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Abstract— This paper studies the potential of airborne hy­
perspectral imagery for classifying vegetation along the Belgian 
coastlines. Here, the aim is to build vegetation maps using auto­
matic classification. Besides a general linear multi-class classifier 
(Linear Discriminant Analysis), several strategies for combining 
binary classifiers are proposed: one based on a hierarchical 
decision tree, one based on the Hamming distance between 
the codewords obtained by binary classifiers and one based 
on the coupling of posterior probabilities. In addition, a new 
procedure is proposed for spatial classification smoothing. This 
procedure takes into account spatial information by letting the 
decision for classification of a pixel depend on the classification 
probabilities of neighboring pixels. This is shown to render 
smoother classification images.

distance between codewords, obtained by binary classifiers 
and one based on the coupling of posterior probabilities of 
binary classifiers. Using the latter approach, we also introduce 
a spatial smoothing procedure of the classification result. This 
procedure combines posterior classification probabilities of 
neighboring pixels, to render smoother classification maps. In 
the next section, the binary linear classifier is introduced. In 
section III, the multi-class classifier is presented and the three 
different combinations of binary classifiers are proposed. In 
section IV, the classification smoothing procedure is elabo­
rated and in section V, the experiments are conducted.

I .  I n t r o d u c t i o n

Vegetation along coastlines is important to survey because 
of its biological value with respect to the conservation of 
nature, but also for security reasons. Some of the vegetation 
tend to fix the natural seawall, while others do not. Erosion 
accompanied by the rough conditions along coastlines, rein­
force the dynamic process of the existing vegetation. In order 
to monitor this process, vegetation maps are required on a 
regular basis. Therefore, an automatic classification is aimed 
for.

The objective is to monitor a large variety of vegetation 
types for the entire Belgian coastline (about 30 square kilome­
ters). This, together with the requirements on spatial resolution 
and, not in the least, the cloudy weather conditions, urge on 
airborne hyperspectral imagery. A test area at the west coast of 
Belgium has been selected for which data cubes are obtained 
from the Compact Airborne Spectrographic Imager (CASI-2) 
sensor. The data has been acquired in October 2002 with 48 
spectral bands and a spatial resolution of 1.3 meters.

In this paper, classification of this test site is performed. 
13 vegetation classes were selected. For such high number 
of classes, multi-class classification becomes very complex. 
In this work, we investigate the use of combination of binary 
classifiers. Besides the standard technique of maximum voting, 
three methods of combination are proposed: one using a hi­
erarchical decision tree approach, one based on the Hamming

I I .  B i n a r y  C l a s s i f i c a t i o n

For the binary classifier, we adopted a simple linear dis­
criminant classifier (LDA) [1]. Assuming equal covariance 
matrices £  for both classes, this classifier finds the optimal 
linear decision boundary. A projection weight vector ß  and 
bias ßa are the parameters to estimate in the two class problem, 
and are calculated by :

ß  =  S 1(p2 -  P i )
oT

ßa =  — 2 ~(P1 (1)

where p i  and p 2 are the means of each class, and £  is 
the estimated class covariance matrix (we assume equal prior 
probability for both classes). Test samples (x) are then classi­
fied by the simple rule

iF x  + ßo
< 0 : sample assigned to class 1 
>  0 : sample assigned to class 2.

(2)

This method is very fast to train and to calculate the classifi­
cation. In case the training set is not sufficiently large £  can 
become singular. In these cases a pseudo-inverse approach can 
be used to find ß  and ßa [2].

In this work, we are not only interested in the assigned 
class, but in the posterior probabilities for both classes, which
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are estimated by: 

p(class i\x) = 

where

p(x|class i) =

p(x|class ¿)p(class i)
j'M class j )

i =  1,2

exp

\

(ßT(ßi -  *)) 
2(ßTEiß)

(3)

being the probability of the projected point.

III. M u l t i - c l a s s  C l a s s i f i c a t i o n

A. Linear Multi-class Classifier

The most widely used classifier for multi-class problems 
is based on the normal distributed conditional probabilities. 
Here, all classes are described by a normal distribution with 
mean m ,  and covariance £*. It is easy to show [1] that this 
assumption results in quadratic discriminant functions g¡:

gfix) =  log(p(class i ) )~ \ \o g { \T , i \ ) -] -{ i l i - x ) T T1fi1{fii - x )
(4)

When using equal covariances for all classes, linear discrimi­
nant functions are obtained:

gfix) =  log (p(class i)) -  ^ f i í ^ f i í  -   ̂x r E ~ lßi  (5) 

A point x  is assigned to class j  for which g f i x )  >  gfix)\/i.

