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Abstract

Residual (e.g. w ind-driven) sediment fluxes have been studied using a combination of 
in-situ bottom-mounted sensors (ADCP, tripod) allowing measuring over the entire 
water column. Flow profiles, SPM concentration and near-bed sediment dynamics are 
discussed, and a vertical mixing parameter is introduced in order to evaluate when 
suspended sediments are well-mixed in the water column. The northeast-directed flow 
regime exhibits strong hydrodynamics, resulting in a good mixing. Although the 
southwest-directed regime is also characterized by a good mixing, there is no real link 
with bed shear stresses (hydrodynamics). Therefore, it is suggested that the nature of 
particles in suspension also must be regarded. The finer, soft (cohesive) sediments are 
likely to be suspended more or longer compared to the more sandy sediments, which 
will settle more easily. These results allowed a separation and recognition of processes 
that control the variability of SPM concentration and tha t can be used as an attempt 
for understanding the long-term evolution of the system.

Keywords: SPM Fluxes; bottom-ADCP; benthic tripod; vertical m ixing
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4 . 1 .  In  troduction

Wind stress is an important forcing mechanism for generation of flows in the inner- 
shelf, while in oceans, where the Coriolis acceleration dominates over other 
acceleration terms, geostrophic flows occur (Lentz et al. 1999, Guttierez et al. 2006, 
Fewings and Lentz 2009). Besides tides and density gradients, flows on the continental 
shelf can also be generated from bathymetric variations (Sanay et al. 2007) or from 
pressure gradients associated with cape-attached shoals (McNinch and Luettich 2000). 
Wind induced currents will change the residual transport of water masses and the 
residual currents (Verlaan and Groenendijk 1993, Yang 1998); they have a significant 
influence on the transport of particulate and dissolved substances in the water column. 
The importance of wind forcing on sediment transport has been discussed in various 
studies (e.g. Grant and Madsen 1986, Lentz 1995, Gutierrez et al. 2005).
The fine-grained sediment dynamics in the southern North Sea and especially the 
occurrence of a turb id ity maximum zone in the Belgian-Dutch coastal zone have been 
subject to many studies (Van Veen 1936, Nihoul 1975, Gullentops et al. 1976, Delhez 
and Carabin 2001, Van den Eynde 2004). The mud in the Belgian part of the North Sea 
partly owes its origin to the import of suspended particulate matter (SPM) from 
through the Dover Strait and partly to the erosion of local Holocene mud deposits 
(Fettweis et al. 2007, Zeelmaeckers 2011). Based on hydrodynamic data, Fettweis and 
Van den Eynde (2003) concluded that the decreasing residual water transport, the 
shallowness of the area and the difference in magnitude between neap and spring tidal 
currents and the ir effect on the erosion and transport capacity are responsible for the 
presence of the tu rb id ity  maximum area. The geographical variability of the turb id ity 
maximum was investigated in Chapter 3 using satellite images and could be linked to 
wind forcing and direction. Measuring mean patterns of surface SPM concentration 
from space has become common practice (Stanev et al. 2009, Pietrzak et al. 2011). 
Flowever, SPM concentration from satellite images represents a data set biased 
towards good weather conditions (Fettweis and Nechad 2011) and provides only near 
surface data. The aim of the present study is therefore to identify residual (e.g. wind- 
driven) sediment fluxes using in-situ bottom-mounted sensors (ADCP, tripod) that can 
measure over the entire water column. ADCP and multi-parametric tripods have been 
successfully used to measure current profiles, SPM concentration and/or near-bed 
sediment dynamics in shelf seas (e.g. Lynch et al. 1997, Hoitink and Floekstra 2005). 
The results allow a separation and recognition of processes that control the variability 
of SPM concentration and can be used for understanding the long-term evolution of the 
system.

4 . 2 .  S tudy area background

The measuring site MOW1 is located in the Belgian near-shore area in the vicin ity of 
the port of Zeebrugge (Z, Fig 4.1). At this location, acoustic and optical instruments 
have been deployed at a water depth of about 9 m MLLWS (mean lowest low water at 
spring tide) (Fettweis et al. 2010, Van Lancker et al. 2007). The area is characterised 
by a bottom sediment composition varying from pure sand to pure mud (Verfaillie et 
al. 2006) and the presence of a coastal turb id ity maximum (CTM) extending between 
Ostend (O) and the mouth of the Westerscheldt. Near-shore SPM concentration ranges 
between 0.02-0.07 g I '1 and reaches 0.1 to >3 g I '1 near the bed (Fettweis et al. 
2010). Anthropogenic activities such as dredging and disposal influence the bed 
composition and the SPM concentration in the water column (Du Four and Van Lancker 
2008, Lauwaert et al. 2009).
The tidal regime is semi-diurnal, and the mean tidal range at Zeebrugge is 4.3 and 
2.8 m at spring and neap tide, respectively. The tidal current ellipses are elongated in 
the near-shore area and become gradually more semi-circular towards the offshore. 
The current velocities near Zeebrugge (near-shore) vary from 0 .2 -1 .5  m s '1 during 
spring tide and 0 .2 -0 .6  m s '1 during neap tide. Ebb currents are directed towards the 
southwest and flood currents towards the northeast. The water is well mixed 
throughout the entire year and stratification due to salinity or temperature gradients is 
not occurring (de Ruijter et al. 1987). The freshwater discharge of the Westerscheldt is 
low (long-term  annual mean is about 100 m 3 s '1) and as a consequence, residual flows 
are mainly governed by tidal asymmetry and wind forcing (Yang 1998). Dominant wind
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patterns include winds blowing from the southwest, and from the northeast. Prevailing 
winds from the north are often associated with (prolonged) stormy periods. Generally, 
the residual transport of the water masses is northeast directed (Yang 1998, Van 
Lancker et al. 2007); though fluctuations exist under the influence of changing 
meteorological conditions.

