THE BLUE DIATOMS FROM THE GENUS HASLEA: AN OVERVIEW

Romain Gastineau1, Nikolaï Davidovich2, Vincent Leignel1, Yann Hardivillier1, Aurore Caruso1, Pierre Gaudin3, Jean-Bernard Pouvea1, Jean-François Bardeau5, Boris Jacquette1, Irena Kaczmarska6, Claire Hellio7, Nathalie Bourgougnon8, Gert Hansen9, Eileen J. Cox10, Laura Mather6, Ian Luddington6, Joël Fleurence3, Michèle Morançais9, Réjean Tremblay11, François Turcotte11, Fiddy Semba Prasetya1, Olga Davidovich2, Angela Wulff12, Jan Rines13 & Jean-Luc Mouget1

1MMS Le Mans, Université du Maine
2Karadag Natural Reserve of the National Academy of Sciences
3MMS Nantes, Université de Nantes
4Laboratoire de Biologie et Pathologie Végétales, Université de Nantes, IFR 149 QUASAV
5LPEC UMR, Laboratoire de Physique de l’Etat Condensé, Université du Maine
6Department of Biology, Mount Allison University
7School of Biological Sciences, University of Portsmouth
8Laboratoire de Biotechnologie et Chimie Marines (LBCM), Université de Bretagne-Sud, Centre de Recherche Saint-Maudé
9Department of Biology, Københavns Universitet
10The Natural History Museum
11Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski
12Institutionen för marin ekologi
13Graduate School of Oceanography, University of Rhode Island

The study of the blue diatoms from the genus Haslea is an arcane topic, due to investigations being restricted to the only species Haslea ostrearia (Gaillon/ Bory) Simonsen. This diatom, first observed in the early 19th century, has the peculiar ability to produce a non-photosynthetic blue pigment, the so-called marennine. This pigment’s name refers to the French region of Marennes-Oléron, a place of intense oyster farming. In the ponds used for oysters’ fattening, the releasing of marennine can turn water’s color to green. By filtering the seawater, oysters fix marennine onto their gills, turning them green, a phenomenon which results in an increase in the bivalve’s price.

During the last 5 years, several new species of the genus Haslea, all able to produce blue pigments, have been discovered around the world. The molecular phylogenies obtained using ITS1-5.8S-ITS2, partial cox1 and rbcL markers have shown that blue diatoms belong to a single cluster of species, sometimes clearly separated from some non-pigmented species of the same genus, as evidenced by the rbcL marker.

For H. ostrearia and two of the species newly described, sexual reproduction has been studied. This, alongside with the preliminary molecular characterization, led to the investigation of the mitochondrial inheritance during auxosporulation in H. ostrearia, which proved to be uniparental. The diatom H. ostrearia has been revealed an interesting model, both because of its uncommon blue pigment’s synthetic pathway and of its dioecious character, and a genomic approach has been considered.

In addition, diatom’s blue pigments displayed several biological activities, including antibacterial, antifungal, allelopathic, antiviral, antiproliferative, antioxidant properties, leading us to hypothesize putative valorizations.