halosphaera 422	Hyalophysa 439	Lamproderma 404
Halteria 436	Hydra viridis 415	Lana 418
Haplospora 431	Hydramoeba 402	Latrostium 426
Haplosporidia 418	Hydrodictyon 422	Lecanora 409
Haplosporidium 418	Hymenomonas 425	Lecanoromycetes 409
Haptoglossa 426	Hymenostomatia 438, 439	Lechriopyla 438
Haptophrya 439	Hyphochytriales 426	Lecythium 418
Haptophyta 423, 424	Hyphochytridiomycetaceae 426	Leishmania 443
Haptoria 437	Hyphochytrium 426	Lenticula 418
Haramonas 429	Hyphodontia 406	Leocarpus 404
Harpella 410	Hypotrichia 436	Leotia 409
Harpellales 410	Ichthyobodo 443	Leotiomycetes 409
Harpochytrium 412	Ichthyophonae 413	Lepidoderma 404
Hartmannella 402	Ichthyophonida 413	Leptocylindrus 432
Hartmannia 405	Ichthyophonus 413	Leptomitus 426
Hedraiophrys 418	Ichthyophthirius 439	Leptomonas 443
Hedriocystis 418	Ichthyosporea 413	Leptomyxa 402
Helkesimastix 416	Icthyophonus 413	Leptomyxida 402
Helvella 408	Ignotocoma 437	Lessonia 431
Hemidinium 434	Imbricatea 416	Leucocryptos 444
Hemimastigophora 444	Infusoria 435	Leucosolenia variabilis 415
Hemimastix 444	Intramacronucleata 435	Levinea 435
Hemiselmis 424	Ishige 430	Licea 404
Hemistasia 443	Ishigeacea 430	Lichina 409
Hepatozoon 435	Ishigeales 430	Lichinomycetes 409
Hermesinum 444	Isochrysidales 425	Licnophora 436
Herpetomonas 443	Isochrysis 425	Licnophoria 436
Hessea 410	Isotricha 437	Linderina 410
Heteracon 420	Jaapia 406	Lingulamoeba 403
Heteramoeba 442	Jakoba 439, 441	Litostomatea 437
Heterocapsa 433	Jakoba libera 439	Lobophora 430
Heterococcus 429	Jakobida 439, 441, 442	Lophocalyx 414
Heteroglypha 417	Janickia 405	Lophomonas 441
Heterokonta 415	Japonochytrium 426	Lophospyris 419
Heterokontae 429	Joenia 441	Loxodes 435
Heterolobosea 439, 442	Karlingiomyces 412	Lycogala 404
Heteromita 416	Karotomorpha 425	Lycoperdon 406
Heteromitidae 416	Karyorelictea 435	Macbrideola 404
Heteromonadea 429	Katabia 416	Macropharyngimonas halophila 442
Heteronematina 442	Kathablepharidae 444	Macropodinium 437
Heterophryidae 444	Kathablepharis 444	Malamoeba 405
Heterophrys 444	Kentrophoros 435	Malassezia 406
Heteropiidae 415	Kickxella 410	Malawimonas 440
Heterosigma 429	Kickxellales 410	Malawimonas jakobiformis 440
Heterotrichea 435	Kinetoplastea 443	Mallomonas 429
Hexacontium 419	Klebsormidium 422	Malpigamoeba 405
Hexactinellida 414	Kochiomyces 412	Martensella 410
Hexalonche 419	Kofoidia 441	Martensiomyces 410
Hexamita 440	Kofoidinium 434	Massisteria 418
Hexamitinae 440	Komokiacea 418	Mastigamoeba 403
Hexastylus 419	Korotnevella 403	Mastigamoebidae 403
Hibberdia 427	Laboea 436	Mastigella 403
Hibberdiales 427	Laboulbenia 409	Mastigina 403
Himantothallus 430	Laboulbeniomycetes 408, 409	Matsakision 417
Hippospongia 415	Labyrinthula 426	Mayorella 403
Histiona 441	Labyrinthulaceae 426	Mediophyceae 432

Medusetta 417	Nematostelium 404	Oxyrrhis 434
Melampsora 406	Neohodo 443	Oxytricha 436
Melosira 432	Neobodonida 443	Pabia 421
Melosirids 432	Neocallimastigaceae 412	Pacispora 410
Menospora 435	Neocallimastix 412	Padina 430
Meristacrum 411	Neocercomonas 416	Palatinella 427
Merodinium 434	Neolecta 406, 407	Parabasalia 440, 441
Merotricha 429	Neolectomycetes 406	Parabodo 443
Mesnilium 434	Neoparamoeba 403	Parabodonida 443
Mesomycetozoa 413	Neozygites 411	Parachaos 402
Mesomycetozoea 413	Nephrochytrium 412	Paracichlidotherus 436
Mesopedinella 427	Nephroselmis 422	Paradermamoeba 403
Mesostigma 422	Nephroselmis olivacea 422	Paraflabellula 402
Mesostigmata 422	Nereia 431	Paraglomus 410
Mesozoa 415	Neurospora 410	Paragocevia 403
Messemvriella 417	Nitella 423	Paralia 432
Metakinetoplastina 443	Nitzschia 433	Paralids 432
Metatrichia 404	Nizymenia 421	Paramecium 438
Metazoa 414	Noctiluca 434	Paramoeba 403
Metchnikovella 410	Noctilucales 434	Parasphaerastrum 444
Metopion 418	Nodogenerina 418	Parazoa 414
Metopus 436	Nolandella 402	Pareuglypha 416
Microallomyces 411	Nosema 410	Parvamoeba 403
Microglomus 404	Nowakowskiella 412	Parvilucifera 434
Microjoenia 441	Nuclearia 414	Paulinella 417
Microsporidia 410	Nucleariida 414	Paulinellidae 417
Microthamniales 421	Nucleohelea 418	Pavlova 424
Microthamnion 421	Nyctotherus 436	Pavlovophyceae 424
Microthorax 438	Ohelidium 412	Pediastrum 422
Microzonia 430	Ochromonadales 427	Pedinella 427
Minchinellidae 415	Ochromonas 427	Pedinellales 427
Minchinia 418	Octodendron 419	Pedinomonas 422
Ministeria 414 Ministeriida 414	Octomitus 440	Pelagococcus 428
Mischococcales 429	Odontella 432	Pelagomonadales 428
Monoblepharella 412	Odontostomatida 437	Pelagomonas 428
Monoblepharidaceae 412	Oedegonium 422 Oedogoniomyces 412	Pelagophyceae 427, 428 Pellita 403
Monoblepharidales 411, 412	Oedogoniomycetaceae 412	Pelobiontida 403
Monoblepharis 412	Oligohymenophorea 438	Pelomyxa 403
Monocercomonas 440	Oligotrichia 436	Peltula 409
Monocercomonoides 441	Olisthodiscus 429	Penicillium 408
Monodopsis 427	Olpidiaceae 412	Peniculia 438
Monoraphis 414	Olpidiopsis 426	Pentatrichomonoides 440
Monosiga 414	Olpidium 412	Peranema 442
Monosigidae 414	Onslowia 431	Percolomonas 442
Morchella 408	Oocystis 421	Percolomonas salina 442
Mortierella 411	Öomycetes 426	Perichaena 404
Mucor 411	Oopsacas minuta 415	Peridinella 433
Mucorales 410, 411	Opalina 425	Peridiniphycidae 433
Multicilia 405	Opalinata 425	Peridinium 433
Murrayona 415	Opalinea 425	Peritrichia 439
Mycetozoa 404	Ophiocytium 429	Perkinsidae 434
Mychanastes 422	Ophryoscolex 437	Perkinsiella 443
Myxogastria 404	OPISTHOKONTA 401, 405–416	Perkinsus 434
Myxomycetes 404	Orbilia 409	Pernina 442
Myzocytiopsis 426	Orbiliomycetes 409	Peronospora 426
Naegleria 442	Orphella 410	Peronosporomycetes 426
Nannochloris 421	Orpinomyces 412	Pessonella 403
Nannochloropsis 427	Orthonectida 415	Petalomonas 442
Nassellaria 419	Oscarella 415	Peziza 408
Nassophorea 438	Oscarella lobularis 415	Pezizomycetes 408
Nassula 438	Oscillodignum 403	Pezizomycotina 407, 408
Navicula 433	Ovalopodium 403	Pfiesteria 433
Nemation 421	Oxnerella 444	Phacodiniidia 436
Nematocyatia 425	Oxymonadida 441	Phacodinium 436
Nematocystis 435 Nematopsis 435	Oxymonas 441 Oxyrrhinaceae 434	Phacus 442 Phaeoconchia 417

Phaeocystales 424	Roboth and 402	Diamagarium 410
Phaeocystine 424 Phaeocystina 417	Polychaos 402 Polychytrium 413	Pterocanium 419
Phaeocystis 424	Polycystinea 419	Pterocystis 444 Ptychodiscus 433
Phaeodarea 417	Polymastix 441	Pulvinaria 428
Phaeogromia 417	Polyphagus 413	Pyramimonas 422
Phaeomonas 428	Polyplacocystis 444	Pyrocystis 433
Phaeophyceae 430 Phaeosiphoniella 431	Polypodochrysis 428 Polyporus 406	Pyrsonympha 441 Pythiella 426
Phaeosphaeria 417	Polysphondylium 404, 405	Pythiogeton 426
Phaeothamniales 428	Pongomyxa 417	Pyxidiophora 409
Phaeothamnion 428	Pontisma 426	Radiolaria 419
Phaeothamniophyceae 428	Porifera 414	Raphidiocystis 444
Phaeurus 430	Porphyra 421	* *
Phagomyxa 417	Postciliodesmatophora 435	Raphidiophrys 444 Raphidophyceae 428, 429
Phalansterium 405	Postgaardi 443	
