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Analyses of the influences of climate variability on local Zooplankton populations and those 
within ocean basins are relatively recent (past 5—10 years). What is lacking are 
comparisons of Zooplankton population variability among the world’s oceans, in contrast 
to such global comparisons of fish populations. This article examines the key questions, 
capabilities, and impediments for global comparisons of Zooplankton populations using 
long-term (>10 year) data sets. The key question is whether global synchronies in 
Zooplankton populations exist. If yes, then (i) to what extent are they driven by “bottom- 
up” (productivity) or “top-down” (predation) forcing; (ii) are they initiated by persistent 
forcing or by episodic events whose effects propagate through the system with different 
time-lags; and (iii) what proportion of the biological variance is caused directly by physical 
forcing and what proportion might be caused by non-linear instabilities in the biological 
dynamics (e.g. through trophodynamic links)? The capabilities are improving quickly that 
will enable global comparisons of Zooplankton populations. Several long-term sampling 
programmes and data sets exist in many ocean basins, and the data are becoming more 
available. In addition, there has been a major philosophical change recently that now 
recognizes the value of continuing long-term Zooplankton observation programmes. 
Understanding of life-history characteristics and the ecosystem roles of Zooplankton are 
also improving. A first and critical step in exploring possible synchrony among Zooplankton 
from geographically diverse regions is to recognize the limitations of the various data sets. 
There exist several impediments that must be surmounted before global comparisons of 
Zooplankton populations can be realized. Methodological issues concerned with the diverse 
spatial and temporal scales of “monitored” planktonic populations are one example. Other 
problems include data access issues, structural constraints regarding funding of interna­
tional comparisons, and lack of understanding by decision-makers of the value of 
Zooplankton as indicators of ecosystem change. We provide recommendations for 
alleviating some of these impediments, and suggest a need for an easily understood 
example of global synchrony in Zooplankton populations and the relation of those signals to 
large-scale climate drivers.
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Introduction 1992; Figure 1). The causes of such synchrony have
been hotly debated, and include forcing by climate (acting 

Large-scale synchrony of small pelagic fish populations has directly on physical oceanographic characteristics or in-
been recognized for the past 20 years (Kawasaki, 1983, directly through lower trophic levels) and fishing. To help
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Figure 1. (A) Historical catch of Pacific sardine from the fisheries off Japan, California, and Peru—Chile (modified from Kawasaki ( 1992 ) 
updated with more recent catches). (B) Salmon catch in Alaska and Washington—Oregon—California (WA—OR—CA) regions of the 
Northeast Pacific. Figures are from Batchelder and Powell (2002). Salmon data are from Shepard et al. (1985), updated with catches 
through 1990. Post-1990 harvest of salmon in the WA—OR—CA region were restricted by regulation and are not shown.

resolve such issues, similar climate—population connec­
tions need to be investigated for Zooplankton, which are 
a critical link in the web from climate to fish. Many o f the 
“ standard” climate indices now used by ocean researchers 
were defined in the past 10 years and compared to 
variations in local Zooplankton populations, for example, 
the North Atlantic Oscillation (NAO; Hurrell, 1995; Plan­
que and Reid, 1998), northern hemisphere temperature 
(NHT; Heyen et al. 1998; Beaugrand et al., 2002), Pacific 
Decadal Oscillation (PDO; Mantua et a l ,  1997; McGowan 
et al., 2003), and the Northern Oscillation Index (NOI; 
Schwing et al., 2002). Comparisons o f Zooplankton varia­
tions within ocean basins, and how they relate to these 
climate indices, are providing evidence that synchrony of 
Zooplankton populations may occur over large spatial 
scales (e.g. Brodeur and Ware, 1992; Fromentin and 
Planque, 1996; Conversi et al., 2001; Batchelder et al., 
2002; Beaugrand and Ibañez, 2002). Brodeur et al. (1996) 
found that interannual variations o f Zooplankton biomass at

