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1 . In troduction

1 .1 . Socio-economic relevance o f fine-gra ined  sedim ent dynamics

Because of (rapid) sedimentation of suspended particulate matter (SPM) and the 
presence of fluid mud (Verlaan and Spahnhof 2000, Winterwerp 2005, PIANC 2008, 
van Maren et al. 2009, Manning et al. 2011), shoaling of maritime access routes and 
harbour basins in coastal or estuarine turb id ity maximum environments is detrimental 
for their accessibility. Deposition of mud in the dredging areas can be seen as a 
tem porarily storage of (fluid) mud (Kineke et al. 1996, Le Hir 1997, Winterwerp and 
van Kesteren 2004, Schrottke et al. 2006, Uncles et al. 2006). Mud is here referred to 
as water-rich sediment typically with a considerable amount of clay-silt particles (also 
sand). The harbours of Zeebrugge (Fig.1.1), Ostend and the marinas of Blankenberge 
and Nieuwpoort, and their navigation channels need very regular maintenance 
dredging in order to guarantee accessibility. Maintenance dredging amounts up to 
about 10 million tons of dry matter per year for Zeebrugge and the major shipping 
lanes (Lauwaert et al. 2009).

Figure 1.1 Sediment transport in the vicin ity o f the harbour o f Zeebrugge. Blue areas 
are masked areas

The dredged material, which consists of pure mud in the harbour or of sandy mud in 
the navigation channels, is disposed of at dedicated disposal grounds at sea. The 
OSPAR convention (1992; Convention for the Protection of the Marine Environment of 
the North-East Atlantic) aimed at preventing and eliminating pollution and at 
protecting the maritime area against the adverse effects of human activities. Although 
disposing of dredged material at sea is allowed, a risk remains that toxic substances 
(organic m icro-pollutants and heavy metals) associated with the disposal of dredged 
material over large areas are present. Detailed knowledge of SPM dynamics, including 
its temporal and geographical variability, is therefore needed.
Several research programmes have been carried out or are ongoing that have 
investigated the human impact caused by dredging and disposal in the Belgian 
nearshore area: MOCHA (BelSPO) (Fettweis et al. 2007), MAREBASSE (BelSPO) (Van 
Lancker et al. 2007), QUEST4D (BelSPO) (Van Lancker et al. 2011), HCBS-Zeebrugge 
(IMDC 2010); and MOMO (Flemish Authorities) (Lauwaert et al. 2009, Fettweis et al. 
2011a).
Several techniques have been proposed to minimize harbour siltation of which an 
overview is presented in PIANC (2008) and Kirby (2011). In Belgium the focus is on 
optimizing the disposal of dredged material (Fettweis et al. 2011b), on optimizing 
dredging methods (Berlamont et al. 1985, Berlamont 1989, Fettweis et al. 2011c) and
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on decreasing the sedimentation in the dredging areas. The latter requires 
infrastructural adaptations (e.g current-deflecting-wall) in order to decrease the water 
exchange and thus the mud input between the harbour basin and its environment 
(Fettweis and Sas 1998, Hofland et al. 2001, Kuijper et al. 2005, van Maren et al.
2009, 2011). The efficiency of disposal grounds is defined by physical, economical and 
ecological aspects. In other words, an efficient disposal ground implies a minimal 
recirculation of the disposed matter towards the dredged areas. As such, a minimal 
distance between the dredged area and disposal ground is preferred, however, under 
the assumption that the impact on the marine environment is negligible. 
Consequently, there is no disposal ground that covers all three aspects. Efficiently 
disposing of dredged material then requires a more dynamic strategy that allows 
choosing the best location, as a function of the (predicted) physical impacts or 
conditions. Potential disposal grounds may be chosen in the coastal turb id ity 
maximum, when it can be argued that the disposal activities do not increase 
significantly the turb id ity levels, compared to the natural background in turb id ity 
(Fettweis and Van den Eynde 2003).