BELGIUM

France

United Kingdom

English 
Channe

NORTH SEA

Netherlands

Figure 4.1 Study area with locations o f interest (MOW1, MOW3, MOWO, VR) and 
surface SPM concentration in mg I'1 (weighted mean based on wind climate) derived 
from Aqua MODIS satellite data; wheel symbols are disposal sites near Zeebrugge 
harbour (Z)

4 . 3 .  Methodology

4 .3 .1 .  B ottom -m ounted acoustic D oppler current p ro file r ( BM-ADCP)

A 1200 kHz RDI® ADCP was bottom-mounted at MOW1 for logging vertical profiles of 
currents and echo intensity. Detailed information regarding the deployments is 
provided in Table 4.1. A total o f 215 days of collected data have been used in this 
study. The time-series were averaged to a 1-hour interval, and the currents were 
decomposed into an along- and cross-shore component. The along-shore current 
component is positive oriented to the northeast (True North 65°, T065), and the 
positive cross-shore component directed onshore (T155).
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Table 4.1 Details o f  the BM-ADCP deployments

year days
time per 

ping
freq

pings per 
ensemble

time per 
ensemble

average ensemble 
interval

n° BINS bin size
mab 1st 

bin

2006 134-165 3 sec -0.33 Hz 100 5 mln 5min=continuously 30 0.5 1
2007 295-331 0.26 sec -4  Hz 50 13secs 5min 60 0.2 0.72
2008 28-97 0.26 sec -4  Hz 50 13secs 10min 50 0.25 0.81
2010 85-125 6 sec -0 .2 Hz 50 5 mln 10min 51 0.25 0.81
2010 151-185 6 sec -0 .2 Hz 50 5 mln 10min 51 0.25 0.81

Data processing of the BM-ADCP data included the removal of the last bln from the 
ADCP profile closest to the water surface. Dependent on the sampling scheme (and 
blanking distance) the first data bin is about 0.7 to 1 meter above the bed. Further, all 
time-series were low-pass filtered (33 hours) using a digital tidal filte r In order to 
remove the semi-diurnal tidal signal from the original data (Beardsley et al. 1985). As 
the tidal range observed is between 2.8-4.3 m, it is sensible to normalize the vertical 
distance of BM-ADCP measurements from the seabed by the total water depth; as 
such, the filtering algorithm successfully identifies the high-frequency oscillations close 
to the sea-surface. The echo intensity received by the ADCP Is able to serve as a proxy 
for SPM concentration in the water column. Based on the general sonar equation (Urlck 
1983, Medwin and Clay 1998), the signal is corrected for beam spreading and water 
attenuation (due to water molecule relaxation effects):

Target Strength = Received Sound Level + 2xTransmlsslon Loss -  Source Level Power

Changes of the internal battery voltage over time will result In variations in the ADCP 
transm it power (Deines 1999). As a consequence of the battery decline, 
compensational corrections were applied. Another correction of the echo backscatter 
for the bins in the transducer near-field (1-3 bins) was applied to account for 
departure from spherical spreading or spreading loss (Downing et al. 1995). Particles 
in the water column are characterized by a particle size distribution which Influences 
the received echo intensity. From acoustic theory, the range of particle sizes that can 
be detected by the ADCP is directly related to the ratio of the particle circumference to 
acoustic wave length, set between 1 and 0.1. For the 1200 kHz ADCP, particle sizes 
(diameters) must range between 40 and 400 pm to meet this condition. A short 
deployment of the bottom-mounted ADCP, together with a bottom-framed Sequoia® 
Laser In-Situ Scattering and Transmissometer, LISST 100X-typeC at 2 m above bed 
(mab) was performed at MOW1. These simultaneous recordings allowed determining 
the ADCP sensitivity towards particle size. Correlation coefficients were obtained 
between the corrected ADCP backscatter, measured for the 2 mab bin, and 32 LISST 
particle size classes (range of 1.25 and 500 pm) (Fig. 4.2). The highest correlation 
(R2>0.8) corresponded with a particle size range between 40 and 150 pm. For floes 
larger than 150 pm, ADCP acoustics and LISST optics may react differently, because of 
the particle shape and density (e.g. Creed et al. 2001).

4 .3 .2 .  Tripod benthic observatory

At a distance of 50 meters from the BM-ADCP, a benthic tripod system measured SPM 
concentration with an Optical Backscatter Sensor (D&A Instrum ents®  OBS-3) at 2 
mab, and currents In the lower 2 meter of the water column with a Sontek® Acoustic 
Doppler Profiler (ADP). The latter is a 3 MHz Sontek® system, also storing acoustic 
backscatter information. The OBS voltages were converted to SPM concentration using 
a laboratory calibration. On its turn, OBS SPM concentrations were used to calibrate 
both the upward-looking ADCP and down-ward looking ADP. This approach allows 
estimating the sediment flux for the total water column. Also mounted on the tripod 
system Is a Sontek® Acoustic Doppler Velocimeter (ADV) set to record currents and 
bed evolution (a ltim etry). The latter was corrected for pitch and roll by the ADV 
(benthic tripod). Salinity was recorded by the Sea-bird® SBE37 CT, except for time- 
series conducted In 2007. During that particular deployment, salinity data were 
provided from a station (VR) 20 km away from the BM-ADCP measuring location, by 
Hydro Meteo Centrum Zeeland-HMCZ (www.hmcz.nl).
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Figure 4 .2  Correlation between ADCP acoustic backscatter and LISST volume 
concentration in each particle size class

