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A B S T R A C T : The Boom Clay is an important raw material for the Belgian structural clay 
products industry. It can be divided into several lithological sub-units. In order to obtain an 
insight in the parameters which characterize these different units, and which affect the overall 
properties of the clay, a detailed chemical, physical and mineralogical analysis was carried out. 
Pearson correlation coefficients were calculated between the variables, which were then placed in 
four correlation groups: a quartz/clay mineral group, a reducing component group, a carbonate 
group and a feldspar group. This treatment of the data allowed three analysis parameters to be 
selected: <2 //m fraction, organic carbon and C 0 2. The other variables could be calculated fairly 
accurately from these by means of regression lines.

I N T R O D U C T I O N

The Boom Clay is used extensively as a raw material by the Belgian brick and bloating 
clay industries and this paper presents the results of a detailed chemical, physical and 
mineralogical investigation aimed at determining the parameters which are important for 
these applications. The type outcrops of the Boom Clay are the excavations for structural 
clay product manufacture in the cuesta front just to the north of the River Rupel. These 
occupy a zone 5-15 km wide over a distance of ~65 km. The clay unit is of Middle 
Oligocene (=Rupelian) age and its stratigraphy and sedimentology have recently been 
investigated by Vandenberghe (1978), who divided it into several sub-units. In the 
north-west European sedimentary basin the Boom Clay is considered on lithological and 
geometrical criteria to be equivalent to the Dutch, German and Polish ‘Septarienton’ and 
to the Danish Branden Clay. The exact chronostratigraphic position of the different 
lithological sub-units has not yet been established precisely. It is probable that they partly 
represent lateral facies variations at a particular time level. In Belgium, a sub-division of 
the Boom Clay into a lower grey clay (the Land van W aas Clay) and an upper black clay 
(the Putte Clay) has been tentatively proposed (Vandenberghe, 1978).

The Boom Clay is a marine shelf deposit of very widespread occurrence. Silty clay and 
heavy clay layers of some tens of centimetres regularly alternate. Besides these vertical 
grain-size variations, layers rich in organic matter and carbonate also occur; septaria are 
mostly developed in the carbonate-rich layers. Pyrite frequently occurs as concretions up 
to 10 cm across. The sequence of these different layers is constant over the whole of the
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present area of exploitation. The total thickness of the Boom Clay in this area varies
between 10 and 50 m.

M A T E R I A L S  A N D  M E T H O D S

In order to cover the whole thickness of the clay formation, outcrops in three clay pits 
(Sint-Niklaas (SN), Terhagen (TH) and Kruibeke (KR)) were channel-sampled. Two 
samples (SNPR and TH PR) were also taken after extrusion of the mixed bulk clay. In all, 
21 samples were examined and their positions in relation to stratigraphie levels within the 
Boom Clay are shown in Fig. 1.

For major-element determinations, the powdered sample was dissolved by a 
L iB 02-fusion method (Suhr & Ingamells, 1966). S i0 2, A120 3, CaO and P 2O s were 
determined by emission spectrometry in an Ar-plasma. Fe20 3, MgO, N a20 ,  K 20 ,  MnO 
and T i0 2 were determined by atomic absorption spectrometry in an air/acetylene mixture.

Adsorbed water (H 20 _) and loss on ignition were determined by heating at 105°C and 
at 1000°C, respectively. The total water content (H jO 1) was determined with an evolved 
moisture analyser. FeO was determined titrimetrically (Shafer, 1966). Fluorine was
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determined with a specific-ion electrode (Josephson et al., 1977). Total carbon and sulphur 
were analysed by combustion methods at 1100°C and 1350°C, respectively. Carbonate 
contents were determined from the C 0 2 evolved on HC1 treatment. Organic carbon was 
determined with the Walkley-Black method (Allison, 1965). Water-soluble sulphates were 
determined by turbidimetry (Bennett & Reed, 1971; Patterson & Pappenhagen, 1978).