1 .2 . H igh-turb id ity  areas in the southern North Sea

The southern North Sea region is composed of the Southern Bight, the German Bight 
and also part of UK waters; 56° north latitude is the northward boundary. The overall 
distribution of salinity, and hence water masses determine the distribution of turb id ity 
(e.g. Lee and Folkard 1969). Since 1997, measuring physical oceanographic 
characteristics from space (ocean colour remote sensors; MODIS-Aqua, SeaWiFs; 
MERIS) has become common practice to derive mean patterns of e.g. surface SPM in 
shelf seas such as the North Sea (Ruddick et al. 2000, van der Woerd and Pasterkamp 
2004, Eleveld et al. 2004, Staneva et al. 2009, Neukermans et al. 2009, Nechad et al.
2010, Pietrzak et al. 2011). The southern North Sea SPM system is characterized by 
different spatial structures of tu rb id ity  (Fig. 1.2): (1) the 'classical' river plumes such 
as the Tees, Humber, Thames estuary, Wash, Meuse-Rhine, Elbe, Weser and Ems. In 
the northern hemisphere, the freshwater-turbidity plumes turn right due to Coriolis 
forcing. Exception is the Thames river plume tha t turns left due to residual circulation 
(e.g. Pietrzak et al. 2011). In the German Bight, the coastal waters are affected by 
mainly the Elbe, Weser and Ems. (2) The East Anglian Plume (Prandtl et al. 1993, Dyer 
and Moffat 1998) representing offshore deflecting buoyant coastal waters. I t  originates 
from the Thames river plume and crosses the southern North Sea (Holt and James 
1999) towards the German Bight (Dyer and Moffat 1998). (3) The turb id ity area in the 
Belgian-Dutch coastal waters which is best described as a coastal tu rb id ity  maximum 
zone.

1 .3 . Coastal tu rb id ity  m axim um  along the Belgian-Dutch coast

The term coastal turb id ity maximum (CTM) refers to the persistent high surface SPM 
concentrations (up to 100 mg I'1) in the Belgian-Dutch coastal zone (Bastin et al. 
1984, Ruddick et al. 2000, Eleveld et al. 2004, Fettweis et al. 2010), with a main 
spatial extension between about Ostend and the Westerscheidt estuary. 
Geographically, the mouth of the estuary is situated at Vlissingen, although geo- 
morphologically the area between Zeebrugge and Walcheren is part of the mouth. The 
term 'coastal turb id ity maximum ' is not frequently used in literature (Lee and Folkard 
1969, Fettweis et al. 2010), and corresponds roughly with an 'estuarine turb id ity 
maximum' (ETM) in the sense that one or more trapping mechanisms for SPM occur. 
These are not due to salinity (ETM), but rather due to e.g. congestion in the residual 
SPM transport (Fettweis and Van den Eynde 2003). In the shallow Belgian-Dutch CTM 
zone, where water depths range between 0 and 16 m MLLWS (Mean Lower Low Water 
Springs), the main morphological entities are sandbanks and swales, as also 
navigational channels e.g. towards Zeebrugge and the Westerscheldt. These channels 
are maintained at a water depth of minimum 15 m MLLWS.
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Figure 1 .2  Emerging patterns o f turb id ity as observed (derived from MODIS-Aqua 
imagery) a t the water surface in the southern North Sea

1 .4 . Coastal hydrodynamics

The macro-tidal regime is the main control of the hydrodynamics along the Belgian- 
Dutch coast. Tides are semi-diurnal and slightly asymmetric with a mean tidal range of 
4.3 m at Zeebrugge during spring tide and 2.8 m during neap tide. Tidal current 
velocities are of the order of 0.6 to 1.2 m s 1 in the coastal zone, with maximum 
velocities of 1.5 m s"1 around the port of Zeebrugge. As a consequence, the bottom 
shear stresses (frictional force exerted by the flow per unit area of the seabed) are the 
largest there. The residual (subtidal) circulation is known to contribute to the long­
term transport of fine sediments (mainly clay-silt particles and fine sands), and is 
governed by different forcings:

wind forcing
tides (through non-linear effects)
vertical density gradients (temperature, salinity)

