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Stochastic modelling of dispersion in shallow water
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Abstract: A random walk model to describe the dispersion of pollutants in shallow water is developed. By
deriving the Fokker-Planck equation, the model is shown to be consistent with the two-dimensional
advection-diffusion equation with space-varying dispersion coefficient and water depth. To improve the
behaviour of the model shortly after the deployment of the pollutant, a random flight model is developed
too. It is shown that over long simulation periods, this model is again consistent with the advection-
diffusion equation. The various numerical aspects of the implementation of the stochastic models are dis-
cussed and finally a realistic application to predict the dispersion of a pollutant in the Eastern Scheldt estu-
ary is described.
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1 Introduction

The last few years we have been confronted several times with serious water pollution
problems due to ship accidents in coastal waters. In such cases accurate predictions of
the dispersion of pollutant are required. There are two basic approaches to describe and
predict dispersion processes in shallow waters. One might adopt an Eulerian point of
view and solve the well-known two-dimensional advection-diffusion equation numeri-
cally. This is, however, not an easy task. Finite difference schemes for approximating
the advection-diffusion equation are often not mass conserving or may introduce negative
concentrations of pollutants in case of high concentration gradients. Since in practice the
initial concentration of the prediction problem is usually a delta-like function, we may
expect serious difficulties using a numerical procedure (Van Stijn et al., 1987).

Another approach to describe dispersion processes is by means of random walk
models. By interpreting the advection-diffusion equation as a Fokker-Planck equation, it
is possible to derive a stochastic model for the position of one particle of the pollutant.
In this way, the resulting particle model can be made consistent with the advection-
diffusion equation. By simulating the position of many different particles using a ran-
dom generator, it is possible to describe the dispersion process (De Jong, 1979). This
stochastic approach is mass conserving. Furthermore, concentrations can never become
negative. Another important advantage of particle models compared to the numerical
approach is that relevant subgrid details of the particle distribution can be obtained. A
disadvantage of random walk models is that for long simulation periods in which case the
particles are spread over a large area, many particles are required to obtain acceptable
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results.

To combine the best of the two approaches we developed particle models to describe
the dispersion process during the period shortly after the deployment of the pollutant.
From a certain time, when the particles are spread over a large area and concentration
gradient are small, we determine the concentration by solving the advection-diffusion
equation numerically.

An advantage of stochastic modelling of dispersion in turbulent fluid flow not yet
mentioned lies in its simplicitely. It is a well-known fact that the advection-diffusion
equation does only describe dispersion accurately if the diffusing particles have been in
the flow longer than a Lagrangian time scale and they have spread to cover a distance
that is a size larger than the largest scales of the turbulent fluid flow (Fisher et al., 1979).
Using the particle concept, it is a relatively easy task to improve the particle model and to
take into account more accurately certain characteristics of the turbulent motion. Within
the Eulerian framework this tends to be very complicated and in general results in an
additional set of partial-differential equations that has to be solved simultaneously with
the advection-diffusion equation.

Random walk models have seldom been used for water pollution prediction prob-
lems. In the literature attention has been concentrated on the modelling of relative diffu-
sion, i.e. the spreading of a single cloud of particles with respect to its center of mass
(Van Dam, 1981; Dyke and Robertson, 1985; Jenkins, 1985). This provides us with
important insight into the spreading of individual clouds of particles and into the varia-
tions between different realisations. It, however, does not directly produce the ensemble
mean concentration, which is, for predictive purposes, the most important quantity.

Unlike in environmental hydraulics, particle models describing ensemble mean con-
centrations are often used to predict the dispersion of pollutants in the atmosphere. Van
Dop et al. (1985) developed a one-dimensional random flight model to describe the parti-
cle displacements in inhomogeneous. unsteady turbulent flows. More recently, an appli-
cation of this model to predict dispersion in a convective boundary layer is discussed by
De Baas et al. (1986). Our work is inspired by the ideas of Van Dop, Nieuwstadt, Hunt
and De Baas and in this paper we generalize some of their one-dimensional vertical
results to two horizontal dimensions. Furthermore, we introduce depth variations into the
model to describe the dispersion in shallow water and discuss the various numerical
aspects of the implementation. In section 2 we develop a random walk model that is con-
sistent with the two-dimensional advection-diffusion equation. Here both the depth of the
water as well as the dispersion coefficient is allowed to vary in space. To improve the
behaviour of the model shortly after the deployment of the pollutant, we introduce in sec-
tion 3 a random flight model. Furthermore, we show that our model has the correct
asymptotic behaviour and for long simulation periods it is again consistent with the
“advection-diffusion equation. In section 4 the various numerical aspects of the imple-
mentation of the stochastic models are discussed. Finally in the sections 5 and 6 some
numerical experiments and a realistic application to predict the dispersion of a pollutant
in the Eastern-Scheldt estuary are discussed.