Grain-size distributions were determined by a combination of wet sieving (>38 //m) and 
sedimentation (38-2  //m). The Atterberg plastic and liquid limits were determined 
following the procedure of Sowers (1965). The Pfefferkorn plasticity number (at 15 mm 
residual depth) was determined after van der Velden (1979). Total (external and internal) 
specific surfaces were measured using a water adsorption method (van der Velden, 1978).

Quartz, microcline and plagioclase were quantitatively determined by X-ray dif- 
fractometry (Weber et al., 1973). The calcite content was calculated from the C 0 2 
content. The pyrite content was calculated from the total sulphur value after subtracting an 
amount of sulphur equivalent to the water-soluble sulphate. The theoretical clay mineral 
percentage was calculated from the equilibrium moisture content (van der Velden, 1978) 
and the H 20 -  content after the (modified) method of Keeling (1962).

Semi-quantitative estimations of each clay mineral species in the <2 pm  fraction were 
made from the diffraction traces of the glycol-treated slide mounts. Areas under the basal 
peaks were measured in preference to peak heights. Mite was used as an internal standard 
while the areas of the smectite and kaolinite peaks were divided by 3 (Vandenberghe, 
1978); values so obtained were normalized to 100%. Amounts of each clay species in the 
bulk sample were obtained by multiplying its percentage in the <2 pm  fraction by the 
factor x / 100, where x  represented the percentage of <2 pm  fraction in the bulk sample. 
This was considered justified because for each bulk sample the <2 pm  fraction was mainly 
composed of clay minerals and the sum of the quartz, microcline, plagioclase, pyrite, 
calcite and <2 pm  percentages was close to 100%.

R E S U L T S

Table 1 gives the mean percentages (x ), the lower and upper limits, and standard 
deviations (s) of the different chemical and physical variables and of the mineralogical 
components. There are considerable variations in the results for particular parameters due 
to the presence of specific layers rich in silt or clay, or in organic matter or carbonate. 
During excavation, these different layers are thoroughly mixed so that they do not cause 
problems during the shaping, drying and firing processes.

D I S C U S S I O N  A N D  I M P L I C A T I O N S

Statistical treatment of the data was necessary in order to obtain an insight into the 
relationships between the variables, and to select the appropriate parameters for evaluation 
of the clay.

Structure o f  the analytical data

In the first instance, Pearson correlation coefficients (r) were calculated for the variables, 
the computer programs of Nie et al. (1975) being used. Only the most interesting 
correlations are given in Table 2. On plotting the scatter diagrams, the data were seen to be
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T a b l e  1. Summary of chemical, physical and mineralogical results. Values in % except for 
F in ppm and total specific surface in m2/g.

n
n = 21 min—max

¡ Z l x - x ?

SiOj 62-65 54-19-73-38 5-75
a i2o 3 14-61 8-65-18-41 2-80
Fe20 3 3-35 2-18-4-42 0-57
FeO 1-33 0-89-1-76 0-28
MgO 1-19 0-94-1-34 0-12
CaO 1-36 0-66-3-50 0-81
N a20 0-42 0-33-0-50 0-06
k 2o 3-07 2-55-3-31 0-24
T i0 2 0-83 0-59-0-99 0-13
p 2o 5 0-09 0-08-0-11 0-01
h 2o - 5-85 3-80-7-60 0-86
h 2o + 1-77 0-90-2-55 0-46
Loss on ignition 7-95 3-77-11-38 1-97
stot 1-00 0-46-1-98 0-42
SO2 0-49 0-22-1-41 0-33
Ct„, 1-79 0-69-4-56 0-87
Organic C 1-66 0-64-4-50 0-90
c o 2 0-38 0-00-1-87 0-53
F 558 334-737 119