The wind climate may affect the residual current vectors resulting in significant flows in 
the surface layer diminishing with increasing water depth (Yang 1998, Lentz et al. 
1999). Winds originate mainly from west-southwest, when Atlantic depressions are 
moving from west to east above the Belgian coast (Fig. 1.3).
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Figure 1 .3  Wind climate along the Belgian coastal zone, based on measurements 
between 2000 and 2010 a t Zeebrugge harbour station (data from Ministery o f the 
Flemish Community, Maritime Services, Coastal Division/Hydrography)

The second frequent wind sector is northeast, as a result of the development of a high 
pressure field (between two Atlantic depressions) that moves from the UK towards 
Central Europe or Scandinavia. Other wind directions are less abundant, since they are 
transitional directions between the two main wind regimes. Since the coastline (as 
indicated by the vertical lines in Fig. 1.3) is oriented about 65° true north, strong 
wind-forced flows are present alongshore (Verlaan and Groenendijk 1993, Yang 1998). 
Response time of the North Sea to changes in wind speed generally varies between 6 
and 34 h (Ishiguro 1983). In literature, the existence of the CTM zone has been 
correlated with residual flow circulation. On a regional scale, the mechanism of SPM 
entering the North Sea through the Dover Strait open boundary and settling off the 
Belgian-Dutch coast has been widely discussed in literature (Eisma and Kalf 1987, Van 
Alphen 1990, Lafite et al. 1993, 2000, Gerritsen et al. 2000, Fettweis et al. 2007). 
However, the fate of fine-grained sediments in the coastal zone is still controversial. In 
some studies residual current patterns with large gyres (Nihoul 1975, Gullentops et al. 
1976, Delhez and Carabin 2001) and flow convergences (Van Veen 1936) are 
hypothesized; these authors plead for a closed system to explain the presence of 
cohesive sediments (Fig. 1.4). In other studies, detailed hydrodynamic and sediment 
transport modelling (Fettweis and Van den Eynde 2003), ground-truthed with tracer 
tests (Van den Eynde 2004) have been used to argue against the existence of residual 
eddies, or the closed system concept. I t  was shown that most of the mud from the 
Dover Strait is actually leaving the study area towards the northeast, being controlled 
by tides and meteorological forcing. Because of the decreasing magnitude of the 
northeast-directed residual transport and the presence of the island of Walcheren (the 
Netherlands), a kind of congestion occurs in the sediment transport. In combination 
with the nature of seabed sediments (see 1.5), this would explain the presence of the 
turb id ity zone.
Influence of vertical density gradients on the CTM formation, hence the potential of 
"thermo-haline circulation" is negligible. The water column is generally well mixed 
throughout the entire year (e.g. de Ruijter et al. 1987) due to the high tidal 
amplitudes, the strong tidal currents and the low freshwater discharge of the River 
Scheldt (yearly average is 100 m 3 s'1, with a minimum of 20 m 3 s 1 during summer 
and a maximum of 600 m 3 s 1 during w inter). Horizontal density gradients occur in the 
coastal zone and are influenced by the freshwater outflow of the Westerscheldt 
estuary, mainly (Lacroix et al. 2004). They are caused by tidal- and wind-driven 
advection and are generally low (salinity difference during a tide is <1; salinity 
difference of 2 occurs in 10% of the tides).
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Figure 1 .4  Overview o f SPM transport in the southern B ight o f the North Sea (adopted
from Eisma and Kalf 1979); SPM concentration in mg I'1; small arrows are residual 
current patterns (Nihoul and Ronday 1975, Prandle 1978 in Eisma and Kalf 1979); 
contour arrows indicate transport pathways o f SPM; interrupted contour arrows 
(Ramster e t al. 1976 in Eisma and Kalf 1979)are indicative o f flow o f water and SPM 
from the Thames estuary to the English Channel under strong northerly winds; black 
areas are m ud deposits consisting o f >50% o f particles smaller than 50 pm (Bastin 
1974, Jarke 1956 in Eisma and Kalf 1979); dotted areas are deposits consisting o f 
>2% o f particles smaller than 50 pm (Eisma 1966, McCave 1979 in Eisma and Kalf 
1979)

