
Stochastic  H ydrol. H ydrau l. 4 (1990) 161-174 Stochastic Hydrology 
and Hydraulics
© Springer-V erlag 1990

Stochastic modelling of dispersion in shallow water

A. W . H eeniink

T idal W aters D ivision, R ijksw aterstaat, P.O. Box 20907, 2500 EX The H ague, The N etherlands

A bstract: A random walk model to describe the dispersion of pollutants in shallow water is developed. By 
deriving the Fokker-Planck equation, the model is shown to be consistent with the two-dimensional 
advection-diffusion equation with space-varying dispersion coefficient and water depth. To improve the 
behaviour of the model shortly after the deployment of the pollutant, a random flight model is developed 
too. It is shown that over long simulation periods, this model is again consistent with the advection- 
diffusion equation. The various numerical aspects of the implementation of the stochastic models are dis
cussed and finally a realistic application to predict the dispersion of a pollutant in the Eastern Scheldt estu
ary is described.

Key words: advection-diffusion equation, random walk model, random flight model, stochastic differential 
equation, Fokker-Planck equation

1 Introduction
The last few  years we have been confronted several tim es w ith serious w ater pollution 
problem s due to ship accidents in coastal waters. In such cases accurate predictions o f 
the d ispersion o f  pollutant are required. There are two basic approaches to describe and 
predict dispersion processes in shallow  waters. O ne m ight adopt an E ulerian po in t o f 
view  and solve the w ell-know n tw o-dim ensional advection-diffusion equation num eri
cally. T his is, how ever, not an easy task. Finite difference schem es for approxim ating 
the advection-diffusion equation are often not m ass conserving or m ay introduce negative 
concentrations o f  pollutants in case o f  high concentration gradients. S ince in practice the 
initial concentration o f  the prediction problem  is usually a delta-like function, w e m ay 
expect serious difficulties using a num erical procedure (Van Stijn et al., 1987).

A nother approach to describe dispersion processes is by m eans o f  random  w alk 
m odels. By interpreting the advection-diffusion equation as a Fokker-P lanck equation, it 
is possible to derive a stochastic m odel for the position o f  one particle o f  the pollutant. 
In this way, the resulting particle m odel can be m ade consistent w ith the advection- 
diffusion equation. By sim ulating the position o f  m any different particles using a ran
dom  generator, it is possible to describe the dispersion process (D e Jong, 1979). This 
stochastic approach is m ass conserving. Furtherm ore, concentrations can never becom e 
negative. A nother im portant advantage o f  particle m odels com pared to the num erical 
approach is that relevant subgrid details o f  the particle d istribution can be obtained. A 
disadvantage o f  random  w alk m odels is that for long sim ulation periods in  w hich case the 
particles are spread over a large area, m any particles are required  to obtain acceptable
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results.
T o com bine the best o f  the tw o approaches w e developed particle m odels to describe 

the d ispersion process during the period shortly after the deploym ent o f  the pollutant. 
F rom  a certain  tim e, w hen the particles are spread over a  large area and concentration 
gradient are sm all, w e determ ine the concentration by solving the advection-diffusion 
equation num erically.

A n advantage o f  stochastic m odelling o f  dispersion in turbulent flu id  flow  not yet 
m entioned lies in  its sim plicitely. It is a w ell-know n fact that the advection-diffusion 
equation does only describe dispersion accurately if  the d iffusing particles have been in 
the flow  longer than a Lagrangian tim e scale and they have spread to  cover a distance 
that is a size larger than the largest scales o f  the turbulent flu id  flow  (F isher et al., 1979). 
U sing the particle concept, it  is a  relatively easy task  to  im prove the partic le  m odel and to 
take in to  account m ore accurately  certain characteristics o f  the turbulent m otion. W ithin 
the E ulerian  fram ew ork this tends to  be very com plicated and in  general results in an 
additional set o f partial-differential equations that has to  be solved sim ultaneously w ith 
the advection-diffusion equation.