Table 4 .2  Percentages o f the variance explained by tides a t MOWO (MPO) and MOW3 
(MP3); a, years 2005-2010; b, years 2009-2010; c, years 2009-2011

Sampling station MPO (%) MP3 (%)

Alongshore velocity 94.8a 97.2b
Cross-shore velocity 94.1a 93.6b

Total velocity 96.4a 93.3b
Sea-surface elevation 94.7e 94.2e

4 .3 .3 .  Meteorological-oceanographic station and w ave buoy

Hydro-meteorological data were provided by the Agency for Maritime and Coastal 
Services - Hydrography (Flemish Authorities). Wind data measured at MOWO at 25 
meter above sea-surface (Fig. 4.1), logarithmically converted to the standard height of 
10 m (Uio), have been used to estimate wind stress components by introducing a 
neutral (dimensionless) drag coefficient (CDN) (Large and Pond 1981):

C d N  =1-2x10-3, for 4 ms-1 sí7¡qs11 ms-1, 

CI)W =(0.49+0.065-t/lo )x l0 -3, for 11 ms“ 1 < t/10s25 ms“ 1

Currents were measured with the Aanderaa DCM-12 at MOWO and MOW3 (Fig. 4.1) 
over several years, and were treated similarly as the BM-ADCP currents. Wave 
characteristics were obtained recorded in the vicinity of the measuring site (MOW1 and 
MOW3, Fig. 4.1). MOW3 buoy is a directional wave rider sensor recording frequency- 
directional wave spectrum data. The other wave rider buoy measures only the 
frequency-wave spectrum from which the significant wave height (H33), mean wave 
period (TM2) are derived.
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4 .3 .4 .  Bottom shear stress estim ates

BM-ADCP currents were also used for estimating bottom shear stress in the constant 
stress layer. This can be obtained using the law of the wall. A hydraulic bed roughness 
length (z0) of 0.2 mm for muddy seabeds and the ADCP first bin height (z) were used

" =ic ' ln i i r !in the following logarithmic relationship (Soulsby 1983, Wright 1989): K \ z ) with
k, Von Karman's constant (~ 0 .4 ); u, current measured in ADCP's firs t bin. Further, u»,

r  — /»•7/2
shear velocity is related to the current-induced bottom stress, t c, by: c "  *
(p=1030 kg n r3 is the density of seawater). The combined shear stress was further 
calculated taking into account the wave oscillatory motion. Orbital velocities were 
obtained through solution of the linear dispersion relationship for surface gravity 
waves using friction factor, fw (for sediment grain size of 65 pm) in order to obtain the

wave induced shear stress: 8 (Grasmeijer and Kleinhans 2004). The
combined or total (current and waves) shear stress was calculated as follows (Nielsen

T 'rw  =  J (  T 'm  +  T 'M ,' COS +  ÍTW • s i l l  ô Ÿ
1986): ! \ ! taking into account, O, the angle between
wave propagation and current direction, and maximum shear stress, Tm (following

Ttt = T: ' 1 +1-2-
Soulsby 1997):

4 . 4 .  Results

4 .4 .1 .  Tidally- and w ind-driven flows

Harmonic analysis of m ulti-year time-series of currents and sea-surface elevation at 
MOWO and MOW3 (Fig. 4.1) was conducted using MATLAB®'s T-Tide (Pawlowizc et al. 
2002) that allows identifying tidal constituents. This analysis also reveals that tidal 
variability accounts for 93-97% and 94% of total variance in the current and sea- 
surface elevation time series, respectively (Table 4.2). The tidal constituents - M2, S2, 
N2, K2, L2, 01 , M4, NU2, MU2 - account for 75% of the tidal variability of the sea- 
surface elevation. The same percentage of the total tidal variability in the currents 
observations is explained by these constituents, together with the constituents: M6, 
2MS6, MS4. The three largest constituents (M2, S2, and N2) are semi-diurnal and the 
major axes of the corresponding tidal ellipses are well aligned in the alongshore 
direction for the locations MOWO (T073) and MOW3 (T082). Magnitudes of the tidal 
components reveal fla t ellipses, rather than circular.
Time-series of low-pass filtered, depth-averaged alongshore currents, measured for 
each BM-ADCP deployment at MOW1 were correlated to alongshore wind stress 
(Tables 4.3 and 4.4). A strong correlation (R2=0.70) was obtained for all periods, 
except for 2007. The weaker correlation (R2=0.28) in 2007 is explained by the absence 
of alongshore wind stress during that particular deployment. Depth-averaged BM- 
ADCP flow components are plotted together with wind stress and salinity in Figs. 4.3 
(2006), 4.4 (2007) and 4.5 (2010). Southwest winds (2006 - day of year (doy) 137- 
147; 2010 doy 89) with shear stresses (>0.1 N n r2), acting on the sea-surface 
generate a northeastward flow that is associated with an increase in salinity (34). On 
the other hand, winds blowing from the north enhance a southwestward directed 
subtidal flow (2006 doy 149-150 and 164; 2007 doy 309, 312, 315 and 317; 2010 doy 
122-123).
These meteorological conditions correspond with lower salinity ranging between 30 
and 32. Further, periods with reduced wind stress (<0.1 N m '2), regardless the wind 
direction, exhibit a rather weak negative (southwestward) flow (2006 doy 152-165; 
2007 doy 302-308 and 320-325; 2010 doy 92-100).