1 .5 . Heterogeneous sed im entary environm ent

Both the geological and sedimentological situation in the Belgian-Dutch coastal zone is 
complex. The Palaeozoic basement was flooded during Late Cretaceous times (Le Bot 
et al. 2003), and the present Tertiary sequence coincides with slightly, northeast 
dipping deposits. These, from mid-Eocene to upper-Pliocene, deposits exhibit a varying 
sedimentology (sandy clay, clay, clayey sand, and sand) with thickness between 10 
and 30 m (De Batist 1989, Ebbing et al. 1992). Further, Quaternary sediments mainly 
include the Pleistocene backfilled scour hollows in Palaeogene shelf strata (Mostaert et 
al. 1989, Liu 1990), and the Holocene tidal sandbanks. Thicknesses of the Quaternary 
deposits in the coastal zone vary between 0 and 10 m, mainly (besides the Ostend 
valley deposits). More resistant Tertiary layers, such as Boom clay and Asse clay, 
outcrop in the navigational channel towards the Westerscheldt where the Quaternary 
cover is absent. The Quaternary deposits are typically sands with sporadic strata of 
shells (or shell fragments); though near the Zeebrugge harbour and the Vlakte van de
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Figure 1 .5  Thickness (m ) o f Quaternary sediments (Liu 1990, Ebbing e t ai. 1992); 
dotted areas are less than 2.5  m thick; the red polyline corresponds to the 
Westerscheldt estuary; very poor seismic penetration Is found in the grey filled region 
(from Du Four e t al. 2006)

Raan, clay, clay-sand alternations and peat layers are mostly present (Le Bot et al. 
2003, 2005).
The Holocene (interglacial period beginning at the end of the Pleistocene, i.e. ~11700 
years ago) is characterized with a sea level rise because of melting glaciers. The 
shallow parts of the inundated coastal area allowed the development of marshes and 
peat formation (Baeteman and Van Strijdonck 1989). In addition, the Pleistocene 
deposits are largely eroded (Baeteman and Van Strijdonck 1997) and reworked as 
tidally-induced mudflat deposits, estuarine sand plates and beach deposits. Finally, 
during the last period of the Holocene, a continuous displacement and reworking of 
sediments under tidal hydrodynamics resulted in the present-day seafloor morphology 
(planar, small and large bed forms) (Eisma and Kalf 1979, Mathys 2009).
The composition of bottom sediments in the Belgian-Dutch coastal zone is not uniform; 
it varies from pure clays to very coarse sands (Verfaillie et al. 2006). The 
heterogeneous character of the seabed is natural, but also partly because of human 
impact, such as dredging-disposal activities (see 1.1). The sand fraction is partly relict 
and partly in transport, dependent on the prevalent bottom shear stresses. Grain-sizes 
become typically coarser in the offshore direction (Lanckneus et al. 2001). Clay and 
silt size bottom sediments are also abundant between Ostend and the River Scheldt 
mouth (Van Lancker et al. 2007 a, b). In the last years, several techniques have been 
used to characterize the nature of the muddy seabed in the CTM zone: seismic surveys 
(Missiaen et al. 2002, Mathys 2009), seabed mapping (Van Lancker et al. 2004) and 
intensive seabed box coring (Van Lancker et al. 2004, Fettweis et al. 2010).
The bed structure, wet bulk density and consolidation of the cohesive sediments have 
been investigated with erosion behaviour measurements (Fettweis et al. 2005,
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Fettweis et al. 2010), and allowed establishing the presence of the following bed 
layers: flu ffy /  fluid mud layers (0.5-1 Pa; 1100-1200 kg m"3); freshly (recently) 
deposited mud (1-4 Pa; 1300-1500 kg m"3); soft to medium consolidated Holocene 
mud (up to 13 Pa; 1500-1800 kg m"3) with intercalations of thin sand layers (~1 Pa). 
From the geophysical surveys in the CTM zone, a mud plate has been identified as a 
distinct unit of Holocene age partly covered by sands (Mathys 2009). The presence of 
the mud plate confirmed earlier observations (Stessels 1866, Van Mierlo 1899, Gilson 
1900, Bastin 1974, Gullentops 1976); for Mathys (2009) it is a deposit formed within 
the last 450 years. This deposit is basically seen as a reworked (Holocene) back barrier 
deposit. The very poor seismic penetration of the unit is because of methane gas 
formation in shallow peat layers (Missiaen et al. 2002). The thickness is on average 
less than 1 m, but may reach 5 m in the eastern part. I t  forms the largest reservoir of 
fine-grained sediments in the nearshore area (Fettweis et al. 2009); it contributes as a 
source of SPM, mainly during storm events (Fettweis et al. 2010). However, the 
physical behaviour of the outcropping consolidated mud (swelling, mass erosion, 
resuspension, weakening) in the area is quantitatively not known yet.
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Figure 1 .6  Map o f median grain size (based on sedisurf@database ( Van Lancker e t ai. 
2007 a), and sediment data from TNO (NL); black (sem i-) circles are disposai grounds 
o f dredged m aterial (from Du Four e t ai. 2006)

