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Background: H olocen tr id s  (squirrelfish a n d  soldierfish) are vocal reef  fishes w h o s e  calls a n d  so u n d -p ro d u c in g  
m e c h a n i s m s  h a v e  b e e n  s tu d ied  in s o m e  spec ie s  only. The  p r e s e n t  s tu d y  a im s to  c o m p a r e  so u n d -p ro d u c in g  
m e c h a n i s m s  in different H o lo cen tr id ae  g e n e ra  (Holocentrus, Myripristis, N eoniphon , Sargocentron) f rom  se p a ra te  reg ions  
an d ,  in s o m e  cases, a t  different d e v e lo p m e n ta l  s tages .  An a ccu ra te  c o m p a r iso n  w a s  m a d e  by  reco rd ing  six spec ies  
while  be in g  h an d -h e ld ,  by  o bse rv ing  TEM) t h e  sonic  m u sc le s  a n d  by  d issec tions  o f  t h e  so u n d -p ro d u c in g  m e c h an ism .

Results: In all t h e s e  spec ies ,  calls p r e s e n t e d  h a rm o n ic s ,  th e i r  d o m i n a n t  f r e q u e n c y  w a s  b e t w e e n  80 a n d  130 Hz a n d  
t h e y  w e r e  c o m p o s e d  o f  t ra ins o f  4  t o  11 p u lse s  w i th  g rad u a l  increas ing  p e r io d s  t o w a r d s  t h e  e n d  o f  t h e  call. In 
e a c h  case,  t h e  calls did n o t  p ro v id e  reliable in fo rm a t io n  o n  fish size. T he  s o u n d s  w e r e  p r o d u c e d  by  h o m o l o g o u s  
fa s t -co n t rac t in g  so n ic  m u sc le s  t h a t  insert  o n  a r t icu la ted  ribs w h o s e  proximal h e a d s  a re  in te g ra te d  in to  t h e  
sw im b la d d e r :  e a c h  pu lse  is t h e  result  o f  t h e  b a ck  a n d  forth  m o v e m e n t s  o f  t h e  ribs. Small d if fe ren ces  in t h e  sh a p e  
o f  t h e  o sc i l lo g ram s o f  t h e  d i ffe ren t  sp e c ie s  co u ld  b e  re la ted  t o  t h e  n u m b e r  o f  ribs t h a t  a re  involved in t h e  so u n d -  
p ro d u c in g  m e c h a n i s m .  T h ese  fish sp e c ie s  a re  a b le  to  m a k e  s o u n d s  as s o o n  as t h e y  se t t le  o n  t h e  reef, w h e n  th e y  
are  4 0  d a y s  old. C o m p a r i so n  b e t w e e n  N eo n ip h o n  f rom  M a d a g a sc a r  a n d  f rom  R angiroa  in F rench  Polynesia  s h o w e d  
a new ,  u n e x p e c t e d  kind o f  d ia lec t  involving d if fe ren ces  a t  t h e  level o f  pu lse  d is tr ibu tion .  N eo n ip h o n  calls w e re  
ch a ra c te r i s ed  by  a s ingle  pu lse  t h a t  w a s  iso lated  a t  t h e  b e g in n in g  o f  t h e  r e m a in in g  train in M a d a g a sc a r  w h e r e a s  
t h e y  did n o t  s h o w  a n y  iso la ted  s ing le  pu lses  a t  t h e  b e g in n in g  o f  t h e  call in Rangiroa.

Conclusion: This family c a n n o t  use  t h e  acous t ic  fu n d a m e n ta l  f req u e n c ie s  (or pulse  periods) o f  g ru n t s  t o  infer t h e  size 
o f  partners .  Pulse du ra t io n  a n d  n u m b e r  o f  pu lses  are statistically re la ted  to  fish size. How ever ,  t h e s e  characteris tics are 
poorly  informative  b e c a u s e  t h e  corre lation  s lope  va lues are weak. It rem a in s  o th e r  fe a tu res  (sound  am p l i tu d e ,  resis tance 
to  m usc le  fa tigue, calling f requency)  cou ld  b e  u se d  to  assess  t h e  b o d y  size. Characteristics o f  t h e  s o u n d  p ro d u c in g  
m e c h a n i s m s  are conserva tive .  All spec ie s  p o ssess  fas t -con trac t ing  m u sc le s  an d  h a v e  t h e  s a m e  kind o f  s o u n d  p ro d u c in g  
m e c h a n ism .  They  d o  s h o w  s o m e  c h a n g e  b e tw e e n  c lades  b u t  t h e s e  differences are n o t  im p o r ta n t  e n o u g h  to  d e ep ly  
m od ify  t h e  w a v e fo rm s  o f  t h e  calls. In this case,  o u r  desc rip t ion  o f  t h e  g r u n t  cou ld  b e  c o n s id e re d  as t h e  s ig n a tu re  for 
t h e  ho lo cen tr id  family a n d  can  b e  u se d  in passive  acous t ic  m on ito r ing .

Keywords: H o lo c en t r id a e ,  sw im b la d d e r ,  acous tic ,  b io g e o g r a p h y ,  s o u n d s ,  son ic  m usc le ,  Beryciform

Background
H olocentrids are well know n reef-dwellers w ith nocturnal 
hab its. T he fam ily con ta in s tw o sub-fam ilies [1]: 1) the 
M yripristinae or soldierfish w ith five genera (M yripristis, 
Plectrypops, Corniger, O stichthys  and Pristilepis) and  2) 
th e  H o lo c e n tr in a e  o r sq u ir re lf ish  w ith  th re e  g en e ra  
(.Holocentrus, Neoniphon  and Sargocentron). Some fish in
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th is  fam ily  have qu ick ly  b eco m e o f in te re s t  fo r th e ir  
acoustic abilities because com parative anatom y and hear­
ing experim ents have clearly show n how  the m orphology 
and positio n  of the  sw im bladder can  in fluence hearing  
[2]. D ifferen t k inds of so u n d s  (grow ls, knocks, g run ts, 
s tacca to , th u m p s , grow ls) have b ee n  re c o rd e d  in  only  
a few  species, su c h  as in  som e H olocen trus  [3-5] and  
M y rip r is tis  [6,7]. In  H o lo cen tru s ascension is, “g ru n t” 
so u n d s  w ere p ro d u ce d  by re s id e n ts  w hen  defend ing  a 
crevice. The presence of a larger fish or a p redator caused 
“s ta c c a to ” so u n d s , ac co m p a n ie d  by r e t r e a t  in to  th e
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crev ice  [4]. In  M y rip r is tis  sp e c ie s  (Aí. b e rn d ti,  Aí. 
am aena, Aí. violaceus, Aí. pralinius), sounds w ere gener­
ally associa ted  to  tw o behaviours. Growls, th u m p s and 
knock were produced during episodes of chasing between 
conspecific in  schools. Growls, g run ts and staccato  w ere 
rép o n se  by field p o p u la tio n s of Aí. violaceus to  d is tu r­
bances caused by a diver and or p redators [6,7]. U nfortu­
nately, th e  lack of hom o g en eity  em ployed  by d iffe ren t 
au thors in  the sound descrip tions and term inology com ­
plicates com parisons.