75



Table 4 .3  Relation between wind and currents a t MOWO station, R2

Cross-shore 
wind stress

Alongshore 
wind stress

Cross-shore
current

Alongshore
current

Cross-shore wind stress 1 -0.21 0 10 -0.51
Alongshore wind stress 1 -0.23 0.67

Cross-shore current 1 -0.06
Alongshore current 1

Table 4 .4  Relation between wind and currents fo r the BM-ADCP deployments, R2

Alongshore flow
2006 2007 2008 2010 2010

Alongshore wind stress 0.74 0.28 0.73 0.63 0.70
Cross-shore wind stress -0.52 -0.56 -0.26 -0.65 -0.71

4 .4 .2 .  SPM transport (Figs. 4 .3 , 4 .4 , 4 .5 , 4 .6 )

Acoustic Backscatter Signal (ABS) measured by acoustic current meters can be used 
as a proxy for SPM concentration. During spring tide conditions, strong tidal currents 
increase mixing and turbulence, leading to an increase in ABS. Superimposed on the 
spring-neap variation, significant meteorological events (e.g. southwesterly winds) 
have also an impact on the ABS due to increase of the SPM concentration. On the 
other hand, phases of increased ABS also exist w ithout any relation to hydro
meteorological forcing (2006 doy 136, 157; 2010 doy 95, 111).
The SPM concentration profiles derived from ADCP and ADP ABS have been combined 
in order to obtain profiles covering almost the entire water column (this was only done 
for times-series 2006) for which it was attempted to calculate the SPM fluxes (Fig. 
4.6). The low-pass filtered SPM concentration exhibits low-frequency (wind-induced 
and spring-neap) variations. Maximum near-bed (between 0 and 1.5 mab) residual 
concentrations are about 0.6 g I'1. Depth-averaged SPM concentrations vary between 
0.2 and 0.3 g I'1 (Fig. 4.7 a). The figures show that alongshore SPM fluxes, at that 
location, coincide with southwestern or northern wind events. The total SPM flux is 
shown in Fig. 4.7 e; one can clearly see the lower flux during neap tides (2006 doy 
152-158), and the higher one (about twice) during spring tide (2006 doy 159-165). 
The spring-neap tidal variation in the firs t half (2006 doy 135-150) of the deployment 
is generally characterized by strong positive alongshore flows alternating with short 
periods of reduced or negative alongshore flow due to the prevailing meteorological 
conditions. Maximum depth-averaged SPM transport of 0.15 kg m '2 s '1 occurs during 
spring tides. On average, the lower 1.5 m of the water column accounts for 35 % of 
the total sediment flux (Fig. 4.7 g).

4 .4 .3 .  W ind sea waves and sedim ent re-suspension

Wave characteristics were available during the entire time span of MODIS data image 
collection (about 7.5 years between 2002 and 2009; MODIS-Aqua SPM Retrieval: see 
Chapter 4), and each variable was assigned to each MODIS overpass (12:00-13:00 
GMT) resulting in a time series of 2539 data points (i.e. number of processed MODIS 
SPM images). The wave population of waves travelling from the north (T315-T360 and 
T000-T045) and with heights >1.5m was involved for group-averaging MODIS SPM 
concentration maps. This resulted in a data set of 76 MODIS-SPM images. Wind 
direction, measured at the meteorological station MOWO, was gathered based on the 
time of MODIS-Aqua overpass. Waves start to become important in re-suspension of 
bed sediments when significant wave heights exceed 1.5 m at the measuring site 
(Fettweis and Nechad 2011). The increase in SPM concentration is visible along the 
coast, see Fig. 4.8 where the SPM concentration in the area is shown derived from
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MODIS images. The coastal tu rb id ity  has an average SPM concentration at MOW1 of 
about 50 mg I'1, which is significantly higher than the 30 mg I'1 found in the yearly 
averaged image (Fig. 4.1).

4 . 5 .  Discussion

4 .5 .1 .  Subtidal flow s

At the measuring location (MOW1), tidal residual flows are always directed towards the 
southwest under weak (<0.1 N m '2) wind stress conditions. Evidence from 
hydrodynamic modelling shows that the measuring site is influenced by the 
Westerscheldt estuary, counterbalancing the northeast-directed residual transport 
which is generally found in the coastal zone of the southern Bight (Lacroix et al 2004, 
Fettweis et al. 2007). Our data confirm thus the significant influence of the 
Westerscheldt estuary on the hydrodynamic circulation up to at least Zeebrugge and 
MOW1. During weak SW wind periods, there is inertia against this circulation, directed 
to the SW (e.g. 2007/300-301 and 2010/119-120). Flowever, a north-northeast wind 
enhances these flows.