1 .6 . SPM characteristics

Ocean colour satellite sensors derive SPM concentration for the near-surface layer 
from optical properties of the sea (e.g. Doerffer et al. 1994). The degree of turb id ity 
(water clarity) is an optical property of the water and is influenced by (1) coloured 
dissolved organic m atter (CDOM; e.g. humic substances) and (2) suspended
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particulate matter (SPM). The latter consists of fine-grained materials (clay, silt and 
sand) and is composed of minerals (clay minerals, quartz, carbonates), organic matter 
(OM) and water (Eisma 1986, Berlamont et al. 1993). OM consists of micro-organisms, 
their metabolic products, residuals from dead organisms and faecal pellets (Hamm 
2002, Bhaskar et al. 2005). OM content in the water column will determine the 
flocculation dynamics (Fettweis et al. 2006, see 1.7), as with higher OM content the 
SPM floes become larger. Flocculation is caused mainly by the clay minerals interacting 
with each other, with other minerals and with the organic matter resulting in increased 
cohesiveness of the SPM (Kranenburg 1994, Dyer and Manning 1999, Son and Hsu 
2009). Regarding the Belgian coastal zone, the SPM consists of a clay to silt ratio of 
~1 :4 , median grain size of the primary particles (building stones of floes) of <3pm, 
7.5% organic matter, and 40% CaC03 (Fettweis et al. 2007 b). These figures must be 
regarded with caution since measurements were realised at different sample stations 
and under different hydrodynamica! conditions. Density of primary particles takes into 
account the different fractions (OM, CaC03 and clays and non-clay minerals) and the 
corresponding densities, and was found to be 2580 kg m '3 for the Belgian coastal zone. 
From a mineralogical point of view (Zeelmaekers 2011), the consolidated mud 
deposits, as well as the freshly deposited mud, share the same clay-composition as the 
SPM found in the CTM. Therefore, he suggested tha t constant reworking of the older 
mudplate deposits contributes significantly more towards the SPM than previously 
thought. More distant sources of SPM considered in literature are the erosion of the 
coastal cliffs in the English Channel (Eisma and Kalf 1987, Lafite et al. 1993, Irion and 
Zöllmer 1999, Velegrakis et al. 1999, Gerritsen et al. 2000, Fettweis and Van den 
Eynde 2003), the erosion of outcropping Tertiary (Paleogene) clay (Fettweis et al. 
2009) and the River Scheldt (Gullentops et al. 1976, Nechad et al. 2003).