Philasterides 439	Prasinophytae 422	Raphydiophryidae 444 Reclinomonas 441
Phlebia 406	Prasiola 421	Reptomonas 416
Phractopelta 420	Preaxostyla 441	-
Phycomyces 411	· · · · · · · · · · · · · · · · · · ·	Reticulomyxa 418 Reticulosphaera 425
Phylctorhiza 413	Prismatomonas 416	Retortamonadida 440
Phyllaria 431	Procryptobia 443 Prokinetoplastina 443	Retortamonas 440
•	*	
Phyllopharyngea 437	Proleptomonas 418 Prorocentrales 433	Rhabdomonas 442
Phyllostaurus 420		Rhaphoneis 433
Physarella 404	Prorocentrophycidae 433	Rhinosporideacae 413
Physarum 404	Prorocentrum 433	Rhinosporidium seeberi 413
Physematium 419	Prorodon 438	Rhipidium 426
Physocladia 413	Prostomatea 438	Rhipidodendron 405
Physoderma 411	Protacanthamoeba 403	Rhizamoeba 402
Physodermataceae 411	Protaspis 416	RHIZARIA 401, 416–420
Phytodiniales 434	Proteomonas 423	Rhizidiomyces 426
Phytomonas 443	Proteromonadea 425	Rhizidiomycetaceae 426
Phytomyxea 417	Proteromonas 425	Rhizidiomycopsis 426
Pileolus 416	Protocruzia 436	Rhizochloridales 429
Pilobolus 411	Protocruziidia 436	Rhizochromulina 427
Pinguiochrysidales 428	Protoopalina 425	Rhizochromulinales 427
Pinguiochrysis 428	Protostelia 404	Rhizoclonium 421
Pinguiococcus 428	Protostelium 404	Rhizoclosmatium 413
Piptocephalis 410	Prototheca 421	Rhizonympha 441
Piromyces 412	Protozelleriella 425	Rhizophlyctis 412
Piroplasmorida 434	Prymnesiales 424	Rhizophydium 413
Pithophora 421	Prymnesiophyceae 424	Rhizosolenia 432
Placosista 416	Prymnesium 424	Rhizosolenids 432
Placozoa 414, 415	Psalteriomonas 442	Rhodomonas 424
Plagiopyla 438	Pseudoaphelidium 413	Rhodophyceae 420, 421
Plagiopylea 438	Pseudobodo 425	Rhodophysema 421
Plagonium 419	Pseudocharaciopsis 427	Rhodophyta 420
Plakina 415	Pseudochoda 431	Rhodoplantae 420
Plantae 423	Pseudociliata 444	Rhodotorula 406
Plasmodiophora 417	Pseudociliatea 444	Rhodymenia 421
Plasmodiophorida 417	Pseudociliatida 444	Rhombozoa 415
Plasmodium 434	Pseudocorythion 417	Rhopalomyces 410
Platyamoeba 403	Pseudodendromonas 425	Rhopalura 415
Playfairina 416	Pseudodifflugia 418	Rhynchobodo 443
Plectellaria 419	Pseudolithium 420	Rhynchodia 437
Plegmosphaera 419	Pseudomicrothorax 438	Rhynchoidomonas 443
Pleuraspis 420	Pseudonochloris 421	Rhynchomonas 443
Pleurastrophyceae 421	Pseudoparamoeba 403	Rhynchopus 443
Pleurochloridales 428	Pseudopedinella 427	Rhytisma 409
Pleurochloridella 428	Pseudoperkinsus tapetis 413	Rosculus 442
Pleurochrysis 425	Pseudoplatyophrya 438	Rostromonas 444
Pleuronema 439	Pseudoraphidiophrys 444	Rozella 412
Ploeotia 442	Pseudoraphidocystis 444	Rozellopsis 426
Pneumocystidomycetes 407	Pseudothecamoeba 403	Russula 406
Pneumocystis 407	Pseudotrichomonas 440	Saccamoeba 402
Pocheina 442	Psorospermium haeckeli 413	Saccharomyces 407
Podochytrium 413	Pteridiospora 411	Saccharomycetes 407
Podostoma 403	Pteridomonas 427	Saccinobaculus 441

Suprapheron 417 Spreamen 444 Symdrator 349 Surround 146 Spreamen 414 Spreamen 415 Spreamen 416 Spreamen 416 Spreamen 417 Spreamen 417 Spreamen 418 Spreamen 412 Taphina on the 149 Spreamen 412 Spreamen 419 Teresample 414 Teresample 414 Spreamen 412 Spreamen 419 Teresample 414 Spreamen 412 Spreamen 412 Spreamen 412 Spreamen 413 Spreamen 414 Spreamen 415 Spreamen 414 Spreamen 414 Spreamen 414 Spreamen 414 Spreamen 414 Spreamen 415 Spreamen 414 Spreamen 414 Spreamen 415			
Solumpococa 444 Spiromedia 419 Spiromedia 411 Suppins 431 Spiromedia 411 Suppins 431 Spiromedia 431 Spiromedia 431 Spiromedia 432 Spiromedia 433 Spiromedia 434 Toolina 430 Toolina 430 Spiromedia 434 Spiromedia 434 Spiromedia 434 Spiromedia 434 Spiromedia 434 Spiromedia 435 Spiromedia 435 Spiromedia 435 Spiromedia 436 Spiromedia 437 Toolina 430 Spiromedia 436 Spiromedia 436 Spiromedia 437 Toolina 430 Spiromedia 436 Spiromedia 437 Toolina 436 Spiromedia 437 Spiromedia 437 Spiromedia 437 Spiromedia 437 Spiromedia 437 Spiromedia 438 Spiromedia 438 Spiromedia 431 Spiromedia 434 Spiromedia 434 Spiromedia 434 Spiromedia 435 Spiromedia 434 Spiromedia 435 Spiromedia 435 Spiromedia 436 Spiromedia 436 Spiromedia 436 Spiromedia 436 Spiromedia 436 Spiromedia 436 Spiromedia	Sagosphaera 417	Spironema 444	Syndinium 434
Salpmogenedue 4.14 Spirotrospho 4.11 Syrtnopodema 4.31 Spirotrologian 4.26 Spirotriches 4.25 Spirotriches ympha 4.11 Talaromice 4.08 Spirotriches ympha 4.11 Taphinomycetis 4.07 Spirotriches 4.28 Spirotriches 4.28 Spirotriches 4.28 Taphinomycetis 4.70 Spirotriches 4.12 Spirotriches 4.12 Taphinomycetis 4.70 Spirotrologia 4.70 Spirotriches 4.12 Spirotriches 4.12 Taphinomycetis 4.70 Spirotriches 4.7	Sainouron 416	Spironemidae 444	Synura 429
Springeria 405 Springerichea 415 Springerichea 426 Springerichea 426 Springerichea 427 Fall		Spironucleus 440	Synurales 429
Suprise 1426		- · · ·	Syringoderma 431
Sarinechrysidales 428 Sprotzschowymphda 441 Tophino 407		*	• •
Sarrawsky st. 428 Spretchearm 411 Fughtma 407	• 0		2
Sarrasswam 430 Specilomyces 412 Taphtinomycetta 407 Sarrasswam 430 Spicellomycetaeca 412 Taphtinomycetta 407 Sarrasswam 430 Spicellomycetales 412 Taxopodida 420 Sarrasswam 430 Spicellomycetales 412 Taxopodida 420 Sarrasswam 442 Spongator 419 Texasoria 420 Texasoria 420 Texasoria 420 Spicellomycetales 415 Texasoria 420 Texasoria 420 Spicellomycetales 415 Texasoria 420 Texasoria 420 Spicellomycetales 421 Spicellomycetales 422 Spingenomalida 405 Tetrabymena 439 Schizoclashi 425 Spingenomalida 405 Tetrabymena 439 Schizoclashi 425 Spingenomalida 405 Tetrabymena 439 Schizoclashi 429 Spingenomalida 405 Tetrabymena 439 Schizoclashi 420 Spingenomalida 405 Tetrabymena 439 Schizoclashi 420 Spingenomalida 405 Tetrabymena 439 Schizoclashi 430 Spingenomalida 405 Tetrabymena 439 Schizoclashi 430 Spingenomalida 405 Tetrabymena 430 Schizoclashi 430 Spingenomalida 430 Spingenomalida 430 Spingenomalida 430 Spingenomalida 431 Tellolasticia 431 Tellolasticia 432 Spingenomalida 431 Tellolasticia 432 Spingenomalida 430 Spingenomalid	-	2 2 1	
Spacestom 450 Spacellomycotacea 412 Taphrinomycotace 470 Sourcealts 419 Spacellomycotacea 412 Taconympha 441 Sourcealts 419 Spacellomycotacea 412 Taconympha 441 Teranympha 442 Schedulmula 417 Spongemonalda 405 Teranyma 442 Schedulmula 420 Spongemona 416 Spongemona 417 Tholassicolla 419 Scieroma 416 Spongemona 417 Tholassicolla 419 Scieroma 416 Spongemona 417 Tholassicolla 419 Scieroma 410 Spongemona 411 Thornadium 411 Thornadium 411 Thornadium 411 Thornadium 411 Scieroma 410 Spongemona 410 Spongemona 410 Spongemona 410 Spongemona 410 Spongemona 410 Spongemona 410 Thornadium 411 Thornadium 411 Scieroma 430 Thornadium 431 Suuriceadula 420 Thornadium 431 Scieroma 432 Thornadium 431 Scieroma 432 Thornadium 434 Suuriceadula 434 Spongemona 441 Thornadium 441 Thornadium 442 Suuriceadula 444 Spongemona 444 Suuriceadula 444 Spongemona 444 Thornadium 445 Thornadium 446 Spongemona 444 Spongemona 444 Thornadium 445 Thornadium 446 Spongemona 444 Spongemona 444 Thornadium 445 Thornadium 446 Spongemona 444 Thornadium 446 Spongemona 444 Thornadium 446 Spongemona 444 Thornadium 446 Thornadium 446 Spongemona 446 Spongemona 447 Thornadium 447 Thornadium 448		•	