4 .5 .2 .  Transport o f sedim ent suspensions

Bottom stress under the influence of currents and waves was computed, and 
correlated with depth-averaged SPM concentration from BM-ADCP deployment of 
2006. SPM concentrations during the ebb are slightly higher than during flood (Fig. 4.9 
a). A good correlation between bottom shear stress and SPM concentration should be 
expected if SPM concentration is mainly due to re-suspension by bottom shear stress. 
This is not the case (R2 = 0.50) pointing to other influencing factors such as the 
availability and consolidation degree of the cohesive sediments and the fluctuations in 
horizontal advective flux of fine sediments (e.g. Dyer 1994). In this perspective, the 
alongshore advection is considered (Fig. 4.9 b). Ebb coincides with higher SPM 
concentrations for both positive and negative subtidal flow regimes. The observed 
hysteresis is due to sediment entrainment and settling, and the advection of the 
sediment concentration gradient. The correlation between the depth-averaged, low- 
pass filtered SPM concentration and bed shear stress yields a good positive 
relationship regarding the negative flow regime (R2=0.74) since the spring-neap 
variation is not really overprinted by meteorological forcing, unlike the positive flow 
regime case (R2=0.40). Periods with stronger low-pass filtered negative flow are 
correlated with higher SPM concentration due to local re-suspension and advection. 
The tidally- and wind-driven motion of coastal waters is reflected in the salinity. Under 
southwest winds, the oceanic saline water is pushed through the Strait of Dover into 
the Belgian coastal zone. On the other hand, northern winds tend to spread out 
riverine, freshwater from the Scheldt-Rhine-Meuse estuaries along the Belgian coast 
(Yang 1998, Lacroix et al. 2004, Arndt et al. 2011). I t  is suggested that the negative 
flow will also advect sediments from the estuary towards the southwest, explaining 
R2 = 0.74. Since sediments present in the lower Scheldt are marine (Verlaan and 
Spanhoff 2000), an episodic buffering of sediments under prolonged periods of 
southwest winds was suggested (Terwindt 1977, Van Alphen 1990, Baeye et al. 2011). 
SPM will then subseguently be released under changing hydro-meteorological 
conditions (N and NE winds). In addition, the freshwater discharge (measured at 50 
km upstream) was evaluated during the ADCP deployments, and continuous but low 
discharging (~80 m3 s '1) indicate that riverine SPM output events were not likely to be 
measured in the BM-ADCP time-series.

4 .5 .3 .  Vertical m ixing o f suspended sedim ents

Meteorological conditions have also an influence on the vertical mixing of SPM in the 
water column; this depends on the settling velocities and on the vertical mixing 
processes (Pleskachevsky et al. 2011). Vertical mixing is calculated as the ratio 
between near-surface to near-bed SPM concentrations (Fig. 4.7 d). The data show that 
a good vertical mixing (high ratio) is associated with the major southwest wind events 
occurring in the first part of the 2006 time-series (blue highlights).
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Figure 4 .6  BM-ADCP time-series 2006 from top to bottom  SPM concentration, 
alongshore sediment flux and to ta l sediment flux, respectively



In between these events, less energetic conditions increase SPM settling out of the 
water column and accordingly the near-bed SPM concentration. Under these wind (SW) 
conditions, a positive correlation exists between vertical mixing parameter and the 
low-pass filtered bed shear stress (R2=0.64). However, during negative alongshore 
flow (red highlight) a negative correlation (R2= - 0.45) was found pointing to no 
relationship between good mixing and increased bed shear stress (like the positive 
flow regime). Possibly, prominent near-bed processes, such as the formation of high
concentrated mud suspension and fluid mud layers also exist during strong negative 
flow hydrodynamics. The overall degree of vertical mixing under negative flow 
conditions remains high, and is explained by the associated particle size spectrum that 
is now dominated by finer (silt-size) particles requiring less energy (necessary) to be 
in re-suspension. The particles during northeast-directed flows are typically coarser, 
implying rapid settling of the particles (fine sands) during less energetic phases. 
HCMSs are most important towards vertical mixing capacity of the water column when 
considering the sediment transport in tidal time domains; since the cyclic (quarter- 
diurnal) HCMS occurrences will be mostly filtered out in the subtidal signal. Fig. 4.10 
(top) shows the seabed evolution (ADV altim etry) with the short-term  occurrence of 
HCMSs, especially under southwest-directed flows (2006 from doy 146 on). HCMSs 
reach the ADV sampling volume, in which currents are measured, indicating HCMS 
layers of at least 20 cm thick.
Satellite images will always underestimate SPM concentration and transport due to the 
strong vertical gradients in SPM concentration (Fettweis and Nechad 2011). This 
means also that the surface CTM zone as observed in satellite images is generally less 
extended than the near-bed CTM. Figs. 4.1 and 4.8 show the mixing, as observed at 
the surface, for average conditions (based on wind climate) and for storm conditions 
(winds with northern component, and waves >1.5 m). Under averaged conditions (Fig. 
4.1), the navigational channels have lower surface SPM concentration than its 
surroundings. This is explained by the deeper water depth in the channels than in the 
surroundings (15 vs. 10 m MLLWS); water depth being a controlling factor in the 
vertical sediment distribution (e.g. Hommersom et al. 2010). Under northerly storms, 
however, the SPM concentration is high in the whole area. Fettweis et al. (2010) have 
argued tha t the soft mud deposits in the navigational channels are re-suspended 
during such storm conditions. The latter is thus confirmed by satellite images (Fig. 4.8 
vs. Fig. 4.1). The seabed evolution, derived from the ADV (Fig. 4.10) was plotted 
together with the wave-induced bottom stress (Fig. 4.10, bottom). The 2-days lasting 
northern storm (2006/149-150) resulted in seabed erosion of at least 5 cm. After the 
storm the SPM was settling again resulting in formation of HCMS (or fluid mud) layers 
of almost 10 cm, these layers remained until the end of the deployment. Bed erosion 
also occurred under southwestern wind events. The short term HCMS layers (up to 20 
cm) occur in association with these events (vertical white lines); though it manifests 
on a more regular basis in the negative flow regime (Fig. 4.10 from 2006/147 
onwards). The CTM, under the negative flow regime, is therefore more likely related to 
the formation of HCMS layers with a thickness of more than 20 cm (on fluid mud); 
these occur typically during slack tides (see Chapters 2 and 6). I t  is known from 
literature (Mehta 1989, Winterwerp and van Kesteren 2004) that fluid mud is hard to 
entrain, and tends to dampen turbulent energy. This possibly also contributes to the 
negative correlation between the mixing parameter and the bed shear stress for this 
flow condition.