R andom  w alk  m odels have seldom  been used for w ater pollution prediction prob
lem s. In  the literature attention has been concentrated on the m odelling o f  relative diffu
sion, i.e. the spreading o f  a single cloud o f  particles w ith respect to its center o f m ass 
(V an D am , 1981; D yke and Robertson, 1985; Jenkins, 1985). T his provides us w ith 
im portant insight into the spreading o f individual clouds o f  particles and in to  the varia
tions betw een different realisations. It, how ever, does not directly  produce the ensem ble 
m ean concentration, w hich is, for predictive purposes, the m ost im portant quantity.

U nlike in  environm ental hydraulics, particle m odels describing ensem ble m ean con
centrations are often used to  predict the dispersion o f pollutants in the atm osphere. V an 
D op et al. (1985) developed a  one-dim ensional random  flight m odel to  describe the parti
cle displacem ents in inhom ogeneous, unsteady turbulent flows. M ore recently , an appli
cation o f  this m odel to  predict dispersion in a convective boundary layer is discussed by 
D e B aas e t al. (1986). O ur w ork is inspired by the ideas o f  V an D op, N ieuw stadt, H unt 
and D e B aas and in this paper w e generalize som e o f  their one-dim ensional vertical 
results to  tw o horizontal dim ensions. Furtherm ore, w e introduce depth variations into the 
m odel to  describe the dispersion in shallow  w ater and discuss the various num erical 
aspects o f  the im plem entation. In section 2 w e develop a random  w alk m odel that is con
sistent w ith the tw o-dim ensional advection-diffusion equation. H ere both the depth o f  the 
w ater as w ell as the dispersion coefficient is allow ed to vary in space. T o  im prove the 
behaviour o f  the m odel shortly after the deploym ent o f  the pollutant, we introduce in sec
tion 3 a  random  fligh t m odel. Furtherm ore, w e show  that our m odel has the correct 
asym ptotic behaviour and for long sim ulation periods it is again consistent w ith the 
advection-diffusion equation. In section 4  the various num erical aspects o f  the im ple
m entation o f  the stochastic m odels are discussed. Finally  in the sections 5 and 6 som e 
num erical experim ents and a realistic application to  predict the dispersion o f  a pollutant 
in  the E astem -Scheld t estuary are discussed.

2 Random walk models
C onsider a shallow  w ater area w ith a depth H (x ,y , t )  and horizontal w ater velocities 
U (x ,y , t )  and V (x ,y , t )  in respectively the x -  and y-directions. It is also  assum ed that 
H (x ,y , t ) ,  U (x ,y , t )  and V (x ,y , t )  satisfy the continuity equation:

dH  | d(U H ) t d(VH )  _ Q (1)
d t dx dy

T he determ inistic background flow  field  \U (x ,y , t )  V {x ,y , t ) \ r  and the w ater depth 
H (x ,y , t )  are usually  determ ined by running a num erical hydrodynam ic m odel.



163

T o m odel d ispersion in a shallow  w ater area, we have developed a  random  w alk 
m odel that is exactly  consistent w ith the w ell-know n depth integrated advection-diffusion 
equation (Fisher e t al., 1979). In the follow ing w e first form ulate the particle m odel and 
then w e show  that th is m odel is indeed consistent w ith the advection-diffusion equation. 
C onsider that the position (Xt ,Yt ) o f  a particle injected in  the w ater at tim e r=r0 at (X¡o,Yt<)

is described by m eans o f  the follow ing ltd  stochastic d ifferential equations:

dXt --

d Y ,=

u +( ^ L d )i h +^
dx  ax

cry cry

dt+’4 lD d a t

d t+ ' j2 D d $ l

(2)

(3)

H ere, as w e w ill see, D (x ,y )  turns out to  be the w ell-know n dispersion coefficient and 
Wj=[a¡ ß ,]r  is B row nian m otion process with:

E{dwj d w j j  = 1  dt (4)

A t a closed boundary a particle is reflected so there w ill be no transfer o f  m ass through 
such a boundary.

