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Abstract
BACKGROUND— The review presents the 2005-2006 peer-reviewed marine pharmacology 
literature, and follows a similar fonnat to the authors’ 1998-2004 reviews. The preclinical 
pharmacology of chemically characterized marine compounds isolated from marine animals, algae, 
fungi and bacteria is systematically presented.

RESULTS—Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, 
antituberculosis and antiviral activities were reported for 78 marine chemicals. Additionally 47 
marine compounds were reported to affect the cardiovascular, iimnune and nervous system as well 
as possess anti-inflammatory effects. Finally, 58 marine compounds were shown to bind to a variety 
of molecular targets, and thus could potentially contribute to several pharmacological classes.

CONCLUSIONS—Marine pharmacology research during 2005-2006 was truly global in nature, 
involving investigators from 32 countries, and the United States, and contributed 183 marine 
chemical leads to the research pipeline aimed at the discovery of novel therapeutic agents.

SIGNIFICANCE—Continued preclinical and clinical research with marine natural products 
demonstrating a broad spectrum of pharmacological activity and will probably result in novel 
therapeutic agents for the treatment of multiple disease categories.
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1. Introduction
The current article reviews the 2005-6 preclinical pharmacology of marine natural products 
using a similar fonnat to the previous reviews on pharmacological research [1-5]. The review 
of the literature on the pharmacology of antitumor and cytotoxic marine compounds has been 
reported elsewhere [6-11], Only those articles reporting on the bioactivity or phannacology 
of marine chemicals that were structurally characterized are included in the current article. As 
in our previous reviews, we used a modification of Schmitz’s chemical classification [12] to 
assign structures to four major chemical classes, namely, polyketides, terpenes, nitrogen- 
containing compounds or polysaccharides. Those articles that reported anthelminthic, 
antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and 
antiviral properties of marine chemicals have been presented in Table 1 with the corresponding 
structures shown in Fig. 1. The publications describing marine compounds affecting the 
cardiovascular, immune and nervous systems, as well as those with anti-inflammatory effects 
are grouped in Table 2, and their structures shown in Fig. 2. Finally, marine compounds with 
activity towards a series of cellular and molecular targets are exhibited in Table 3, and their 
structures depicted in Fig. 3. Publications regarding the bioactivity of marine extracts or as yet 
structurally uncharacterized marine compounds have been excluded from the present review, 
although several promising reports were published during 2005-6: anti-inflammatory and 
analgesic effects of Egyptian Red Sea sponge extracts [13]; proangiogenic effects of 15-20 
kDa fucoidans on endothelial cells [14]; antioxidative and anti-inflammatory effects of 
phlorotannin-containing extracts with potential for osteoarthritis from the brown alga Ecklonia 
cava [15]; immunostimulating activity in vivo of a novel sulfated exopoly saccharide derived 
from a red-tide microalga Gyrodinium impudicum [16]; antiherpetic activity in vitro of sulfated 
fucans from the marine brown alga Stoechospermum marginatum [17]; in vitro bioactivity of 
Brazilian marine sponge extracts against herpes, adenovirus and rotaviruses [18]; antifungal 
activity of glycolipid fractions from the red alga Chondria armata [19]; antiviral and 
immunoregulatory activity of an exopolysaccharide from the marine Bacillus licheniformis 
[20]; potent anticoagulant activity of a sulfated polysaccharide from the brown alga Ecklonia 
cava [21]; antimicrobial activity of Red Sea coral extracts [22]; a novel broad-spectrum 
antibacterial protein produced by the bacterium Marinomonas mediterranea [23]; antiviral 
activity of polysaccharide fractions isolated from the cyanobacterium. [nitrospira platensis 
(fonnerly Spirulina platensis) [24]; antiangiogenic and antimicrobial activity of sponge- 
associated bacterial extracts [25], and a ß-galactose-specific lectin with anti-HIV-1 activity 
isolated from the marine wonn Chaetopterus variopedatus [26],

2. Marine compounds with anthelmintic, antibacterial, anticoagulant, 
antifungal, antimalarial, antiprotozoal, antituberculosis, and antiviral 
activities

Table 1 presents new pharmacological findings reported during 2005-6 on the anthelmintic, 
antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis, and 
antiviral phannacology of the 78 marine natural products shown in Fig. 1.

2.1 Anthelm intic and antibacterial activity

Three studies contributed to the search of novel anthelmintic marine natural products during 
2005-6. Capon and colleagues [27,28] described two novel betaines (-)-echinobetaine A
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(I) and (+)-echinobetaine B (2), from the Australian sponge Echinodictyum sp. which were 
nematocidal (LD99=83 and 8.3gg/mL. respectively) to the coimnercial livestock parasite 
Haemonchus contortus. Although the mechanism of action of these compounds remains 
undetermined, (+)-echinobetaine B ’s nematocidal activity was comparable to that of “two 
commercially available synthetic antihelmintics, closantel and levamisole”. Davyt and 
colleagues [29] reported a novel halogenated ß-bisabolene sesqu¡terpenoid (3) from the red 
alga Laurencia scoparia that showed anthelmintic activity (EC5o=0 .11 mM) against the 
parasitant stage (L4) of Nippostrongilus brasiliensis, a rat gastrointestinal parasite that has a 
similar lifestyle and morphology to human hookworms.

As part of an ongoing global effort to discover novel antimicrobials to treat infections caused 
by resistant pathogenic bacteria, during 2005-6, 27 studies contributed novel antibacterial 
marine natural products isolated from marine fungi, bacteria, sponges, soft corals, jellyfish and 
fish, a considerable increase from our previous reviews [1-5], Only two reports provided 
detailed mechanism of action studies. Linington and colleagues [30] discovered that the novel 
caminosides B (4) and D (5) glycolipids, isolated from the Caribbean marine sponge Caminus 
sphaeoroconia, were inhibitors of pathogenic E.coli type III secretion system. Both 
caminosides were observed to “possess a number of structural features not found in sponge 
glycolipids” and were also noted to be effective against Gram-positive methicillin-resistant S. 
aureus and vancomycin-resistant Enteroccocus (MIC=3.1-6.3 pg/disk). Oh and colleagues
[31] reported that the bis(indole) alkaloids deoxytopsentin (6) and hamacanthin A (7) isolated 
from the marine sponge Spongosorites sp. exhibited potent antibacterial activity against S. 
aureus (MIC=3.12-6.35 pg/mL). Interestingly, both alkaloids inhibited the enzyme sortase A 
(IC5o=15.7 & 86.3 pg/mL, respectively), a membrane-associated transpeptidases that plays a 
key role in Gram-positive pathogenic bacterial invasion of host cells.