In H olocentrus rufus, deeper analysis relating to  m u s­
cle ab la tion  [8] and  physiology [9] show ed th a t sound  
p roduction  results from  the con traction  of paired  b ila t­
eral m uscles inserting  on the skull and on the first ribs 
in  rela tion  to  the an terio r p art of the sw im bladder. The 
c o n tra c tio n  ra te  o f th e  m uscles d epends on  th e  firing 
rate  of the m o to r axons innervating the sonic m uscu la­
tu re  and this determ ines the fundam ental frequency (ca. 
75-85 Hz) of the sound in  this species [9].

The aim  of the  p resen t study  was to  m ake a detailed 
analysis of the acoustic features of holocentrids by inves­
tigating the sounds and m orphology in  different species 
w ith in  the  family. T he aim  w as to  discover how  sm all 
m odifications in  m orpho logy  m igh t in fluence the  calls 
in  th is taxa. Sounds of d ifferent species from  the  th ree  
m ain  genera (M yripristis, N eoniphon  and Sargocentron) 
w ere  re c o rd e d  w h en  th e  fishes w ere h an d -h e ld . T he 
advan tage o f th is  ap p ro a ch  w as th a t all th e  fish w ere 
p laced  in  th e  sam e b eh av io u ra l c o n d itio n  an d  at th e  
sam e distance from  the hydrophone. M oreover, sounds 
w ere reco rded  from  different reg ions (M adagascar and 
R angiroa in  F rench  Polynesia) and it w as also possible 
to  record for the first tim e sounds in settling larval fish.

M aterials and  m ethods
The first group of ho locen trid  specim ens (21 Sargocen­
tron d iadem a, 9 M yripristis  kun tee  and 23 N eoniphon  
sa m m a ra )  w ere co llec ted  in  S ep tem b er an d  O c to b e r  
2007 by scuba diving in  the coral ree f area near T ulear 
(M o za m b iq u e  canal, w es t co a s t o f M ad ag asca r) a t 
dep th s of betw een 2 and  20 m. A  so lu tion  of ro tenone  
or a so lu tio n  of qu ina ld ine  was used  to  ca tch  th e  fish 
[10]. Fish w ere s to red  in  tw o com m u n ity  tan k s (3.5 x 
0.7 x 0.2 m) w ith  ru n n in g  seaw ater (26°C). Each tank  
w as fu r th e r  d iv ided  in to  fo u r sm alle r co m p artm e n ts . 
Rocks were provided to  allow the fish to  shelter.

M yripristis violacea were collected in  M ay 2008. These 
specim ens were at the larval stage and were caught w ith 
a n e t d u rin g  th e  n ig h t w h en  th ey  se ttle d  on th e  ree f 
crest. T he n e t sim ilar to  the one used by Lo - Yat [11] 
w as s itu a te d  in  a “h o a ” (a sm all ch an n e l betw een  the  
ocean and a lagoon). A dult M yripristis violacea, N enoni- 
p h o n  sa m a ra  an d  Sargocentron  sp in ife ru m  w ere  also 
caugh t during  low  tide in  the  hoa. Q u inad lin  was used

to  an aes th e tise  an d  to  find  fish h id d e n  b e h in d  rocks. 
Fish w ere d istribu ted  betw een different tanks (0.7 x 1.4 
x 0.4 m) w ith running  seawater (27°C).

For b o th  sites, so u n d s  w ere rec o rd e d  w ith  an  O rca  
hydrophone (sensitivity: -186 dB re 1 V /pPa). This sys­
te m  h as  a f la t fre q u e n c y  re sp o n se  ra n g e  (±3 dB) 
between 10 Hz and 23.8 kHz. The hydrophone was con­
n ec ted  via an O rca am plifier (ORCA In s tru m en ta tio n , 
France) to  a T ascam  reco rder (TASCAM  H D -P2). The 
hydrophone was placed in the centre of the tank (3.50 x 
0.7 x 0.2 m  in  M ad ag ascar an d  0.7 x 1.4 x 0.4 m  in 
Rangiroa). All fish w ere recorded  in  the sam e way. The 
fish  w as h a n d -h e ld  a t a d is ta n c e  o f 5 cm  fro m  th e  
hydrophone, w ith  the  dorsal and pec to ral fins blocked. 
A bout 30 sounds were recorded for each fish.

Sounds w ere digitised at 44.1 kHz (16-bit resolution) 
and analysed using AvisSoft-SAS Lab Pro 4.33 software 
[12]. O nly the sounds w ith  a high signal to  noise ratio  
w ere used in  the analysis. T em poral features w ere m ea­
sured  m anually  from  oscillogram s, and frequency para­
m eters w ere ob tained from  pow er spectra  (LPT size: 30 
Hz). The sound param eters m easured were: sound dura­
tio n  (ms); n u m b e r  o f pu lses in  a sound ; pu lse  period  
(m easured as the average peak-to-peak interval between 
consecutive pulses in  the  en tire  sound, ms); in te rpu lse  
interval (IPI, m easured as the tim e from  the end of one 
pu lse to  th e  beg in n in g  o f th e  nex t, m s); pu lse le n g th  
(m easured as the tim e from  the  beginning of one pulse 
to  its end, ms); d o m in an t (or m ain) frequency), w hich 
represen ts the m ost in tense frequency (in Hz). In  M yri­
p r is tis  vio lacea , th e  ca lling  am p litu d e  w as m e asu red  
from  pow er spectra (referenced to  the RMS amplitude).