4 .5 .4 .  Disposal o f m ud

Subtle fluctuations in depth-averaged sediment concentrations w ithout any observed 
change in hydro-dynamical forcing have been observed in the data (see above,
4.4.2.). Possibly they are linked to small scale processes. Plausible mechanism for 
these variations is thought to be disposal of dredged material on a nearby disposal site 
(east o ff Zeebrugge), where between 60 x IO3 and 120 x IO3 tons of dry matter has 
been disposed during the BM-ADCP mooring in 2006. Disposal of fine-grained 
sediments result in an increase of SPM concentration in a larger area (Van den Eynde 
2004, Fettweis et al. 2011). However, based on the current BM-ADCP time-series no 
direct evidence of impact of disposal of dredged material could be established.
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Figure 4 .8  SPM concentration composite maps derived from MODIS Aqua satellite 
during northern storm wave conditions (winds with north component and significant 
wave height >1.5  m). A2 and BvH are M0W1 and M0W3, respectively. Vertical and 
horizontal axes are latitude and longitude (in degree), respectively

4 . 6 .  Conclusions

Wind-driven flows were quantitatively investigated, and considered to be important in 
the study area. Time-series (40 days each) of BM-ADCP current profiles, as well as 
acoustic backscatter data were studied in terms of sediment transport (fluxes). An 
approximation of full water column SPM fluxes through combined use of ADP and BM- 
ADCP was realised. Based on the alongshore flow direction, two flow regimes were 
characterised in terms of sediment flux and vertical mixing. The negative flow regime 
(SWW Case; towards France) corresponds to decreased salinity and increased turb id ity 
(higher SPM concentration). The nature of SPM is cohesive and the water column is 
vertical mixed; however, this mixing is not hydrodynamically controlled. Linked to this 
flow direction, storm waves (from the north) result in the largest extent of the coastal 
turb id ity maximum as observed at water surface. Enhanced erosion of the seabed and 
mixing capacity are the main responsible mechanisms. The positive flow regime (NEW 
Case; towards the Netherlands) readily shows increased salinity, but decreased 
turbidity. This regime is characterized by vertical mixing of the water column, and high 
SPM fluxes. The long-term evolution of the system is therefore dependent on the 
mutual occurrence of the flow regimes, and thus on the wind climate.

4 . 7 .  Acknowledgem ents

I want to acknowledge the crew of RV Belgica, Zeearend and Zeehond for their skilful 
mooring and recuperation of the tripod and BM-ADCP. Measurements would not have 
been possible w ithout technical assistance of A. Pollentier, J-P. De Blauwe, and J. 
Backers (Measuring Service of MUMM, Oostende).

84



Bed Shear Stress (N m'2)
1 r

D  + Negative Directed Flow Regime
0 8 -  ■ Positive Directed Flow Regime

Flysteresis

0 1 __________________ I________________I________________ I_________________I______________ I_________________I________________I________________ I
-4 -3 -2 -1 0 1 2 3 4

Bed Shear Stress (N m'2)

Figure 4 .9  a, Bed Shear Stress -  depth-averaged SPM concentration with vertical 
error bars; b, Bed Shear Stress vs. SPM concentration a t 2 m above bed (fo r the 
negative 'diamonds' and positive 'squares' flow regime). BM-ADCP period 2006

4 . 8 .  References

Arndt S, Lacroix G, Gypens N, Regnier P, Lancelot C (2011). Nutrient dynamics and
phytoplankton development along an estuary-coastal zone continuum: A 
model study, 49-66. In Journal of Marine Systems 84 (3-4).

Baeye M, Fettweis M, Voulgaris G, Van Lancker V (2011). Sediment mobility in
response to tidal and wind- driven flows along the Belgian inner shelf, 
southern North Sea. Ocean Dynamics 61(5), 611-622.

Beardsley RC, Limeburner R, Rosenfeld LK (1985). Introduction to the CODE-2 moored 
array and large-scale data report, in CODE-2: Moored Array and Large-Scale 
Data Report, edited by R. Limeburner, Tech. Rep. W HOI-85-35, 234 pp., 
Woods Hole Oceanogr. Inst., Woods Hole, Mass.



Days of 2006

Figure 4 .1 0  Top, bed evolution (ADV a ltim etry) and bottom , wave-induced bed
shear stress

Creed EL, Pence AM, Rankin KL (2001). Inter-Comparison of Turbidity and Sediment 
Concentration Measurement from an ADP, an ABS-3, and a LISST, in: 
Proceedings of Oceans 2001 MTS/IEEE Conference Proceedings, Honolulu, HI, 
2 001 ,(3 ) 1750-1754.