<2 ¡um 49-6 23-5-63-3 10-8
<10 ,um 63-8 29-6-82-5 14-4
<20 ßm 70-1 32-7-89-0 15-0
>63 ßm 6-1 0-5-33-6 9-0
> 106 ßm 0-9 0 -1 -4 1 1-0
Plastic limit 25-2 18-4-32-3 4-0
Liquid limit 51-0 30-9-63-0 8-3
Plasticity index 25-9 9-4-38-0 6-8
Pfefferkorn plasticity no. 44-5 29-7-60-2 8-0
Total specific surface 140 76-184 27

Quartz 35-2 23-8-58-3 10-0
Microcline 8-8 6-5-11-3 1-3
Plagioclase 4-5 3-2-6-2 0-7
Pyrite 1-5 0-7-2-5 0-5
Calcite 0-9 0-0-4-3 1-2
Smectite 33 19-42 7
Illite 12 3-23 5
Kaolinite 5 1-9 2
Theoretical clay mineral content 56 37-71 8

regularly spaced over the entire range, indicating that the correlation coefficients were 
valid.

S i0 2 is negatively correlated with all the chemical constituents of the clay minerals. Stot 
and organic carbon reflect the reducing circumstances obtaining during sedimentation of 
the clay. T i0 2 shows a positive correlation with A120 3 (r =  0-88) and with <2 /tm (r =  
0-80), indicating a tendency for T i0 2 to be concentrated in the fine particle fraction,
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probably as anatase. F is also positively correlated with A120 3 (r = 0-84) and with <2 pm  
(r =  0-88), which is an indication that F is present as a substitution anion. CaO shows a 
high positive correlation only with C 0 2 (r =  0-98), which demonstrates that most of the 
calcium occurs as a carbonate. MnO, N a20 ,  P 20 5 and SOa show no correlations; they 
are also present in small amounts.

As expected, the <2 /¿m fraction is negatively correlated with S i0 2 and positively 
correlated with the clay mineral components. The >63 ^m  fraction is mainly composed of 
quartz (r =  0-86), which is also shown in the positive correlation with S i0 2 (r =  0-96), and 
in the negative correlations with the clay mineral constituents. Plasticity is mainly 
determined by the clay mineral content, a fact confirmed by the mutual correlations. The 
Atterberg plasticity index shows no correlations, in contrast to the plastic and liquid limits. 
The Pfefferkorn plasticity number, however, gives much higher correlations, 
indicating that this test is better related to the clay content. Therefore, and because the 
Pfefferkorn impact test is also more precise, quicker and easier to carry out than the 
Atterberg method, this test is recommended. The total specific surface is mainly 
determined by the clay minerals, hence the mutual relationship.

Quartz is negatively correlated with the clay minerals, while pyrite is positively 
correlated with these. The reducing sedimentation conditions were conducive to pyrite 
formation. The theoretical clay mineral percentage shows interesting correlations with 
several chemical and physical variables.

The good correlations of the three main clay minerals with the other variables are an 
indication of: (i) the presence of certain elements in a specific clay mineral; (ii) the grain- 
size control on the clay mineralogy; (iii) the influence of these minerals on the plasticity 
and total specific surface; (iv) the validity of the quantification method, taking into account 
the semi-quantitative nature of the results. These statements can best be illustrated by the 
most important clay mineral in the Boom Clay, i.e. smectite.

The statistical treatment indicated that the smectite in the Boom Clay must be 
Fe3+-rich. In order to demonstrate this, several parameters which depend solely on the 
clay content were derived and correlations calculated. The derived variables were:

% rest S i0 2 =  % SiÖ2 — % (free S i0 2 + S i0 2micro + S i0 2plaglo);

% rest A12O j =  % AÍ20 3 — % (A l20 3mlcro + Al20 3plagio),

% rest FeO =  % FeO — % FeOpyrite;

% rest Fe20 3 =  % Fe20 3 + 1-11 % rest FeO.
The significant correlations are given in Table 3. There is a high positive correlation (r =  
0-88) between rest Fè20 3 and smectite (for comparison: r(rest Fe20 3-illite) =  0-55 and 
r(rest Fe20 3-kaolinite) =  0-64), as well as between rest Fe20 3 and rest S i0 2 (r =  0-84) 
and rest A120 3 (r =  0-85). This mutual relationship between AÍ, Si and Fe confirms that 
these elements are the main constituents of the smectite. The smectite particles occur most 
frequently in the <2 pm  fraction (r = 0-82) and it is also well-known they have the largest 
total specific surface (r =  0-90). It therefore follows that rest F e20 3 is highly correlated 
with <2 pm  and total specific surface (r =  0-91 for both). Si and AÍ are also correlated 
with these two physical parameters.