2 Random walk models

Consider a shallow water area with a depth H(x,y.t) and horizontal water velocities
Ux,y,t) and V(x,y,t) in respectively the x— and y-directions. It is also assumed that
H(x,yzp), U(x,y,t) and V(x,y 1) satisfy the continuity equation:
il!_+ J(UH) + J(VH) -0

ot dx dy

The deterministic background flow field [U(x,y.r) V(x,y,0)]' and the water depth
H(x,yt) are usually determined by running a numerical hydrodynamic model.

¢y
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To model dispersion in a shallow water area, we have developed a random walk
model that is exactly consistent with the well-known depth integrated advection-diffusion
equation (Fisher et al., 1979). In the following we first formulate the particle model and
then we show that this model is indeed consistent with the advection-diffusion equation.
Consider that the position (X;,Y;) of a particle injected in the water at time t=t; at (X, ,Y, )

is described by means of the following Ité stochastic differential equations:

dX, = U+( D)/H+——

di+\2Dda, )

dy, = v+( % D)/H+—— dt+\2Ddp, 3)

Here, as we will see, D(x,y) turns out to be the well-known dispersion coefficient and
w,=[oy B,]T is Brownian motion process with:

E{dw, aw[} =1 dt @)

At a closed boundary a particle is reflected so there will be no transfer of mass through
such a boundary.

To show that the model (2)-(4) is indeed consistent with the advection-diffusion
equation we note that the stochastic process (X;, ¥,) is Markov and that the probability

function p(x,y,t) t24;, is determined by the Fokker-Planck equation (Jazwinski, 1970):

%’;— = —-a— [U+(-——D)/H+———]p -— [V+(—a£D)/H+—a—y-—]p
22 opt @ opp) ©)
2 92 2 9y?
with the initial condition:
p(x.y,tg) = 8(x—xp)8(y—yo) . ()
The particle concentration C(x,y,t) is related to this probability function through:
Cy,0)=pQy.t)/H(x,y.t) )

By substituting equation (7) into the Fokker-Planck equation (5), the advection- diffusion
equation can be derived:

JHC) _ JHUC) AHVC) _ d . 3C
o ox dy * ox oH ox )

The initial condition for the concentration can be obtained similarly by substituting the
equation (6) into equation (7). At a closed boundary the condition dC/0x=0 is used to
model the fact that there is no transfer of pollutants through such a boundary.

We have now shown that the model (2)-(4) is consistent with the well-known
advection-diffusion equation (8). As a consequence we can either solve the equation (8)
numerically or simulate the stochastic equation (2)-(3) for many different particles.

The random walk model (2)-(3) can easily be modified to take into account mechan-
isms such as decay, sedimentation or evaporation. The statistical error introduced by the
use of a finite number of particles can be approximated using a Poisson distribution with
parameter n for the probability that & particles are located within a certain small area,
where n is the number of particles that are actually found in this area after the simulation.

0 dC
+ E(DH-«?) . 8)
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3 Random flight model

As noted in the introduction, the random walk model (2)-(4), and thus the advection-
diffusion equation (8), does only describe the dispersion of particles in turbulent fluid
flow accurately if they have been in the flow much longer than a certain Lagrangian time
scale T;. This time scale is a measure of how long the particle takes to lose memory of

its initial turbulent velocity (Fisher et al., 1979). This shortcoming of the random walk
model is caused by the fact that the driving noise in the stochastic differential equation
(2)-(3) is modelled as a Brownian motion process and, as a consequence, has independent
increments. For time scales <<T} it is however more realistic to assume that these incre-

ments are correlated in time: particles with a certain velocity at time ¢ are likely to travel
with approximately the same velocity at time r+Ar, At<<T;. Therefore we have

improved the random walk model (2)-(3) by introducing a random flight model that
describes the position as well as the velocity of the particle at time 1. We developed the
model such that it is, for long simulation periods, again consistent with the advection-
diffusion equation (8). In the following we first formulate this particle model and then
we show that this model has indeed the correct asymptotic behaviour. Consider that the
particle position and particle velocity are described by:

3 M D

dX, = [U+cU+( ™ D)H+ o ldt , ®

au, =—(UT)U,dr+ydo,, , 10$)

dy, = [V+0V,+(§£D )/H+§—D—]dt , and (11)
dy dy '

dv, =—(UT)V,dr +vdB, . (12)

Here U, and V, are the stochastic velocity of the particle in respectively the x— and
y-directions induced by the turbulent fluid flow. Furthermore, ¢ is a space varying

. 1 .
parameter, Yy and 7; are constants and, as we will see, D=5(TL0'y)2 again turns out to be

the well known dispersion coefficient. The spreading of the particles does not depend on
¥ and ¢ but only on the product yo. In practice usually D (x,y) and T, are specified, v is

chosen to be 1 while o(x,y) is determined using the relation between all these variables.
The reason why we introduced the additional parameter ¢ is explained at the end of this
section. The particle is injected at time r=f,, at position (X, ,Y, ) and with initial velocity
WUV

By introducing the additional equations (10) and (12) for the turbulent velocities U,
and V,, we in fact assume that the turbulence is isotropic and that the coloured noise
processes U, and V, are both stationary with zero mean and with an exponential Lagran-
gian autocovariance:

1 —lI/T,
E{Up U} =E{Vi V)= 7TL'YZ‘3 T (13)

The approach described above can easily be extended by introducing equations for the
acceleration and third and higher order derivatives of the position. In this way the
Lagrangian autocovariance of the velocity processes can be modelled more accurately
and it becomes possible to take into account the characteristics of the turbulent fluid
flow.

Over time periods much longer than 7T, i.e. 1—,>>7T} ,the model is again consistent
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with the advection-diffusion equation (8), since for (¢—1y)/T; —ee or T; —0 while D is
constant, cquations (9)-(12) reduce to the stochastic differential equations:

= o D)/H+%§P- 42D do, (14)
dy, = [V+( D)/H+l§2 V2D dp, (15)

The equations (14} and (15) have to be interpreted, in fact by definition, in the Stratono-
vich sense (Arnold, 1974). The corresponding Ité6 equations are given by the random
walk model (2)-(3) and, as a consequence, the asymptotic model (14)-(15) is consistent
with the advection-diffusion equation (8).

The random flight process is again Markovian and the probability function
px,y.u,v,t)is determined by the Fokker-Planck equation:

%:——a— [U+0‘u+(—-D)/H+——]p [V+0‘v+(—D)/H+——]p
pu i pv 1 82 ‘
a (TL) ( L) ZBZ(W) (16)
with initial condition:
wy?
POy .y, to) = dx—xp)d(y—yy) e Y . an

LY"

Here we have chosen the initial velocity distribution to be consistent with equation (13).
The particle concentration C(x,y,t) is given by:

ey = | [ peoyuv.tdudviiy.s . (18)

~0a —o0

By introducing the moments:

<u>(xy,t)= J jup(x,y,u,v,t)dudv/H(x,y,t) (19)

<>y = | vy uyddudviHy 0 (20)
2 T T2

<uU>(x,y.t)= J' J-u p(x,y.uy . DdudviH(x,y.t) 21
2 T T2

<2yn = | Jv3peyuy ddudvid (xy 0 @2)

—oa —00

we are able to derive from the Fokker-Planck equation (16) the following parabolic set of
equations;
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2IC) __HUC) aagc L2 (Ho'<u>)—§;(H0<v >) 23)
a(H;tu >) _ E?x (Ho<u?>)»-H<u>/T, (24
ﬁ(_”;_t_”l = —-%(H6<v2>)—H <v>ITy, (25)
dH<u>) 3;‘2” = —2H <U>T, +HYC (26)
dH<v>) St"z>) = —2H<V*> T +HYPC @7

The particle concentration can be” determined by solving the closed set of partial-
differential equations (23)-(27).