Deines KL (1999). Backscatter estimation using broadband acoustic Doppler current 
profilers, in: Proceedings of the IEEE Sixth Working Conference on Current 
Measurements, San Diego, CA, March 11-13, 1999, pp. 249-253.

Delhez EJM, Carabin G (2001). Integrated modelling of the Belgian coastal zone 
Estuarine, Coastal and Shelf Science 53(4), 477-491.

de Ruijter WPM, Postma L, Kok JMD (1987). Transport Atlas of the Southern North Sea 
Rijkswaterstaat, The Hague. 33 pp.

Downing J (2006). Twenty-five years with OBS sensors: The good, the bad, and 
the ugly. Continental Shelf Research 26, 2299-2318.

Downing A, Thorne PD, Vincent CE (1995). Backscattering from a suspension in the
near field of a piston transducer. Journal of the Acoustical Society of America 
97 (3), 1614-1620.

Du Four I, Van Lancker V (2008). Changes of sedimentological patterns and
morphological features due to the disposal of dredge spoil and the 
regeneration after cessation of the disposal activities. Marine Geology 255(1- 
2), 15-29

Dyer KR (1994). Estuarine sediment transport and deposition. In: Pye, K. (ed.) 
Sediment Transport und Depositional Processes. Blackwell Scientific 
Publications, Oxford, 193-218.

Fettweis M, Nechad B (2011). Evaluation of in-situ and remote sensing sampling
methods of SPM concentration, Belgian continental shelf (southern North Sea) 
Ocean Dynamics 61(2-3), 157-171.

Fettweis M, Du Four I, Zeelmaeker E, Baeteman C, Francken F, Houziaux J-S, Mathys 
M, Nechad B, Pison V, Vandenberghe N, Van den Eynde D, Van Lancker V, 
Wartel S (2007). Mud Origin, Characterisation and Human Activities 
(MOCHA). Final Scientific Report, D /2007/1191/28. Belgian Science Policy 
Office, 59 pp.

Fettweis M, Francken F, Van den Eynde D, Verwaest T, Janssens J, Van Lancker V 
(2010). Storm influence on SPM concentrations in a coastal turb id ity 
maximum area with high anthropogenic impact (southern North Sea). 
Continental Shelf Research 30, 1417-1427.



Fettweis M, Van den Eynde D (2003). The mud deposits and the high tu rb id ity  in the 
Belgian-Dutch coastal zone, Southern bight of the North Sea. Continental 
Shelf Research, 23, 669-691.

Fewings MR, Lentz SJ (2009). A momentum budget for the inner continental shelf 
south of Massachusetts. Journal of Geophysical Research 115 C12.

Grasmeijer BT, Kleinhans MG (2004). Observed and predicted bed forms and their 
effect on suspended sand concentrations. Coastal Engineering 51, 351-371.

Gullentops F, Moens M, Ringele A, Sengier R (1976). Geologische kenmerken van de
suspensie en de sedimenten. In: Nihoul, J., Gullentops, F. (Eds.), Project Zee- 
Projet Mer., vol. 4. Science Policy Office, Brussels, Belgium, pp. 1-137.

Gutierrez BT, Voulgaris G, Work PA (2006). Cross-shore variation of wind-driven flows 
on the inner shelf in Long Bay, South Carolina, United States, Journal of 
Geophysical Research 111, C03015.

Gutierrez BT, Voulgaris G, Thieler ER (2005). Exploring the persistence of sorted
bedforms on the inner-shelf of Wrightsville Beach, North Carolina: Continental 
Shelf Research 25 (1), 65-99.

Grant WD, Madsen OS (1986). The Continental-Shelf Bottom Boundary Layer Annual 
Review of Fluid Mechanics 18, 265-305.

Hoitink AJF, Floekstra P (2005). Observations of suspended sediment from ADCP and
OBS measurements in a mud-dominated environment. Coastal Engineering 
52(2), 103-118.

Flommersom A, Wernand MR, Peters S, Boer de J (2010). A review on substances and 
processes relevant for optical remote sensing of extremely turbid marine 
areas, with a focus on the Wadden Sea. Flelgoland Marine Research 64(2), 
75-92.

Lacroix G, Ruddick KG, Ozer J, Lancelot C (2004). Modelling the impact of the Scheldt 
and Rhine/Meuse plumes on the salinity distribution in Belgian waters 
(southern North Sea). Journal of Sea Research 52, 149-163.

Large WG, Pond S (1981). Open Ocean Momentum Flux Measurements in
Moderate to Strong Winds. Journal of Physical Oceanography 11, 13.

Lauwaert B, Bekaert K, Berteloot M, De Backer A, Derweduwen J, Dujardin A, Fettweis 
M, Flillewaert FI, Floffman S, Flostens K, Ides S, Janssens J, Martens C, 
Michielsen T, Parmentier K, Van Floey G, Verwaest T (2009). Synthesis report 
on the effects of dredged material disposal on the marine environment 
(licensing period 2008-2009). Report by BMM, ILVO, CD, aMT and WL 
BL/2009/01. 73 pp.

Lentz (1995). The Amazone River Plume during AMASSEDS: Subtidal current 
variability and the importance of wind forcing: Journal of Geophysical 
Research 100 C2, 2377-2390.

Lentz SJ, Guza RT, Elgar S, Feddersen F, Flerbers TFIC (1999). Momentum
balances on the North Carolina inner shelf. Journal of Geophysical Research 
104, 18205-18226.