T o show  that the m odel (2)-(4) is indeed consistent w ith the advection-diffusion 
equation w e note that the stochastic process (X , , Yt ) is M arkov and that the probability  
function p (x ,y , t )  t>ta, is determ ined by the Fokker-P lanck equation (Jazw inski, 1970):

dt
d_ 

dx

i  a2

dx  dx
_d_

dy
[V+{^ D)/h A p

dy dy

(2Dp)+
1 d2

2 d x2 2 d y2

w ith the initial condition: 

p ( x ,y , t0) = 8 ( x - x 0)8 ( y -y 0) .

(2D p) (5)

(6)

The particle concentration C (x ,y , t ) is related to this probability  function through:

C ( x ,y , t ) = p ( x , y , t ) /H ( x , y , t )  (7)

By substituting equation (7) into the Fokker-Planck equation (5), the advection- diffusion 
equation can be derived:

d(H C) d(H U C ) d(H VC)  
dt dx dy

+ 4 - ( D H ~ )  + - f ( D H ^ )  
dx dx dy dy

(8)

T he initial condition for the concentration can be obtained sim ilarly by substituting the 
equation (6) into equation (7). A t a closed boundary the condition dC /dx= 0  is used to 
m odel the fact that there is no transfer o f pollutants through such a boundary.

W e have now  show n that the m odel (2)-(4) is consistent w ith the w ell-know n 
advection-diffusion equation (8). As a  consequence we can either solve the equation (8) 
num erically  o r sim ulate the stochastic equation (2)-(3) for m any d ifferent particles.

T he random  w alk m odel (2)-(3) can easily  be m odified to take into account m echan
ism s such as decay, sedim entation o r evaporation. The statistical e rro r introduced by the 
use o f  a finite num ber o f  particles can be approxim ated using a  Poisson d istribution w ith 
param eter n for the probability  that k  particles are located w ithin a certain sm all area, 
w here n is the num ber o f  particles that are actually found in this area after the sim ulation.
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3 Random flight model
As noted  in  the introduction, the random  w alk m odel (2)-(4), and thus the advection- 
d iffusion equation (8), does only describe the dispersion o f  particles in  turbulent fluid 
flow  accurately if  they have been in the flow  m uch longer than a certain  L agrangian tim e 
scale Tl . T his tim e scale is a m easure o f  how  long the particle takes to lose m em ory of 
its in itial turbulent velocity  (F isher et al., 1979). T his shortcom ing o f  the random  w alk 
m odel is caused by the fact that the driving noise in the stochastic differential equation 
(2)-(3) is m odelled as a B row nian m otion process and, as a consequence, has independent 
increm ents. F or tim e scales <<T^  it is how ever m ore realistic to assum e that these incre
m ents are correlated in  tim e: particles w ith a certain velocity  at tim e t are likely to  travel 
w ith approxim ately the sam e velocity a t tim e r+Ar, A t « T L . T herefore w e have 
im proved the random  w alk m odel (2)-(3) by introducing a  random  flight m odel that 
describes the position as w ell as the velocity  o f  the particle at tim e t . W e developed the 
m odel such that it  is, for long sim ulation periods, again consistent w ith the advection- 
d iffusion equation (8). In the follow ing w e first form ulate this particle m odel and then 
w e show  that this m odel has indeed the correct asym ptotic behaviour. C onsider that the
particle position and particle velocity are described by:

dXt =  [U+aUt+ ( ^ - D  ) I H + ^ - ] d t , (9)
dx  dx

dU, = ~ ( \ /T L )U ,d t+ yda t , (10)
p \ r j  p \ry

dY, = [ V + a V M ^ - D  ) ! H + ^ - \ d t , and (11)
dy dy

dVt = - ( l / T L)Vtd t + y d ^ .  (12)