As shown in Table 1, several potent marine antibacterials were also reported in 2005-6 (Fig 
1), with MICs less than 10 pg/mL against several antibiotic-resistant bacterial strains, but 
unfortunately the articles did not include data on putative mechanisms of action: aurelin (8 )
[32]; batzellaside A (9) [33]; dendridine A (10) [34]; 6 -oxo-de-O-methyllasiodiplodin
(II) [35]; grammistins (12) [36]; halichonadin C (13) [37]; lajollamycin (14) [38]; 
marinomycins A (15), B (16), C (17) and D (18) [39]; resistoflavin methyl ether (19) [40]; 
Streptomyces anthraquinones (20-21) [41]; Streptomycetaceae quinone (22) [42] and, 
xeniolide I (23) [43],

Furthermore, novel structurally characterized marine molecules with MICs greater than 10 
pg/mL were also isolated during this period, but are not included in Table 1 or Fig. 1 because 
of their weaker antibacterial activity: agelasidine A, (MIC=50 pg/mL) [44], alkylpyridinium 
(MIC<25 pg/mL) [45]; diaporthelactone (MIC=50 pg/mL) [46]; Geniculosporium sp. 
botryanes [47]; guangomide A & B (MIC=100 pg/mL) [48]; latrunculins (MIC=14.7-17.8 
pg/mL) [49]; norresistomycin (MIC=16 pg/mL) [50]; perinadine A (MIC=33-66.7 pg/mL) 
[51]; Pseudomonas aeruginosa quinoline (MIC=50-100 pg/mL) [52]; rifamycin B & SV 
[53]; sarasinoside A] and J [54]; scalusamide A (MIC=33 pg/mL) [55], and Thorectandra 
sp. alkaloid (MIC=12.5 pg/mL) [56], Although these marine compounds demonstrated weaker 
antimicrobial activity, they highlight the fact that novel antimicrobial leads may result from 
further research into the chemical biodiversity present in marine bacteria, fungi and sponges.

2.2 Anticoagulant activity

As shown in Table 1, during 2005-6, 5 articles reported anticoagulant marine natural products 
isolated from algae, fish and clams, an increase from our previous reviews [1-5], Rajapakse 
and colleagues [57] characterized a 12.01 kDa single-chain monomeric protein from the 
marine yellowfin sole (Limanda aspera) which inhibited the blood coagulation serine 
endopeptidase factor XII (ICsqM  pM) by forming an inactive complex, and also triggered
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platelet aggregation by binding to a membrane glycoprotein integrin. Drozd and colleagues 
[58] extended the phannacology of the fucoidans (24) from the marine algae Fucus 
evanescens and Laminaria cichorioides, showing that these sulfated polysaccharides inhibited 
both thrombin and factor Xa with potency comparable to non-fractioned and low-molecular 
weight heparins, although with considerable variability attributed to the “degree of sulfation 
and various types of glycoside bonds”. Luppi and colleagues [59] reported the purification and 
structural characterization of an unusual low-sulfated heparin (25) from the marine Italian 
bivalve mollusk Callista chione that decreased anti-factor Xa and activated partial 
thromboplastin time activity (IC5o=52-97 IU/mg), probably as the result of a specific decrease 
in sulfation at position 2 of the uronic acid units. Pereira and colleagues [60] using an approach 
that combined structural analysis with specific biological assays, investigated the anticoagulant 
phannacology of sulfated galactans (26,27) isolated from the red marine alga Gelidium 
crinale. Their detailed mechanistic studies demonstrated that 2,3-disulfated a-galactose units 
along the galactan chain were of major significance for the sulfated galactans’s anticoagulant 
activity, because the chains modulated interactions of the polysaccharides with “target 
proteases and coagulation inhibitors”. Rocha and colleagues [61] described a novel sulfated 
galactofucan (28) isolated from the marine brown alga Spatoglossum schroederi with a unique 
structure composed of a central core of 4-linked, partially 3-sulfated //-galactose units. 
Remarkably, the polysaccharide had no anticoagulant activity, yet showed potent 
antithrombotic activity resulting from the synthesis of heparan sulfate by vascular endothelial 
cells.

2.3 Antifungal activity

As shown in Table 1, sixteen studies during 2005-6 reported on the antifungal activity of 
several novel marine natural products isolated from marine algae, fungi, bacteria, sponges and 
sea stars, a substantial increase from our 1998-2004 reviews [1-5],

Four reports extended the molecular phannacology of novel antifungal marine chemicals. Li 
and colleagues [62] discovered that the capisterones A and B (29,30) from the green alga 
Penicillus capitatus reversed drug resistance to clinically relevant azole-resistant fungal 
strains. Interestingly, although both compounds had no inherent antifungal activity, they 
enhanced fluconazole activity in efflux pmnp-overexpressing Candida albicans strains, 
suggesting their utility in protocols for resistant fungal infections. Sionov and colleagues 
[63] observed that a phenol compound (31) from the marine sponge Dysidea herbacea had 
significant activity against the human fungal pathogens C. albicans and Aspergill us 
fumigatus (MIC=1.95-7.8 pg/mL) which compared well with the clinically used antifungal 
amphotericin B (M IC=l-2 pg/mL). The phenol compound caused significant concentration- 
dependent changes in fungal cell morphology and cell membrane, resulting inK + ion leakage. 
Pettit and colleagues [64] extended the in vitro and in vivo phannacology of the marine 
spongistatin 1 (32) isolated from the marine sponge Hvrios erecta, a previously described 
anticancer agent [65], The macrocyclic lactone polyether was shown to be fungicidal to 74 
reference strains and clinical isolates (MIC=l-32 pg/mL), including several fungal strains 
resistant to the clinically used drugs flucytosine, ketoconazole and fluconazole. Furthennore, 
mechanism of action studies revealed that spongistatin 1 disrupted cytoplasmatic and spindle 
microtubules in Cryptococcus neoformans in a time- and concentration-dependent manner, 
preventing nuclear migration, and both nuclear and cellular cell division. Jang and colleagues 
[66] found that a synthetic analogue of halocidin (33), a previously reported antimicrobial 
peptide isolated from the hemocytes of a marine ascidian, had potent antifungal activity 
(M IC=l-4 pg/mL). The synthetic Di-K19Hc peptide derivative of 33 was shown to bind to C. 
albicans very rapidly (30 seconds) via an interaction with ß-l,3-glucan, a component of the 
fungal cell wall, and concomitantly inducing ion channel fonnation, K+ efflux, and death of 
the fungal cell.
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Additionally, and as shown in Table 1, several marine chemicals showed significant antifungal 
activity (i.e. MICs that were less than 10 |xg/mL (Fig 1; 34-43), but unfortunately mechanism 
of action studies were lacking at the time of publication: the lipopeptide hassallidin A (34), 
(MIC=4.8 pM) [67], the polyketide latrunculins (35-42), (MIC=2.5-19 pM) [49], and the 
fatty acid majusculoic acid (43), (MIC=8 pM) [68], Further investigation of the molecular 
phannacology of these compounds will be required to detennine their mechanism of action.