1 .7 . SPM dynamics

Generally, SPM particles undergo various cycles of re-suspension, settling and 
advection before being deposited more offshore and forming fine-grained sediment 
deposits (e.g. Gerritsen et al. 2000). SPM dynamics are controlled by several forcings: 
tides, wind, mean sea level, ocean currents, sources of sediment, thermohaline fields, 
freshwater flux (Stanev et al. 2009); as well as by biological processes (e.g. Nowell et 
al. 1981, Arndt et al. 2007, März 2009) and human impact (dredging-disposal cycles), 
typically for the study area.
The most significant time-scale for SPM dynamics are the tides; the alteration of high 
current velocities and slack water inducing a continuous change in re-suspension, 
mixing, settling and deposition. Tidal ellipses are more elongated towards the shore 
and thus the difference between maximum and minimum currents increases. During 
the periods with minimum currents, the so-called slack waters (or slack tides), SPM 
aggregates into larger floes with higher settling velocities and thus an enhanced 
settling and sedimentation occurs (e.g. Dyer 1989, van Leusen 1994). The cohesive 
sediments (predominantly clayey particulate matter) are re-suspended when current 
velocities increase again. A schematic overview is given by Maggi (2005, Fig. 1.7) 
showing the complexity and coupling between aforementioned processes.
From cohesive sediment transport (modelling) studies, and chemical engineering 
applications (i.e. water purification), flocculation is very well known to be controlled by 
turbulent shear and time (Toorman 2001). SPM floes will start breaking up during 
increased turbulence. In the subtidal time-domain, neap tidal phases are characterized 
by higher accumulation rate, deposition of thicker (fluid) mud layers, consolidation of 
these layers and a decrease of SPM concentrations (Fettweis and Van den Eynde
2003). The subsequent spring tide conditions will re-suspend these temporal mud 
deposits.
Floe size (distribution) and hence settling velocity may considerably vary over the tidal 
cycle, as well as for spring and neap tide (Winterwerp et al. 2002, Fettweis et al. 
2006). Also, seasons have an influence on SPM concentration, which are mainly 
explained by the higher frequency of storms during w inter (Visser 1969, Cacchione 
and Drake 1982, Williams et al. 1999, Ferré et al. 2005, Guillen et al. 2006). Higher 
river discharges in spring, and hence high plankton growth are expected (Terwindt 
1967, Lancelot and Mathot 1987, Lacroix et al. 2007) implying change in SPM 
composition and floe characteristics (van der Lee 2001, März et al. 2010).
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Figure 1 .7  Cycle o f deposition and resuspension o f cohesive sediment (from Maggi
2005)

1 .8 . H igh-concentration m ud suspensions (HCM S) and flu id  m ud

During periods of decreased turbulent kinetic energy (neap and slack tides), SPM floes 
settle out of the water column resulting in high near-bed SPM concentrations. 
Suspensions with concentrations of a few 100 mg I'1 to a few g I'1 are defined as high- 
concentration mud suspensions (Winterwerp 1999). They interact with the turbulent 
flow field, behave Newtonian (w ith some increased viscosity), and are in transport with 
the main flow. A strong vertical, sediment-induced, density gradient (lutocline) in the 
water column (near-bed) is often associated with HCMS. Related to ETMs, HCMS have 
been described extensively (Inglis and Allen 1957, Allen et al. 1980, Faas and Wartel 
1985, Odd 1988, van Leussen 1994). HCMS occurrences are also associated with 
current-driven sediment gravity flows off high-load rivers (Friedrichs and Wright
2006); however high-load river discharges in the Belgian coastal area are not expected 
(Fettweis et al. 2007). Fluid mud is a suspension of cohesive sediment above the 
gelling point (between 10 to 100 g I'1); the gelling point refers to the concentration 
that is favourable for floes to structure a network (Winterwerp and van Kesteren
2004). The rheology of fluid mud exhibits non-Newtonian behaviour, and can be either 
stationary or mobile. Both HCMS and fluid mud give rise to large siltation rates, as 
found in harbour basins and navigational channels (Winterwerp 2002). Another 
mechanism, responsible for the occurrence of HCMS in the marine environment, is due 
to wave action (de Wit and Kranenburg 1997, Li and Mehta 2000, Winterwerp et al. 
2001, Fettweis et al. 2010).

1 .9 . In fluence o f SPM on the structure and function o f eco-systems

The ecological functioning of the coastal system is amongst other controlled by the 
water clarity and thus by the amount of fine-grained material in the water column. In 
addition, SPM may control the transport, re-activity and biological impacts of 
substances in the marine environment (Turner and Millward 2002). For example, SPM 
has a crucial impact on the underwater light field by reducing the available light for 
primary production (Behrenfeld and Falkowski 1997, Arndt et al. 2011). Additionally, 
SPM controls the development of phytoplankton biomass and hence the dissolved 
nutrients in the water column (Cloern 1987, Monbet 1992). Further, SPM dynamics 
control the functioning of benthic communities (Murray et al. 2002) since SPM carries 
a major part o f the food resources for the benthos. Frequent HCMS and fluid mud
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formation may affect bioturbation or bio-irrigation modes, both important ecosystem 
functions of soft substrata macrobenthos. Bioturbation and bio-irrigation are of 
paramount importance for ecosystem functioning in fine sandy sediments receiving 
high loadings of organic matter (OM). A decrease in density of bioturbators entails a 
decrease in OM burial, whereas a decline in bio-irrigators implies less oxygenation of 
the sediment and denitrification, an important nitrogen-eutrophication counteracting 
process in shallow coastal seas. Bioturbation and bio-irrigation are therefore key 
transport mechanisms in carbon and nitrogen cycling in shallow seas (Braeckman 
2011).