H ere U¡ and V, are the stochastic velocity  o f  the particle in respectively the x -  and 
y-d irections induced by the turbulent fluid flow. Furtherm ore, a  is a  space varying

1 7
param eter, y and TL are constants and, as we w ill see, D = — (TLoy) again turns out to be

the w ell know n dispersion coefficient. The spreading o f the particles does not depend on 
y and a but only on the product ya. In practice usually D (x,y)  and TL are specified, y is 
chosen to be 1 w hile a (x ,y )  is determ ined using the relation betw een all these variables. 
T he reason w hy w e introduced the additional param eter a is explained at the end o f  this 
section. T he particle is injected at tim e r=r0, at position (X¡a,Y¡e) and w ith initial velocity

( t w
By in troducing the additional equations (10) and (12) for the turbulent velocities U, 

and V(, w e in fact assum e that the turbulence is isotropic and that the coloured noise 
processes Ut and V¡ are both stationary w ith zero m ean and w ith an exponential L agran
gian autocovariance:

E {U 1+XU'} =  £{V m V(J =  y V lTl/Tt (13)

T he approach described above can easily be extended by introducing equations fo r the 
acceleration and third and higher order derivatives o f the position. In this w ay the 
L agrangian autocovariance o f the velocity  processes can be m odelled m ore accurately 
and it becom es possib le to take into account the characteristics o f the turbulent fluid 
flow.

O ver tim e periods m uch longer than T¿, i.e. r - r 0» T ¿ ,th e  m odel is again consistent
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w ith the advection-diffusion equation (8), since fo r ( t - t 0)/TL — > 0 0  o r  TL -* 0  w hile D  is 

constant, equations (9)-(12) reduce to  the stochastic d ifferential equations:

dX t =

ar,=

d t+ ^ 2 D d a t

+V2Ddß,

(14)

(15)

T he equations (14) and (15) have to  be interpreted, in fact by definition, in  the Stratono- 
vich  sense (A rnold, 1974). The corresponding ltd  equations are g iven by the random  
w alk m odel (2)-(3) and, as a  consequence, the asym ptotic m odel (14)-(15) is consistent 
w ith the advection-diffusion equation (8).

T he random  flight process is again M arkovian and the probability  function 
p (x ,y ,u ,v , t )  is determ ined by the Fokker-P lanck equation:

d p  3_
d t  dx

, d H - . , It d D , 
\U-HSu+(--—D ) /H + ^ — ]p 

dx dx

d p u  d p v  1 d2 
d u ( TL } dv Tl  2 Zu1

d_
dy

1 d2

. . .  . dH  dD  ,
[F+OV +(-r—D  ) / / /+ - r— ]p

dy  dy

+ ^ ( ^ ) + ^ ( - ^ ) + ^ ^ r ( p ) + f f y ( p )
2 dv

(16)

w ith initial condition:

1 T
p (x ,y ,u ,v , t0) =  § (* -* 0)8C>’->’o) T e

k Tl T
(17)

H ere w e have chosen the initial velocity  distribution to be consistent w ith equation (13). 
T he particle concentration C (x ,y , t )  is given by:

C (x ,y ,f )=  ƒ j p ( x , y ,u , v , t ) d u d v /H ( x , y , t ) . (IB)

By in troducing the mom ents:

< u > (x ,y , t )=  ƒ ƒ u p(x ,y ,u ,v , t )d u d v /H (x ,y , t ) (19)

<v>O c,y,f) = i  { vp (x ,y ,u ,v , t )d u d v /H (x ,y , t ) (20)

<u 2> (x ,v ,r) =  } ƒ u 2p (x ,y ,u ,v , t )d u d v lH (x ,y , t ) (21)

< v2> (x ,y , t )=  j  j  v 2p (x ,y ,u ,v , t )d u d v lH (x ,y , t ) (22)

we are able to  derive from  the Fokker-Planck equation (16) the follow ing parabolic set o f 
equations:
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j ( g O = _ a ( m / c )  H m ' C )  ( B )
dt ox  dy ox oy