We have shown above that the random flight model (9)-(12) is consistent with the set
of equations (23)-(27). This illustrates one of the advantages of stochastic modelling of
dispersion. While the random flight model (9)-(12) can be implemented very simply, it
is not an easy task to solve the corresponding set of partial-differential equations numeri-
cally. -

Taking the limit 7; —0, while D=%(TLc'y)2 is constant, the set of equations (23)-(27)

reduce to the advection-diffusion equation (8) and again we have shown that for
t—13>>T, the random flight model is consistent with this equation.

The non-linear equation (8) as well as the set of non-linear equations (23)~(27) cannot
in general! be solved analytically. However in the absence of the background flow it is
possible to determine analytical solutions for the linearised case. Studying these approxi-
mate solutions is important to develop insight into the behaviour of the model shortly
after the deployment of the particles. It is a well-known fact that for the linear random
walk model the variance of the position of a particle at time ¢, released at time £, is
2D (r—ty) (Taylor, 1921). Itis easy to show that using the linear random flight model, the

variance of a particle released with a Gaussian initial velocity with zero mean and vari-

ance %TL'YZ is, shortly after the deployment D(t—to)vz. For long simulation periods the

behaviour of the random flight model is similar to that of the random walk model.
Finally we note that, if necessary, 7; and v are allowed to vary in space. However, in

this case it is not possible to derive a closed set of partial-differential equations for the
moments of the probability function p(x,y,u,v,t). The resulting set of equations is infin-
ite and we are faced with a closure problem. This is in fact the reason why we have
introduced the parameter 6(x,y) into the model (9)-(12) and, in addition, have chosen 7y to
be constant such that D=O‘5(TLc'y)2. In this case it becomes possible to derive a closed

set of partial-differential equations for the moments of p(x,y,u,v,t) and to avoid the clo-
sure problem (or to solve it implicitly).

4 Numerical approximation

The stochastic differential equations (2)-(3) or (9)-(12) cannot in general be solved
analytically and have to be integrated numerically (Kloeden and Platen, 1989). In this
section we only consider the random walk model since the numerical approximation of
the random flight model does not give rise to new conceptual problems. Defining a fixed
mesh {1;=tg+iAt,i=12,...}, the simplest Euler scheme for the random walk model con-
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sistent with the Ité definition of a stochastic integral is:

er X,k+ U+(—--—D)/H+—— At+V2D Aoy (28)

th

5 At+\2D A, . (29)

Here )?,k and f,‘ are the numerical approximations of X, and Y, respectively, while )?,():X,0

Yt,,+ [V+(_7D YH +———

and }7,0=Y,0. Furthermore, Ao, and AP, are Gaussian with zero mean and variance Az.

Each time step Aoy, and AP, are determined using a random generator. It can be shown
that for the Euler scheme (28)-(29) we have (Pardoux and Talay, 1985):

E{X,X,) =0, (30)
E{(¥,~Y,)}=0(Ar). 31

Rumelin (1982) showed that it is very hard to obtain higher order schemes for non-linear
stochastic differential equations. In the one-dimensional case he showed that efficient
integration schemes of O(Ar?) can be obtained. To obtain this order of accuracy one can
take the Milshtein scheme. However, in the multi-dimensional case Rumelin showed
that, in general (D both a function of x and y), it is very hard to construct a scheme that
has a higher order of convergence than the Euler scheme. Therefore, we use this scheme
to approximate the stochastic part of the random walk model.

Since in most practical problems the spatial variation of D is small, the Euler scheme,
is, with respect to the stochastic part of the differential equation, sufficiently accurate and
allows a large time step. It is however the deterministic drift that usually causes numeri-
cal problems. In case the background flow strongly varies in space and time we have to
use a small time step or a more accurate numerical scheme.