In summary, good mutual correlations are found between:

(i) the chemical variables which are mainly determined by the ratio quartz/clay 
minerals;
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T a b l e  2. Correlation matrix (rt =  21); correlations significant above 0-63 (99-9% confidence level) and above 
0 5 5  (99-5% confidence level)
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SÍO, 1 -0 -9 6  -0 -79 -0-68 -0-85 -0 -7 7 -0-86 -0 -8 2 -0 -96 -0-76
AljOj 1 0-67 0-80 0-87 0-87 0-80 0-81 0-88 0-69
F e A 1 0-24 0-52 0-47 0-78 0-64 0-79 0-77
FeO 1 0-71 0-75 0-36 0-61 0-60 0-49
MgO 1 0-80 0-69 0-52 0-74 0-42
K20 1 0-62 0-61 0-60 0-43
h a 1 0-68 0-80 0-63
H A 1 0-83 0-79
Loss on ignition 1 0-84
s,„t 1

Organic C

<2 /¿m
>63 ¿um
Plastic limit
Liquid limit
Pfefferkorn plasticity no.
Total specific surface

Quartz
Pyrite
Theoretical clay mineral content
Smectite
Mite
Kaolinite

T a b l e  3. Correlations with smectite.

Rest Rest 
AljOj Fe20 3

Rest
S i0 2 < 2 /um

Total
specific
surface Smectite

Rest AljOj 1 0-85 0-84 0-96 0-87 0-70
Rest Fe20 3 1 0-84 0-91 0-91 0-88
Rest S i0 2 1 0-84 0-77 0-68
< 2  /u n 1 0-95 0-82
Total specific surface 1 0-90
Smectite 1

(ii) the physical parameters such as the <2 ¿/m fraction, the Pfefferkorn plasticity 
number and the total specific surface, which in turn are highly correlated with the clay 
mineral content;

(iii) the reduced phases, i.e. pyrite and organic carbon.

The carbonate and feldspar contents (microcline and plagioclase) vary independently.
These conclusions are illustrated in Fig. 2 where the mutually correlated parameters are 

grouped. It must be stressed that the relationships between these groups have not the same 
significance. There is a causal link between the physical parameters and the clay minerals, 
whereas the relation between the latter and the reducing components is mainly 
sedimentological.
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-0 -7 0 -0 -95 0-81 -0-87 -0-75 -0-91 -0 -89 0-96 -0-77 -0-93 -0 -7 0 -0*78 -0-81
0-61 0-95 -0 -8 2 0-85 0-76 0-91 0-85 -0-95 0-70 0-91 0-68 0-82 0-80
0-60 0-79 -0 -57 0-77 0-54 0-64 0-85 -0 -78 0-71 0-79 0-77 0-48 0-52
0-49 0-67 -0-57 0-55 0-62 0-76 0-46 -0 -66 0-60 0*60 0-31 0-77 0-67
0-43 0-87 —0-87 0-69 0-89 0-85 0-77 -0 -8 4 0-48 0-71 0-63 0-72 0-76
0-40 0-85 -0-83 0-74 0-72 0-83 0-74 -0-81 0-43 0-74 0-68 0-70 0-58
0-50 0-84 -0-67 0-83 0-66 0-71 0-92 -0 -8 2 0-55 0-86 0-79 0-49 0-67
0-69 0-75 -0 -56 0-73 0-46 0-73 0-69 -0 -78 0-77 0-92 0-45 0-72 0-66
0-80 0-86 -0 -6 7 0-84 0-62 0-86 0-80 -0-91 0-86 0-89 0-56 0-76 0-80
0-87 0-67 -0-35 0-83 0-33 0-70 0-63 -0 -68 0-95 0-76 0-43 0-64 0-53
1 0-59 -0 -3 2 0-74 0-38 0-75 0-52 -0 -6 0 0-90 0-65 0-27 0-71 0-45