Ocean Station P in the Subarctic Pacific and at offshore 
stations in the CalCOFI region of southern California were 
weakly negatively correlated. Beaugrand and Reid (2003) 
reported coherent temporal patterns o f North Atlantic 
phytoplankton, Zooplankton, and salmon with the North 
Atlantic Oscillation and northern hemisphere temperature. 
Zooplankton species composition has exhibited coherent 
shifts within the eastern North Pacific (Batchelder et al., 
2002) and the North Atlantic (Beaugrand et al., 2002) 
basins. The next step after these within-ocean basin com­
parisons is to conduct a rigorous examination of Zooplank­
ton population variability (including biomass estimates, 
species composition, and phenology [timing o f reproduc­
tion, life-history events, etc.; Greve, 2003]) among ocean 
basins on a global scale. But this has been slow and, as we 
shall describe, there are significant difficulties. The object­
ives o f this article are to describe the motivation and 
key questions, the current capabilities, and the impediments 
to identifying whether marine Zooplankton variations are
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synchronous at large (i.e. between ocean) scales, which will 
help to distinguish the factors causing large changes in 
global marine ecosystems.

Key questions
Several critical questions arise when comparing Zooplank­
ton data among ocean basins. These can be broadly grouped 
into two classes: (i) how to do such global comparisons; 
and (ii) why do such global comparisons. We begin with 
the scientific questions that should motivate global compar­
isons o f Zooplankton populations, and discuss the method­
ological issues later in the Impediments section.

Understanding the characteristics and drivers o f long­
term fluctuations o f Zooplankton populations on a global 
basis may provide opportunities for adaptive management 
that will maintain robust, healthy marine ecosystems. If 
large changes (e.g. regime shifts) in the productivity o f the 
system occur, it is important to recognize them early in 
order to provide warnings to fishery and resource managers 
and potentially to adopt measures to mitigate the changes 
(or at least the impacts o f the changes). Moreover, Taylor 
et aí. (2002) suggest that subtle ecosystem effects o f climate 
change may be amplified by complex biological interac­
tions o f the ecosystem. Thus, changes in Zooplankton, or 
other biological constituents, may be better early indicators 
o f regime shifts than physical changes.

Global synchrony
Does there appear to be global synchrony in marine 
Zooplankton populations? This question has two important 
components: the definition o f “ synchrony” , and which 
characteristics o f Zooplankton populations should be con­
sidered. Synchrony can include variations that are in phase, 
phased-shifted (time lagged), or o f opposite phase. There 
are tantalising hints o f synchrony in global Zooplankton 
populations. For example, environmental shifts occurred in 
both the North Atlantic and North Pacific during the mid to 
late 1980s (Figure 2). These shifts were accompanied by 
changes in Zooplankton (Mackas et aí., 2001; Beaugrand 
and Reid, 2003). In the western North Pacific, Zooplankton 
(Neocalanus) abundance increased after the late 1980s 
(Tadokoro et aí., in press). A  trend o f increasing Calanus 

finmarchicus abundance in the G ulf o f Maine during
1960—1990 (Conversi et ah, 2001) was opposite to that 
o f C. finmarchicus in the eastern North Atlantic and North 
Sea (Planque and Reid, 1998). In both instances, Calanus 
showed strong interdecadal trends that were related to the 
NAO, but the long-term trends were o f opposite sign on 
either side o f the North Atlantic, suggesting that the NAO 
affects the circulation and temperature patterns of the west­
ern and eastern Atlantic in different ways (Conversi et aí., 
2001). However, Planque and Reid (1998) also point out 
the sometimes ephemeral nature o f such climate— 
Zooplankton relationships.