In  each species, five to  eight specim ens th a t had p re ­
v io u sly  m ad e  so u n d s  w ere  e u th a n is e d  by  o v erd o se  
im m ersion  in  M S-222. A  specim en of each species was 
then  rapidly dissected in order to  expose the sonic m us­
cles. Small sam ples o f th e  sonic and epaxial m uscle (1 
cm  ) w ere taken  from  four specim ens and fixed in  glu- 
tara ldehyde 2.5% for transm ission  e lec tron  m icroscopy 
(TEM). The other specim ens were fixed in form aldehyde 
5%. Two specim ens of each species w ere la ter coloured 
w ith  A lizarin  acco rd in g  to  th e  T ay lo r and  V an Dyke 
m e th o d  [13] in  o rd e r  to  v isualise osseous s tru c tu re s . 
T hese p rep a red  specim ens to g e th e r  w ith  in ta c t fishes, 
w ere d issected  and  exam ined  w ith  a W ild  M IO (Leica 
Cam era) b inocular m icroscope equipped w ith a cam era 
lucida. A fter g lu ta ra ld eh y d e  fixation , m uscle  sam ples 
w ere d ehyd ra ted  in  an  e th an o l-p ro p y len e  oxide series 
and were then  em bedded in  epoxy resin (SPI-PON 812). 
T he cellu lar u ltra s tru c tu re  w as exam ined  on u ltra th in  
sections (60-80 nm) stained w ith uranyl acetate and lead 
c itra te . T h e  se c tio n s  w ere  v iew ed  w ith  a JEOL JEM 
100SX transm ission  e lec tron  m icroscope u n d er an 80- 
kV accelerating voltage.
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Sounds and sound-p roduc ing  m echanism s have been 
described in  Holocentrus rufiis [8,14]. However, in  order 
to  be certa in  of m aking a co rrec t com parison  betw een 
the  d ifferen t ho locen trids, tw o H olocentrus rufus  w ere 
o b ta in ed  from  a p e tsh o p  in  Belgium . T hese  fish  w ere 
recorded while being hand-held, and were then  anesthe- 
tised, euthanised and dissected for com parison w ith p re­
vious descrip tions and  w ith  o th e r  h o lo cen trid s  in  th is 
study.

In  th e  re su lts , “n ” re fe rs  to  th e  to ta l  n u m b e r  o f 
analysed sounds and “N ” to  the num ber of fishes; n  = y, 
N  = x m eans th a t the  analysis w as m ade on  y sounds 
com ing from  x fishes. A  t- te s t  (non  p aram etric  te s t of 
M a n n -W ith n e y )  w as u se d  to  co m p are  d a ta  b e tw e en  
P o lynesian  and  M adagascan  N eon iphon , and  betw een  
larval an d  ad u lt M . violacea. P earson  co rre la tio n  te s t 
was used to  assess the relationship betw een the fish size 
and the different sonic characteristics.

E x p e r im e n ts  w ere  p e r fo rm e d  u n d e r  c o n tro l o f 
the ethical com m ission of the U niversity of Liège (form 
07-728).

Results
Sounds
All species presented  som e com m on characteristics. The 
calls w ere all com posed  of a variable nu m b er of pulses 
w ith  gradually increasing periods tow ards the end of the 
call (Figure 1). The calls also p resen ted  harm onics and 
had  a d o m in a n t frequency  of betw een  80 and  130 H z 
(Table 1).

Neoniphon
In  Neoniphon sam m ara, the different pulses of the train  
w ere m ade up of 3 peaks (Figure 2).

In  T ulear, M adagascar, calls w ere characterised  by a 
s in g le  p u lse  th a t  w as iso la te d  a t th e  b eg in n in g  o f 
th e  rem a in in g  tra in . T h is pu lse  w as u sua lly  fo u n d  at 
42.5 ± 4 m s before the  s ta r t  o f from  the  tra in . T ra ins 
were m ade up of 5 to  11 pulses, lasting from  110 to  150 
m s. P ulse le n g th  w as 6.9 ± 0.1 m s (N  = 5, n  = 1528) 
and pulse period was 10.9 ± 2.4 m s (N = 6, n  = 1161).

In  R angiroa, calls d id  n o t show  any iso la te d  single 
pulses at the beginning of the call. Calls consisted  of 4 
to  9 pulses, lasting from  28 to  80 ms. Pulse leng th  was 
5.9 ± 0.1 m s (N = 11, n  = 546) and pulse period was 8.5 
± 0.1 m s (N = 11, n  = 455,).

In  bo th  populations, the num ber of pulses was signifi­
cantly  re la ted  to  fish size: r  = 0.35 (p < 0.001, N  = 11, 
n  = 111) in Rangiroa and r  = 0.9 (p < 0.001, N  = 5, n  = 
180) in  M adagascar. W e did n o t find  any re la tionsh ip  
between pulse period and fish size, allowing the com par­
ison of periods from  bo th  populations. The pulse period 
was significantly longer in  specim ens from  M adagascar 
than  in  those from  Rangiroa.

In  bo th  populations, calls p resented harm onics. There 
was no relationship between fish size and the fundam en­
tal frequency  of the  call. T his was 109 ± 1 H z (N = 6, 
n  = 180) in M adagascar and 131 ± 1 H z (N = 11, n  = 111) 
in Rangiroa. Fundam ental frequency was n o t found to  be 
automatically the dom inant frequency.

Settling larval N eoniphon sam ara  w ere also recorded  
b u t it was n o t possible to  extract these sounds from  the 
background noise because they were too low.

Sargocentron
In Sargocentron d iadem a, the different pulses w ere also 
m ade up  o f th re e  m a in  peaks (F igure 3). T he g ru n ts  
w ere m ade up of 6 to  11 pulses, lasting from  92 to  170 
m s (N  = 5, n  = 119) an d  th e  m e a n  p u lse  d u ra tio n  
w as b e tw e en  5 an d  10 m s (X = 6.8 ± 2 m s, N  = 5, 
n  = 1290). This duration  was significantly related to  fish 
size (r = 0.54, p < 0.001, N  = 5, n  = 1290). T he pulse 
period  was 14 ± 0.1 m s (N = 5, n  = 1037) and was n o t 
re la te d  to  fish  size. T h e  fu n d a m e n ta l fre q u en c y  w as 
106 ± 1 H z (N = 5, n  = 150).

In  M adagascar, sounds w ere recorded in one specim en 
o f Sargocen tron  sp in ife ru m  (205 m m  TL) b u t th e  
a m o u n t o f d a ta  w as to o  sm all to  ca rry  o u t a co rre c t 
analysis.

Myripristis
In  M yripristis , calls consis ted  of tra in s  of pu lses w ith  
each  pu lse having a single m ain  peak  (Figure 4). T he 
pulse period tended  to  be longer tow ards the end of the 
calls (Figure 1).