Lynch JF, Gross TF, Sherwood CR, JD Irish, Brumley BFH (1997). Acoustical and optical 
backscatter measurements of sediment transport in the 1988-1989 STRESS 
experiment Continental Shelf Research 17 (4), 337-366.

Medwin FI, Clay CS (1998). Fundamentals of Acoustical Oceanography, Academic 
Press. 712 pp.

McNinch JE, Luettich RA (2000). Physical processes around a cuspate foreland
headland: implications to the evolution and long-term maintenance of a cape- 
associated shoal. Continental Shelf Research, 20 (17), 2367-2389.

Mehta AJ (1989). On estuarine cohesive sediment suspension behavior. Journal of 
Geophysical Research 94 CIO, 14303-14314.

Nihoul J (1975). Effect of tidal stress on residual circulation and mud deposition in the 
southern Bight of the North Sea. Review of Pure and Applied Geophysics 113, 
577-591.

Nielsen P (1986). Suspended sediment concentrations under waves. Coastal 
Engineering 10, 23-31.

Pawlowicz R, Beardsley B, Lentz S (2002). Classical tidal harmonic analysis with errors 
in matlab using t-tide. Computers Geosciences 28, 929-937.

87



Pietrzak JD, de Boer GJ, Eleveld MA (2011). Mechanisms controlling the intra-annual 
mesoscale variability of SST and SPM in the southern North Sea. Continental 
Shelf Research 31(6), 594-610.

Pleskachevsky A, Dobrynin M, Babanin A, Günther H, Stanev E (2011). Turbulent 
mixing due to surface waves indicated by remote sensing of suspended 
particulate matter and its implementation into coupled modelling of waves, 
turbulence, and circulation. Journal of Physical Oceanography 41, 708-724.

Sanay R, Voulgaris G, Warner JC (2007). Tidal asymmetry and residual circulation over 
linear sandbanks and the ir implication on sediment transport: A process- 
oriented numerical study, Journal of Geophysical Research 112, C12015 15
pp.

Stanev EV, Dobrynin M, Pleskachevsky A, Grayek S, Günther H (2009). Bed shear 
stress in the southern North Sea as an important driver for suspended 
sediment dynamics. Ocean Dynamics 59(2), 183-194.

Soulsby RL (1983). The bottom boundary layer of shelf seas. In Physical
Oceanography of Coastal and Shelf Seas, ed. B. Johns, pp. 189-266. 
Amsterdam: Elsevier. 470 pp.

Soulsby (1997). Dynamics of Marine Sands, Thomas Telford, London, pp. 249.
Terwindt JHJ (1977). Mud in the Dutch Delta area. Geologie en Mijnbouw 56 (3), 203- 

210 .
Urick RJ (1983). Principles of underwater sound, 3rd ed. New York: McGraw-Hill 423

pp.
Verlaan PAJ, Groenendijk FC (1993). Long term pressure gradients along the Belgian

and Dutch coast. MAST G8M report DGW-93.045, Rijkswaterstaat Tidal 
Waters Division.

Van Veen J (1936). Onderzoekingen in de Hoofden in verband met de gesteldheid der 
Nederlandse Kust, Nieuwe Verhandelingen van het Bataafse Genootschap 
voor Proefondervindelijke Wijsbegeerte te Rotterdam, 2e reeks, Ile  deel, 252
pp.

Van Lancker V, Du Four I, Verfaillie E, Deleu S, Schelfaut K, Fettweis M, Van den 
Eynde D, Francken F, Monbaliu J, Giardino A, Portilla J, Lanckneus J, 
Moerkerke G, Degraer S (2007). Management, Research and Budgetting of 
Aggregates in Shelf Seas related to End-users (Marebasse). Belgian Science 
Policy: Brussels, 139 pp.

Van Alphen JS (1990). A mud balance for Belgian-Dutch coastal waters between 1969 
and 1986. Netherlands Journal of Sea Research 25, 19-30.

Verfaillie E, Van Lancker V, Van Meirvenne M (2006). Multi-variate geostatistics for the 
predictive modelling of the surficial sand distribution in shelf seas Continental 
Shelf Research 26(19), 2454-2468.

Van den Eynde D (2004). Interpretation of tracer experiments with fine-grained
dredging material at the Belgian Continental Shelf by the use of numerical 
models. Journal of Marine Systems 48, 171-189.

Verlaan PAJ, Spanhoff R (2000). Massive sedimentation events at the mouth of the 
Rotterdam waterway. Journal of Coastal Research 16, 458-469.

Winterwerp JC, Van Kesteren WGM (2004). Introduction to the physics of cohesive 
sediment in the marine environment. Developments in Sedimentology 56, 
(Elsevier, Amsterdam). 576 pp.

Wright LD (1989). Benthic boundary layers of estuarine and coastal environments. 
Reviews in Aquatic Sciences 1(1), 75-95.

Yang L (1998). Modelling of hydrodynamic processes in the Belgian Coastal Zone, 
Applied Mathematics. Catholic University of Louvain, Leuven, pp. 204.

Zeelmaekers E (2011). Computerized qualitative and quantitative clay mineralogy: 
introduction and application to known geological cases. PhD Thesis.
Katholieke Universiteit Leuven. Groep Wetenschap en Technologie: Heverlee. 
ISBN 978-90-8649-414-9. X II, 397 pp.

88


