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Abstract During daytime dives in July 2011 on the reefs of 
Kota Kinabalu (Sabah, Malaysia), large quantities of slow- 
moving salps (Tunicata: Thaliacea: Salpida) were observed. 
Some o f these were seen to be caught and ingested by 
various mushroom corals (Fungiidae) and an anchor coral 
(Euphylliidae). The predators had complete salps (2-6 cm 
long) or partly digested salp remnants stuck inside their 
wide-open mouths. Salps that were observed landing on 
top o f mushroom corals did not escape. They became cap
tured by tentacles and were transported towards the opening 
coral mouths. To our knowledge, the present in situ obser
vation is the first record o f numerous salps being consumed 
by corals. All the observed predating coral species, either 
belonging to monostomatous or polystomatous species, pos
sessed large mouths. The presence o f multiple mouths ena
bles mushroom corals to become larger than those with 
single mouths. Because a large polyp size facilitates the 
capture o f food, it is advantageous for them to be polystom
atous, especially when they possess a large mouth.
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Introduction

In recent decades much attention has been given to the 
symbiotic relationship between reef corals and their 
symbiotic algae (zooxanthellae), which became particu
larly apparent with the occurrence of coral bleaching (e.g. 
Hoeksema 1991a; Brown 1997; Sampayo etal. 2008; Suggett 
and Smith 2011; Hoeksema and Matthews 2011). Because of 
the increasing emphasis on reef corals as autotrophs, it almost 
seemed that their other role as heterotrophs (Goreau et al. 
1971; Porter 1974, 1976; Bak et al. 1998; Houlbrèque and 
Ferrier-Pagès 2009; Tremblay et al. 2011) became less 
noticed.

Many observations regarding food intake by reef 
corals resulted from experiments that focused on their 
feeding m echanism  (Boschma 1925; Sorokin 1981; 
Clayton and Lasker 1982; Sehens and Johnson 1991; 
Sehens et al. 1996, 1998; Coles 1997; Ferrier-Pages et 
al. 2003). In comparison, only a few studies focused on 
their specific prey, w hich predom inantly consists o f 
small demersal and planktonic animals like amphipods, 
copepods, nematodes, nemerteans, nereids, polychaetes, 
and jellyfish, as found in their gut contents (Boschma 1924; 
Porter 1974; Lewis and Price 1975; Johnson and Sehens 
1993). Furthermore, it is assumed that prey is predominantly 
caught by corals that are active at night (Houlbrèque and 
Ferrier-Pagès 2009).
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Monostomatous mushroom corals (Scleractinia: Fungiidae) 
are iconic for having large polyps with a single, large 
mouth. They have been used in various classic studies 
on feeding mechanisms (Duerden 1906; Boschma 1924, 
1926; Yonge 1930; Abe 1938; Stephens 1962; Schuhmacher 
1979). Polystomatous species are usually larger owing to their 
additional (secondary) mouths, which are either smaller or 
equal in size compared to the primary mouth (Hoeksema 
1991b; Gittenberger et al. 2011).

During a recent biodiversity survey on the coral reefs of 
Kota Kinabalu, we observed several monostomatous and 
polystomatous mushroom corals preying on salps (Thaliacea: 
Salpida: Salpidae). To our knowledge, the feeding o f corals 
on salps has been reported only once before, which was 
based on a single salp found in the gut contents o f a colony 
o f Montastraea cavernosa (Linnaeus, 1776) (see Porter 
1974).

Materials and methods

A faunistic study o f mushroom corals was performed in 
the period 16-28 July 2011 on the coral reefs o f Kota 
Kinabalu, the capital o f Sabah, Malaysia (5° 57'-6° 5'N, 
115° 59'-116° 5'E). Thirty dives, each approximately 
1 h in duration, were made using SCUBA. The roving 
diver technique was employed (see e.g., Hoeksema and 
Koh 2009), in w hich species incidence data were 
recorded at each reef over the whole depth range where 
corals occurred, from the reef flat to the reef base, but 
not deeper than 30 m. At 3-18 m depth, several mush
room corals had their mouths wide open. Closer exam
ination revealed that these corals had caught transparent 
salps. We also encountered slow-swimming salps in the 
w ater colum n. A n inventory  w as m ade o f  w hich 
recorded mushroom coral species appeared to prey on 
salps. An additional remark is given on a non-mushroom 
coral with a salp in its mouth.