1 .1 0 .  A im s

The overall aim of this PhD dissertation was to increase knowledge on the dynamics of 
suspended particulate m atter (SPM) in the Belgian coastal zone. High amounts of SPM 
are associated with the occurrence of a coastal tu rb id ity  maximum (CTM), present 
w ithin the Belgian-Dutch coastal zone. The seabed is composed of a m ixture of sand 
and mud; both are re-suspended under various hydro-meteorological conditions. 
Within the CTM, the formation of high-concentrated mud suspensions (HCMS) is a 
particular phenomenon, though its dynamics and occurrence has up to now, only 
occasionally been investigated. Further the dissertation aimed at increasing the 
understanding of human impacts on SPM dynamics. This requires dedicated 
instrumentation, preferably measuring on a quasi-continuous basis. The choice of 
instrumentation is critical in determining the processes occurring in the water column, 
as well as near-bed.

Main questions posed were:

(1) What drives the temporal variability of SPM within the CTM zone?

(2) How does (1) influence the spatial variability of the extent of the CTM zone?

(3) What is the dynamic behaviour of HCMS, and their influence on near-bed 
processes?

(4) How will mixed sediments w ithin the CTM zone influence optical and acoustic 
sensor measurements?

(5) Can anthropogenic contributions to SPM concentration be distinguished from the 
natural variability through time?

1 .1 1 .  Thesis structure

Research results are divided over the following "paper chapters":

In Chapter 2 in-situ measurements are described at a single-point location in the 
Belgian nearshore area. The effect of wind on the advection of the fine-grained 
sediments and the dynamics of high-concentrated mud suspensions are investigated 
aiming at obtaining new insights into fine-grained sediment transport. Different 
techniques have been used, including acoustic methods for sediment transport and 
ensemble-averaging of data. In a next chapter, general findings from the single-point 
location described in Chapter 2 are tested against the SPM concentration field results 
in the Belgian-Dutch coastal zone as measured from space (Chapter 3). Satellite 
images are used to study the geographical variability of the turb id ity maximum, based 
on meteorology- and climate-based classification schemes. In Chapter 4, the near­
surface satellite and near-bed tripod findings are combined to study the behaviour of 
sediment suspensions, aiming at determining the full-water column characteristics 
(sediment re-suspension, advection, fluxes and vertical mixing degree) by means of 
acoustic Doppler profiler datasets. Implications towards used instrumentation for 
measuring SPM concentration result from particle size differentiation over time. 
Chapter 5 deals with multi-modal suspended particle size distributions under different 
hydro-meteorological influences, based on several statistical techniques (Chapter 2
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treats only the median value of the particle size spectrum). Chapters 6 and 7 are 
combined since both represent applied research. They deal with the formation and 
erosion of high-concentrated mud suspensions in the coastal turb id ity maximum zone 
with relevance to mine burial, and to disposal (of dredged mud) activities, 
respectively. The synthesis (with discussion) chapter (8) is followed by conclusions and 
future research perspectives (Chapter 9).
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Figure 1 .8  Overview o f observatory and study locations used in the study area. Extent 
map coincides with MODIS-Aqua SPM concentration maps (Chapter 3). Bathymetry (in 
meters) with MLLWS as reference

Fig. 1.8 shows all measurement locations (MOW1, MOWO, BRM, BLA, VR, and MOW3) 
used in this study; all of them are shallow (< 10 m). All chapters are published or 
accepted/submitted for publication, resulting in inevitable overlap regarding 
introductions and study area descriptions; though, each chapter can be consulted 
independently from the others.