As noted before, the back ground flow is usually computed by means of a hydro-
dynamic numerical model. Therefore U, V and H are only available at the grid points.
However, if we want to solve the random walk model, these quantities have to be known
at every position and we are faced with an interpolation problem. Despite the fact that
the finite difference scheme used to solve the hydrodynamic equations may be mass con-
serving, a straightforward bilinear or higher order interpolation procedure will not con-
serve mass. As a consequence the interpolation procedures create sources and sinks that
respectively repulse and attract particles. In instationary conditions the numerical errors
created by the interpolation are different at each time step and appear to have a random
character. As a consequence, in such cases these errors are masked by the random term
in the model and serious problems are not likely to occur. However in stationary condi-
tions and if, in addition, the random term is very small, we expect numerical artefacts.
Particles may, e.g., be "caught” by a numerically introduced sink. To eliminate these
numerical problems in stationary conditions we propose an interpolation procedure that is
based on fitting a quadratic streamfunction ‘¥'. Furthermore, to avoid numerical problems
involving the integration of the back ground flow, we integrate this deterministic part of
the particle model analytically.

§ Numerical experiments

In this section we describe some simple experiments to show that the particle models
{(2)-(3) and (9)-(12) have-the correct asymptotic behaviour. Moreover, we illustrate the
numerical problems described in section 4. We consider a simple square reservoir with a
length of 25 km. We start the simulations at time #; using the random flight model with
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Figure 1 " Figure 2
Figure 1. Sp_ace—varying dispersion coefficient

Figure 2. Space-varying depth of the water

/|

Figure 3 Figure 4

Figure 3. Asymptotic particle distribution using the random walk model

Figure 4. Asymptotic particle distribution using the random flight model

1000 particles at the middle of the reservoir and with zero initial velocity.

5.1 Experiment ]

‘We neglected the background flow and took the depth H=10m. The dispersion coeffi-
cient was chosen to vary in space (see Figure 1). For the random flight model we, in
addition, chose T;=5 hours. In this case it is easy to show that the particle distribution

will have to become uniform for sufficiently large simulation times. In the Figures 3 and
4 the particle distribution is drawn after 800 time steps of 30 min. for respectively the
random walk model and the random flight model, showing the correct asympiotic
behaviour. Such behaviour can easily be verified more objectively by using the fact that
if the particle distribution is uniform, the number of particles in one small square of Fig-
ure 3 or 4 should be Poisson distributed with parameter 10 = (total number of particles) x
(volume of the reservoir) / (volume of the small squary part of the reservoir). By count-
ing the number of particles in all the small squares and by comparing the results with a
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"Table 1. The probability to find £ number of particles in a small square of the Figures 3 and 4 using a
Poisson distribution compared with the actual number of small squares where £ particles are found in these
figures

number of probability to find k relative number of relative number of
particles £ in particles in a small small squares where small squares where
one small square square using a Poisson k particles are found k particles are found
distribution with in Figure 3 in Figure 4
parameter 10
3 0.01 - 0.02
4 0.02 0.04 0.02
5 0.04 0.03 0.06
6 0.06 0.09 0.02
7 0.09 0.06 0.08
8 0.11 0.12 0.11
9 0.13 0.13 0.16
10 0.13 0.13 0.14
11 0.11 0.09 0.07
12 0.09 0.07 0.08
13 0.07 0.09 0.09
14 0.05 0.04 0.06
15 0.03 0.05 0.04
16 0.02 0.04 0.02
17 0.01 i 0.01 -
18 0.01 0.01 0.02
| S
Sk
A i
IR R R .
YT Lo A B
. T
X X
Figure 5 Figure 6

Figure 5. Asympiotic particic distribution in casc of a space-varying depth

Figure 6. Asymptotic particle distribution using a stream function interpolation and an analytic integration
of the background flow

Poisson distribution it has been verified that the asymptotic particle distribution is indeed
uniform (see Table 1).

5.2 Experiment 2

We now introduce a space varying depth (see Figure 2). In this case the number of parti-
cles observed in a certain area will have to become, for sufficient large simulation times,
linearly dependent with the depth of the water. In Figure 5 the particle distribution is
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Figurc 8

Figure 7c

Figure 7. Asymptotic particle distribution using a stream function interpolation and an Euler scheme to
integrate the background flow: (2) At=30 min.; (b) At=5 min.; (c) Ar=1 min

Figure 8. Asympiotic particle distribution using bilinear interplation and an Euler scheme with At=1 min.
to integrate the back ground flow

sdrawn after 800 time step of 30 min., again showing the correct behaviour. In the area
where the depth H=10 m (the sides) the averaged number of particles in a small square of
Figure 5 should be 7.14 = (total number of particles ) x (volume of the reservoir /
(volume of the small squary part of the reservoir ), while in the area where H=20 m (the
central part) this number should be 14.28. From Figure 5 we find respectively 7.35 and
14.10 for these numbers.