Results

All but one o f  the observed salp-predating corals belong 
to the mushroom coral family Fungiidae (Hoeksema 
1989; Gittenberger et al. 2011). Nine o f the 34 recorded 
mushroom coral species were observed to prey on salps 
(Table 1). Specimens o f Cycloseris costulata, C. fragi
lis, Danafungia scruposa. Fungia fungites. Pleuractis 
moluccensis, and P. paumotensis had transparent salps 
(ca. 2 cm) or their remnants stuck inside their wide- 
open mouths (Fig. la, d-g). An individual o f  Helio
fungia actiniformis had a salp o f ca. 6 cm captured by 
its long tentacles (Fig. lh). Two salps that had landed

Table 1 Records o f mushroom coral species (n=34) and those predat
ing on salps present on Kota Kinabalu reefs indicated by number of 
sites (total 30)

Species Number 
o f sites

With salp 
predation

Ctenactis albitentaculata Hoeksema 1989 10 -

Ctenactis echinata (Pallas, 1766) 28 -
Ctenactis crassa (Dana, 1846) 29 -
Cycloseris costulata (Ortmann, 1889) 28 2

Cycloseris cyclolites (Lamarck, 1815) 9 -
Cycloseris fragilis (Alcock, 1893) 21 1

Cycloseris mokai (Hoeksema 1989) 27 -
Cycloseris sinensis Milne Edwards 15 -

& Hairne, 1851
Cycloseris somervillei (Gardiner, 1909) 2 -
Cycloseris tenuis (Dana, 1846) 15 -
Danafungia horrida (Dana, 1846) 29 -
Danafungia scruposa (Klunzinger, 1879) 29 3

Fungia fungites (Linnaeus, 1758) 30 3

Halomitra pileus  (Linnaeus, 1758) 12 1

Heliofimgia actiniformis (Quoy 28 1
& Gaimard, 1833)

Herpolitha limax (Esper, 1797) 30 3

Lithophyllon concinna (Verrili, 1864) 30 -
Lithophyllon repanda (Dana, 1846) 30 -
Lithophyllon scabra ( Döderlein, 1901 ) 19 -
Lithophyllon spinifer (Claereboudt 7 -

& Hoeksema, 1987)
Lithophyllon undulatum  Rehberg, 1893 26 -
Lobactis scutaria (Lamarck, 1801) 19 -
Pleuractis granulosa (Klunzinger, 1879) 29 -
Pleuractis gravis (Nemenzo, 1955) 21 -
Pleuractis moluccensis (Van der Horst, 1919) 30 4

Pleuractis paumotensis (Stutchbury, 1833) 30 1

Pleuractis taiwanensis (Hoeksema and Dai, 2 -
1901)

Podabacia crustacea (Pallas, 1766) 23 -
Podabacia motuporensis Veron, 1990 1 -
Podabacia sinai Veron, 2000 4 -
Polyphyllia talpina (Lamarck, 1801) 28 -
Sandalolitha dentata Quelch, 1884 20 -
Sandalolitha robusta (Quelch, 1886) 29 -
Zoopilus echinatus Dana, 1846 1 -

on top o f D. scruposa corals were transported by ten
tacles from the coral m argin tow ards the opening 
mouth, w hich was slightly hindered by some wave 
action. The salps hardly moved by themselves and did 
not attempt to escape. Polystomatous corals o f Halomitra 
pileus and Herpolitha limax had salps only in their largest 
mouths (Fig lb , c). Apart from mushroom corals, the 
only o ther sa lp -consum ing  co ra l observed  w as a
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Fig. 1 Mushroom corals o f various species feeding on transparent 
salps at Kota Kinabalu, Sabah: a Danafungia scruposa (one salp in 
mouth and one beside), b Herpolitha limax (two mouths sharing one

specimen o f Euphyllia paraancora  Veron, 1990 (Fig. 2). 
Some mushroom corals appeared to ingest their prey by 
showing barely visible salp remnants inside their wide- 
open mouth (Fig. 3).

salp), c Halomitra pileus, d  Cycloseris costulata, e Pleuractis paum o
tensis, i P. moluccensis, g Fungia fungites, h  Heliofungia actiniformis. 
Scale bars 1 cm