Opposing long-term trends in Zooplankton abundance (or 
biomass) have also been observed in different coastal up- 
welling systems over the past 4—5 decades (e.g. increasing 
in the Benguela Current vs. declining in the California, 
Guinea, and Humboldt Currents), despite the globally 
observed phenomenon o f intensified wind-driven upwelling 
(Verheye, 2000). These and other studies suggest that some 
degree o f synchrony in biomass and abundance occurs 
among geographically widely separated Zooplankton pop­
ulations. Beyond evidence o f synchrony in biomass or 
abundance among Zooplankton populations, there may be 
synchrony in other population aspects — such as life-history 
events related to seasonal migrations to the surface (e.g. 
phenology; Mackas et ah, 1998), other seasonal responses 
(Greve et aí., 2001), or changes in the rates o f significant 
life-history processes. There is also the question o f which 
component(s) o f the Zooplankton show global synchrony: 
the same species that occurs in different ocean basins; 
similar genera; guilds o f species; or compositional changes 
in species assemblages. Therefore, the question “ Is there 
synchrony among global marine Zooplankton popula­
tions?” is more complex than simply comparing time- 
series o f biomass fluctuations, so that even if  the initial 
answer appears to be “no” , the problem warrants closer 
examination.

Mechanisms causing synchrony
If global synchrony is detected, then what are the re­
sponsible mechanisms? Is such synchrony related to cli­
mate variability acting directly on the Zooplankton or does 
it occur through more complex bottom-up forcing via the 
foodweb? Fluctuations in Zooplankton populations might 
also be related to predation (top-down forcing). This has 
been difficult to assess (Reid et ah, 2000), except for simple 
systems with few alternative linkages (e.g. Daskalov, 2002). 
There are tantalising hints, however, such as Zooplankton 
and pelagic fish in coastal upwelling systems (Cury et ah, 
2000), that suggest top-down control o f Zooplankton pop­
ulations may be significant. In practice, Zooplankton fluc- 
ftiations are likely to occur as a result o f both bottom-up and 
top-down forcing, therefore, a key question is how much of 
the observed Zooplankton variation is due to each type of 
forcing (e.g. Verheye and Richardson, 1998; Verheye, 2000; 
Kang et aí. 2002; Tadokoro et ah, in press).

Zooplankton variations may also be due to rare or episodic 
events. Once such an event has occurred, its effects may 
propagate up (or down) the foodweb with a (perhaps un­
known) time or spatial lag. Examples include storms 
(Peterson et ah, 2002) and introduced non-indigenous 
species such as have been observed in the Black Sea 
(Shiganova, 1998). These are inherently local processes with 
(initially) small spatial scales, and the time-lags from 
perturbation to response may make identification o f the 
initial perturbation almost impossible. If  episodic events are 
important drivers o f Zooplankton variability generally, they
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Figure 2. Schematic drawing showing North Pacific (PDO) and North Atlantic (NAO) climate indices, and timing of changes in the trends 
of plankton abundance and phenology time-series. Arrows indicate time of change, not direction of change. Data are from: CalCOFI 
(Rebstock, 2002a, b; McGowan et ed., 2003); BC and Oregon (Mackas et ed., in press); winter season Kuroshio region (Nakata and Hidaka, 
2003); Korea (Kang, et ed., 2002); Neocalanus peak timing (Mackas et ed., 1998); North Sea plankton (Edwards et ed., 2002); NE Atlantic 
plankton (Beaugrand and Reid, 2003); NW Atlantic copepods (Jossi et ed., 2003).

will complicate the interpretation o f globally forced co­
herence (such as by climate) in Zooplankton time-series.

Capabilities
To conduct an analysis o f global synchrony of Zooplankton 
populations requires many long-term data sets from a vari­
ety o f locations around the world. Fortunately, several data 
sets with 10 or more years o f continuous data do exist 
(Table 1). Foremost among these are two programmes that 
have conducted spatially extensive Zooplankton sampling 
for more than 50 years — one each from the Atlantic and 
Pacific. In the North Atlantic, the Continuous Plankton 
Recorder (CPR) programme has been in operation using 
similar methods since 1931 (Reid et a!., 2003 ). In the North 
Pacific, the California Cooperative Oceanic Fisheries In­
vestigation (CalCOFI) programme has been sampling Zoo­
plankton off California since 1951. Both have been used to 
explore regional relationships between climate forcing and 
Zooplankton populations (Colebrook, 1978; Chelton et a!., 
1982; Roemmich and McGowan, 1995; Beaugrand et a!., 
2002; Edwards et al., 2002; Rebstock, 2002a). Other data 
sets that include spatially and temporally extensive sam­
pling of Zooplankton, but are less well analysed, exist for