Spizellomycetales 412 Taxopodida 420		*	
Science Institution Science Sc	o contract of the contract of		
Scenedsmast 422 Spontaster 419 Texescents 429 Schaufmand 417 Spongamonadida 415 Textarhomena 439 Schreichtram 426 Spongamonadida 405 Textarhomena 439 Schreichtram 420 Spongamonas 405 Textarhomena 419 Schreicheida 429 Spongamonas 405 Textarhomena 418 Schreicheida 428 Spongamonas 405 Textarhomena 418 Schreicheida 428 Spongamonas 405 Textarhomena 418 Schreinen 418 Spongamonas 405 Textarhomena 418 Schreinen 418 Spongamonas 405 Textarhomena 418 Schreinen 418 Spongamonas 407 Textarhomena 418 Schreinen 411 Spondamonas 411 Textarhomena 418 Schreinen 409 Spondamona 410 Spongamona 419 Thaumatomonatic 425 Schreinen 410 Spongamona 419 Thaumatomonatic 425 Thaumatomonatic 418 Schreinen 410 Spongamona 419 Thaumatomonatic 418 Thaumatomonatic 418 Schreinen 413 Starting 412 Thaumatomonatic 418 Thaumatomonatic 418 Schreicharden 413 Starting 418 Starting 418 Tha			<u> </u>
Schedificated 417 Spongtimenalida 405 Testaccallobosia 402 Scheffetta 22 Spongtommadida 405 Testomitus 412 Scheffetda 429 Spongtommadida 405 Testomitus 412 Scheffetdad 429 Spongtomass minima 405 Testomitus 412 Scheffetdad 429 Spongtomass minima 405 Testovelinis 422 Scheffetdad 407 Spongsoppora 417 Testovelinis 422 Scheffetdad 407 Spongtomas 416 Spongsoppora 417 Thalassocilla 419 Scheffetdad 41 Spongtoma 418 Thalassocilla 419 Scheffetta 419 Scheffetdad 41 Thalassocilla 419 Spongtoma 411 Spongtoma 412 Scheffetta 411 Thalassocilla 418 Scheffetdad 41 Spongtoma 410 Spongtoma 410 Spongtoma 411 Thalassocilla 418 Thalassocilla 418 Scheffetta 418 Scheffetta 418 Thalassocilla 416 Scheffetta 418 Scheffetta 418 Thalassocilla 416 Scheffetta 418 Scheffetta 418 Scheffetta 418 Theological 416 Scheffetta 418			
Scherfeich 422 Spongomonadida 405 Tetrohymena 439 Schizochitum 426 Spongomona 405 Tetrughecta 419 Schizocadida 429 Apongomona 405 Tetrughecta 419 Schizosacchamomycetes 407 Spongomona 405 Tetrukaria 418 Schizosacchamomycetes 407 Spongoma 417 Tetrularia 418 Schizosacchamomycetes 407 Spongoma 417 Thalasscolit 419 Schizosacchamomycetes 407 Spongoma 417 Thalasscolit 419 Schizosacchamomycetes 407 Spongoma 417 Thalasscolit 419 Schizosacchamomacchamomycetes 407 Spongoma 417 Thalasscolit 419 Schizospirmia 440 Spongomatida 431 Thalasscolit 419 Schizospirmia 430 Spongomatida 410 Thalasscolit 411 Scridiomia 430 Spongomatida 412 Thalasscolit 416 Scytospirmia 431 Saurocondia 420 Thalasscolit 416 Scytolamania 431 Saurocondia 420 Thalasscolit 416 Scephanoma 442 Saurocondia 421 Thalasscolit 416 Schizospirmia 431 Saurocondia 431 Thalasscolit 416 Schizospirmia 433 Selicanoma 432			
Schizochwirum 426 Spongomona dub Tetrumius 442 Schizochada 429 Spongomonas Minima 405 Tetruselmis 422 Schizocharomyces 407 Spongomonas minima 405 Tetruselmis 422 Schizocharomyces 407 Spongomonas minima 405 Tetruselmis 422 Schizocharomyces 411 Spongospora 417 Thudassocro 431 Scierzome 411 Sporochnales 431 Thudassocro 431 Scierzoma 410 Sporochnales 431 Thudassocro 432 Sculicociliatia 438, 439 Spundiatia 419 Thudandomastis 416 Scytospannales 431 Shaurocharomastis 420 Thudandomastis 416 Scytospannales 431 Shaurocharomastis 420 Thudandomastis 416 Scoulomanus 421 Shaurocharomastis 411 Thecamochida 403 Semperelia 414 Staturocharomastis 415 Thecamochida 403 Semperelia 414 Staturocharomastis 415 Thecamochida 403 Serveta 418 Selexomonas 414 Thecimocharomastis 416 Serveta 418 Selexomonas 414 Thecimocharomastis 41 Silicacinogia 414 Stenonosa 414 Thecimocharomastis 416 Silicacinogia 416 <td< td=""><td></td><td></td><td></td></td<>			
Schizoscadua 429 Sponsomonas 405 Tetraplecta 119 Schizoscacharomyces 407 Sponsonomas minima 405 Textudaria 418 Schizoscacharomyces 407 Sponsonomas minima 405 Textudaria 418 Schizoscacharomyces 407 Sponsonoma 410 Taulasicella 19 Schizoscacharomyces 401 Sporochanlas 431 Taulasicella 19 Scherotina 409 Sporochanlas 431 Taulasicella 19 Scherotina 400 Spirate 410 Thaumatian 411 Scutioschitari 438, 439 Spunellaria 419 Thaumatian 411 Scutioschitari 438, 439 Spunellaria 410 Thaumatian 411 Scytothamale 431 Sauracondia 420 Thaumationomasi 416 Scytothamale 431 Sauracondia 420 Thaumationomasi 418 Septicularia 413 Sauracondia 420 Thecanochida 401 Semperella 414 Sauracondia 415 Thecanochida 401 Septicularia 413 Salinia 435 Thecochias 403 Silica 416 Selicina 414 Selicina 414 There 434 Silica 416 Selicina 416 Septimini 419 Trachelicin 418 Silicalisca 416 Se	**		ž
Schizosaccharomyces 407 Spongomenas minima 405 Tetraselinis 422 Schizosaccharomyces 407 Spongopora 417 Schizosaccharomyces 418 Schizosaccharomyces 411 Sporchales 431 Thalassicolis 419 Schizosaccharomyces 411 Sporchales 431 Thalassicolis 419 Schizosaccharomyces 410 Sporchales 431 Thamidium 411 Schizocciliatia 438, 439 Spumellaria 419 Syrtosiphon 430 Spumellaria 419 Syrtosiphon 430 Spumellaria 419 Syrtosiphon 430 Scrytosimales 431 Suaracandha 420 Thaumatomosats 416 Syrtoshamnus 431 Suaracandha 420 Thaumatomosat 416 Syrtoshamnus 431 Semperella 414 Stautorhapidae 415 Thecamochad 403 Semperella 414 Stautorhapidae 415 Thecamochad 403 Semperella 414 Stellocomyces 410 Silicia 414 Stellocomyces 410 Silicia 414 Silicia 414 Stellocomyces 410 Silicia 414 Silicia 414 Stellocomyces 410 Silicia 414			
Schizosaccharomycetes 407 Spongosphace 419 Textularia 418 Sciviamonas 416 Sporochanes 431 Thalassicolis 419 Sciviamonas 410 Sporochanes 431 Thalassicolis 74 Sciviamonas 410 Sporochanes 431 Thamitalium 411 Sciviamonas 430 Spumellaria 419 Thaumatomanitiud 416 Scytotalpho 430 Stackmoneba 442 Thaumatomanida 416 Scytothamiales 431 Staurocontha 420 Thaumatomonas 416 Scytothamiales 431 Staurocontha 420 Thecamocha 403 Scendamonas 442 Staurojoenina 411 Thecamocha 403 Scenderial 414 Staurojoenina 415 Thecamocha 403 Scenteria 418 Steixina 435 Thecamocha 403 Scenteria 418 Stectoria 43 Thecochas 403 Stinca 414 Stentoria 43 Theopitum 419 Stilicofiloses 416 Stentoria 43 Theopitum 419 Stilicofiloses 416 Stephanocca 414 Thephanocca 414 Stilicofiloses 416 Stephanopogon 444 Tilitium 40 Stipolamia 425 Stephanopogon 444 Tilitium 40 Stipolamia		• "	