B. Combining Binary Classifiers

Due to the complexity of multi-class classifiers, a common 
approach is to combine the output of several binary ones. 
Mostly, one-against-all or one-against-one [3], [4] approaches 
are used. With the one-against-all strategy, each classifier is 
trained to differentiate one class from all the others, which 
requires a number of classifiers equal to the number of classes 
K .  In the one-against-one approach, all possible pairs of 
classes are compared, requiring classifiers. Different
methods defining other codings of the classes were also 
suggested [5], [6]. Here, we will apply the one-against-one 
scheme. To combine these one-against-one binary classifiers 
several approaches are proposed.

1 ) Maximum Voting: Often, a maximum voting mechanism 
is used [4]. For each binary classification, a vote is given to 
the winning class. The class with the maximum number of 
votes is assigned to the test sample.

2) Hierarchical decision tree: The binary classifiers are 
ordered according to their discriminating ability on the training 
samples. The Bayes error, derived from equation 3, can be 
used for this purpose. To classify a test sample, the most 
discriminating binary classifier is applied first. Suppose this 
is a classifier for classes j  and k. The most likely class, for 
example k, is retained as a candidate for the class decision. 
From all the remaining binary classifiers, those that test for 
class j  can be discarded for this test sample. As a result, 
the number of classifiers is reduced from to K  -  1.
The procedure ends when a single candidate class is left. This 
explains the importance of the ordering. A wrong decision

in the beginning of the decision tree is disastrous. However, 
if well ordered, this scheme has a distinct advantage over 
maximum voting, in particular for heterogeneous classes with 
diverse discriminating abilities.

3) Codewords: Another method is based on the Hamming 
distance between codewords, built, by the binary classifiers. 
Each binary classifier represents one bit in the codeword. For 
example, if the result of the classifier for class j  and k, is class 
j ,  then the corresponding bit is set to 0. Else, it is set to 1. As 
a result, a codeword of bits is obtained. A codeword
is created for each training sample during training. Likewise, 
the classifier builds a codeword for a test sample. The class 
containing the training sample with the nearest codeword in 
Hamming distance is then assigned to the test sample.

4) Coupling Probabilities: So far, all presented combina­
tions of binary classifiers into a multiclass procedure use the 
binary classification result to come to a class decision. But, 
for each of the binary classifiers a posterior probability can be 
obtained from (3). We will follow [7] to obtain a combined 
posterior probability for the multiclass case. Define r ^  (x) as 
the probability for obtaining class i as calculated by (3) for 
the binary classifier comparing class i against class j .  For the 
if-class case we have to look for K  p , ’s (i =  1 , . . . ,  i f )  which 
satisfy

Pi
K

Pi +  Pi
(6)

i=1
This set of equations, to be solved for p t, has K  -  1 free pa­
rameters and constraints, so it is generally impossible
to find fifi s that will meet all equations. In [7], the authors opt
to find the best approximation r

P i+ P i
by minimizing the

Kullback-Leibler distance between r tj  and

m ■tj ra  log fi2- +  ( l -  n f i  log ■ (7)

where riy is the sum of the number of training points in class 
i and j .  They also suggest an iterative scheme to minimize 
this distance:

start with and initial guess for the pi, and calculating r ^  
repeat until convergence 

loop over i =  1 , . . . ,  K

P -

Pi <— P i x ~1%2̂ 3̂ i nijri3
normalize pi, and calculate 
P

'Em
For this algorithm Hastie and Tibshirani proved that the 
distance between and decreases at each step, and since 
the distance is bound above zero, the procedure converges. 
This procedure is repeated for all points in the test set. Now, 
classification is obtain by selecting the class with maximum 
posterior probability.

IV. S p a t i a l  C l a s s i f i c a t i o n  S m o o t h i n g

Up to now we have considered the pixels as spatially 
independent. No contextual information has been used to make



a decision on the class label. Building a classification image 
based only on the spectral information often results in poorer 
classification performance [8] and in class images with a noisy 
appearance, containing many single pixel classes. We propose 
a simple post-processing technique for spatial classification 
smoothing, requiring little extra computational effort.