several eastern boundary current upwelling systems (e.g. 
the Benguela Current, the Humboldt Current, and the 
Guinea Current), the Black Sea, the Southern Ocean, and 
western and eastern sides o f the North Pacific (Table 1). 
Several other programmes have conducted frequent sam­
pling over extensive periods of time, but at only one or 
a few locations (Table 1 ).

A  significant recent advance is that the data from many 
o f these programmes are gradually becoming widely avail­
able, either through their own website (e.g. Station L4, 
English Channel: www.pml.ac.uk/L4) and/or by contribut­
ing data to the W orld Ocean Database (www.nodc.noaa. 
gov/OCL/plankton). International efforts such as the Global 
Ocean Data Archaeology and Rescue (GODAR) project are 
also helping to identify, recover, and provide access to 
historical Zooplankton data, especially from large plankton 
collections held in laboratories o f the former Soviet Union.

Recently, investigators have begun to move beyond 
single-species analyses to comparisons o f changes in Zoo­
plankton community composition in relation to climate 
variability (e.g. Greve et al., 2001; Mackas et al., 2001; 
Beaugrand et al., 2002). Chiba and Saino (2003) relate 
Zooplankton community composition in the Japan/East Sea 
to ENSO scale climate variations. W hen combined with 
changes in phenology (Mackas et al., 1998), such as the

Downloaded 
from 

http://icesjm
s.oxfordjournals.org/ by 

guest on 
February 

6, 2013

http://www.pml.ac.uk/L4
http://www.nodc.noaa
http://icesjms.oxfordjournals.org/


Global synchronies in marine Zooplankton populations 449

Table 1. Representative long time-series (with >10 years of consecutive sampling) Zooplankton observation programmes. More detailed 
compilations which include shorter time-series but for limited ocean regions are available in ICES (2003) and Alexander et al. (2001).

Programme Start and end years Location Source

North Pacific
CalCOFI 
Station PAPA

Newport, OR, USA

Vancouver Island Shelf 

Odate plankton time-series

1949—continuing (quarterly) 
1956—continuing (3 times per 
year)
Intermittent since 1969, 
continuous since 1996 
(5 times per year)
1985—continuing (annual)

1951 —continuing (monthly)

Hokkaido University, Oshoro- 1953—2001 (annual)
Maru time-series

Japan Meteorological Agency 
(JMA)

National Research Institute of 
Fisheries Science (Japan), fish 
egg and larvae survey 

Hokkaido National Institute of 
Fisheries, A line monitoring 

National Fisheries Research and 
Development Institute (Korea), 
oceanographic survey

North Atlantic
Continuous Plankton Recorder 

(CPR)
Helgoland Roads

Dove Marine Laboratory 
Stazione Zoologica Anton 

Dohm; Station MC 
Station C, western 

Mediterranean 
Plymouth Marine Laboratory, 

Station L4 
Icelandic Monitoring 

Programme 
Emerald Basin

MARMAP and Follow-up 
Programme 

Station 2

South Atlantic
Cape Routine Area Monitoring 

Programme, expanded in 
1961 to Southern Routine 
Area Monitoring Programme

1967, 1972—continuing 
(seasonal)

1971—continuing (annual)

1987—continuing (5—8 times 
per year)
1965—continuing 
(6 times per year)

California www-mlrg.ucsd. edu/ calcofi.html
North Pacific, 50 °N 145 °W Fulton (1983); Mackas et al.