Scieragna 416 Spongspora 417 Thalassicalia 419 Scieragna 411 Sportchnales 431 Thalassicalia 429 Scieragna 410 Sprachenia 431 Thamadium 411 Scueliospora 410 Spraguea 410 Thamadium 411 Scueliospora 410 Spraguea 410 Thamadium 411 Scueliospora 410 Spraguea 410 Thamadomastic 416 Scytosphon 430 Shachyamocha 442 Thamadomastic 416 Scytoshamalis 431 Shauracanha 420 Thamadomastic 416 Scytoshamalis 431 Shauracanha 420 Thamadomastic 416 Scytoshamalis 431 Shauracanha 420 Thecamocha 403 Scendamonas 442 Shauracha 420 Thecamocha 403 Semperella 414 Shauracha 415 Thecamocha 403 Scendamonas 444 Thecamocha 403 Scendamonas 444 Theochaos 403 Scendamonas 444 Theochaos 403 Scendamony 414 Shauracha 415 Theochaos 403 Scendamony 414 Shauracha 414 Theophiam 419 Silicea 414 Shauracha 414 Theophiam 419 Silicea 414 Shauracha 414 Theophiam 419 Silicea 414 Shauracha 415 Thraustochytriaceae 426 Silicispongia 414 Shenoca 414 Theophiam 419 Silicea 414 Shauracha 415 Thraustochytriaceae 426 Silicispongia 414 Shenoca 414 Theophiam 419 Siliceal 415 Shenoca 414 Theophiam 419 Siliceal 416 Shenoca 414 Theophiam 410 Siliceal 417 Shenoca 414 Theophiam 410 Shenoca 418 Shenoca 414 Theophiam 410 Shenoca 418 Shenoca 414 Theophiam 410 Shenoca 418 Shenoca 414 Theophiam 416 Shenoca 414 Theophiam 416 Shenoca 414 Theophiam 416 Shenoca 411 Shenoca 414 Theophiam 416 Shenoca 414 Shenoca 417 Shenoca 417 Shenoca 417 Shenoca 417 Shenoca 418 Shenoca 418 Shenoca 418 Shenoca 419 Shenoca 419 Shenoca 410 Shenoca 410 Shenoca 4	F		
Scieropane 411 Sporochnales 431 Thelassisorare 432 Scieropane 400 Sporochnales 431 Thomnidium 411 Scieropane 410 Spragee 410 Thomnidium 411 Scieropane 430 Spumellaria 419 Thomnidium 411 Scieropane 430 Succional 433 Spumellaria 419 Thomanatomasis 416 Scyotohamuse 431 Suarcaonha 420 Thomanatomonas 410 Scendamonas 442 Suarconha 431 Thecomecha 403 Semperella 414 Stauropienina 415 Thecomecha 403 Semperella 414 Stauropienina 415 Thecomecha 403 Servetia 418 Steleinina 435 Thecochos 403 Silicea 414 Stenocodon 441 Thematochytriae 414 Silicea 414 Stenocodon 441 Thematochytriae 426 Silicealiosea 416 Stephanopogan 444 Teleptimin 419 Silicaliosea 416 Stephanopogan 444 Tileptimin 426 Silicaliosea 416 Stephanopogan 444 Tiliptima 426 Silicaliosea 416 Stephanopogan 444 Tiliptima 426 Silicaliosea 417 Stephanopogan 444 Tiliptima 426	· · · · · · · · · · · · · · · · · · ·		
Scientinia 409 Spraguea 410 Spraguea 410 Spraguea 410 Seuticocilistia 438, 439 Spumellaria 419 Studiyamoeba 442 Thaumatomastix 416 Scientia 438, 439 Spumellaria 419 Studiyamoeba 442 Thaumatomastix 416 Scytothammus 431 Studracom 420 Thecamoeba 403 Seculamonias 441 Seutothammus 431 Studracom 420 Thecamoeba 403 Seculamonias 442 Studrojemina 441 Studiyamoeba 445 Sengreella 444 Studiyamoeba 445 Septochtrium 413 Seinina 435 Servetta 418 Selexomonias 414 Thecleria 434 Sigmoideomycev 410 Silican 444 Senocodon 441 Theoptium 419 Silican 444 Silican 444 Senocodon 441 Silican 445 Silicaniosa 416 Silicaniosa 416 Silicaniosa 416 Silicaniosa 416 Sephanopogonida 444 Theoptium 419 Silicaniosa 416 Silicaniosa 416 Silicaniosa 416 Silicaniosa 416 Silicaniosa 416 Sephanopogonida 444 Tilletia 406 Silicaniosa 416 Silicaniosa 416 Silicaniosa 416 Silicaniosa 416 Silicaniosa 416 Sephanopogonida 444 Tilletia 406 Silicaniosa 416 Silicaniosa 417 Silicaniosa 417 Silicaniosa 418 Silicaniosa 418 Silicaniosa 418 Silicaniosa 418 Silicaniosa 418 Silicaniosa 418 Silicaniosa 419 Silicaniosa 418 Silicaniosa			
Scuticecliaria 438, 439 Spumellaria 419 Thaumatomastig 416	0	-	
Scutocciliata 438, 439 Synomelari 419 Scytoshion 430 Stachyamoeba 442 Thaumatomoastis 416 Scytothamales 431 Stauracanha 420 Thaumatomoadid 416 Scytothamales 431 Stauracanha 420 Thaumatomoadid 416 Scytothamales 431 Stauracanha 420 Thaumatomoadid 416 Scytothamales 431 Stauracanha 420 Thecamoeba 403 Serendemonas 442 Stauropienina 441 Thecamoeba 403 Serendemonas 444 Serochritum 413 Steinina 435 Servitum 418 Steinina 435 Servitum 418 Steinina 435 Servitum 418 Steinina 435 Servitum 414 Stencodon 441 Theilerin 434 Sigmoideomyces 410 Silicea 414 Stencodon 441 Stencodon 441 Thraustochytrium 426 Silicispongia 414 Stencodon 441 Stencodon 441 Thraustochytrium 426 Silicispongia 414 Stencodon 441 Stencodon 441 Thraustochytrium 426 Silicispongia 414 Stencodon 441 Thraustochytrium 426 Silicispongia 414 Stencodon 441 Thraustochytrium 426 Silicispongia 414 Stencodon 441 Tilletia 406 Silicispongia 414 Silicia 406 Silicispongia 414 Silicia 406 Sili		^	
Seytothannales 431 Seytothannus 431 Seytothannus 431 Seytothannus 431 Seculanonas 442 Staturojonina 441 Septochyrium 413 Septochyrium 414 Septochyrium 415 Septochyrium 415 Septochyrium 416 Septochyrium 417 Septochyrium 418 Septochyrium 418 Septochyrium 419 Silicea 414 Silicea 414 Septochyrium 414 Septochyrium 415 Silicea 414 Septochyrium 415 Silicea 414 Septochyrium 416 Silicea 414 Septochyrium 416 Silicea 417 Silicea 418 S	-	• •	_
Seytothamnales 431 Seauracon 420 Thaumatomonas 416 Sevtothamnus 431 Seutarcon 420 Thecamoeba 403 Serolamonas 442 Stauropiania 441 Thecamoebida 403 Semperella 414 Staurorhapidae 415 Thecamonas 444 Stepperlen 414 Steinin 435 Serolamonas 442 Steinin 435 Serolamonas 444 Theoloria 434 Serolamonas 444 Theoloria 434 Steinin 435 Servetta 418 Steinin 435 Steinin 436 Sordaria 410 Steinin 436 Sordaria 411 Stokesia 438 Stereomyxa 403 Trachelocerva 435 Sordaria 410 Steinin 436 Sordaria 411 Stokesia 438 Trachelocerythin 416 Sorochytrium 417 Stomatochone 421 Sorochytrium 418 Stokesia 438 Trebouxta 421 Sorochytrium 419 Stokesia 438 Trebouxta 421 Sorochytrium 410 Stokesia 438 Trebouxta 421 Sorochytrium 411 Stokesia 436 Trachelocerythion 416 Sorochytrium 416 Sorochytrium 416 Sorochytrium 417 Stomatochone 421 Sphacelaria 431 Stroblidium 436 Trichomonas 440 Sphacerocrus 421 Sphacelaria 431 Stroblidium 436 Trichomonas 440 Sphaceroform a 431 Stroblidium 436 Trichomonas 440 Sphaceroform a 413 Stroblidium 436 Trichomonas 440 Sphaceroform a 413 Stroblidium 436 Trichomonas 440 Sphaceroform a 415 Stroblidium 436 Trichomonas 440 Sphaceroform a 416 Stroblytrium 411 Sphacerocoum 419 Stypocoum 430 Trichomonas 440 Trichomonas 440 Sphaceroform a 416 Suberite 415 Sphacelaria 431 Stroblidium 436 Trichomonas 440 Trichomympha 441 Sphaceroform a 416 Suberite 415 Sphacelaria 431 Stroblidium 436 Trichomonas 440 Trichomonas 440 Trichomonas 440 Tric		-	
Sevitamanus 431 Senumonas 442 Staurojaenina 441 Septochytrium 413 Steinina 435 Stevita 418 Stelexamanas 414 Stejanoideomyces 410 Stemontiis 404 Stemontiis 404 Stemontiis 404 Stemontiis 404 Stemontiis 404 Stilicis 414 Stemontiis 404 Stenoodan 441 Thraustochytriacea 426 Slilicis 416 Stephanopoga 414 Stenoodan 441 Tilletia 416 Slilicis 416 Stephanopogan 444 Tilletia 416 Stephanopogan 444 Tracheleudopha 416 Stercomma 432 Stercocladan 431 Tillinnopasi 436 Tokophryu 438 Tokophryu 438 Stercomma 432 Stercomma 432 Stercomma 444 Tracheleudopha 416 Sordaria 438 Stercomma 444 Tracheleudopha 416 Sordaria 410 Stichotinchia 436 Trachelocorythion 416 Sorochyttiacea 411 Stoecharthrum 415 Trachelocorythion 416 Sorochyttiacea 411 Stoecharthrum 415 Trachelocorythion 416 Sorochyttia 411 Stoecharthrum 415 Trebouxiophycea 421 Sphacelariales 431 Streblomastix 441 Trepomanus 440 Sphacrattrum 444 Streptophytina 422, 423 Treubaria 421 Sorosphaera 417 Stomatochone 441 Trepomanus 440 Sphacrattrum 444 Streptophytina 422, 423 Treubaria 421 Sphacelariales 431 Streblomastix 441 Trepomanus 440 Sphacrattrum 444 Streptophytina 422, 423 Treubaria 429 Sphacroccus 421 Sphacelariales 431 Streblomastix 441 Trepomanus 440 Sphacrattrum 444 Streptophytina 436 Trichomonas 440 Sphacroforma arctic 413 Styponodium 436 Trichomonas 440 Sphacroforma 417 Stomatochome 437 Sphacroforma 418 Strephaeralum 438 Trichomypha 441 Sphacroforma 417 Sphacroforma 418 Strephaeralum 433 Trichomypha 441 Sphacroforma 417 Sphacrof		F	