As shown in in section III-B.4, we can calculate the pos­
terior probability for a pixel. We call p f ik f i ) ,  the posterior 
probability for class i calculated for the pixel at location 
(k, I) in the image. Normally, to assign a label to the pixel, 
the label of the class with maximum posterior probability is 
taken. Define c ( k , l ) as the class with the maximum posterior 
probability at location (k,l):

c (k , I) =  inax p i(k ,  I).
a rg  i

(8)

One can assume neighboring pixels to have similar posterior 
probabilities. This information can be used as prior knowledge 
for defining a new prior probability for a pixel, based on the 
posterior probability from classification in the neighborhood 
of the pixel. Define this new prior probability of a pixel as the 
average over the posterior probabilities of neighborhood 0

P
prior

P i ( a , b ) (9)
(a,b)£il

where N  is the number of points in 0 . When looking at P i( k ,  I) 
as an image, the new prior p?nor(fc, Z) is in fact a smoothed 
version of this image. A new posterior probability is obtained 
by using Bayes’ rule:

p T ( M )  = (10)

Classifying using these p¿ost will result in smoother classifica­
tion image maps containing less single pixel classes.

V . E x p e r i m e n t s  a n d  D i s c u s s i o n

A. Data

A test area at the west coast of Belgium has been selected 
for which data cubes are obtained from the Compact Airborne 
Spectrographic Imager (CASI-2) sensor (see Fig. 1). The data 
has been acquired in October 2002 with 48 spectral bands and 
a spatial resolution of 1.3 meters. Ground truth is available 
through field work in 148 regions. Using a differential GPS 
in the field, the ground truth is mapped on the geocorrected 
image, obtaining over 2000 pixels to train and validate the 
presented classification procedure.

The vegetation classes to be discriminated are listed in ta­
ble I. Some of the classes consist of different vegetation types 
(4) and even combinations of other classes ( 11 combines 8 and 
10). They correspond to patches that occur as homogeneous 
mixtures and cannot be distinguished by the available sensor 
resolution. Another observation is that the number of samples 
(second column) is diverse. They correspond to the availability 
of the species in the field. However, they are not representative 
for the occurrence at the entire coastline and thus can not be 
used as prior probabilities as such.

Fig. 1. Image showing part o f coastline. Extracted area was used for 
demonstrating the spatial classification in fig. 2

B. Classification

We will now classify the image for all classes defined in 
Table I. The regions of interests are randomly split in equally 
sized sets for training and testing. In the first column, classi­
fication results are shown using the multiclass approach. The 
remaining columns correspond to the 4 different combinations 
of binary classifiers.

One can observe that all binary classifiers outperform the 
multiclass approach, which justifies our motivation of choosing 
for a less complex classifier.

Obviously, all classifiers have difficulties classifying the 
mixed class “Creeping Willow / Dewberry”. Codewords per­
form best for the large Sea Buckthorn class. However, com­
bined with Wood small-reed, codewords perform worst. The 
combined “Sea Buckthorn / Wood small-reed” class was 
observed to be misclassified as Sea Buckthorn. This reveals 
one of the flaws of this method. In general, codewords are 
expected to have large Hamming distances between classes. 
However, a single badly oriented codeword in a large class 
can jeopardize the entire classifier. A single misjudgment in 
assigning the labels during fieldwork can be disastrous for the 
codeword approach but will be of little harm for the other 
methods.

In Fig. 2, we show part of the color coded classification 
result. The left image shows the result of the standard maxi­
mum posterior classification. The right image shows the results 
after including the extra prior probability step with r  =  3. One 
can immediately see that many single pixel classes and other 
small structures have vanished. This smoothing property is of 
importance when interpreting the classification image, when 
the user is not interested in finely detailed class information.
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TABLE I

C l a s s if ic a t io n  r e s u l t s

Class N Samples Multiclass Max. Voting Hier, tree Codewords Coupling p
European Alder 26 85 62 49 77 56
European Beachgrass 185 80 94 91 79 90
Silver Berch 40 79 87 79 89 88
Sea Buckthorn / Wood small-reed 191 67 79 74 46 77
Sea Buckthorn 705 54 69 70 81 65
European Privet 381 72 91 89 87 90
Maigold 44 90 90 78 72 91
Dewberry 43 64 59 58 78 67
Grey Willow 42 63 51 43 51 62
Creeping Willow 219 62 77 77 69 78
Creeping Willow / Dewberry 46 36 27 28 34 35
Blue Elderberry 89 75 64 69 58 69
Wall Moss 87 79 76 78 79 83
Total average (weighted) 2098 59 76 75 75 75

Fig. 2. Classification images from fig. 1. The left image shows the result of maximum posterior classification obtain by coupling probabilities. The right 
image shows the improvement using the proposed spatial classification smoothing.
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