Finally, additional novel structurally-characterized marine molecules demonstrated MICs 
greater than 10 pg/mL, and therefore because of the weaker antifungal activity they have been 
excluded from Table 1 and Fig. 1: amphidinols (IC5o=10-58 pM) [69,70], callipcltins F-I 
(IC5o= 1 0 0  pM) [71], Lamellodysidea herbacea sterols [72], minutosides A and B [73], 
oceanalinA(IC5o=30 pM) [74], sokodosideAandB [75],andsterigmatocyn [76], Although 
these marine chemicals showed weaker antifungal activity, they represent potential 
phannacological leads perhaps possessing novel and uncharacterized mechanisms of action 
that might ultimately benefit the ongoing global search for clinically useful antifungal agents.

2.4 Antim alarial, antiprotozoal, and antituberculosis activity

As shown in Table 1, in 2005-6 nine studies were reported in the area of antimalarial, 
antiprotozoal and antituberculosis phannacology of structurally characterized marine natural 
products, a significant increase from our previous 1998-2004 reviews [1-5],

Wright and Lan-Unnasch [77] reported that pycnidione (44) isolated from the marine fungus 
Phoma sp., had significant antiplasmodial activity against three strains of Plasmodium 
falciparum (IC50=0.15-0.4 pM). Because of structural similarities between pycnidione and 
atovaquone, an ingredient of the antimalarial medication Malarone®, the investigators 
proposed that the antiplasmodial activity of pycnidione was “significant in tenns of lead 
structure development”. Campagnuolo and colleagues [78] identified antimalarial activity in 
novel polyketide cycloperoxides isolated from the marine sponge Plakortis simplex. The 
known plakortide Q (45) demonstrated the highest inhibition of P. falciparum chloroquine- 
sensitive and chloroquine-resistant strains (IC50=0.52-1 pM), suggesting that the configuration 
at C-3 exerted a significant effect on antimalarial activity of these compounds. Laurent and 
colleagues [79] proved that the known xestoquinone (46) isolated from the Pacific Ocean 
spongc Xestospongia sp. had significant in vitro antiplasmodial activity (IC50=3pM), and 
inhibited Pfnek- 1(IC50= 1 pM), a protein kinase of P. falciparum  that plays a yet undetermined 
role in its biochemistry. Rao and colleagues [80] highlighted the bioactivity of four new 
manzamine-type alkaloids, as well as that of 13 known manzamine alkaloids isolated from 
Indonesian sponges of the genus Acanthostrongylophora against the chloroquine-sensitive and 
chloroquine-resistant strains of P. falciparum. Although less potent than artemisinin, used as 
a control in these studies (IC50=10 & 6.3 ng/mL, respectively), the higher bioactivity of 
manzamine Y (47) against P. falciparum (IC’5q=0.42-0.85 pg/mL) demonstrated the 
importance of hydroxy and the 8-membered ring in the aliphatic region of this molecule for 
the antimalarial activity.

Several additional marine chemicals were reported in 2005-6 to possess antimalarial activity, 
but their bioactivity appeared to be less significant, i.e. MIC >10pM: The diterpenes 
caucanolides A and D (48,49) from the Colombian gorgonian coral Pseudopterogorgia 
bipinnata, (IC5o=17 pg/mL) [81], sesquiterpenoid metabolites (50-54) from a Caribbean 
gorgonian coral Eunicea sp., (IC50MO-I8  pg/mL) [82], the diterpene kallolide D (55) from a 
Colombian Pseudopterogorgia species, (IC5o=30.6 pM) [83], the furanocembranolide 
diterpenes leptolide (56) and deoxypseudopterolide (57) from the Panamanianoctocorals 
Leptogorgia alba and Leptogorgia rigida, (ICso= 50 & 74 pM, respectively) [84], and a 
tyramine derivative (58) from the Panamanian octocoral Muricea austera (ICso=36 pM)
[85],
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Three marine compounds were reported to possess antiprotozoal activity. Lim and colleagues
[86] found that ent-plakortide P (59), a new natural product from the sponge Plakortis sp., 
inhibited Leishmania mexicana proliferation (IC5o=l pg/mL), although it appeared to be less 
potent than ketoconazole (IC5o=0.06 pg/mL). Washida and colleagues [87] examined a novel 
polyol compound karatungiol A (60) isolated from the symbiotic Indonesian marine 
dinoflagcllatc. Xmphidinium sp., and observed antiprotozoal activity against Trichomonas 
foetus (IC5o=l pg/mL). This constitutes an important observation in view of the fact that this 
flagellated protozoan parasite of both the bovine and feline reproductive tract appears to show 
increasing resistance to the anthelmintics fenbendazole and metronidazole. Gray and 
colleagues [88] discovered a new disulfated meroterpenoid, isoakaterpin (61), from extracts 
of the Brazilian marine sponge Callyspongia sp. that inhibited Leishmania spp. adenine 
phosphoribosyl transferase (IC5o=1.05 pM), an enzyme that is part of the purine salvage 
pathway in the parasite, and “should compromise parasite but not mammal metabolism”.