5.3 Experiment 3
Let us now consider the case of a depth H = 10 m and a dispersion coefficient D=10m¥'s

and let us introduce a constant background flow at the grid points of a space staggered
grid. The chosen background flow satisfies the discretised continuity equation. In this
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Figure 10. Tidal flow patterns in the Keeten-Volkerak model
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Figure 11, Simulation of a calamity in the Keeten-Volkerak. The arrow in the first figure indicates the
location where the pollutants was released in the water at 18:00, September 1, 1975

case the particle distribution should again become uniform. In the Figures 6-8 we show
the results of the random walk model after 400 hours for a number of different interpola-
tion and integration methods. Here the dark lines represent the grid points where the
velocity normal to the closed boundary is zero, while the arrays indicate the grid points
where the background flow is prescribed. Figure 6 illustrates that using a streamfunction
interpolation method and integrating the background flow analytically, the correct
behaviour is observed: the particle distribution appears to be uniform. Here we note that
in this experiment it is not our intention to verify this again in an objective sense, but we
concentrate our attention on the various numerical problems that might occur. Using a
numerical integration scheme instead of integrating the background flow analytically, we
see from Figure 7 that the time step has to be very small to reduce the outward drift that
is introduced by the numerical integration scheme. Choosing a time step of 5 or 30



173

minutes, the asymptotic particle distribution is far from uniform. With a time step of 1
minute, the numerical errors introduced by the numerical integration scheme are very
small and negligible with respect to the random forcing and the particle distribution
appears to be uniform again. Finally we see in Figure 8 that using bilinear interpolation
instead of a stream function interpolation method, the sources and sinks that are created
numerically have a dramatical effect on the asymptotic particle distribution, that should
again be uniform.

6 Application

In this section we describe a realistic application of the random walk model (2)-(3) in the
Keeten-Volkerak, a part of the Eastern Scheldt estuary in the south western part of the
Netherlands (Figure 9). The tidal back ground flow is determined using a numerical
model with a grid size of 400 m and a time step of 1.25 min. The tidal flow at the grid
points of the model during one tidal cycle are shown in Figure 10. Here the dotted lines
indicate the area that is above the water-level. This area is not permanently dry but may
be flooded in case of high water. Since the tidal movement in the Eastern Scheldt is not
stationary, it is possible to use bilinear interpolation to obtain the water velocity and
depth at arbitrary position. Furthermore, to approximate the drift of the stochastic dif-
ferential equation, we employ the mid point rule, a second order iterative scheme, with
time step Ar=1.25 min. The dispersion coefficient was in this case chosen to be
D=1m?%s. For a discussion on the choice of the dispersion coefficient the reader is
referred to Van Dam (1981). The results of particle dispersion can be found in Figure 11.
Here 1000 particles are released at Zijpe at low water at 1;=18:00, September 1, 1975.

The particle distribution is shown each 6 hours until 18:00, September 2, 1975. One of
the main reason to use a particle model in this application is to avoid the numerical prob-
lems that occur when the advection-diffusion equation is solved numerically in case of
high concentration gradients. From the results shown in Figure 11 we see that the spatial
concentration variations remain very high during a number of tidal cycles. As a conse-
quence, an Eulerian approach is not able to produce acceptable results in this case (Van
Stijn et al., 1988). Furthermore, the spreading of the pollutant is too complex to employ
a simple analytical approximation to model the spreading during a period shortly after the
release of the pollutant. Therefore, we preferred the particle model.

7 Conclusions

In this paper we developed a number of particle models to describe the dispersion of pol-
lutants in shallow water. By deriving the Fokker-Planck equation, it is possible to com-
pare the Lagrangian models with their Eulerian equivalent. The various numerical prob-
lems of the implementation have been discussed and illustrated with some simple experi-
ments. Finally a realistic application of one of the particle models is described.
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