(1998)
Offshore transect at 44°39.1'N  Peterson and Keister (in press) 
(Oregon)

1931 —continuing (monthly)

1974—continuing (daily to 
weekly)
1968—continuing
1984—continuing (weekly to 
bi-weekly sampling)
1985—1995 (weekly)

1988—continuing (weekly)

1961—continuing (annual)

1984—continuing 
(twice per year)
1977—continuing (quarterly)

1972—1997; 2002—continuing 
(weekly)

1951 — 1961 (monthly),
1961 — 1967 (monthly)

Southwest shelf of Vancouver 
Island
Western North Pacific 
(Kuroshio, Oyashio, and 
transition region east of Japan) 
Western and central Subarctic 
North Pacific, and Bering Sea 
(mostly along 180°E)
Several transects in western 
North Pacific (all around 
Japanese waters)
Western subtropical North 
Pacific (including Kuroshio 
region)
Western Subarctic North Pacific 
(Oyashio region)
Korean waters

North Atlantic

Southern North Sea (54.19°N 
7.9 °E)
Central-west North Sea 
Gulf of Naples (40 °48.5 'N 
4 ° 15' E)
Gulf of Tigullio, Ligurian Sea, 
western Mediterranean 
Western English Channel

Transects radiating from Iceland

Scotian Shelf, NW Atlantic

NE United States continental 
shelf
Lower Narragansett Bay, RI, 
USA

Western Cape coast of South 
Africa (32-34° S 
16°30' —18° 15'E), 
southwestern Cape coast of 
South Africa (32-38°S 
15°30'—22°E)

Mackas et al. (2001)

Odate (1994); Tomosada and 
Odate (1995); Tadokoro (2001)

Sugimoto and Tadokoro (1997); 
Kobari and Ikeda (2001a)

Chiba and Saino (2003); 
Tadokoro et al. (in press)

Nakata et al. (2001)

Saito et al. (1998); Kasai et al. 
(2001)
Kang (2001); Kang et al. (2002)

www.sahfos.org

Greve et al. (1996)

Evans and Edwards (1993) 
Mazzochi and Ribera d’Alcala 
(1995)
Licandro and Ibanez (2000) 

www.pml.ac.uk/L4 

Assthorson and Gislason (1995) 

DFO (2000)

Sherman (1980)

Deason and Smayda (1982)

Verheye and Richardson (1998); 
Verheye et al. (1998); Verheye 
(2000)

{Continued on next page)
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Table 1 (continued )

R. I. Perty  et al.

Programme Start and end years Location Source

Pelagic Fish Stock Assessment 1983—continuing (3 times per Most of South Africa’s west and Verheye and Richardson (1998);
surveys year) south coasts (28° 30 'S 27° E) Verheye et al. (1998); Verheye 

(2000)
Walvis Bay Routine Area 

Monitoring Programme
1957—1965 (monthly) Namibian coast, vicinity of 

Walvis Bay (21-24° S 
12°30'-14°30'E)

Kollmer (1963); 
Unteriiberbacher (1964)

SWAPELS Programme 1972-1989 (monthly) Namibian coast (17° 30 '— 27 °S; 
10° 30' —15° E)

(Verheye et al., 1998)

Elephant Island 1977—continuing Elephant Island region of the 
Antarctic Peninsula

Siegel et al. (1997); Siegel et al. 
(1998)

South Pacific
IMARPE Zooplankton sampling 1964—continuing (seasonal) Peru coast and continental shelf Carrasco and Lozano (1989)
Antofagasta Zooplankton 1991-2003 Northern Chile coast Escribano and Hidalgo (2000)

sampling
IFOP Zooplankton sampling 1985—continuing (seasonal) Northern Chile shelf www.IFOP.cl

life-history processes mentioned above, these provide broader 
scope for comparing synchrony of Zooplankton populations 
and communities than just abimdance or biomass alone.