á ( / / .5 M>)_ _  - ~ ( H o < u 2> y-H < u> IT l  (24)
a t  dx

d( ä i v >±  -  __§_(ƒƒG <v2>)_ƒƒ <v > / j  (25)
df dy

d(H < u 2>) = _ 2 H  <u2>/TL+ H y2C  (26)
a í

d(H < v 2>) =  _ 2 H <v2>ITL+ H y2C  (27)
dt

T he particle concentration can be determ ined by solving the closed set o f  partial- 
differential equations (23)-(27).

W e have show n above that the random  flight m odel (9)-(12) is consistent w ith the set 
o f equations (23)-(27). T his illustrates one o f  the advantages o f stochastic m odelling o f 
dispersion. W hile the random  flight m odel (9)-(12) can be im plem ented very  sim ply, it 
is no t an easy task to solve the corresponding set o f  partial-differential equations num eri
cally.

1 ?Taking the lim it 7 ¿ —>0, w hile D = — (TLay) is constant, the set o f  equations (23)-(27)

reduce to the advection-diffusion equation (8) and again we have show n that for 
i—r0» 7 / ,  the random  flight m odel is consistent w ith this equation.

T he non-linear equation (8) as w ell as the set o f non-linear equations (23)-(27) cannot 
in general be solved analytically. H ow ever in the absence o f  the background flow  it is 
possible to determ ine analytical solutions fo r the linearised case. S tudying these approxi
m ate solutions is im portant to develop insight into the behaviour o f  the m odel shortly 
after the deploym ent o f the particles. It is a  w ell-know n fact that fo r the linear random  
w alk m odel the variance o f  the position o f a particle at tim e t, released at tim e r0, is 
2D ( r - i0) (Taylor, 1921). It is easy to show  that using the linear random  flight m odel, the 
variance o f  a particle released with a G aussian initial velocity with zero m ean and vari

ance is, shortly after the deploym ent D ( f - f0)2. For long sim ulation periods the

behaviour o f  the random  fligh t m odel is sim ilar to that o f  the random  w alk m odel.
F inally  w e note that, i f  necessary, TL and y  are allow ed to vary in space. H ow ever, in 

this case it is not possible to derive a  closed set o f  partial-differential equations fo r the 
m om ents o f  the probability  function p (x ,y ,u ,v , t ) .  The resulting set o f equations is infin
ite and w e are faced w ith a closure problem . This is in fact the reason why we have 
introduced the param eter o(x ,y  ) into  the m odel (9)-(12) and, in addition, have chosen y  to 
be constant such that D=0.5(TLo y)2. In this case it becom es possible to derive a closed 
set o f  partial-differential equations for the m om ents o f p (x ,y ,u ,v , t )  and to avoid the c lo
sure p roblem  (or to  solve it im plicitly).

4 Numerical approximation
T he stochastic differential equations (2)-(3) or (9)-( 12) cannot in general be solved 
analytically  and have to be integrated num erically (K loeden and Platen, 1989). In this 
section w e only consider the random  w alk m odel since the num erical approxim ation o f 
the random  fligh t m odel does not give rise to  new  conceptual problem s. D efining a fixed 
m esh f i ;= i0+ i'A i,/= l,2 ,...J , the sim plest E uler schem e fo r the random  w alk m odel con-
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sistent w ith the Itó  definition o f  a stochastic integral is:

X h i = X t + U + ( ~ D ) / H + ^ -  A t+ 'J l D A a ,  , (28)

^ tl = V  V+(^D)/H+̂  ArW^Aß* . (29)

H ere X,t and Yt are the num erical approxim ations o f  X¡ and Yt respectively , w hile X ig=X,o 

and Y ,= Y tg. Furtherm ore, Aa* and Aß* are G aussian w ith zero m ean and variance At.  