In  adult M yripristis violacea, calls w ere com posed  of 
6 to  11 pulses (X = 7.6 ± 0.11, N  = 11, n  = 116). Sound 
leng th  ranged  from  40 and 110 m s and was correla ted

# pulse in the call

F ig u re  1 M ean s  o f  th e  successive pu lse  p e rio d s  in calls  o f  
seven pulses in M yrip ris tis  v io lacea  adults (Black Square), in 
M yrip ris tis  v io lacea  larvae at settlem ent (W hite  Square) and in 
N eo n iph o n  sa m m ara  (Black Circle)
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Table 1 Summary of the main acoustic characteristics
Pulse num ber Pulse length  (ms) Pulse period (ms) Call length  (ms)

Neoniphon sam m ara  Tulear 5 - 11 6.9  ±  0.1 10.9 ±  2.4 1 1 0 - 1 5 0

Neoniphon sam m ara  Rangiroa 4 - 9 5.9  ±  0.1 8.5 ±  0.1 30 - 80

Sargocentron diadem a 6 - 11 6.8  ±  2 14 ±  0.1 90 - 170

Myripristis violacea 6 - 1 1 6.8  ±  0.2 9 ±  0.1 40 - 110

Myripristis kuntee 4 - 9 4.2 ±  0.1 12.7 ±  0.1 40 - 110

Holocentrus rufus 4 - 6 4.1 ±  0.2 13.8 ±  0.3 45 - 80

Bold data: correlation w ith the fish size. These correlations were not tested in Holocentrus rufus.

w ith  the num ber of pulses (r = 0.74, p < 0.001, N  = 11, 
n  = 116). W eak  b u t significant re la tionsh ip  w as found 
betw een  the  n u m b e r of pu lses and  fish size (r = 0.20, 
p = 0.02, N  = 11, n  = 116). Pulse leng th  w as 6.8 ± 0.2 
m s (N = 9, n  = 73) and rela ted  to  the fish size (r = 0.7, 
p = 0.03, N  = 9, n  = 73).

In  th e  five se ttl in g  la rvae  w ith  a size  o f b e tw een  
57 m m  and 62 m m , calls were m ade up of 4 to  8 pulses 
(X = 5.5 ± 0.25, n  = 27), g iv ing  a so u n d  le n g th  oí 
betw een  30 and  78 ms. S ound leng th  also appeared  to  
be re la ted  to  the n u m b er of pulses (r = 0.7, p < 0.001, 
N  = 4, n  = 27). T he m ean  pulse period  (Figure 5) was 
sh o rte r (p < 0.001) in  the se ttling  larvae (X = 8.2 ± 0.1 
ms, N  = 5, n  = 123) than  in  the adults (X = 9 ± 0.1 ms, 
n  = 1075, N  = 13). There was no significant relationship 
b e tw e e n  p u lse  p e r io d  an d  a d u lt  f ish  size (r = 0.09, 
p = 0.02, N  = 12, n  = 562). However, a relationship was

Ni on Imara (Tulear)

a)
>

>n sammara (Rangiroa)

50 100 150

Time (ms)
F igure  2  C om parative  oscillogram s in tw o  Neoniphon sam m ara  
populations. Arrows indicate th e  peaks within the  pulse.

found  betw een pulse period and size w hen  settling  la r­
vae were taken in to  account (r = 0.25, N  = 12, n  = 668). 
A  re la tio n sh ip  w as also  fo u n d  b e tw e en  so u n d  level 
(F igure 5) an d  fish  size (r = 0.4, p < 0.001, N  = 16, 
n  = 146), resulting  in  a sound  th a t was louder in  adults 
(X = -37.2 ± 0.3 dB, N  = 12, n  = 123) th a n  in  se ttling  
larvae (X = -65.3 ± 1.3 dB, N  = 4, n  = 26).

T he calls p resen ted  harm onics. T he frequency  of the 
calls corresponded  to  the pulse period, and to  fish size: 
sm a lle r  f ish es sh o w ed  h ig h e r  fre q u e n c ie s  (r = -0.5, 
p < 0.001, N  = 16, n  = 146). These statistical resu lts do 
no t, how ever, m a tch  th e  biology because som e of the 
biggest fishes in  Rangiroa show ed the same fundam ental 
frequency as the settling larvae (Figure 6).

T h e  se ttl in g  la rvae also  sh o w ed  a d if fe re n t p o w er 
spectrum  from  the adults. In settling fish, the num ber of 
h a rm o n ics  is h igher th a n  in  adu lts  and  som e of th e m  
show ed the  sam e am plitude . T he d o m in an t frequency  
is n o t  a u to m a tic a lly  th e  fu n d a m e n ta l freq u en cy . In  
ad u lts , m o s t o f th e  en e rg y  w as c o n c e n tra te d  a t th e  
lo w er fre q u e n c ie s  an d  th e re  w as also  a c o n s ta n t 
low ering o f the  so u n d  p ressu re  level in  th e  successive 
harm onics (Figure 7).

In  M yripristis kuntee, sounds consisted of 4 to  9 pulses 
lasting  betw een  40 and  110 m s. Pulse len g th  w as 4.2 ± 
0.1 m s (N  = 5, n  = 369) an d  re la te d  to  th e  fish  size 
(r = 0.9, p < 0 .001). T h e  pu lse  p e rio d  w as on  average

aí

irgocéhtron diadema
1----- 1— I---- 1------1-----1— I----1----- 1-----1-----1-----1-----1-----1-----1-----1------1-----1— I--- 1-----1-----1-----1-----1-----1-----T

50 100 150 200 250

Time (ms)
F ig u re  3  O scillogram  in Sargocentron d iadem a  Arrows indicate 
the  peaks within the  pulse.
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F ig u re  4  C o m p a ra tiv e  o s c illo g ra m s  in d if fe re n t  M y rip ris tis  
populations. Each pulse is suppor ted  by o n e  main peak. Myripristis 
kuntee w ere  recorded in Tulear and Myripristis violacea in Rangiroa.
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F igure  5  M eans o f the  sound level in Myripristis violacea
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F ig u re  6  M eans o f th e  fu n d a m e n ta l freq uencies  in M yripristis  
violacea  adults (■), in M . violacea  larvae at the  tim e o f 
settlem ent (□) and in Myripristis kuntee  (O) Note the  
fundamenta l frequency corresponds to  th e  pulse period.

statistically (p < 0.001) longer (X = 12.7 ± 0.1 ms, N  = 5, 
n  = 695) th a n  in  M yrip r is tis  violacea  (X = 9 ± 0.1 ms, 
N  = 13, n  = 1075). In  th is  species, we did n o t find  any 
relationship betw een pulse period and fish size (r = 0.06, 
p = 0.11, N  = 5, n  = 695), o r be tw een  so u n d  level and  
fish size (r = 0.05, p = 0.51, N  = 5, n  = 150).