I -0 -85 0-85 0-85 0-91 0-95 -0 -95 0-67 0-93 0-82 0-78 0-72
1 -0 -64 -0 -79 -0 -76 -0 -77 0-86 -0 -39 -0 -73 -0 -73 -0 -61 -0 -64

1 0-58 0-83 0-84 -0 -8 4 0-77 0-84 0-65 0-68 0-67
1 0-79 0-79 -0 -78 0-41 0-68 0-71 0-64 0-63

1 0-80 -0 -9 0 0-73 0-83 0-61 0-85 0-70
1 -0 -88 0-57 0-91 0-90 0-59 0-66

1 -0 -6 9 -0-91 -0 -72 -0 -7 7 -0-81
1 0-72 0-36 0-71 0-58

1 0-72 0-74 0-72
1 0-30 0-38

1 0-65
1

QUARTZ CALCITE FELDSPARS

PYRITE
ORGANIC CARBON

CLAY MINERALS 
AI. Fe. Mg, K.

<  2f j m -  FRACTION 
TOTAL SPECIFIC SURFACE 

PLASTICITY

FlQ, 2. Correlation groups.

Implications

This statistical analysis allows a grouping of the different variables and indicates a 
limited set of parameters which would be of use in characterizing the clay for its ceramic 
end-uses. By selecting some parameters, the others can be calculated fairly accurately. The 
following parameters are proposed.
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<2 ßm fraction. This has been selected because it gives high correlation coefficients with 
many variables and can be determined quickly and precisely in a structural clay product 
laboratory. Least-squares regression lines were calculated between the variables which 
gave correlation coefficients >0-90 with <2 ßm . Thus when the <2 ßm  fraction is 
determined, the other variables can be calculated. From these calculated variables, others 
can be derived for which the correlation coefficients are also >0-90. The regression lines 
are given in Table 4, together with the correlation coefficients and the standard estimation 
errors (5y x). The standard estimation error is simply the standard deviation of the 
analysed values from the calculated values and is a measure of the scatter about the 
regression line. As can be seen, the calculated values correspond very well with the 
analysed data, the deviation being in most cases <3%.

Pyrite and organic carbon. A high correlation exists between the pyrite and organic 
carbon contents (r =  0-90). By means of the regression line one variable can be calculated 
from the other: e.g. pyrite =  0-65 + 0-51 organic carbon (sy x = 0-2).

Carbonates. CaO and calcite are highly correlated (r = 0-98). After C 0 2 content 
determination, the total calcium content can be calculated from the regression line: CaO =  
0-79 + 1-50 C 0 2 (sy x =  0-17).

Feldspars. The total feldspar content in the Boom Clay varies between 9-8 and 15-7% 
(x =  13-3%). Feldspars act as fluxes during the firing of ceramic ware but differences in 
amount in the Boom Clay are not wide enough to cause any significant variations in firing 
behaviour. Therefore, and also due to difficulties in quantifying feldspar minerals, feldspar 
contents are not used as a routine control.