Secutamonas 442 Stauropenina 441 The camonas 444 Semperella 414 Staurophapida 415 The camonas 444 Sepretta 418 Steinina 435 The cochaos 403 Servetta 418 Steinina 435 The cochaos 403 Stemolites 414 Stemonites 404 Theopitum 419 Silicisopngia 414 Stencor 435 Thraustochyriman 426 Siliciofilosea 416 Stephanopeca 414 Tieghemiomyces 410 Stumina 425 Stephanopogonida 444 Tilopteridales 431 Stiphanphaera 419 Stephanopogonida 444 Tilopteridales 431 Strajdum 426 Stephanopogonida 444 Tilopteridales 431 Strajdum 426 Stephanopogonida 441 Tilopteridales 431 Strajdum 426 Steromya 403 Tokapira 41 Stophanopatria 410 Steromya 403 Tokapira 41 Sondiria 410 Steromya 403 Tokapira 41 Sordia	Scytothamnus 431		
Septechyrium 413 Steinina 435 Thecochas 403 Servetta 418 Stemonits 404 Thelpitum 419 Silicios 414 Stemonitis 404 Thraustochytriaceae 426 Siliciospogia 414 Stentor 435 Thraustochytriaceae 426 Siliciofilosea 416 Stephanopeca 414 Trephemiomyces 410 Silicofilosea 416 Stephanopogonidae 444 Tillopteridales 431 Silinicofilosea 416 Stephanopogonidae 444 Tillopteridales 431 Silicofilosea 416 Stephanopogonidae 444 Tillopteridales 431 Silicofilosea 416 Stephanopogonidae 444 Tillopteridales 431 Sirenderia 432 Stephanopyxis 432 Tillopteridales 431 Sirenderia 432 Stereomyxida 403 Tokophrya 438 Sondaria 410 Stereomyxida 403 Tokophrya 438 Smittim 410 Stereomyxida 403 Tomaculopsis 431 Sordariomycetes 409, 410 Sticholonche 420 Trachelocerca 435 Sordariomycetes 409, 410 Sticholonche 420 Trachelocorythina 416 Sorosphaera 417 Stomatichone 441 Trebouxia 422 Sorosphaera 417 Stomatichone 441	Seculamonas 442	Staurojoenina 441	
Servetia 418 Sigmoideomyces 410 Siemonitis 404 Sigmoideomyces 410 Silicea 414 Silicei 414 Siemonitis 404 Silicei 414 Silicei 52 Silicei 414 Silicei 53 Siemonitis 414 Siemon 435 Silicei 414 Silicei 500 sea 414 Silicei 500 sea 416 Silicei 500 sea 419 Sirolpidum 425 Siephanopogoni 444 Tillotei 406 Siphonsphaera 419 Siephanopogoni 444 Tilloperidales 431 Sirolpidum 426 Siephanopogoni 444 Tilloperidales 431 Sirolpidum 426 Siephanopogoni 444 Tilloperidales 431 Sirolpidum 426 Siephanopogoni 444 Tracheleoryis 431 Sondaria 430 Sondaria 438 Siephanopogoni 444 Tracheleoryis 431 Sondaria 438 Siephanopogoni 444 Tracheleoryis 435 Sondaria 438 Siephanopogoni 444 Tracheleoryis 435 Sondaria 431 Siephanopogoni 444 Siephanopogoni 444 Siephanopogoni 444 Tracheleoryis 435 Sondaria 431 Siephanopogoni 444 Siephanopogoni 444 Tracheleoryis 431 Siephanopogoni 444 Siephanopogoni 444 Tracheleoryis 431 Siephanopogoni 444 Siephanopogoni 444 Siephanopogoni 444 Siephanopogoni 444 Tracheleoryis 431 Siephanopogoni 444 Siephanopogoni 445 Siephanopogoni 446 Siephanopogoni 447 Siephanopogoni 448 Siephanopogoni 448 Siephanopogoni 448 Siephanopogoni 449 Siephanopogoni 449 Siephanopogoni 440 Siephanopogoni 440 Siephanopogoni 440 Siephanopogoni 440 Siephanopogoni 441 Siephanopog	Semperella 414	Staurorrhapidae 415	Thecamonas 444
Siemoideomyces 410 Silicies 414 Silicies 414 Silicies 414 Silicies 414 Silicies 415 Silicies 416 Silicies 417 Silicies 419 Stephanopogonidae 444 Tillopteridales 431 Sirolpidum 426 Silicies 418 Silicies 418 Sirolpidum 426 Silicies 418 Silicies 410 Silicies 418 Silicies 410 Silicies 411 Silicies 418 Silicies 4	Septochytrium 413	Steinina 435	Thecochaos 403
Silicis 414 Silicis pongia 414 Silicis pongia 414 Silicis pongia 414 Silicis pongia 414 Silicis Silicis 416 Silicis 456 Silici	Servetia 418	Stelexomonas 414	Theileria 434
Silicispongia 414 Silicispongia 416 Silicoilosea 419 Stephanopogon 444 Tilopterist 431 Sirolpidium 426 Stephanopyxis 432 Tilopterist 431 Sirolpidium 425 Stereomyxa 403 Tokophrya 438 Smittium 410 Stereomyxida 403 Tokophrya 438 Smittium 410 Stereomyxida 403 Tokophrya 438 Sordaria 410 Sticholonche 420 Trachelocorythion 416 Sordaria 410 Sticholonche 420 Trachelocorythion 416 Sorochytriaceae 411 Stoccharthrum 415 Trachelocorythion 416 Sorochytriaceae 411 Stoccharthrum 415 Trachelocorythion 416 Sorochytriaceae 411 Stockasia 438 Trebouxia 421 Soroxphaera 417 Stomatochone 441 Trebouxiophyceae 421 Soroxphaera 417 Stomatochone 441 Sphacelariales 431 Streplomastix 441 Trepomonas 440 Sphaceratriaes 431 Streplomastix 441 Streplomytia 422, 423 Treubaria 422 Sphaeraterum 444 Strobilidium 436 Trichanoeba 402 Sphaerococcus 421 Strobilidium 436 Trichanoeba 402 Sphaeroforma 413 Strobilidium 436 Trichanoeba 402 Sphaeroforma 413 Strobilidium 436 Trichinomosis 440 Sphaeroforma arctica 413 Stygamoeba 405 Trichominopsis 440 Sphaeroforma 441 Sphaerosorus 429 Stylopae 410 Trichomonas 440 Sphaeroforma 440 Sphaeroforma 441 Sphaerothecum destruens 413 Stypocaulon 431 Trichonympha 441 Sphaerothecum destruens 413 Stypocaulon 431 Trichonympha 441 Sphaerothecum 405 Sphaerothecum 407 Trichonympha 441 Sphaerothecum 407 Tr	Sigmoideomyces 410	Stemonitis 404	Theopilium 419
Silicofilosea 416 Stephanopogon 444 Tieghemiomyces 410 Siluania 425 Stephanopogon 444 Tilletia 406 Siphonsphaera 419 Stephanopogon 444 Tillopteridales 431 Sirolpidium 426 Stephanopysts 432 Tilopteris 431 Skeletonema 432 Stereoladon 431 Tintimopsis 436 Slopalinata 425 Stereomyx 403 Tokophrya 438 Smittium 410 Stereomyxida 403 Tomaculopsis 431 Smittium 410 Stereomyxida 403 Tomaculopsis 431 Sordaria 438 Stereomema 444 Trachelocerca 435 Sordaria 410 Sticholonche 420 Trachelocerca 435 Sordariomycetes 409, 410 Stichotrichia 436 Trachelocorythion 416 Sorochytriacea 411 Stockarthrum 415 Trachelocorythion 416 Sorochytriaca 417 Stomatochone 441 Trebouxiophycae 421 Sphacelariales 431 Streblomastix 441 Trepomonas 440 Sphaceratrum 444 Strephomostix 441 Trepomonas 440 Sphaereaca 414 Strobitidium 436 Tribonema 429 Sphaerococcus 421 Strobitidium 436 Trichamoeba 402	Silicea 414		Thraustochytriaceae 426
Siluania 425 Stephanopogon 444 Tilletia 406 Siphonsphaera 419 Stephanopogonidae 444 Tilopteridales 431 Sirolpidum 426 Stephanopysts 432 Tilopteridales 431 Skeletonema 432 Stereocladon 431 Tintimopsis 436 Slopalinata 425 Stereomyxa 403 Tokophrya 438 Smittim 410 Stereomyxida 403 Tomaculopsis 431 Sondaria 438 Stereonema 444 Trachelucylypha 416 Sordaria 410 Sticholonche 420 Trachelocorythina 416 Sordariomycetes 409, 410 Sticholonche 420 Trachelocorythion 416 Sorochytriacea 411 Stoecharthrum 415 Trachelocorythion 416 Sorochytrium 411 Stoecharthrum 415 Trachelocorythion 416 Sorosphaera 417 Stomatichone 441 Trebouxia 421 Sphacelariales 431 Stramenopiles 423, 425 Tremelia 406 Sphaeratrum 444 Strephania 422 Tremelia 406 Sphaeratrum 444 Strephania 422 Tremelia 406 Sphaeratrum 444 Strephania 425 Tremelia 406 Sphaeratrum 444 Strephania 422 Treburia 422	1 0		Thraustochytrium 426