Holocentrus
Sounds (Figure 8) in Holocentrus rufus consisted of calls 
of betw een  four and six pulses, lasting betw een 45 and 
81 ms. T he pulse period  was on  average 13.8 ± 0.3 ms 
(N = 2, n  = 84) and  the pulse leng th  was 4.1 ± 0.2 ms 
(N = 2, n  = 49).

Morphology
In all species, sounds produced by hand-held  specim ens 
p roduced  vibrations felt a t the level o f the dorso-lateral 
region, behind the opercles. D issections were perform ed 
at this level.

T he m o rp ho logy  of th e  th ree  species show ed  m any  
com m on  po in ts . A  detailed  descrip tion  is m ade of the 
m orpho logy  of Sargocentron d iadem a , w h ich  in  m any 
re sp e c ts  is rep re se n ta tiv e  o f th e  o th e r  species o f the  
study. D escrip tions of d ifferences betw een  species are 
also no ted  Sargocentron diadem a.

The sound-producing m echanism  (Figure 9A) is found 
at the level o f the first six vertebrae. V ertebrae I and II 
do n o t have ribs b u t each  possess in te rm u scu la rs  th a t 
articulate at the level o f the neura l arch. Ribs articulate 
at th e  level o f the  verteb ra l body in  verteb rae  III to  V, 
and on a short parapophysis on vertebra VI. In vertebrae 
III to  VI, the in te rm uscu lar originate at the head of the 
rib s . E ach  rib  p o sse sse s  th re e  lig a m e n ts . T h e  f irs t
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F igure  7 C om parative  pow er spectrum  in calls o f an ad u lt (black) and a larva (red) o f Myripristis violacea  Arrows indicate th e  different 
harmonics in each  call. The sound  pressure level appears  less Important In settling larvae and shows more  harmonics. Power spectrum 
characteristics: sampling frequency 44.1 kHz, bandwlth 31.5 Hz, ham m ing  window.

ligam ent inserts on the rostral part of the vertebral body 
an d  on th e  a n te r io r  face o f th e  rib  head. T he second  
ligam ent is situated  on  the caudal p a rt o f the vertebral 
bo d y  an d  on  th e  p o s te r io r  face o f th e  rib  head . T he 
th ird  ligam ent is perpendicular to  the vertebral body. It 
inserts on the m iddle p art o f the vertebral body, crosses 
ligam ent 2 ventrally and inserts on  the mesial surface of 
the rib.

Sonic m uscle o rig inates on  the  neu rocran ium , at the 
level of the  exoccipital, below  an osseous pro tuberance 
co rrespond ing  to  the  area of the  ductus sem icircu laris 
h o riz o n ta lis  o f th e  in n e r  ear. C audally , son ic  m uscle  
ru n s  below  th e  f irs t in te rm u sc u la r  b o n e  an d  in se rts  
m ainly on the second  in term uscu lar, and som e m uscle 
fib res  are also  in se rte d  on  th e  h ea d  o f r ib  III. L iga­
m e n ts  (so n ic  lig a m e n ts )  a re  fo u n d  b e tw e e n

in term uscu lars 2 and the proxim al heads of ribs 4 and 
5. V en tra lly  to  th e se  lig am en ts , th e re  are also  som e 
f ib res com ing  fro m  th e  te n d o n  of th e  son ic  m uscles 
b u t it is n o t easy to  clearly  d iffe ren tia te  th e  te n d o n s  
an d  lig am en ts . T h ese  te n d o n s  also  in se r t on  th e  rib  
heads. A  second ligam ent is situated  betw een rib  5 and 
the sh o rt parapohysis of the sixth vertebra. Fibres from  
th e  hypax ial m u sc u la tu re  also in se rt  caudally  on  the  
heads of ribs 3 to  5.

T he tu n ica  ex terna of the  an te rio r p a rt o f th e  sw im ­
b la d d e r fo rm s tw o sm all lig a m e n ts  (SW B ligam en ts) 
in se rtin g  la tera lly  on  th e  en larged  head  of the  second  
in term uscular. Between the SWB ligam ents, the antero- 
dorsal p art of sw im bladder shows a th inner zone, w hich 
seem s to  be d ep riv e d  o f tu n ic a  ex te rn a . T h is  tis su e  
inserts on  the  head m arg ins of ribs 3 to  6, resu lting  in 
these heads being com pletely fused w ith  the  sw im blad­
der and can be considered to  be a part of it. This m eans 
th a t the back and fo rth  m ovem ents o f these articulated  
rib s involve s im u ltan eo u sly  m o v em en ts  o f th e  tu n ic a  
externa of the sw im bladder. T here are also two th in n er 
zones, w hich are situated fronto-laterally.

Sonic m uscle contraction  m oves rostrally the heads of 
in term usculars 2, ribs 3 and the sw im bladder ligaments. 
Because of the sonic ligam ents, the heads of ribs 4 and 
5 can also be displaced rostrally. T here is no  antagonist 
m uscle. D uring m uscle relaxation, the elasticity of liga­
m ents, te n d o n  and inner sw im bladder p ressu re  should  
help to  restore the system.

Neoniphon sammara
T he so u n d -p ro d u c in g  m ech an ism  of N eoniphon  sa m ­
m a ra  sh o w ed  m a n y  s im ila rit ie s  w ith  Sargocen tron

CD
T3

Q.
E
CD
CD>

'■4—'ro
CD

ír.

f l Y

Holocentrus rufus

10 20 30 40 50 60 70 80

Time (ms)
F ig u re  8  O scillogram  in Holocentrus rufus  Arrows Indicate  th e  
peaks within th e  pulse.
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F igure  9  Left lateral v iew  o f the  sound producing apparatus in 
S argocen tron  d ia d e m a  (A) and in N eo n iph o n  sa m m a ra  (B)
Latine num bers  refer to  th e  vertebra  positions.

Sonic

d ia d e m a  (F igure 9B). H ow ever, th e  so n ic  m u sc le s  
possess fibres tha t insert on interm uscular 1.

Holocentrus rufus
T he so und-p roduc ing  m echan ism  of H olocentrus rufus 
show ed m any sim ilarities w ith  Sargocentron d iadem a. 
T he difference lies at the level of the sw im bladder. W e 
w ere n o t able to  distinguish SWB ligam ents inserting on 
the second interm uscular. The frontal p art of the sw im ­
bladder was found  to  be in  con tac t w ith  the  elongated  
auditory bulla, as described by Nelson (1955).