The salps most probably belong to the subfamily Salpinae 
(R. W.M. Van Soest, personal communication); for salp taxon
omy and phylogeny, see Godeaux (1998), Van Soest (1998) 
and Govindarajan et al. (2011).
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Fig. 2 Specimen o f Euphyllia paraancora with a captured salp at Kota 
Kinabalu, Sabah. Scale bar 1 cm

Discussion

Although it is known that many species o f corals can be 
active heterotrophs, ingesting organisms ranging from 
bacteria to mesozooplankton, there is very little infor
mation on what animals are eaten by corals (Houlbrèque 
and Ferrier-Pagès 2009). It was recently discovered that 
individuals o f the monostomatous fungiid Danafungia 
scruposa are able to prey on large jellyfish (diameter 
up to 12 cm) in the Red Sea (Alamara et al. 2009). In 
an earlier anecdotal account based on an aquarium ex
perim ent, it was reported that the m ushroom  coral

Fig. 3 Specimen o f Fungia fungites with a partly ingested salp at Kota 
Kinabalu, Sabah. Scale bar 1 cm

Heliofungia actiniformis is able to use its long tentacles 
to predate on 1.5 cm long damselfish (Sisson 1973). 
Because little is known about the diet o f corals and 
other anthozoans (see e.g., Van der Meij and Reijnen 
2011), it is important that field observations concerning this 
topic are reported.

It is also relevant to note that some commensal 
animals are able to live in between the tentacles of 
mushroom corals without being eaten, such as particular 
species o f fish and shrimp (Bos 2011; Hoeksema and 
Fransen 2011; Hoeksema et al. 2011). It is unclear 
whether they are immune to the coral venom and therefore 
escape predation.

U ntil recently, gelatinous Zooplankton, like salps, 
ctenophores and pelagic cnidarians, were considered 
‘trophic dead ends’ in food webs, i.e. zooplanktivores 
that seemed to lack obvious top predators themselves 
(Mianzan et al. 2001). However, various animals are 
known to eat salps, such as sea lions (Childerhouse et al. 
2001), albatrosses (James and Stahl 2000), turtles (VanNierop 
and Den Hartog 1984; Hatase et al. 2002; Eckert 2006; 
Dodge et al. 2011), fish (Lyle and Smith 1997; Morato 
et al. 2000; Mianzan et al 2001), and krill (Kawaguchi and 
Takahashi 1996).

To our knowledge, the present report is the first record 
dealing with corals in the process of capturing and eating 
salps, although Caribbean corals o f Agaricia agaricites 
(Linnaeus, 1758) have also been observed to ingest plank
tonic tunicates (R.RM. Bak, personal communication). With 
regard to the different growth forms of mushroom corals, the 
present observations suggest that a large surface area may 
facilitate catching food, while big mouths enable feeding on 
large prey when available. Both traits are extra advanta
geous when combined, like in most polystomatous fungiids 
(Hoeksema 1991b; Gittenberger et al. 2011). In cases where 
mushroom corals form dense aggregations (e.g. Hoeksema 
2004; Hoeksema and Matthews 2011), salps may not easily 
escape capture. However, if  the aggregations consist o f 
regenerated mushroom coral fragments (Hoeksema and 
Gittenberger 2010; Hoeksema and Waheed 2011), only a 
few o f them possess large primary mouths that may be used 
to ingest large prey.

Although it is advantageous for corals to have a large 
mouth if  large prey is available, it is not clear whether 
they are as efficient when small prey is more abundant 
than large prey. In this instance, many small mouths 
might be more ideal because a particular polyp (or 
mouth) size may indicate a specific size spectrum o f 
prey (Tsounis et al. 2010). This is beneficial for various 
m ushroom  coral species that have secondary small 
mouths in addition to a large primary mouth (Hoeksema 
1991b; Gittenberger et al. 2011). Prey behaviour and 
environmental factors may interfere with the capture

Springer



Mar Biodiv (2012) 42297-302 301

success o f corals regardless o f their polyp size (Sebens 
et al. 1996; Palardy et al. 2005). The prey intake by some 
mushroom corals was only slightly delayed by minor wave 
action. Stronger water movement at shallow depths may in
crease the probability o f transporting the large salps away 
from their predators.
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