THE BLUE DIATOMS FROM THE GENUS HASLEA: AN OVERVIEW

Romain Gastineau¹, Nikolaï Davidovich², Vincent Leignel¹, Yann Hardivillier¹, Aurore Caruso¹, Pierre Gaudin³, Jean-Bernard Pouvreau⁴, Jean-François Bardeau⁵, Boris Jacquette¹, Irena Kaczmarska⁶, Claire Hellio⁷, Nathalie Bourgougnon⁸, Gert Hansen⁹, Eileen J. Cox¹⁰, Laura Mather⁶, Ian Luddington⁶, Joël Fleurence³, Michèle Morançais³, Réjean Tremblay¹¹, François Turcotte¹¹, Fiddy Semba Prasetiya¹, Olga Davidovich², Angela Wulff¹², Jan Rines¹³ & Jean-Luc Mouget¹

The study of the blue diatoms from the genus *Haslea* is an arcane topic, due to investigations being restricted to the only species *Haslea ostrearia* (Gaillon/ Bory) Simonsen. This diatom, first observed in the early 19th century, has the peculiar ability to produce a non-photosynthetic blue pigment, the so-called marennine. This pigment's name refers to the French region of Marennes-Oléron, a place of intense oyster farming. In the ponds used for oysters' fattening, the releasing of marennine can turn water's color to green. By filtering the seawater, oysters fix marennine onto their gills, turning them green, a phenomenon which results in an increase in the bivalve's price.

During the last 5 years, several new species of the genus *Haslea*, all able to produce blue pigments, have been discovered around the world. The molecular phylogenies obtained using ITS1-5.8S-ITS2, partial *cox*1 and *rbc*L markers have shown that blue diatoms belong to a single cluster of species, sometimes clearly separated from some non-pigmented species of the same genus, as evidenced by the *rbc*L marker.

For *H. ostrearia* and two of the species newly described, sexual reproduction has been studied. This, alongside with the preliminary molecular characterization, led to the investigation of the mitochondrial inheritance during auxosporulation in *H. ostrearia*, which proved to be uniparental. The diatom *H. ostrearia* has been revealed an interesting model, both because of its uncommon blue pigment's synthetic pathway and of its dioecious character, and a genomic approach has been considered.

In addition, diatom's blue pigments displayed several biological activities, including antibacterial, antifungal, allelopathic, antiviral, antiproliferative, antioxidant properties, leading us to hypothesize putative valorizations.

¹MMS Le Mans, Université du Maine

²Karadag Natural Reserve of the National Academy of Sciences

³MMS Nantes, Université de Nantes

⁴Laboratoire de Biologie et Pathologie Végétales, Université de Nantes, IFR 149 QUASAV

⁵LPEC UMR, Laboratoire de Physique de l'Etat Condensé, Université du Maine

⁶Department of Biology, Mount Allison University

⁷School of Biological Sciences, University of Portsmouth

⁸Laboratoire de Biotechnologie et Chimie Marines (LBCM), Université de Bretagne-Sud, Centre de Recherche Saint Maudé

⁹Department of Biology, Københavns Universitet

¹⁰The Natural History Museum

¹¹Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski

¹²Institutionen för marin ekologi

¹³Graduate School of Oceanography, University of Rhode Island