Myripristis kuntee
The sound-producing mechanism in Myripristis (Figure 10) 
showed many differences from  N. sam m ara  and S. diadema.

The five first verteb rae also possess tw o in te rm u scu ­
lars on vertebrae I and II, and ribs on vertebrae III to  V. 
O n vertebrae I and II, the in term usculars originate high 
on  th e  n eu ra l arch . T he n ex t th ree  v e rteb rae  possess 
ribs w ith  in term uscu lars at the level of th e ir  head. The 
head of rib 3 is enlarged in  the vertical plane and has a 
la rg e  lig a m e n t th a t  h o ld s  it  firm ly  to  v e r te b ra e  III,

p reventing m ovem ent. This rib is the  only bone th a t is 
closely associated w ith  the  tun ica  ex terna  of the  sw im ­
bladder, w hich insert on  its posterio r m argin. The nex t 
r ib s are p laced  above th e  sw im bladder. R ibs 4 and  5 
appear to  have less freedom  of m ovem ent because they 
are n o t articulated  in  sockets as in  previously described 
species.

The sonic m uscles are proportionally  longer and larger 
th a n  in  p rev io u s  species. T he in se r t io n  o f th e  son ic  
m uscles on  the skull is also m ore rostra l on  the exocci­
p ital. C audally  th e  m uscles in se rt on  in te rm u scu la rs  1 
and 2. T here is also a sm all m uscle (ß muscle) betw een 
in term uscu lar 2 and the proxim al end of rib  3 b u t it is 
difficult to  ascertain  w hether this m uscle plays a role in 
so u n d  p ro d u c tio n  (Figure 10). M yrip r is tis  also show s 
two sonic ligam ents: the first connects in te rm uscu lar 2 
w ith rib 3, and the second connects rib 3 to  rib 4.

Specialisations of the sw im bladder are very particu lar 
[14]. T he an te rio r  p a r t  o f th e  sw im bladder form s tw o 
lateral p ro jections, form ing th ick  tubes in  con tac t w ith  
the audito ry  bulla of the skull. Both tubes fuse caudally 
in  a narrow er channel runn ing  up to  the sixth vertebra. 
T he w alls o f th is  ch an n el are th in n e r  th a n  th e  la tera l 
p ro jec tions. T his second  reg ion  is sep ara ted  from  the  
posterior cham ber by a constriction.

P osterio r to  the  sw im bladder p ro jec tions, the  tun ica  
e x te rn a  dev e lo p s a n te r io r ly  tw o  k in d s  o f  f la t te n e d  
ligam ent, w hich  in se rt on  th e  p rox im al head  of in te r ­
m u sc u la rs  1 an d  2, an d  o n  v e r te b ra e  I. T h e  space  
betw een  th is ligam ent and  rib  3 de term ines th e  sw im ­
bladder fenestra.

C ontraction of the sonic m uscles should pull anteriorly 
the first tw o in term usculars and associated sw im bladder 
ligam ents. This m ovem ent pulls anteriorly  the rib 3 liga­
m en t and consequently  m oves rib  3. Due to  ligam ents 1 
and  2, rib  3 shou ld , how ever, have re s tra in ed  an te rio r  
m ovem ents.

Electron microscopy
R esu lts  fro m  tra n sm iss io n  e le c tro n  m ic ro sco p y  w ere 
s im ila r  b e tw e en  th e  spec ies . In  c o m p a riso n  to  th e ir  
w hite epaxial m uscles, sonic m uscles (Figure 11) in  the 
stud ied  ho locen trid s p resen t the  follow ing characteris­
tics: the  son ic m uscles are m ore in n e rv a ted  and  m ore 
irrigated and the diam eter of the ir fibres and myofibrils 
d ia m e te rs  are sm alle r; th e ir  m ito c h o n d r ia  a re  m o re  
n um erous and situated  in  the periphery, u n d er the sar- 
colem  and close to  the b lood capillary; and the ir re ticu ­
lu m  sa rc o p la sm ic  is m o re  d ev e lo p e d  in  th e  so n ic  
muscles.

Discussion
D iffe ren t k in d s o f so u n d s  (stacca to s, g ru n ts , knocks, 
th u m p s , g ro w ls) h av e  b e e n  d e s c r ib e d  in  so m e
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F ig u re  1 0  L e ft la te ra l v ie w  o f  th e  c o m p le te  (A) soun d  
producing apparatus in Myripristis kuntee  Muscle and sonic 
ligaments  w ere  removed in (B) to  show  the  swimbladder fenestra 
and  swimbladder ligaments. In C, ventral view of th e  anterior part 
of  the  swimbladder,  at th e  level of  Its association with the  skull.
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F ig u re  11 D if fe re n t  TE M  p ic tu re s  o f tran sv e rse  sec tions  in 
sound producing muscle in Myripristis These cells are 
characterized by their small sections, th e  high num ber  of 
mitochondria  in periphery and  the  well deve lopped  reticulum 
sarcoplasmic mt: mitochondria; my: myofibril; re: reticulum 
sarcoplasmic

H olocen tridae [3,4,6-8,15]. H owever, th is nom encla tu re  
is n o t reliable because the  descrip tion  of a sound  is n o t 
alw ays b ased  on  p h y sica l p a ra m e te rs .  C o n seq u en tly , 
som e nam es are red u n d a n t and could apply to  the sam e 
k ind  of sound . T he “p o p s” and  “pop  volleys” th a t w ere 
d escribed  by B right an d  S arto ri [15] cou ld  co rresp o n d  
to  S a lm o n ’s [6] “k n o c k s” an d  “s ta c c a to s”. A lso, som e
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a u th o rs  have ad v o ca ted  th a t  g ru n ts  are m ade  on ly  by 
fish  w hile  th e y  are h a n d -h e ld , s tre s s in g  th a t  th e  p r e ­
se n c e  o f  th e s e  s o u n d s  h as  n o t  b e e n  d e te c te d  in  th e  
en v iro n m e n t. H ow ever, H o rc h  an d  S alm on  [7] n o te d  
th a t  g ro w ls  w ere  th e  u su a l re sp o n se  m ad e  by a field  
p o p u la tio n  of Aí. violaceus to  d is tu rb an ces caused by a 
diver, w hereas o th e r sounds (thum ps and knocks) w ere 
p ro d u c e d  b e tw e en  co n sp ec ifics . T h ese  “g ro w ls” c o n ­
sisted  of m any pulses in  rap id  succession  w ith  a consis­
te n t  te n d e n c y  to w ard  slow er p u lse  re p e tit io n  ra te s  at 
the  end of the  sound . This signature co rresponds to  the 
h a n d -h e ld  so u n d s  (g ru n ts) we o bserved  in  all species 
during  our study.