Siphonsphaera 419 Stephanopyosi 432 Sirphanopyosi 432 Sirphanopyosi 432 Siephanopyosi 432 Siephanopyosi 432 Siephanopyosi 432 Siephanopyosi 432 Siephanopyosi 433 Siphanosi 431 Sirphanosi 436 Slopalinata 425 Siereomya 403 Tokophrya 438 Sinitium 410 Stereomyaida 403 Tomaculopsis 431 Sonderia 438 Siephanopyosi 440 Sorochytrianopyosi 441 Siephanopyosi 441 Siephanopyosi 442 Sorochytrium 411 Siephanopyosi 443 Siephanopyosi 444 Siephanopyosi 445 Siephanopyosi 446 Siephanopyosi 446 Siephanopyosi 446 Siephanopyosi 446 Siephanopyosi 446 Siephanopyosi 446 Siephanopyosi 447 Siephanopyosi 448 Siephanopyosi 448 Siephanopyosi 449 Siephanopyosi 449 Siephanopyosi 440 S		Stephanoeca 414	Tieghemiomyces 410
Sirolpidium 426 Skeltonema 432 Skeltonema 432 Stereocladon 431 Skeletonema 432 Stereocladon 431 Stereomyxa 403 Tokophrya 438 Smittium 410 Stereomyxida 403 Tomaculopsis 431 Sonderia 438 Siteronema 444 Tracheleuglypha 416 Sordaria 410 Sticholonche 420 Trachelocerca 435 Sordariomycetes 409, 410 Sticholonche 420 Trachelocorythion 416 Sorochytriaceae 411 Stockarthrum 415 Trachelocorythion 416 Sorochytriaceae 411 Stokesia 438 Trebouxia 421 Sorophrae 417 Stomatochone 441 Trebouxiophyceae 421 Sorophaera 417 Stomatochone 441 Trebouxiophyceae 421 Sphacelaria 431 Stramenopiles 423, 425 Tremella 406 Sphaerastrum 444 Streptophytina 422, 423 Tremoura 422 Sphaerellaria 419 Sphaerastrum 444 Streptophytina 422, 423 Tribonema 429 Sphaerococus 421 Strobildium 436 Tribonema 429 Sphaerococus 421 Strombidium 436 Trichamoeba 402 Sphaeroforma 413 Strygamoeba 405 Trichim 404 Sphaerosorus 429 Stylopage 410 Trichomitopsis 440 Sphaerosorus 420 Sphaerothecum destruens 413 Stypocaulon 431 Stypocaulon 431 Stypocaulon 431 Stypocaulon 430 Trichomonas 440 Sphaerosorus 429 Sphaerothecum destruens 413 Stypopodium 430 Trichomonas 440 Sphaerosorus 429 Sphaerothecum destruens 413 Stypopodium 430 Trichomonas 440 Sphaerosorus 429 Sphaerothecum 481 Stypopodium 430 Trichomonas 440 Sphaerothecum 481 Sphaerothecum 483 Trichonymphida 441 Sphaerothecum 483 Trichonymphida 441 Sphaerothec			Tilletia 406
Skeletonema 432Stereoladon 431Tintinnopsis 436Slopalinata 425Stereomyx 403Tokophrya 438Smittium 410Stereomyxida 403Tomaculopsis 431Sonderia 438Stereonema 444Tracheleuglypha 416Sordaria 410Sticholonche 420Trachelocerca 435Sordariomycetes 409, 410Stichotichia 436Trachelocorythion 416Sorochytriaceae 411Stoecharthrum 415Trachelocorythion 416Sorochytrium 411Stokesia 438Trebouxia 421Sorosphaera 417Stomatochone 441Trebouxia 421Sphacelaria 431Stramenopiles 423, 425Tremella 406Sphacelariales 431Streplomytina 422, 423Treubaria 422Sphacerlatiales 431Streplomytina 422, 423Treubaria 422Sphacerellaria 419Strioluaus 403Tribonema 429Sphaereocas 421Strobilidium 436Tribonema 429Sphaerococcus 421Strombidium 436Tribonema 429Sphaeroforma 413Strombidium 436Trichiamoeba 402Sphaeroforma arctica 413Styamoeba 405Trichiamoeba 404Sphaeroforma arctica 413Stygamoeba 405Trichomonas 440Sphaerothecum destruens 413Stypocaulon 431Trichomonas 440Sphaerothecum destruens 413Stypocaulon 431Trichomynphida 441Sphaerothecum destruens 413Stypocaulon 430Trichonymphida 441Sphaerothecum destruens 413Stypocaulon 430Trichonymphida 441Sphaerothecum destruens 413Stypocaulon 430Trichonymphida 441Sphenophrya 437Subulamoeba 40			-
Slopalinata 425 Stereomyxa 403 Tokophrya 438 Smirtium 410 Stereomyxida 403 Tomaculopsis 431 Sonderia 438 Stereomema 444 Tracheleuglypha 416 Sordaria 410 Sticholonche 420 Trachelocerca 435 Sordariomycetes 409, 410 Stichotrichia 436 Trachelocerca 435 Sordariomycetes 409, 410 Stichotrichia 436 Trachelocorythion 416 Sorochytriaceae 411 Stoecharthrum 415 Trachelomonas 442 Sorochytrium 411 Stokesia 438 Trebouxia 421 Trebouxia 421 Trebouxia 421 Sorosphaera 417 Stomatochone 441 Trebouxiophyceae 421 Sphacelaria 431 Streblomastix 441 Trepomonas 440 Sphaerastrum 444 Streptophytina 422, 423 Tremella 406 Sphaerastrum 444 Streptophytina 422, 423 Trebouxia 422 Sphaerellaria 419 Strioluatus 403 Tribonema 429 Sphaerocccus 421 Strobitidium 436 Tribonematales 429 Sphaerocccus 414 Strombidinopsis 436 Trichamoeba 402 Sphaeroforma 413 Strombidium 436 Trichamoeba 402 Sphaeroforma arctica 413 Stygamoeba 405 Trichomonadida 440 Sphaerosphaera 409 Stylonychia 436 Trichomonadida 440 Sphaerothecum destruens 413 Stypopadium 430 Trichomonadida 440 Sphaerothecum destruens 413 Stypopadium 430 Trichomonadida 440 Sphaerothecum destruens 413 Stypopadium 430 Trichomonadida 441 Sphaerozoum 419 Stypopadium 430 Trichonymphida 441 Sphaerozoum 416 Suberites 415 Trichoplax 401, 415 Sphenophya 437 Subulamoeba 403 Trichorymchus 435 Spinalia 410 Suctoria 438 Trichostomatia 437 Spinochona 437 Symbiodinium 433 Trichostomatia 437 Spinochona 437 Symphyacanthida 420 Trienamoeba 403 Spirochona 440 Spirochona 437 Symphyacanthida 420 Trienamoeba 403 Spirochona 440 Trimatis 441 Spirogyra 422 Spirochona	•		-
Smittium 410 Stereomyxida 403 Tomaculopsis 431 Sonderia 438 Stereomema 444 Tracheleuglypha 416 Sordaria 410 Sticholonche 420 Trachelocerca 435 Sordariomycetes 409, 410 Stichotrichia 436 Trachelocorythion 416 Sorochytriaceae 411 Stoecharthrum 415 Trachelocorythion 416 Sorochytrium 411 Stoecharthrum 415 Trachelomonas 442 Sorosphaera 417 Stomatochone 441 Trebouxia 421 Sphacelaria 431 Stramenopiles 423, 425 Tremella 406 Sphacelariales 431 Streblomastix 441 Trepomonas 440 Sphaerastrum 444 Streptophytina 422, 423 Treubaria 422 Sphaerococcus 421 Strobildium 436 Tribonema 429 Sphaerococcus 421 Strombidium 436 Trichamoeba 402 Sphaeroforma 413 Strombidium 436 Trichamoeba 402 Sphaeroforma arctica 413 Stygamoeba 405 Trichomitopsis 440 Sphaerostus 429 Stylonychia 436 Trichomonadida 440 Sphaerothecum destruens 413 Stypopadium 430 Trichomympha 441 Sphaerothecum destruens 413 Stypopodium 4			•
Sonderia 438 Sordaria 410 Sordaria 410 Sticholonche 420 Trachelocerca 435 Sordariomycetes 409, 410 Stichotichia 436 Trachelocorythion 416 Sorochytriaceae 411 Stoecharhrum 415 Trachelomonas 442 Sorochytrium 411 Stokesia 438 Trebouxia 421 Sorosphaera 417 Stomatachone 441 Sphacelaria 431 Sphacelariales 431 Streblomastix 441 Sphaerastrum 444 Streptophytina 422, 423 Tremella 406 Sphaerellaria 419 Sphaerellaria 419 Sphaerococcus 421 Sphaerococcus 421 Sphaerocorcus 421 Sphaerocorcus 421 Sphaeroforma 413 Strombidium 436 Strombidium 436 Trichamoeba 402 Sphaeroforma 413 Sphaeroforma arctica 413 Stygamoeba 405 Trichamoeba 400 Sphaerosorus 429 Sphaerosorus 429 Sphaerotheca 409 Stylopage 410 Trichomonadida 440 Sphaerotheca 409 Sphaerothecum destruens 413 Sphaerothecum destruens 413 Sphaerodorus 416 Suberites 415 Sphenophrya 437 Subulamoeba 403 Spinoderia 416 Suberites 415 Spinolium 436 Trichorphynchus 431 Spinoderia 410 Spirochona 437 Spirochona 437 Spirocyrits 419 Spirochona 437 Spirocyrits 419 Spirodactylon 410 Spirogyra 422 Synchytrium 413 Trimitus 440		-	* *