Three novel marine compounds were contributed to the global search for novel 
antituberculosis agents. De Oliveira and colleagues [89] reported that (+)-fistularin -3 (62) 
and ll-deoxy-fistularin-3 (63) isolated from the Brazilian sponge Aplysina cauliformis 
inhibited growihofAIycobacterium I uh er cu lasis H 3 7 R v (MIC=7.1-7.3 pM, respectively), thus 
extending previous observations on the antituberculosis activity of fistularin-3 (62) [90], 
Because these compounds evidenced very low toxicity to macrophages (IC so=200 and 630 
pM, respectively), there is definite potential for these compounds to become leads for 
antituberculosis drag development. As part of the investigation of the extensive chemodiversity 
of the Caribbean sea whip Pseudopterogorgia elisabethae, Rodriguez and colleagues [91] 
noted that at the concentration range of 128-64 mg/mL the novel benzoxazole alkaloid 
ileabethoxazole (64) inhibited M. tuberculosis (H 3 7 R V, MIC=61 pg/mL), with a potency that 
“lies within the same range as that of the very active rifampin”. As a result of an ongoing 
investigation to identify new manzamines from the Indo-Pacific sponge. 
Acanthostrongylophora sp.. Rao and colleagues [80] identified two of the alkaloids, namely 
(+)-8 -hydroxymanzamine A (6 6 ) and manzamine F (73), that inhibited AT. tuberculosis 
(H 3 7 R V, MIC=0.9 & 0.4 pg/mL, respectively), results which compared very favorably with 
rifampicin (MIC=0.5 pg/mL), a first-line antituberculosis drag.

2.5 Antiviral activity

As shown in Table 1, interest in the antiviral phannacology of novel marine natural products 
remained high during 2 0 0 5 -6 . Four studies reported novel marine chemicals with antiviral 
activity against herpes simplex, measles and cytomegalovirus. Rodriguez and colleagues 
[92] isolated three galactan polysaccharide fractions from the Argentinian marine algae 
Callophyllis variegata which showed potent antiviral activity against herpes simplex types 1 
(H SV -1) and 2 (H SV -2) (IC 50= 0 .1 6 -2 .1 9  pg/mL) and dengue type 2 (IC 50= 0 .1 -0 .41  pg/mL), 
together with low cytotoxicity, suggesting that these compounds might become “promising 
antiviral agents”. Lee and colleagues [93] described a sulfated polysaccharide naviculan from 
Ncn’icula directa, a diatom collected from deep-sea water in Toyama Bay, Japan, which 
inhibited H SV -1 and H S V -2  (IC 5o= 7-14  pg/mL) by interferring with early stages of viral 
replication, probably affecting viral binding, adsorption and penetration into host cells. 
Matsuhiro and colleagues [94] reported the structural analysis and antiviral activity of a 
sulfated galactan isolated from the marine red seaweed Schizymenia binderi. The sulfated 
galactan exhibited highly selective antiviral activity against H SV -1 and H S V -2  (IC 5o= 0.18- 
0 .76 pg/mL), very low cytotoxicity, appeared to inhibit viral adsorption to host cells and was 
thus considered to be superior to “other previously reported sulfated galactans of algal origin”. 
Iwashima and colleagues [95] discovered that three plastoquinones (74-76) isolated from the 
marine alga Sargassum micracanthum inhibited cytomegalovirus (IC5q=0 .49- 2.6 pM) and
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measles vims (IC 5 o = 2 .7 -3 .1 pM). suggesting that the compounds could become “lead 
compounds in an anti-human cytomegalovirus drag” development.

Two reports contributed additional phannacology against human immunodeficiency vims 
type-1 (HIV-1), the causative agent of the acquired immunodeficiency disease syndrome 
(AIDS), a disease that infects more than 40 milion people worldwide. In a detailed mechanistic 
study De Souza and colleagues [96] described the biochemical phannacology of two 
diterpenes (77-78) isolated from a Brazilian marine alga Dictyota menstrualis on HIV-1 
reverse transcriptase enzyme. Both diterpenes were shown to behave as classical non­
competitive reversible inhibitors of the RNA-dependent DNA polymerase activity of HIV-1 
reverse transcriptase (K,=10 and 35 pM, respectively). Mori and colleagues [97] contributed 
the characterization of a novel and potent HIV-inactivating protein griffithsin from the red 
alga Griffithsia sp. Griffithsin, a new type of lectin, displayed potent antiviral activity against 
laboratory strains and primary isolates of HIV-1 (IC 5o= 0.043-0 .63  nM), by a mechanism that 
required binding to viral glycoproteins (eg. gpl20, gp41 and gpl60) in a monosaccharide- 
dependent manner. Furthermore, the authors noted griffithsin was a potential “candidate 
microbicide to prevent the sexual transmission of HIV and AIDS”.

3. Marine compounds with anti-inflammatory effects and affecting the 
cardiovascular, immune and nervous system

Table 2 summarizes the preclinical pharmacological research completed during 2005-2006 
with the 47 marine secondary metabolites shown in Fig. 2.

3.1 Anti-inflam m atory com pounds

The anti-inflammatory phannacology of marine compounds reported during 2005-6 showed 
a considerable increase from our previous reviews [1-5],