In  the gouram i [16], dam selfish [17-19], anem onefish  
[20] and  pearlfish  [21], d o m in a n t frequency  has been  
show n to  decrease in  la rger fishes. In  these  exam ples, 
the high slope value of the correlation betw een fish size 
and  d o m in a n t frequency  ind ica tes th a t th e  size of the 
em itte r can be assessed by th e  receiver and so be used 
in  son ic  co m m u n ica tio n . In  th e  g ru n t o f th e  g u rn a rd  
Eutrigla gurnardus  [22], in the weakfish Cynoscion rega­
lis [23], in  th e  toad fish  H aloba trachus d idacty lu s  [24] 
and in  the ho locen trids o f th is study, th is kind of re la­
tionship has also been statistically established. However, 
the  slope value is very w eak and it is difficult to  d e ter­
m in e  w h e th e r  th e  fish  can  d isc rim in a te  th e  sp e c tra l 
characteristic  o f the call as in  the previous group. This 
hypo thesis  is w ell su p p o rted  by rec en t s tu d ies  on  the 
toad fish  in  w hich  th e  pu lse p e rio d  (and co n seq u en tly  
th e  call frequency) can  be re la ted  to  th e  m ale quality  
[25,26] b u t n o t to  its size. Calling fishes are classically 
divided in to  categories on the basis o f the ir so u n d -p ro ­
ducing apparatus. A nother way to  categorize sound p ro ­
duction  w ould  be to  base it on the kind of in form ation  
the fish is able to  com m unicate. In  fishes w ith  a sound- 
p ro d u c in g  m e ch a n ism  based  on  th e  fa s t-c o n tra c tin g  
m usc les  (h o lo ce n trid s , sc iaen ids, b a tra ch o id id s), size 
could n o t be inferred  from  the pulse period. A ccording 
to  the species, th is pulse period m ay correspond  to  the 
fundam ental frequency. In  Aí. violacea, for example, fish 
o f 60 m m  and  130 m m  can  have th e  sam e frequency  
(Figure 2). As a com parison, the calling frequency of 60 
m m  clownfish is 700 Hz, w hereas it is less than  400 Hz 
in  130 m m  specim ens [20]. Calling am plitude could be 
used  to  iden tify  the  d ifference betw een  se ttlin g  larvae 
and  adu lts b u t its p eriod  hom ogeneity  w ould  n o t help 
to  d isc rim in a te  th e  a d u lt fish  fro m  th e  larvae. Pulse 
d u ra tio n  w as s ta tistica lly  re la ted  to  th e  fish size in  all 
species. The biggest differences betw een the pulse dura­
tio n  of sm allest (57 m m  SL) and  largest fish (143 m m  
SL) w as found  in  Aí. Violacea, and  w as < 5 m s. O nce 
m ore, it m eans the slope value is very weak and it is dif­
ficult to  determ ine w hether the fish can use these te m ­
poral differences.

In  g ru n ts  m ade by h a n d -h e ld  H olocen trus ru fus  [8] 
and in  the  g run ts in  th is study, the calls w ere m ade up 
of pulses w ith the sam e rate range, betw een 90 and 120 
Hz. In  Holocentrus rufus, the sound-producing  m echan­
ism  depends on  the  co n trac tio n  of the b ila tera l pair of 
extrinsic m uscle w hose con traction  rates correspond  to  
the fundam ental frequencies [8,9]. As M yripristis, Sargo­
centron  and  N eoniphon  p ro d u ce  g ru n ts  w ith  the  sam e 
kind of pulse rate  and roughly the sam e type of sound- 
producing apparatus as in H  rufus, it can reasonably be 
in fe rred  th a t  th e  m e ch a n ism  o f so u n d  p ro d u c tio n  is 
sim ilar in  all these genera.

In  groups w ith  extrinsic sonic m uscles inserting  on a 
precise p o in t o f the  sw im bladder, m odifications of the 
b ladder wall (e.g. sc lerifica tion , ossification) or o f the 
tend inous insertions on  the  sw im bladder are possibly a 
response to  the m echanical stress created by contraction 
of the  sonic m uscles [27]. In  o th e r  fish w ith  fas t-c o n ­
trac tin g  m uscle un its , the  follow ing observa tions have 
b een  m ade regard ing  the  m uscles 1) they  are d irectly  
inserted  on areas covering im portan t parts o f the sw im ­
b la d d e r [28,29], o r 2) th e y  p o ssess  te n d o n s  ru n n in g  
from  the  left to  the  rig h t son ic m uscle, as in  p iranhas
[30] o r 3) they  lie on  th e  body wall and  ex tend  along 
a lm o s t th e  e n tire  le n g th  o f th e  sw im b lad d e r, w h ere  
fibres in se rt at th e  level o f a dorsal ap o n eu ro tic  shee t
[31]. T he osseous ribs on  w hich  the  m uscles in se rt in  
H o lo ce n tr id ae  seem  to  be a req u ire d  in te rm ed ia ry  to  
avoid any m echanical stress o r damage to  the sw im blad­
der walls. M oreover, our m orphological study here high­
lighted the fact th a t the first articula ted  ribs are closely 
in teg ra ted  in to  the  sw im bladder. T herefore, th e  sound  
cannot resu lt from  the d irect vibration of the sw im blad­
der wall. Each sonic m uscle con trac tion  leads to  a ro s­
tra l d isp lacem en t o f th e  p roxim al end  of the  first ribs 
and of the an terio r p art of the sw im bladder, the poste r­
ior sw im bladder p art being incapable of d isplacem ent. 
T h e  d isp la c e m e n t is, how ever, b r ie f  b ec au se  o f th e  
num erous ligam ents betw een the vertebrae and the ribs. 
The abrupt arrest in the displacem ent in addition to  the 
fast ac ting  m uscle  cou ld  o rig ina te  th e  sh o r t pu lses of 
th e  call. T h e  so u n d -p ro d u c in g  m usc le  u ltra s tru c tu re  
reinforces the p roposed  m echanism . As in  m any fishes 
w ith  fast tw itch  c o n tra c tio n s , th e  fib res are n a rro w er 
than  in  w hite epaxial fibres, the cells consist o f a lternat­
ing r ib b o n s o f sarcop lasm ic re ticu lu m  and  m yofibrils, 
num erous m itochondria are found in periphery, and the 
sarcoplasm ic reticulum  is well developed. All these char­
acteristics are well know n in o ther fishes w ith  fast-con­
tracting m uscles [31-34].