Each tim e step Aa* and Aß* are determ ined using a random  generator. It can be show n 
that for the E uler schem e (28)-(29) w e have (Pardoux and T alay, 1985):

R um elin (1982) show ed that it is very hard to  obtain h igher order schem es fo r non-linear 
stochastic differential equations. In the one-dim ensional case he show ed that efficient 
integration schem es o f  0 ( A t 2) can be obtained. T o obtain this o rder o f  accuracy one can 
take the M ilshtein schem e. H ow ever, in the m ulti-dim ensional case R um elin show ed 
that, in  general (D  both a function o f  x  and y ), it is very hard to construct a schem e that 
has a h igher order o f  convergence than the E uler schem e. Therefore, w e use this schem e 
to approxim ate the stochastic part o f  the random  w alk m odel.

S ince in m ost practical problem s the spatial variation o f  D  is sm all, the E u ler schem e, 
is, w ith respect to the stochastic part o f the differential equation, sufficiently accurate and 
allow s a large tim e step. It is how ever the determ inistic drift that usually  causes num eri
cal problem s. In case the background flow  strongly varies in space and tim e w e have to 
use a sm all tim e step or a m ore accurate num erical scheme.

As noted before, the back ground flow  is usually com puted by m eans o f  a hydro- 
dynam ic num erical m odel. Therefore U, V  and H  are only available at the grid points. 
H ow ever, if  w e w ant to solve the random  w alk m odel, these quantities have to  be know n 
at every position and we are faced w ith an interpolation problem . D espite the fact that 
the finite difference schem e used to solve the hydrodynam ic equations m ay be m ass con
serving, a straightforw ard bilinear o r higher order interpolation procedure w ill not con
serve m ass. A s a consequence the interpolation procedures create sources and sinks that 
respectively  repulse and attract particles. In instationary conditions the num erical errors 
created by the interpolation are different at each tim e step and appear to  have a random  
character. A s a consequence, in such cases these errors are m asked by the random  term  
in the m odel and serious problem s are not likely to occur. H ow ever in stationary condi
tions and if, in addition, the random  term  is very sm all, we expect num erical artefacts. 
Particles may, e.g., be "caught" by a num erically introduced sink. To elim inate these 
num erical problem s in stationary conditions we propose an interpolation procedure that is 
based on fitting a quadratic stream function 'P . Furtherm ore, to avoid num erical problem s 
involving the integration o f  the back ground flow, w e integrate this determ inistic part o f 
the particle m odel analytically.

5 Numerical experiments
In this section w e describe som e sim ple experim ents to show that the particle m odels 
(2)-(3) and (9)-( 12) have the correct asym ptotic behaviour. M oreover, w e illustrate the 
num erical problem s described in section 4. W e consider a sim ple square reservoir w ith a 
length o f  25 km. W e start the sim ulations at tim e f0 using the random  flight m odel w ith

E {(X tl~ X tf }  =  O (A t ) , 

E {(Y t r Ylf } = 0 (  A t ) .

(30)

(31)
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Figure 1

Figure 1. Space-varying dispersion coefficient 

Figure 2. Space-varying depth of the water

D= 10m

y

Figure 2

n . ' . v

! » f " .

i  . •

"• s 

«

* “  

. •  N r*

j • • 4
i  ~ 

t ,

«

f i*  \
, í ■: •  »

V '. '4  * ;

% r t

Sc . •  * y .? •  *
% • •

■ * • •  • V* ■ - *■ . »  ;

i
%*

:
* * * i  ” •

i  %
.  • :

i •
< * 1

:  •

X X

Figure 3

Figure 3. Asymptotic particle distribution using the random walk model 

Figure 4. Asymptotic particle distribution using the random flight model
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1000 particles at the m iddle o f the reservoir and with zero initial velocity.