Institutional support for long-term plankton sampling 
programmes has been intermittent at best. The most 
compelling evidence o f this is the recurring difficulty o f 
maintaining time-series sampling for some o f the longest 
and most valuable Zooplankton series: the CPR programme 
in the North Atlantic, Station P in the North Pacific, and the 
CalCOFI programme. Funding problems, and the fact that it 
takes many years o f sustained sampling to document lower 
frequency changes or regime shifts, have resulted in data 
gaps in space and time. However, recently there has been 
increased recognition o f the value o f long time-series 
studies o f Zooplankton, in particular because data from 
some o f these long time-series have shown patterns clearly 
correlated with climate variability. W ithin the past 5 years, 
several marine science organizations have contributed to 
the establishment o f a new CPR programme in the North 
Pacific (Batten et aí., 2003). In the western North Pacific, 
frequent sampling (6—8 observations per year) is also being 
conducted in the Oyashio region (Saito et aí., 1998; Kasai 
et aí., 2001). There is an increased appreciation for the 
value o f continuing these long-term observation pro­
grammes, perhaps as part o f future Global Ocean Observing 
Systems (GOOS).

Impediments
Despite the improved capabilities just discussed, there 
remain impediments to detecting and understanding global 
synchrony in Zooplankton variations. These impediments 
can be classified as issues o f (i) access to data, (ii) 
methodology, (iii) life history, and (iv) structure, including 
incomplete global observations o f Zooplankton populations.

Data access issues
Foremost among these impediments are issues relating to 
access to data. This has two components: generating data 
by analysing the plankton samples and making the data 
broadly available. Many programmes, such as CalCOFI, the 
Odate collection from the western North Pacific (Odate, 
1994), and the SWAPEL (South W est Africa Pelagic Egg 
and Larval) surveys along the coast o f Namibia from 1972 
to 1989 still have thousands of Zooplankton samples 
unanalysed in jars. Gross measurements such as displace­
ment or settled volume may have been made, but taxo­
nomic identifications are lacking. As the examples cited 
above indicate, changes in the Zooplankton fauna are often 
compositional, e.g. a change from northern to southern 
species, rather than changes in overall Zooplankton bio­
mass. Retrospective analyses o f Zooplankton composition 
from existing sample collections are difficult to fimd. Once 
samples have been analysed, there can be additional 
difficulties in making the data widely available, such as in 
publications that receive broad distribution or, recently, 
through web-accessible computer databases. Many Zoo­
plankton data sets are reported inadequately in the literature 
and are not submitted to repositories for long-term archival.

Methodological issues
Methodological problems are a major impediment to global 
comparisons o f Zooplankton data. They fall into two 
general categories: sampling and analysis. Sampling issues 
include the use o f widely different gears for capturing 
Zooplankton, ranging from simple ring-nets (with various 
mesh sizes, mouth diameters, and mouth-obstructing 
bridles) towed vertically (from various depths) to obliquely 
towed and depth-stratifying devices using sophisticated 
electronic environmental monitoring systems, to pumps
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and, most recently, visual (camera) and acoustic systems 
(e.g. Harris et al., 2000; Wiebe and Benfield, 2003). These 
different methods each have different selectivities for 
Zooplankton. Moreover, the sampling design can interact 
with Zooplankton behaviour, such as diel vertical migration 
and responses to environmental or food conditions, to affect 
the efficiency o f capture. Often samples from night and day 
can be dramatically different, and these differences need to 
be considered in evaluating changes at longer time scales.

The frequency and time period o f sampling also vary, 
from concentrating on a particular time (e.g. month) and 
place to once-a-season or once-a-year sampling for large 
monitoring programmes. How to compare data collected at 
daily, weekly, monthly, seasonal, and longer time scales is 
an important problem. To determine whether Zooplankton 
populations from different oceans have coherent temporal 
patterns at annual and longer scales, multi-year changes in 
Zooplankton biomass or composition must be “ separated” 
from other, perhaps larger, sources o f variability at various 
spatial and temporal (e.g. diel, seasonal, etc.) scales.