For the dissertation, in-situ data and research results were made available from the 
following research projects:

• MOMO (Flem ish Authorities, M aritim e Access): Monitoring and modelling 
o f cohesive sediment transport and evaluation o f the effects o f dredging and 
dumping operations on the marine ecosystem (M anagem ent U nit o f the  
N orth Sea M athem atical Models-MUMM)

The "MOMO" project is part of the general and permanent duties of monitoring and 
evaluation of the effects of all human activities on the marine ecosystem to which 
Belgium is committed following the OSPAR convention (1992). The goal of the project 
is to study the cohesive sediments on the Belgian Continental Shelf (BCS) using 
numerical models as well as by carrying out measurements. Through this, data will be 
provided on the transport processes, which are essential in order to answer questions 
on the composition, origin and residence of these sediments on the BCS, the 
alterations of sediment characteristics due to dredging and disposal operations, natural 
variability, the impact on the marine ecosystem, the estimation of the net input of 
hazardous substances and the possibilities to decrease this impact as well as this in­
put.

Fettweis M, Baeye M, Lee BJ, Van den Eynde D, Van Lancker VRM (2011). Monitoring 
en modellering van het cohesieve sedimenttransport en evaluatie van de effecten op
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het mariene ecosysteem ten gevolge van bagger- en stortoperatie (MOMO): 
activiteitsrapport (1 ju li 2010 - 31 december 2010). BMM/MUMM: Brussel. 44 pp. + 
appendices.

• QUEST4D (Belgian Science Policy): Quantification o f 
Erosion/Sedimentation patterns to Trace naturaiyi versus anthropogenically- 
induced sediment dynamics (Ugent, MUMM, KUL, WL)

Quest4D targets the Belgian part of the North Sea to investigate the seabed ecosystem 
over the past 100 years. Main objectives include: (1) Increase in knowledge on natural 
variability of seabed nature and processes; (2) Establish historic baselines, as 
reference situations for impact studies; (3) Quantification of ecosystem changes, on 
the medium- to long-term ; (4) Demonstration of human impact, with case studies 
relating seabed changes to both naturally and anthropogenically induced sediment 
dynamics; (5) Assessing climate change scenarios and their effect on seabed 
management; and (6) Development of more sustainable exploitation strategies of non­
living seabed resources.

Van Lancker V, Baeye M, Du Four I, Janssens R, Degraer S, Fettweis M, Francken F, 
Flouziaux JS, Luyten P, Van den Eynde D, Devolder M, De Cauwer K, Monbaliu J, 
Toorman E, Portilla J, Ullman A, Liste Muñoz M, Fernandez L, Komijani H, Verwaest T, 
Delgado R, De Schutter J, Janssens J, Levy Y, Vanlede J, Vincx M, Rabaut M, 
Vandenberghe H, Zeelmaekers E, Goffin A (2011). Quantification of 
Erosion/Sedimentation patterns to Trace the natural versus anthropogenic sediment 
dynamics (QUEST4D). Final Report. Science for Sustainable Development. Brussels: 
Belgian Science Policy, 97 pp. + Annexes.

• M INE BURIAL (Mine Warfare Data Centre group): Belgian Naval Defence, 
Direction Générale Material Resources (DGMR) Mine Counter Measure, and in 
co-operation with Bundesamt fü r Wehrtechnik und Beschaffung - 
Forschungsanstalt der Bundeswehr fü r Wasserschall und Geophysik (BW B - 
FWG, Germany) and Ghent University (Renard Centre o f M arine Geology 
RCMG)

The "Mine Burial" project aims to evaluate the time necessary for partial or total burial 
of objects in shallow water (<40m  depth) by studying the sand dynamics on the 
Belgian Continental Shelf in both time and space domain. Several techniques are used 
to reach this goal: time-series of side scan sonar measurements, box-cores for 
validation of acoustic images, and instrumented mines at strategic locations to 
investigate small-scale variability of sand dynamics for over several months. The areas 
of analysis are chosen following scientific, economical and societal criteria. The 
research is used for m ilitary and civil applications regarding the safety at sea.
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