Sordaria 410 Sticholonche 420 Trachelocerca 435 Sordariomycetes 409, 410 Stichotrichia 436 Trachelocerca 435 Sordariomycetes 409, 410 Stoecharthrum 415 Trachelomonas 442 Sorochytrium 411 Stokesia 438 Trebouxia 421 Sorosphaera 417 Stomatochone 441 Trebouxiophyceae 421 Sphacelaria 431 Stramenopiles 423, 425 Tremella 406 Sphacelariales 431 Streblomastix 441 Trepomonas 440 Sphacerastrum 444 Streptophytina 422, 423 Treubaria 429 Sphaerelaria 419 Strioluanus 403 Tribonema 429 Sphaerocccus 421 Strobilidium 436 Tribonema 429 Sphaerocca 414 Strombidinopsis 436 Trichamoeba 402 Sphaeroforma 413 Strombidium 436 Trichia 404 Sphaeroforma arctica 413 Styganoeba 405 Trichomitopsis 440 Sphaerosorus 429 Sphaerosorus 429 Stylonychia 436 Trichomonadida 440 Sphaerosorus 429 Sphaerotheca 409 Stylonychia 436 Trichomonadida 440 Sphaerothecum destruens 413 Stypocaulon 431 Trichomonas 440 Sphaerothecum destruens 413 Stypopodium 430 Trichonymphia 441 Sphenophrya 437 Sphaerothecum destruens 415 Sphenophrya 437 Subulamoeba 403 Trichorymphia 435 Spinola 410 Spinola 410 Spirochona 437 Symbiodinium 433 Trichostomatia 437 Spirocyrtis 419 Symphyacanthida 420 Trienamoeba 403 Spirodactylon 410 Syncephalestrum 411 Trimastix 441 Spirogyra 422		-	-
Sordariomycetes 409, 410 Strochytriaceae 411 Stoecharthrum 415 Stoecharthrum 415 Stoecharthrum 415 Storochytrium 411 Stoecharthrum 415 Storochytrium 411 Storosphaera 417 Stomatochone 441 Sphacelaria 431 Stramenopiles 423, 425 Stramenopiles 423, 425 Sphacelariales 431 Sphacelariales 431 Sphacelariales 431 Sphacerstrum 444 Streptophytina 422, 423 Sphaerellaria 419 Sphaerellaria 419 Sphaerococcus 421 Sphaerococcus 421 Sphaeroforma 413 Strombidium 436 Strombidium 436 Sphaeroforma arctica 413 Sphaeroforma arctica 413 Sphaeroforma arctica 413 Sphaerosorus 429 Sphaerotheca 409 Sphaerotheca 409 Sphaerothecum destruens 413 Stypopodium 430 Sphaerothecum destruens 413 Sphaeroderia 416 Suberites 415 Sphaerodria 416 Suberites 415 Sphaenodria 416 Suberites 415 Sphaenodria 416 Suberites 415 Sphaenodria 416 Suberites 415 Sphaenodria 416 Suberites 415 Spinalia 410 Spinalia 410 Spinalia 410 Spirochoma 437 Spinochymia 437 Spirochoma 437 Spirochoma 437 Spirochymia 436 Spirochymia 436 Trichomoeba 403 Spirochoma 437 Spirochoma 437 Spirochymia 430 Spirochoma 437 Spirocyrtis 419 Spirodoctylon 410 Spirogyra 422 Spirothrum 411 Spirogyra 422 Spirothrum 411 Spirogyra 422			~ · ·
Sorochytriaceae 411 Sorochytrium 411 Stokesia 438 Trebouxia 421 Sorochytrium 411 Stokesia 438 Trebouxia 421 Sorochytrium 417 Stomatochone 441 Sphacelaria 431 Sphacelariales 431 Sphacelariales 431 Sphacerstrum 444 Sphaerostrum 444 Sphaerococcus 421 Sphaerococcus 421 Sphaerococcus 421 Sphaerococcus 421 Sphaeroforma 413 Sphaeroforma 413 Sphaeroforma arctica 413 Sphaeroforma arctica 413 Sphaerosorus 429 Sphaerotoccus 429 Sphaeroforma arctica 413 Sphaeroforma arctica 413 Sphaeroforma 413 Sphaeroforma 413 Sphaeroforma 413 Sphaeroforma 414 Sphaeroforma 415 Sphaeroforma 415 Sphaeroforma 416 Sphaeroforma 417 Sphaeroforma 418 Sphaeroforma 419 Sphaeroforma 410 Sphaeroforma 411 Sphaeroforma 413 Stypocaulon 431 Sphaeroforma 414 Sphaeroforma 415 Sphaeroforma 415 Sphaeroforma 416 Sphaeroforma 417 Sphaeroforma 418 Sphaeroforma 419 Sphaeroforma 419 Sphaeroforma 410 Sphaeroforma 417 Sphenophrya 437 Subulamoeba 403 Trichonymphida 441 Sphenophrya 437 Spirocyriis 419 Symbyacanthida 420 Spirochona 437 Spirocyriis 419 Spirodactylon 410 Syncephalestrum 411 Spirogyra 422 Synchytrium 413 Trimitus 440			
Sorochytrium 411 Stokesia 438 Trebouxia 421 Sorosphaera 417 Stomatochone 441 Sphacelaria 431 Stramenopiles 423, 425 Tremella 406 Sphacelariales 431 Sphacelariales 431 Streblomastix 441 Sphaerastrum 444 Streptophytina 422, 423 Sphaerococcus 421 Sphaerococcus 421 Sphaerococcus 421 Sphaerococcus 421 Strobilidium 436 Strombidinopsis 436 Trichamoeba 402 Sphaeroforma 413 Strombidium 436 Sphaeroforma arctica 413 Strombidium 436 Trichamoeba 402 Sphaeroforma arctica 413 Styamoeba 405 Sphaeroforma arctica 413 Stylopage 410 Sphaerotheca 409 Sphaerotheca 409 Sphaerotheca 419 Sphaerotoma destruens 413 Stypocaulon 431 Sphaerozoum 419 Sphaerozoum 419 Sphaerozoum 419 Sphaerosphaera 416 Suberites 415 Sphenophrya 437 Subulamoeba 403 Spirodoria 436 Trichosphaerium 402 Spirochona 437 Spirocyrtis 419 Spirodoriyou 410 Spirogyra 422 Spirolytrium 413 Trimitus 440 Trimitus 440 Spirogyra 422			
Sorosphaera 417 Sphacelaria 431 Stramenopiles 423, 425 Sphacelaria 431 Streblomastix 441 Sphaerastrum 444 Streblomastix 441 Sphaerastrum 444 Strebophytina 422, 423 Sphaerellaria 419 Sphaerococcus 421 Sphaerococcus 421 Sphaerococcus 421 Sphaeroforma 413 Strobilidium 436 Strombidium 436 Strombidium 436 Strombidium 436 Strombidium 436 Sphaeroforma arctica 413 Stygamoeba 405 Sphaeroforma arctica 413 Sphaeroforma 429 Sphaerosorus 429 Sphaerosorus 429 Stylonychia 436 Trichamoeba 402 Sphaerosorus 429 Stylonychia 436 Trichominopsis 440 Sphaerosheca 409 Sphaerotheca 409 Sphaerothecum destruens 413 Sphaerothecum destruens 413 Sphaerozoum 419 Sphaerozoum 430 Sphaerozoum 419 Sphaerozoum 430 Sphaerozoum 410 Sphaerozoum 437 Spinocoria 438 Trichonymphia 441 Sphenoderia 416 Spirochona 437 Spirochona 437 Spirochona 437 Spirocyriis 419 Symbodinium 433 Spirodactylon 410 Syncephalestrum 411 Spirogyra 422 Synchytrium 413 Trimitus 440	-		
Sphacelaria 431Stramenopiles 423, 425Tremella 406Sphacelariales 431Streblomastix 441Trepomonas 440Sphaerastrum 444Streptophytina 422, 423Treubaria 422Sphaerellaria 419Strioluatus 403Tribonema 429Sphaerococcus 421Strobilidium 436Tribonematales 429Sphaeroforma 413Strombidium 436Trichamoeba 402Sphaeroforma arctica 413Strombidium 436Trichamoeba 402Sphaeroforma arctica 413Stygamoeba 405Trichomitopsis 440Sphaerosorus 429Stylonychia 436Trichomitopsis 440Sphaerotheca 409Stylopage 410Trichomonas 440Sphaerothecum destruens 413Stypocaulon 431Trichonympha 441Sphaerozoum 419Stypopodium 430Trichonymphida 441Sphaerozoum 416Suberites 415Trichoplax 401, 415Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichosphaerium 402Spirocyntis 419Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symbiodinium 433Trichostomatia 437Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440			