T a b l e  4. R eg ress io n  lines, sy x, an d  r va lues w ith

(y c a lc  y  ana l}

n

Regression line sy.x r

S i0 2 = 87-67 — 0-50 <2 ßm 1-74 -0 -9 5
a i2o 3 = 2 -4 2 -0 -2 5  <2 ßm 0-86 0-95
Rest A12O j = 0*69 + 0-26 <2 ßm 0-86 0-96
Total Fe20 3 = 1 -84 + 0-06 <2 ßm 1-02 0-93
Rest Fe20 3 = 1-93 + 0-04 <2 ßm 0-20 0-91
<10 ßm = -1 -6 0  + 1-32 <2 ßm 1-6 0-99
>20 ßm = 1 0 0 -7 5 - 1-43 < 2ßm 2-4 -0 -9 8
Pfefferkorn plasticity no. = 11-25 + 0-67 <2 ßm 3-3 0-91
Total specific surface = 21-61 + 2-39 <2 ßm 8 0-95
Quartz = 7 8 -7 2 -0 -8 8  <2 ßm 2-9 -0 -9 5
Theoretical clay mineral content = 23-97 + 0-65 <2 //m 3 0-93

Loss on ignition = 28-65 - 0 - 3 3  S i0 2 I -00 -0 -9 6
Fe20 3 = - 0 - 1 7 +  0-73 total Fe20 3 0-34 0-91
h 2o + = -0 -4 2  + 0-02 total specific surface 0-67 0-92
Rest S i0 2 = 36-37 — 0-50 quartz 2-87 -0 -9 3
HjO* = — 1-21 + 0-16 theoretical clay mineral content 0-66 0-97
h 2o - = —0-05 + 0-11 theoretical clay mineral content 1-18 0-92
Smectite = 2-60 + 0-21 total specific surface 4 0-90
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C O N C L U S I O N S

A detailed chemical, physical and mineralogical investigation was undertaken to evaluate 
the Boom Clay as a raw material for the structural clay product industry. Significant 
variations have been found in composition and properties of the different lithological units. 
Statistical analysis of the results has revealed mutual relationships between the variables 
which characterize the clay. These variables can be placed in four correlation groups: a 
quartz/clay mineral group, a reducing component group, a carbonate group and a feldspar 
group. This treatment of the data has allowed selection of three parameters to be analysed: 
<2 pm  fraction, organic carbon content and C 0 2 content. The other variables can be fairly 
accurately calculated by means of least-squares regression lines.

This approach justifies the use of only a limited number of analyses to characterize the 
clay, and can be applied directly in the control of the raw material for the manufacture of 
bricks and bloated clay products.

A C K N O W L E D G E M E N T S

The first author thanks the IW ONL for financial support. The advice and criticism of Dr R. Ottenburgs is 
gratefully acknowledged. The laboratory assistance by D. Coetermans and C. Moldenaers is greatly 
appreciated.

R E F E R E N C E S

A l l i s o n  L.E. (1965) Organic carbon. Pp. 1366-1378 in: Methods o f  Soil Analysis (C. A. Black, editor).
American Society of Agronomy, Wisconsin, U.S.A.

B e n n e t t  H. & R e e d  R.A. (1971) Chemical Methods o f  Silicate Analysis-A  Handbook, pp. 227-233. British 
Ceramic Research Association, Academic Press, London.

J o s e p h s o n  M., C o o k  E.B.T. & D i x o n  K. (1977) A rapid method fo r  the determination o f  fluoride in 
geological samples. Report no. 1886, National Institute for Metallurgy, Randburg, South Africa.

K e e l i n g  P.S. (1962) The examination of clays by IL/M A. Clay Miner. Bull. 5, 155-158.
N ie  N .H ., H u l l  C .H ., J e n k in s  J .G ., St e in b r e n n e r  K . &  Be n t  D .H . (1 9 7 5 ) Statistical Package fo r  the 

Social Sciences, pp . 2 7 6 -3 0 0 . M cG ra w -H ill B ook  C o m p a n y , N ew  Y ork .
P a t t e r s o n  G.D. & P a p p e n h a g e n  J.M. (1978) Sulfur. Pp. 463-530 in: Colorimetric Determination o f  

Nonmetals (D. F. Boltz & J. A. Howell, editors). John Wiley & Sons, New York.
S h a f e r  H.N.S. (1966) The determination of iron(II) oxide in silicate and refractory materials. Analyst 91, 

763-770.
S o w e r s  G.F. (1965) Consistency. Pp. 391-399 in: Methods o f  Soil Analysis (C. A. Black, editor). American 