T he m ain  d iffe rence b e tw een  th e  so u n d -p ro d u c in g  
m echan ism  in  the  M yrip ristinae  and H o locen trinae  of 
th is  s tu d y  lies in  th e  so n ic  m u sc le  te n d o n s  an d  th e  
n u m b er of ribs involved (Figure 12). In  the M yripristis
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species, the pulse is com posed of one peak [5,6], w hich 
could  co rresp o n d  to  th e  m ovem ent of rib  3. In  N eo n i­
p h o n  an d  Sargocentron , th e  p u lse  has  b ee n  typ ically  
found  to  possess th ree  peaks, w hich  could  co rrespond  
to  the m ovem ent of th ree ribs. It could also explain the 
pulse d u ra tion  is re la ted  to  fish size in  N eoniphon  and 
Sargocentron, b u t n o t in  bo th  M yripristis species. In  the 
H o lo cen tru s  ru fu s  o f  o u r  s tu d y , an d  in  th e  w ork  o f 
W in n  and M arshall [8] and Fish and M ow bray [5], the 
pulse seem s m ainly to  be m ade up of at least two peaks, 
m aybe three. The situation  is however less clear than  in 
previously s tud ied  H olocen trinae , and th is  observation  
needs to  be confirm ed in the future th rough  the record­
ing of additional species.

W in n  and M arshall [8] show ed in  H olocentrus rufus 
th a t  th e  tim e  b e tw een  th e  p e n u ltim a te  an d  th e  final 
pulse was always g rea ter th a n  the  tim e betw een  earlier 
pu lses. O u r analyses o f g ru n ts  show ed  th a t  th e  sam e 
phenom enon  occurred  in  M yripristis, Sargocentron  and 
N eoniphon. However, we w en t fu rth e r and show ed th a t 
there was a constan t increase in the pulse period during 
the call (Figure 1). The lengthening  of the pulse period 
could be associated to  m uscle fatigue. G enerally speak­
ing, m usc le  fa tigue seem s to  im ply  a decrease  in  the  
am plitude of the pulses [35,36] bu t n o t a lengthening of 
the period  betw een contractions. A ccording to  Jones et 
al. [37], a decline in  d ischarge ra te  could  help to  o p ti­
mise force production: due to  the peripheral fatigue-pro- 
cesses, less to ta l fo rce is p ro d u c e d  by a s tead y  h igh - 
frequency  d ischarge th a n  by a d ischarge of decreasing 
rate. The contractions m aintained were, however, m uch

longer in  th e  experim en ts o f Jones et al. and involved 
m ore contractions than  in  Holocentridae.

The p resen t study  did n o t reveal in fo rm ation  regard ­
ing only the sound-producing m echanism  in H olocentri­
dae. I t also show ed  fo r th e  firs t tim e th a t M yripr is tis  
and N eoniphon  larvae are able to  m ake sounds as soon 
as they  se ttle  on the  reef. Except for an obvious differ­
ence in  size, we d id  n o t n o tic e  any d iffe rence  in  the  
s o u n d -p ro d u c in g  m e ch a n ism  b etw een  se ttlin g  larvae 
and adults. Fo-Y at [38] found  th a t the  d u ra tio n  of the 
p lanktonic larval stage in  the  Rangiroa ho locen trids he 
s tud ied  lasted  betw een  40 and  65 days. In  M yripristis, 
we show ed the  n u m b er of pulses and  th e ir  am plitudes 
w ere low er in  the  larvae th a n  in  th e  adults. A lthough  
the  m echan ism s are n o t the  sam e, these resu lts  are in  
co n co rd an ce  w ith  s tu d ies  involving fishes from  o th e r  
taxa: the  croak ing  go u ram i T. v i tta ta  [16,39] and  the  
gurnard  £  gurnardus  [22].

Dialects have already been established in  different fish 
species [40-43]. In  these examples, differences in  sound 
p ro d u ctio n  have been  found to  be m ainly  the resu lt of 
physiology. This is also the case in Neoniphon sam m ara, 
in  w h ich  one o f th e  d iffe ren ces c o rre sp o n d e d  to  the  
pu lse  p e rio d . H ow ever, b o th  p o p u la tio n s  show ed  an 
intriguing difference at the level of the “phraseology": we 
found  an iso la ted  pulse at th e  beginn ing  o f the  call in  
M adagascar w hereas th is  w as n o t th e  case in  F rench  
Polynesia (Figure 2). This observation raises m any ques­
tions because sounds w ere m ade w hen fish w ere h an d ­
held . D ee p er e th o lo g ica l o b se rv a tio n s  are n e e d e d  to  
know  w hat sounds are m ade in natural conditions.
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Ideally , th e  f in d in g s  o f th is  s tu d y  sh o u ld  be ta k e n  
fu rthe r using data from  other ho locentrid  species. These 
fish  are very  easy  to  re c o rd  w h en  h a n d -h e ld  an d  a 
detailed  com parative  s tudy  o f th e ir  m orpho logy  w ould  
u n d o u b te d ly  in c re ase  o u r u n d e rs ta n d in g  of how  th is  
com plex sound-producing organ has evolved. D espite the 
fact th a t all H olocentrinae have a roughly sim ilar sound- 
p ro d u c in g  m e c h a n ism  (F igure  12), fu r th e r  re se a rc h  
would enable us to  better understand  the differences that 
nevertheless exist betw een them  in this regard.

Conclusion
I t is doub tfu l th is  family can  use the  fundam en ta l fre­
quencies (or pulse periods) to  infer the size of partner. 
P ulse d u ra tio n  an d  n u m b e r  of pu lses a re  s ta tis tica lly  
related to  fish size. However, it is doubtful these charac­
te r is tic s  a re  u sed  b ecau se  th e  slope values a re  w eak, 
giving few differences betw een  calls w ith in  the  species. 
H ow ever, it rem ains o th e r  fea tu res (sound  am plitude, 
resistance to  m uscle fatigue, calling frequency) could be 
u sed  to  assess  th e  b o d y  size. C h a ra c te r is tic s  of th e  
sound producing  m echanism s are conservative. All spe­
cies possess how ever fast-contracting  m uscles and have 
the sam e kind of sound producing m echanism . They do 
show  som e change betw een clades b u t these differences 
are n o t im p o rta n t enough  to  deeply m odify th e  w ave­
form s o f  th e  calls. In th is  case, our d escrip tion  of the 
g ru n t could be considered as the signature for the holo­
c e n tr id  fam ily  an d  can  be u sed  in  passive  a c o u s tic  
m onitoring.
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