5.1 Experiment 1

■We neglected the background flow  and took the depth T he dispersion coeffi
cient w as chosen to  vary in space (see Figure 1). For the random  flight m odel we, in 
addition, chose TL=5 hours. In this case it is easy to show that the particle distribution 
w ill have to becom e uniform  for sufficiently large sim ulation times. In the F igures 3 and 
4 the particle distribution is draw n after 800 tim e steps o f 30 min. for respectively the 
random  w alk m odel and the random  flight m odel, show ing the correct asym ptotic 
behaviour. Such behaviour can easily be verified m ore objectively by using the fact that 
if  the particle distribution is uniform , the num ber o f  particles in one sm all square o f F ig 
ure 3 o r 4  should be Poisson distributed w ith param eter 10 = (total num ber o f particles) x  
(volum e o f the reservoir) /  (volum e o f  the sm all squary part o f the reservoir). By count
ing the num ber o f  particles in all the small squares and by com paring the results with a
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Table 1. The probability to find k number of particles in a small square of the Figures 3 and 4 using a 
Poisson distribution compared with the actual number of small squares where k particles are found in these 
figures

number of 
particles k  in 
one small square

probability to find k 
particles in a small 
square using a Poisson 
distribution with 
parameter 10

relative number of 
small squares where 
k particles are found 
in Figure 3

relative number of 
small squares where 
k  particles are found 
in Figure 4

3 0.01 - Ô.02
4 0.02 0.04 0.02
5 0.04 0.03 0.06
6 0.06 0.09 0.02
7 0.09 0.06 0.08
8 0.11 0.12 0.11
9 0.13 0.13 0.16
10 0.13 0.13 0.14
11 0.11 0.09 0.07
12 0.09 0.07 0.08
13 0.07 0.09 0.09
14 0.05 0.04 0.06
15 0.03 0.05 0.04
16 0.02 0.04 0.02
17 0.01 0.01 -

18 0.01 0.01 0.02
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Figure 5. Asymptotic particle distribution in case of a space-varying depth

Figure 6

Figure 6. Asymptotic particle distribution using a stream function interpolation and an analytic integration 
of the background (low

Poisson distribution it has been verified that the asym ptotic particle distribution is indeed 
uniform  (see T able 1).

5.2 Experiment 2

W e now introduce a space varying depth (see Figure 2). In this case the num ber o f  parti
cles observed in a certain area will have to becom e, for sufficient large sim ulation tim es, 
linearly dependent w ith the depth o f the water. In Figure 5 the particle distribution is
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Figure 7. Asymptotic particle distribution using a stream function interpolation and an Euler scheme to 
integrate the background flow: (a) At=30 min.; (b) Ai=5 min.; (c) Aí- 1 min

Figure 8. Asymptotic particle distribution using bilinear interplation and an Euler scheme with Ai=l min. 
to integrate the back ground flow

¡.drawn after 800 tim e step o f  30 m in., again show ing the correct behaviour. In the area 
w here the depth H = 10 m  (the sides) the averaged num ber o f  particles in a sm all square o f 
F igure 5 should be 7.14 = (total num ber o f  particles ) x  (volum e o f  the reservoir /  
(volum e o f  the sm all squary part o f  the reservoir ), w hile in the area w here H = 20 m  (the 
central part) this num ber should be 14.28. From  F igure 5 w e find respectively 7.35 and 
14.10 fo r these num bers.

5.3 Experim etit3

L et us now  consider the case o f  a depth H  = 10 m  and a dispersion coefficient D = 10m 2/y 
and le t us introduce a constant background flow  at the grid points o f a space staggered 
grid. T he chosen background flow  satisfies the discretised continuity  equation. In this
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Figure 10. Tidal flow patterns in the Keeten-Volkerak model
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Figure 11. Simulation of a calamity in the Keeten-Volkerak. The arrow in the first figure indicates the 
location where the pollutants was released in the water at 18:00, September 1, 1975