Sphacelariales 431 Sphaerastrum 444 Sphaerastrum 444 Sphaerastrum 444 Sphaerastrum 444 Sphaerastrum 444 Sphaerastrum 444 Streptophytina 422, 423 Sphaerellaria 419 Sphaerococcus 421 Sphaerococcus 421 Sphaerococcus 421 Sphaerococa 414 Sphaeroforma 413 Sphaeroforma 413 Sphaeroforma 413 Sphaeroforma arctica 413 Sphaeroforma arctica 413 Sphaerosorus 429 Stylonychia 436 Sphaerosorus 429 Stylonychia 436 Sphaerotheca 409 Sphaerotheca 409 Sphaerothecum destruens 413 Sphaerozoum 419 Sphaerozoum 419 Sphaerozoum 410 Sphaerozoum 410 Sphaerosorus 427 Sphaerozoum 418 Sphaerozoum 419 Sphaerozoum 410 Sphaerozoum 417 Sphaerozoum 418 Sphaerozoum 419 Sphaerozoum 410 Sphaerozoum 410 Sphaerozoum 410 Sphaerozoum 410 Sphaerozoum 410 Spirochora 437 Spirocyrtis 419 Spirocyrtis 419 Symphyacanthida 420 Spirochora 422 Spirodactylon 410 Syncephalestrum 411 Spirogyra 422 Synchytrium 413 Trimitus 440	-		. 2
Sphaerastrum 444Streptophytina 422, 423Treubaria 422Sphaerellaria 419Strioluatus 403Tribonema 429Sphaerococcus 421Strobilidium 436Tribonematales 429Sphaeroeca 414Strombidinopsis 436Trichamoeba 402Sphaeroforma 413Strombidium 436Trichia 404Sphaeroforma arctica 413Stygamoeba 405Trichomitopsis 440Sphaerosorus 429Stylonychia 436Trichomonadida 440Sphaerotheca 409Stylopage 410Trichomonas 440Sphaerothecum destruens 413Stypocaulon 431Trichonympha 441Sphaerozoum 419Stypopodium 430Trichonymphida 441Sphenoderia 416Suberites 415Trichonymphida 441Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichorhynchus 435Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symbiodinium 433Trichostomatia 437Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	1		
Sphaerellaria 419Strioluatus 403Tribonema 429Sphaerococcus 421Strobildium 436Tribonematales 429Sphaeroeca 414Strombidinopsis 436Trichamoeba 402Sphaeroforma 413Strombidium 436Trichia 404Sphaeroforma arctica 413Stygamoeba 405Trichomitopsis 440Sphaerosorus 429Stylonychia 436Trichomonadida 440Sphaerotheca 409Stylopage 410Trichomonas 440Sphaerothecum destruens 413Stypocaulon 431Trichonympha 441Sphaerozoum 419Stypopodium 430Trichonymphida 441Sphenoderia 416Suberites 415Trichoplax 401, 415Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichorshaerium 402Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symbiodinium 433Trichostomatia 437Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440			*
Sphaerococcus 421Strobilidium 436Tribonematales 429Sphaerocca 414Strombidinopsis 436Trichamoeba 402Sphaeroforma 413Strombidium 436Trichia 404Sphaeroforma arctica 413Stygamoeba 405Trichomitopsis 440Sphaerosorus 429Stylonychia 436Trichomonadida 440Sphaerotheca 409Stylopage 410Trichomonas 440Sphaerothecum destruens 413Stypocaulon 431Trichonympha 441Sphaerozoum 419Stypopodium 430Trichonymphida 441Sphenoderia 416Suberites 415Trichoplax 401, 415Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichosphaerium 402Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440			
Sphaeroforma 413Strombidium 436Trichia 404Sphaeroforma arctica 413Stygamoeba 405Trichomitopsis 440Sphaerosorus 429Stylonychia 436Trichomonadida 440Sphaerotheca 409Stylopage 410Trichomonas 440Sphaerothecum destruens 413Stypocaulon 431Trichonympha 441Sphaerozoum 419Stypopodium 430Trichonymphida 441Sphenoderia 416Suberites 415Trichoplax 401, 415Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichosphaerium 402Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	Sphaerococcus 421		
Sphaeroforma arctica 413Stygamoeba 405Trichomitopsis 440Sphaerosorus 429Stylonychia 436Trichomonadida 440Sphaerotheca 409Stylopage 410Trichomonas 440Sphaerothecum destruens 413Stypocaulon 431Trichonympha 441Sphaerozoum 419Stypopodium 430Trichonymphida 441Sphenoderia 416Suberites 415Trichoplax 401, 415Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichosphaerium 402Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	Sphaeroeca 414	Strombidinopsis 436	Trichamoeba 402
Sphaerosorus 429Stylonychia 436Trichomonadida 440Sphaerotheca 409Stylopage 410Trichomonas 440Sphaerothecum destruens 413Stypocaulon 431Trichonympha 441Sphaerozoum 419Stypopodium 430Trichonymphida 441Sphenoderia 416Suberites 415Trichoplax 401, 415Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichosphaerium 402Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	Sphaeroforma 413	Strombidium 436	Trichia 404
Sphaerotheca 409Stylopage 410Trichomonas 440Sphaerothecum destruens 413Stypocaulon 431Trichonympha 441Sphaerozoum 419Stypopodium 430Trichonymphida 441Sphenoderia 416Suberites 415Trichoplax 401, 415Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichosphaerium 402Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	Sphaeroforma arctica 413	Stygamoeba 405	Trichomitopsis 440
Sphaerothecum destruens 413Stypocaulon 431Trichonympha 441Sphaerozoum 419Stypopodium 430Trichonymphida 441Sphenoderia 416Suberites 415Trichoplax 401, 415Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichosphaerium 402Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	Sphaerosorus 429	Stylonychia 436	Trichomonadida 440
Sphaerozoum 419Stypopodium 430Trichonymphida 441Sphenoderia 416Suberites 415Trichoplax 401, 415Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichosphaerium 402Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	Sphaerotheca 409	Stylopage 410	Trichomonas 440
Sphenoderia 416Suberites 415Trichoplax 401, 415Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichosphaerium 402Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	-	7.4	Trichonympha 441
Sphenophrya 437Subulamoeba 403Trichorhynchus 435Spinalia 410Suctoria 438Trichosphaerium 402Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	•		Trichonymphida 441
Spinalia 410Suctoria 438Trichosphaerium 402Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	-		•
Spirochona 437Symbiodinium 433Trichostomatia 437Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440			v v
Spirocyrtis 419Symphyacanthida 420Trienamoeba 403Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	-		· · · · · · · · · · · · · · · · · · ·
Spirodactylon 410Syncephalestrum 411Trimastix 441Spirogyra 422Synchytrium 413Trimitus 440	•		
Spirogyra 422 Synchytrium 413 Trimitus 440		• • •	
Syndimales 434 Trimyema 438			
	Spiromyces 410	Syndimates 434	Trimyema 438

Trinema 416 Uromyces 406 Vorticella 439 Trinematidae 416 Urophlyctis 411 Vosmacropsis-Sycettusa 415 Triparticular 412 $Urosporidium\ 418$ Wagnerella 418 Triposolenia 433 Urotricha 438 Wallaceina 443 Tripylea 417 Ustilaginomycetes 406 Wigwamma 425 Tritrichomonas 440 Ustilago 406 Willkommlangea 404 Trochiscia 422 Vacuolaria 429 Woloszynskia 433 Trypanoplasma 443 Vahlkampfia 442 Woodruffia 438 Vahlkampfiidae 442 Xanthonema 429 Trypanosoma 443 Trypanosomatida 443 Vairimorpha 410 Xanthophyceae 429 Vannella 403 Tubulifera 404 Xanthophyta 429 Tubulinea 402 Vannellida 403 Xenophyophorea 418 Tubulinida 402 Vasichona 437 Youngiomyces 411 Turbinaria 430 Vaucheria 430 Zanardinia 430 Vaucheriales 430 Zelleriella 425 Tuscarora 417 Tychosporium 404 Verosphacella 431 Zonaria 430 Ulkenia 426 Vexillifera 403 Zoopagales 410 Ulvophyceae 421 Viridiplantae 421 Zoothamnium 439 Vischeria 427 Zygocircus 419 $Uncinula\ 409$ Unda 403 Volvox 422 Zygomycota 410 Urediniomycetes 406 Voromonas 434 Zygopolaris 410