Busserolles and colleagues [98] tested the hypothesis that oral administration of 
bolinaquinone (79) and petrosiaspongiolide M (80), two marine terpenes isolated from the 
sponges Dysidea sp. and Petrosaspongia nigra, could inhibit inflammation and oxidative stress 
in an in vivo murine model of inflammatory bowel disease in humans. The observation that 
both compounds inhibited neutrophilic infiltration, interleukin-lß, prostaglandin E2 levels and 
cyclooxygenase 2 protein expression in vivo, supports further development of these compounds 
for “protective strategies” against intestinal inflammatory diseases. Miyaoka and colleagues 
[99] contributed to the phannacology of phospholipase A2 inhibitors by investigating two 
sesterterpenoids, cladocorans A (81) and B (82) from the coral Cladocora cespitosa, which 
possess a -hydroxy-butenolide moiety. Cladocorans A and B were observed to potently inhibit 
secretory phospholipase A2 (IC 5o= 0.8-1 .9  pM), with a potency similar to manoalide (IC5o=0.6 
pM). McNamara and colleagues [100] reported the isolation of a novel isozonarone 
derivative (83) and of isozonarol (84) from the New Zealand sponge Dysidea cf. cristagalli. 
In vitro studies with human neutrophils demonstrated a concentration-dependent reduction of 
superoxide anion release (ICso= 3—11 pM) by a mechanism hypothesized to involve the 
accumulation of the lipophilic sesquiterpene moiety in cell membranes, where it could interfere 
with superoxide production. Mayer and colleagues [101] conducted a structure-activity 
relationship (SAR) study to investigate the anti-neuroinflammatory properties of the indole- 
derived alkaloids manzamines A (65), B (69), C (85), D (8 6 ), E (71) and F (73), isolated from 
the marine sponges Haliclona sp..Amphimedon sp., and Xestospongia sp. Manzamine A’s 
potent inhibition of both superoxide anion (IC5o=0.1 pM) and thromboxane B2 (IC5o=0.016 
pM) release by activated brain microglia cells, suggested that the “solubility or ionic fonns of 
manzamine A as well as changes such as saturation or oxidation of the ß carboline or 8- 
membered amine ring” played a critical role in the observed SAR results. Sawant and
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colleagues [102] investigated both the marine cembranoid diterpene sarcophine (87) and a 
semisynthetic sulfur-containing derivative (88) in an in vitro anti-neuroinflammatory assay 
[103], Only compound (87) significantly inhibited both generation of superoxide anion and 
thromboxane B2 (ICso= l pM) from activated rat brain macrophages, demonstrating that 
“targeting the epoxide ring of sarcophine” enhanced sarcophine’s anti-inflammatory activity. 
Mandeau and colleagues [104] showed that a new steroid, 3ß-hydroxy-26-norcampest-5- 
en-25-oic acid (89) from the sponge Euryspongia n. sp. reduced óKPGFla production by 
human kératinocytes by 41% at 10 pg/mL. Interestingly, Aluned and colleagues [105] reported 
that the known steroid gibberoketosterol (90), isolated from the Formosan soft coral Sinularia 
gibberosa, significantly reduced proinflammatory iNOS and COX-2 proteins in 
lipopolysaccharide-stimulated murine macrophages at a concentration of 10 pM to 44.5 % and 
68.3 % of control values, respectively. Tziveleka and colleagues [106] submitted anti­
inflammatory studies with the known chromenol (91) isolated from the marine Greek sponge 
Ircinia spinosula. The authors noted that the compound’s potent inhibition of leukotriene B4 
generation by stimulated porcine leukocytes (IC5o=1.9 pM), was related to the “absence o f a 
side chain OH group as well as the reduced number o f prenyl moieties” on the sponge 
metabolite. Huang and colleagues [107] described a novel sesquiterpenoid isoparalemnone 
(92) from the Formosan soft coral Paralemnalia thyrsoides that significantly inhibited 
inflammatory iNOS protein expression (70% at 10 pM) in activated RAW 264.7 cells. Sugiura 
and colleagues [108] reported that a phlorofucofuroeckol-B (93) from an edible Japanese 
marine brown alga. Eisenia arborea, inhibited histamine release (IC5o=7.8 pM) from a rat 
basophilic leukemia in a concentration-dependent manner, an observation which compared 
favorably with a clinically used antihistamine Tranilast (IC5o=46.6 pM). Kita and colleagues 
[109] discovered a novel amphoteric iminium metabolite, symbioimine (94) ina dinoflagellate 
Symbiodinium sp. isolated from the marine flatwonn Amphiscolops sp., and showed that it 
inhibited the cyclooxygenase 2 enzyme by 32% at 10 pM. The authors suggested that 
symbioimine might become a useful lead to develop new nonsteroidal anti-inflammatory drags.

3.2 Cardiovascular com pounds

Sauviate and colleagues [110] reported novel studies on the mechanism of action of 
lepadiformines A and B (95,96), previously described marine alkaloids from the tunicate 
Clavelina moluccensis. Lepadifonnines A and B dose-dependently inhibited the background 
inward rectifying K+ current (IC5o=1.42 pM) by blocking the cardiac muscle K.„ channel, and 
putatively interacting with “one of the negatively charged aminoacids located in the inner 
vicinity of the narrow K+ selectivity filter, candidates being residues D172, E224 or E229. 
Onodera and colleagues [111] isolated zooxanthellamide Cs (97) from cultures of the marine 
dinoflagellate Symbiodinium sp., and showed they were vasoconstrictive to rat blood vessels 
(EC50= 0.39 pM). The stractme-activity relationship study suggested that the "huge 
macrolactone structure” played an as yet undetermined but critical role in the vasoconstrictive 
activity.

3.3 Com pounds affecting the imm une system

As a significant contribution to the discovery of novel indoleamine 2,3-dioxygenase (INDO) 
inhibitors, agents shown to prevent immunological rejection of tumors, Pereira and colleagues 
[112], reported that the polyketides annulins A, B, and C (98-100) purified from the marine 
Northeastern Pacific hydroid Gan’eia annulata, potently inhibited INDO in vitro (K/'= 0.12- 
0.68 pM). Interestingly, the annulins were more potent than 1-methyltryptophan (K/'=6.6 pM), 
one of the most potent agents currently available. Aminin and colleagues [113] investigated 
the immunomodulatory properties of a “medical lead” named cumaside, which consisted of a 
complex of cholesterol with monosulfated cucumariosides (1 0 1 ), triterpene oligoglycosides 
from the Far-Eastern edible sea cucumber Cucumaria japonica. The investigators observed 
that cumaside, while lowering the membranolytic activity of the cucumariosides, appeared to
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significantly enhance their immunomodulatory properties on both human and murine 
macrophages and lymphocytes. Costantino and colleagues [114] contributed a new a- 
galactoglycosphingolipid, damicoside (102), isolated from the marine sponge Axinella 
damicornis. Damicoside exhibited concentration-dependent stimulatory activity in a murine 
spleen proliferation assay, showing that a free galactose 2-OH and 3 -OH are critical for activity, 
while in contrast, a free galactose 4-OH is not required for the immunostimulatory activity of 
these bioactive glycosphingolipids compounds. Kim and colleagues [115] investigated the 
antiapoptotic activity of laminarin polysaccharides isolated from the alga Laminaria 
japonica. A detailed pharmacological investigation revealed that the laminarin poly saccharides 
suppressed mouse thymocyte apoptosis, while also significantly inducing the upregulation of 
33 immunomodulatory genes from a total of 7,410 genes which were examined using a cDNA 
microarray. Xia and colleagues [116] extended the phannacology of a sulfated 
polymannuroguhironate (SPMG) (103), a polysaccharide with an average molecular weight 
of 8.0 kDa isolated from the brown alga Laminaria japonica, which recently entered Phase II 
clinical trials in China as an anti-AID S drag candidate. Although SPMG appeared to exert 
iimnunopotentiation by direct activation of T cell proliferation, and the concomitant 
modulation of cytokines, namely enhancement of interleukin-2 and interferon- generation and 
inhibition of tumor necrosis factor-a release, the authors concluded that “much remains, 
however, unknown about the immunomodulation mechanism of SPMG”. Oda and colleagues 
[117] described the pharmacology of verrucarin A (104), a compound isolated from the culture 
broth of the Palauan marine fungus Myrothecium roridum. Verrucarin A significantly inhibited 
interleukin-8 production from human promyelocytic leukemia cells, by a mechanism that 
involved inhibition of the activation of the mitogen activated kinases c-JUN and p38.