Society of Agronomy, Wisconsin, U.S.A.
S u h r  N.H. & I n g a m e l l s  C.O. (1966) Solution technique for analysis of silicates. Analytical Chemistry 38, 

730-734.
V a n d e n b e r g h e  N. (1978) Sedimentology o f  the Boom Clay (Rupelian) in Belgium. Verhandeling Koninklijke 

Academie W entenschappen, Letteren en Schone Kunsten België— Klasse Wetenschappen X L 147. 
v a n  d e r  V e l d e n  J.H. (1978) Evenwichtswatergehalte en specifiek oppervlak van kleien— Onderzoeks- 

voorschriften. Rapport nr. 78-01607, CTI-TNO, Apeldoorn, NL. 
v a n  d e r  V e l d e n  J.H. (1979) Analysis of the Pfefferkorn test. Ziegelindustrie Int. 9,532-542.
W e b e r  F., L a r q u e  Ph. & F e u r e r  R. (1973) Mise au point d’une méthode d’analyse minéralogique 

quantitative par diffraction des rayons X .A nalusis  2 ,15-29.

R E S U M E :  L’argile de Boom est une matière première importante pour l’industrie des briques 
et des argiles gonflantes en Belgique. Ce dépôt d’argile peut être subdivisé en plusieurs couches.
On a effectué des analyses détaillées des propriétés chimiques, physiques et minéralogiques en 
vue d’obtenir des indications sur les paramètres qui caractérisent ces différentes couches litho
logiques ainsi que de ceux qui sont importants en vue des applications. On calcule des coefficients
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de corrélation de Pearson entre les variables. Ceux-ci peuvent être classés en 4 groupes: quartz/ 
argile, matières réductrices, carbonates et feldspaths. Le traitement des données permet de 
sélectionner trois paramètres qui doivent être analysés: la fraction <2 pm, le carbone organique 
et le C 0 2. Les autres variables peuvent aisément être calculés avec précision au moyen de 
courbes de régression obtenues par moindres carrés.

K U R Z R E F E R A T :  Boom-Ton (Rupelton) ist ein bedeutender Rohstoff für die belgische 
Baustoffindustrie. Er kann in verschiedene Einheiten untergliedert werden. Zur Kennzeichnung 
der Eigenschaften dieser unterschiedlichen lithologischen Einheiten wurden chemischen, 
physikalische und mineralogische Analysen durchgeführt, deren Ergebnisse statistisch verrechnet 
wurden. Anhand der Pearson-Korrelationskoeffizienten wurden vier Gruppen unterschieden: 
Quartz/Tonmineral, reduzierende Komponenten, Carbonate und Feldspäte. Die für die Unter
scheidung der Gruppen wichtigsten Parameter waren der Gehalt an Korngrößen <2 pm , an 
organischem Kohlenstoff und an C 0 2. Daraus konnten die übrigen analytischen Kenngrößen 
durch Regression mit leidlicher Genauigkeit berechnet werden.

R E S U M E N :  La arcilla es una materia prima importante para la industria belga de productos 
arcillosos. La formación arcillosa de Boom puede dividirse en varias subunidades litológicas. 
Para conocer Ios parámetros que caracterizan las diferentes unidades litológicas y cuáles son 
Ios que afectan al conjunto de las propiedades de la arcilla, se han llevado a cabo detallados 
análisis químicos, físicos y mineralógicos. Se han calculado Ios coeficientes de correlación de 
Pearson entre variables, lo cual permite clasificarlas en cuatro grupos de correlación: un grupo 
cuarzo/mineral de la arcilla, un grupo de componentes reductores, un grupo de carbonatas y 
uno de feldespatos. Este tratamiento de Ios datos ha permitido hacer una selección de tres pará
metros analíticos: fracción <2 pm, carbono orgánico y C 0 2. A partir de estos parámetros, 
las otras variables pueden determinarse con bastante precisión, mediante regression lineal.