case the particle distribution should again becom e uniform . In the F igures 6-8 we show 
the resu lts o f the random  w alk m odel after 400 hours for a num ber o f d ifferent interpola
tion and integration m ethods. H ere the dark lines represent the grid points w here the 
velocity  norm al to the closed boundary is zero, w hile the arrays indicate the grid points 
w here the background flow  is prescribed. Figure 6 illustrates that using a stream function 
interpolation m ethod and integrating the background flow analytically, the correct 
behaviour is observed: the particle distribution appears to be uniform . H ere we note that 
in this experim ent it is not our intention to verify this again in an objective sense, but we 
concentrate our attention on the various num erical problem s that m ight occur. U sing a 
num erical integration schem e instead o f integrating the background flow  analytically, we 
see from  F igure 7 that the tim e step has to be very sm all to reduce the outw ard drift that 
is introduced by the num erical integration scheme. C hoosing a tim e step o f  5 o r 30



173

m inutes, the asym ptotic particle distribution is far from  uniform . W ith a tim e step o f  1 
m inute, the num erical errors introduced by the num erical integration schem e are very 
sm all and neglig ib le w ith respect to the random  forcing and the particle distribution 
appears to be uniform  again. F inally  w e see in F igure 8 that using b ilinear interpolation 
instead o f  a stream  function interpolation m ethod, the sources and sinks that are created 
num erically  have a dram atical effect on the asym ptotic particle distribution, that should 
again be uniform .

6 Application
In this section w e describe a realistic application o f  the random  w alk m odel (2)-(3) in  the 
K eeten-V olkerak, a  part o f  the E astern Scheldt estuary in the south w estern part o f  the 
N etherlands (Figure 9). The tidal back ground flow  is determ ined using a num erical 
m odel w ith a grid  size o f  400 m  and a tim e step o f  1.25 mín. The tidal flow  at the grid  
points o f  the m odel during one tidal cycle are show n in Figure 10. H ere the dotted  lines 
indicate the area that is above the w ater-level. T his area is not perm anently  dry but m ay 
be flooded in  case o f  high w ater. S ince the tidal m ovem ent in the E astern  Scheldt is not 
stationary, it is possible to  use b ilinear interpolation to  obtain the w ater velocity  and 
depth at arbitrary position. Furtherm ore, to approxim ate the drift o f  the stochastic d if
ferential equation, w e em ploy the m id point rule, a  second order iterative schem e, w ith 
tim e step Af=1.25 min. T he dispersion coefficient w as in this case chosen to be 
D = l m 2/s. F o r a discussion on the choice o f  the dispersion coefficient the reader is 
referred to Van D am  (1981). The results o f  particle dispersion can be found in  F igure 11. 
H ere 1000 particles are released  at Z ijpe at low w ater at r0=18:00, Septem ber 1, 1975. 
The particle distribution is show n each 6 hours until 18:00, Septem ber 2, 1975. O ne o f 
the m ain reason to use a partiele m odel in this application is to avoid the num erical p rob
lem s that occur w hen the advection-diffusion equation is solved num erically  in  case o f  
high concentration gradients. From  the results show n in Figure 11 w e see that the spatial 
concentration variations rem ain very high during a num ber o f  tidal cycles. A s a conse
quence, an Eulerian approach is not able to produce acceptable results in this case (Van 
Stijn e t al., 1988). Furtherm ore, the spreading o f  the pollutant is too com plex to  em ploy 
a sim ple analytical approxim ation to m odel the spreading during a period shortly after the 
release o f  the pollutant. Therefore, we preferred the particle m odel.

7 Conclusions
In this paper we developed a num ber o f  particle m odels to describe the dispersion o f  po l
lutants in shallow  water. By deriving the Fokker-Planck equation, it is possib le  to  com 
pare the Lagrangian m odels w ith their Eulerian equivalent. The various num erical prob
lem s o f  the im plem entation have been discussed and illustrated w ith som e sim ple experi
m ents. F inally  a  realistic application o f  one o f  the particle m odels is described.
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