3.4 Com pounds affecting the nervous system

Pharmacological studies with marine compounds affecting the nervous system during 2005- 
6 focused on tluee main areas of neuropharmacology : the stimulation of neurogenesis, the 
targeting of receptors, and other miscellaneous activities on the nervous system.

Biologically active molecules which stimulate neurogenesis and rescue damaged neuronal cells 
are potentially promising therapeutic strategies to treat neurodegenerative diseases [118], As 
shown in Table 2, the enhancement of the neuritogenic properties of nerve growth factor (NGF), 
a chemical that lias a critical role in differentiation, survival and neuronal regeneration, was 
reported for several marine natural compounds isolated from sea cucmnbers, sea stars, brown 
algae and a fungus, respectively.

Nandini and colleagues [119] isolated a novel 70-kDa chondroitin sulfate/dermatan 
sulfate hybrid chain from the skin of the blue shark Prionace glauca which exhibited 
neuritogenic activity of both an axonic and a dendritic nature, as well as binding activities for 
various growth factors and two neurotrophic factors. The unique structure and biological 
activity of the proteoglycans demonstrated that shark skin has “immense potential to be 
exploited for pharmaceutical purposes”. Although it is clear that the harvest of sharks for either 
food or pharmaceutical purposes is highly questionable, from a sustainability point of view the 
characterization of biological metabolites from these animals is extremely interesting and 
significant. Kisa and colleagues [120,121] contributed two new monosialo- and disialo- 
gangliosides CEG-3 (105) and CEG-6  (106) from the Japanese sea cucumber Cucumaria 
echinata. Although the molecular mechanism of action remains undetermined, both 
gangliosides induced neurite outgrowth in 42-50% of rat pheochromocytoma PC 12 cells at 10 
pM in the presence of NGF, suggesting the “isolation and characterization of such 
neuritogenically active ganglosides” will require considerable further study. Inagaki and 
colleagues [122] contributed the first isolation and characterization of a trisialo-ganglioside 
LLG-5 (107) from the sea star Linckia laevigata. LLG-5 proved to be more neuritogenic (59.3

Biochim  Biophys Acta. Author manuscript; available in PMC 2010 May 1.



NIH-PA 
Author M

anuscript 
NIH-PA 

Author M
anuscript 

NIH-PA 
Author M

anuscript

Mayer et al. Page 10

% at 10 pM) to rat pheochromocytoma PC 12 cells than CEG-3 and CEG-6 . Higuchi and 
colleagues [123] isolated a biologically active glycoside GP-3 (108) from the starfish Asterina 
pectinifera which proved to be slightly less neuritogenic (38.2 % at 10 pM) to rat 
pheochromocytoma PC12 cells than CEG-3, CEG-6 and LLG-5. Han and colleagues [124] 
reported a structure-activity relationship with new steroid glycosides, namely linckosides 
(109-111) isolated from the Okinawan sea star Linckia laevigata. All linckosides enhanced 
the neuritogenic activity of NGF by 40-98%, with a SAR study revealing the “importance of 
the carbon branch modified by a pentose at the side chain” in the neuritogenic activity. Wei 
and colleagues [125] investigated a novel polyketide shimalactone A (112) isolated from the 
cultured marine-derived fungus Emericella variecolor GF10. Shimalactone A induced 
neuritogenesis in a neuroblastoma Neuro 2A cell line at 10 pg/mL by an as yet undetennined 
mechanism. Tsang and colleagues [118] described sargachromenol (113) from the marine 
brown alga Sargassum macrocarpum. Sargachromenol was shown to “markedly” promote 
NGF-dependent neurogenesis inPC12D cells (ED50=9 pM). Interestingly, mechanistic studies 
demonstrated that both the cyclic AMP-mediated protein kinase and mitogen-activated protein 
kinase 1/2 signal transduction pathways were required for neurite growth stimulated by 
sargachromenol. Tsang’s detailed molecular studies clearly suggests that additional 
mechanism of action investigations with the gangliosides, linckosides and shimalactones might 
possibly help develop these chemicals as potentially new medicines for the treatment of 
neurodegenerativo diseases.

As shown in Table 2, the conotoxins aD-VxXIIA, aD-VxXIIB, and aD-VxXIIC, conopeptide 
SO-3 and dysiherbaine, were shown to target receptors present in the nervous system.

Louglman and colleagues [126] reported three novel conotoxins aD-VxXIIA, aD-VxXIIB, 
and aD-VxXIIC (114-116), purified from the venom of the marine snail Conus vexillum. A 
detailed series of mechanistic studies revealed that the three post-translationally modified 
conotoxins were non-competitive inhibitors of nicotinic acetylcholine receptors with 
selectivity towards a 7 and //-containing neuronal receptor subtypes, and with aD-VxXIIB 
conotoxin being the most potent (IC50=0.4 nM for a 7). Wen and colleagues [127] described a 
new O-superfamily conopeptide SO-3 (117), derived from the marine snail Conus striatus. 
Because the new conopeptide was shown to selectively target N-type voltage-sensitive calcium 
currents in cultured hippocampal neurons (IC50=0.16 pM), the authors suggested that it may 
have “therapeutic potential as a novel analgesic agent”. Sanders and colleagues [128,129] 
extended the phannacology of dysiherbaines (118,119), potent kainate receptor agonists 
derived from the marine sponge Dysidea herbacea. Detailed molecular studies revealed the 
site residues responsible for subunit selectivity of the two compounds on kainate receptors, 
observations which could aid in the rational design of “selective ligands with distinct 
phannacological properties”. Tsuneki and colleagues [130] investigated the preclinical 
phannacology of the marine quinolizidine alkaloid (-) pictamine (1 2 0 ), isolated from the 
ascidian Clavelina picta. Pictamine ineversibly blocked «4/Z2 and a l  nicotinic acetylcholine 
receptors (IC50= 1.5 pM), and thus could become a valuable tool to study neuronal activity 
mediated by these two major types of nicotinic receptors.

As shown in Table 2, during 2005-6, additional marine compounds were reported to exhibit 
phannacological effects on the nervous system. Aiello and colleagues [131] established the 
molecular phannacology of a novel bromopyrrole alkaloid (1 2 1 ), isolated from the 
Meditenanean sponge Axinella verrucosa. In a series of in vitro studies, the alkaloid was 
observed to display potent neuroprotective activity against the agonists serotonin and 
glutamate. Aiello and colleagues [132] also reported another marine natural product, namely 
the alkaloid daminin (122) isolated from the Meditenanean sponge Axinella damicornis that 
was observed to reduce Ca2+ levels in neuronal cells in vitro stimulated with either glutamic 
acid or n-methyl-D-aspartate, agents that cause a strong rise in Ca2+ in these cells. Bringmann
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and colleagues [133] isolated a novel angucyclinone gephyromycin (123) from the bacterium 
Streptomyces griseus. Gephyromcyin appeared to “represent a new potent glutamate agonist” 
towards neuronal cells, and at 3 pg/mL caused significant increase in intracellular Ca2+ 
concentration, a response comparable to the potent glutamate agonist DCG-IV. To and 
colleagues [134] while studying the mechanisms involved in neuronal outgrowth observed that 
the alkaloid motuporamine C (124), isolated from the Papua New Guinea marine sponge 
Xestospongia exigua, stimulated concentration-dependent neuronal growth eone collapse. The 
intracellular signaling mechanisms involved significant upregulation of the Rho-Rho- kinase 
collapse pathway, suggesting this compound might be useful to examine mechanisms “utilized 
by neurons for outgrowth”. Temraz and colleagues [135] noted that Red Sea soft corals 
Sarcophyton glaucum and Lobophvton crassum contained natural products which include 
trigonelline (125), that increased the electrophysiological excitability of rat cultured dorsal 
root ganglion neurons. The increased excitability was associated with enhanced KCl-evoked 
Ca2+ influx consistent with an increase in action potential firing, perhaps contributing to 
“chemical defenses”.

4. Marine Compounds with Miscellaneous Mechanisms of Action
Table 3 lists 58 marine compounds with miscellaneous phannacological mechanisms of action, 
and with their respective structures presented in Fig. 3. Because during 2005-2006 additional 
phannacological data were unavailable, it was not possible to assign these compounds to a 
particular drag class as was the case for the compounds included in Tables 1 and 2.

As shown in Table 3, the phannacological activity, respective IC50S, and a molecular 
mechanism of action have been reported for 23 marine natural products: Agelas sp. 
dibromopyrrole (126), adociaquinone B (127), barrettins (128 and 129), bromoageliferins 
(130 and 131), chlorolissoclimide (132), fascaplysin analogue CA224 (133), hippuristanol 
(134), liphagal ( 135), lukianol B (136), rubrolide (137), micropeptins (138 and 139), 
pateamine (140), phlorofucofuroeckol A (141), purealin (142), Spongia sesterterpenoids 
(143-145), squalamine analog (146), and xestospongin B (147) and C (148).

In contrast, although a phannacological activity was described, and an IC50 for inhibition of 
an enzyme or receptor detennined, detailed molecular mechanism of action studies were 
unavailable for the following 35 marine compounds included in Table 3 : actiniarin B (149), 
amphezonol A (150), ascochitine (151), briaexcavatin E and G (152 and 153), 
brunsvicamides B and C (154 and 155), caulerpin (156), cortistatin A (157), cyanopeptolin 
954 (158), dehydroluffariellolide diacid (159), O-methyl nakafuran-8-lactone (160), 2 ß ,  
3«-epitaondiol (161), fascaplysin (162), gorgosterols (163-165), hexylitaconic acid (166), 
himeic acid A (167), kalihinol A (168), largamides D-G 169-172, peribysins E-G  (173- 
175), petrosamine B (176), phrygiasterol (177), Portieria hornemannii monoterpenes 
(178 and 179), Sargassum micracanthum plastoquinone (180), scalaradial (181), 
secomycalolide A (182), and Symphyocladia latiuscula bromophenol (183).

5. Reviews on marine pharmacology
Several reviews covering both general and specific subject areas of marine phannacology were 
published during 2005-6: (a) general marine pharmacology, biodiversity as a continuing 
source of novel drag leads [136]; international collaboration in drag discovery and 
development [137]; indole alkaloid marine natural products as a promising source of new drug 
leads for multiple disease categories [138]; the biopotential of marine actinomycete diversity 
and natural product discovery [139]; the renaissance of natural products as drag candidates 
[140]; bioactive compounds from cyanobacteria and microalgae [141]; drag discovery from 
natural sources [142]; a new resource for drag discovery: marine actinomycete bacteria 
[143]; bioactive compounds from marine processing byproducts [144]; implications of marine
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biotechnology on drag discovery [145]; (b) antimicrobial marine pharmacology: advances in 
antimicrobial and antiangiogenic phannacology of squalamine [146]; marine natural products 
as anti-infective agents [147]; chemotyping/metabolomics use for metabolite profiling in 
microbial drag discovery [ 148] ; the status of natural products from fungi and their potential as 
anti-infective agents [149]; (c) cardiovascular pharmacology, dietary long-chain omega-3 
fatty acids of marine origin and their protective cardiovascular effects [150]; (d) 
antituberculosis, antimalarial and antifungal marine pharmacology: compounds for infectious 
diseases [151]; marine natural products against tuberculosis [152]; (e) antiviral marine 
pharmacology: antiviral activities of polysaccharides from natural sources [153]; 
antiplasmodial marine natural products in the perspective of current chemotherapy and 
prevention of malaria [154]; (f) anti-inßammatorv marine pharmacology, therapeutic potential 
of the antioxidative properties of coelenterazine, a marine bioluminescent substrate [155]; 
chemistry and biology of anti-inflammatory marine phospholipase A2 inhibitors [156]; the 
structures, biosynthesis and pharmacology of the marine natural products of Pseudopterogoria 
elisabethae [157]; chemistry and biology of anti-inflammatory marine natural products [158]; 
marine sponge metabolites for the control of inflammatory diseases [159]; antioxidant 
metabolites from marine derived fungi [ 160] ; (g) nen’ous system marine pharmacology, marine 
compounds for the treatment of neurological disorders [161]; potential candidates for 
Alzheimer’s disease [151]; novel pain relief via marine snails [162]; bryostatin-1: 
phannacology and therapeutic potential as a CNS drag [163], and (h) miscellaneous molecular 
targets: V-ATPases as drag targets [164]; topoisomerase inhibitors of marine origin [165]; 
enzyme inhibitors from marine actinomycetes [166]; marine compounds as a new source for 
glycogen kinase 3 inhibitors [167],

6. Conclusion
Four years after the approval of the marine compound ziconotide (Priait®) by the U.S. Food 
and Drag Administration [168], global research focused on the therapeutic potential of marine 
natural products remains very active and sustained. The latest update on the clinical pipeline 
of marine-derived agents is available at 
http://marinephannacology.midwestem.edu/clinDev.htm.

The cunent contribution to the marine phannacology reviews series which was begun in 1998 
[1-5], demonstrates that marine phannacology research continued to proceed at a sustained 
pace in 2005-2006, as a result of the active participation of natural product chemists and 
phannacologists from Argentina, Australia, Brazil, Canada, Chile, China, Colombia, Costa 
Rica, Egypt, Finland, France, Gennany, Greece, India, Indonesia, Israel, Italy, Japan, the 
Netherlands, New Caledonia, New Zealand, Panama, Portugal, Russia, Slovenia, South Korea, 
Spain, Sweden, Switzerland, Taiwan, United Kingdom, Uruguay, and the United States. Thus, 
if the rate of preclinical and clinical phannacological research continues, we anticipate that 
more marine natural products will probably become potential leads for clinical development 
as novel therapeutic agents for the treatment of multiple disease categories.
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OH OH OHOH
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OH OH
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(35) latrunculia B (Ri=H, R2 =H)
(36) W -acetyllatrunculln B (Ri=H, R2 =CH 3 CO)
(37) 15-O-m ethyllatrunculin B (R 1 =CH3, R 2 =H)
(38) 15-O-butyllatrunculin B (R 1=C 4 H9, R 2 =H)
(39) 15-O-octyllatrunculin B (R ^ C g H ,/, R 2 =H)
(40) W -hydroxymethyllatrunculin B

(R ,=H , R 2 =CH 2 OH)

(41) latrunculin T

(42) acétylation product of latrunculin (43) m ajusculoic a d d

Biochim Biophys Acta. Author manuscript; available in PMC 2010 May 1.



NIH-PA 
Author M

anuscript 
NIH-PA 

Author M
anuscript 

NIH-PA 
Author M

anuscript

Mayer et al. Page 29

HO

HO,,

(44) pycnidione HO

(X > ,„ /C 0 2Me

(45) plakortide Q O O
(46) xestoquinone

OH

(47) m anzam ine Y

(48) caucanolide A (49) caucanolide D

OH

(50) Eunicea sp. sesquiterpene 2 (51) Eunicea sp. sesquiterpene 3

(53) Eunicea sp. sesquiterpene 6  (54) Eunicea sp. sesquiterpene 7 (55) kallolide D

(57) deoxypseudopterolide(56) leptollde

Biochim Biophys Acta. Author manuscript; available in PMC 2010 May 1.



NIH-PA 
Author M

anuscript 
NIH-PA 

Author M
anuscript 

NIH-PA 
Author M

anuscript

Mayer et al. Page 30

(58) Muricea austera tyramine
(59) eni-plakortide P

0 S 0 3Na

(60) karatungiol A

(62) (+)-fistularin-3 R = OH
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Figure 1.
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(77) Dictyota diterpene 1 R = OH
(78) Dictyota diterpene 2 R = OAc

(69) m anzam ine B, R=H 
(6 8 ) 12,34-oxa-6-hydroxym anzam ine E (70) 8 -hydroxym anzam ine B, R=OH

(74) Sargassum plastoquinone 1

(71) m anzam ine E, R=R1=H
(72) 6 -hydroxym anzam ine E, R=OH, R,=H
(73) m anzam ine F, R=H, R ^ O H
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\> O R

(81) c ladocoran  A
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R = Ac 
R = H
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Biochim Biophys Acta. Author manuscript; available in PMC 2010 May 1.

(76) chrom ene derivative from Sargassum micracanthum



NIH-PA 
Author M

anuscript 
NIH-PA 

Author M
anuscript 

NIH-PA 
Author M

anuscript

Mayer et al. Page 32

H !
O H

^  o '

O C H 3 

(79) b o lin a q u in o n e

° H
o

(81 ) c la d o c o ra n  A 
(8 2 ) c la d o c o ra n  B R

(8 0 ) p e tro s ia s p o n g io lid e  M

= A c 
= H

Biochim Biophys Acta. Author manuscript; available in PMC 2010 May 1.



NIH-PA 
Author M

anuscript 
NIH-PA 

Author M
anuscript 

NIH-PA 
Author M

anuscript

Mayer et al. Page 33

OAc

(83) 21-hydroxy-enf-isozonarone (84) 20-O-acetyl-21-hydroxy-enf-isozonarol (85) m anzam ine C

HN

.0

(8 8 ) sulfur-containing derivative of sarcophine(87) sarcophine

(8 6 ) m anzam ine D 
hydrochloride

HO1

(89) 3f -hydroxy-26-norcam pest-5-en-25-oic acid

HO

H 0 '
HO

(90) gibberoketosterol

HO' HO. OH
(91) chromenol derivative

OH O
HO .OH

''OH OHHO

OH(92) isoparalem none

(93) phlorofucofuroeckol-B

Biochim Biophys Acta. Author manuscript; available in PMC 2010 May 1.



NIH-PA 
Author M

anuscript 
NIH-PA 

Author M
anuscript 

NIH-PA 
Author M

anuscript

Mayer et al.

(97) zooxanthellamide Cs (ZAD-Cs)
N o t e :  ZAD-C1 to C5 a re  the  isom eric constituen ts lactonized a t positions 34', 35', 36', 37', and  39', 
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(94) symbioimine
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hoch2
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OH
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Rt = S 0 3Na, r 2 = r 3 = R4 = H
R1 = R2 = SO 3Na, R3 = H, R4 = CH3
R1 — S 0 3Na, R2 = H, R3 = S 0 3Na, R4 = OH
Rt -  r 2 -  r 3 — S 0 3Na, r 4 = c h 3
Rt = r 2 = r 3 = H, R4 = c h 3
Rt = r 2 = r 3 II 73 II X
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(114) conotoxin VxXIIA
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(123) gephyromycin(121) bromopyrrole alkaloid
(122) daminin

(124) motuporamlne C (125) trigonelline

Figure 2.
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