W hen one moves beyond measurements o f biomass or 
volume to species composition, the similarity and consis­
tency o f taxonomic identifications in, and among, long-term 
programmes becomes important. Revisions o f taxonomy 
are not uncommon and separation of a (formerly) single 
species into two species occurs frequently (e.g. Neocala­
nus", Miller, 1988). We can expect more detailed taxonomic 
distinctions to arise as analyses o f Zooplankton genetics 
continue to develop.

Once the samples have been collected and the Zooplank­
ton composition enumerated, there are many differences in 
how these data are analysed statistically. All long-term 
sampling programmes have gaps in time and space; the 
extent o f these gaps and how they are handled during data 
analysis can complicate global comparisons among Zoo­
plankton data. Few fisheries data sets show statistical 
stationarity (Bakun, 2001 ), in which properties such as the 
mean and variance remain constant over time, and there is no 
reason to expect Zooplankton time-series to be any different. 
Statistical approaches such as adjustments for autocorrela­
tion (Pyper and Peterman, 1998; Planque, 2000), ensemble 
averaging, filtering methods (Licandro et al., 2001), or 
calculations o f anomalies from a regional climatology (even 
development o f the climatology itself) are crucial for 
separating multi-year changes from other sources o f vari­
ability (e.g. seasonal, spatial ), but their application can differ 
greatly among programmes in different locations.

Life-history issues
Global comparisons o f Zooplankton population dynamics 
are hindered by inadequate understanding o f the life 
histories and ecosystem processes o f Zooplankton. For 
example, the cues that induce and end diapause in copepods 
are still largely unknown (Dahms, 1995). Diapause transi­
tion, and the changes in depth distribution that result, will

impact measured abundances. Also unknown is the extent 
to which species’ responses to these cues are flexible (e.g. 
Mackas et al., 1998). As with fish life histories, the wide 
range o f sizes that Zooplankton go through as they develop 
from egg to adult complicates understanding o f what controls 
Zooplankton recruitment to the reproductive adult stage.

Structural issues
Organizational support for long-term Zooplankton studies 
and their global comparisons is generally lacking, but is 
needed. The importance and relevance o f long-term Zoo­
plankton data are not understood by many decision-makers 
and funding agencies. In contrast to fisheries, there is no 
mandated requirement to sample Zooplankton. For exam­
ple, Directive 2000/60/EC o f the European Parliament 
(dated 23 October 2000) established a legal framework 
for Community action in the field o f water policy. This 
framework required sampling o f phytoplankton, benthic 
invertebrates, and fish, but not Zooplankton. The conse­
quence o f not requiring Zooplankton observations means 
that Zooplankton observations will likely not be made in the 
context o f this policy. This will reduce organizational 
support for Zooplankton sampling, with the result that 
insights into climate and anthropogenic forcing o f Zoo­
plankton variations and early warning o f substantial tem­
poral shifts o f aquatic and marine systems will be harder to 
achieve. There are also few, if  any, formal procedures to 
encourage and fund collaborative comparisons o f Zooplank­
ton time-series data collected from multiple sites world­
wide; each national fimding agency has specific guidelines 
and schedules for fimding scientific projects.

Recommendations
In order to address the key questions identified above and to 
encourage and facilitate global comparisons o f long-term 
Zooplankton data, we recommend the following:

i Existing at-risk Zooplankton data must be protected 
from loss by submitting them to appropriate long-term 
data repositories.

ii Selective (cost-effective) samples from existing long­
term Zooplankton collections (in jars) should be ana­
lysed for species composition.

iii Rigorous intercalibrations should be conducted to 
document gear and sampling design differences and 
develop conversion factors.

iv “Voucher” specimens (and samples) preserved in 
ethanol for resolution o f taxonomic issues should be 
retained.

V A common set o f statistical and visualization methods 
should be developed and made widely available.

vi There should be greater emphasis on between-species 
and between-region comparisons o f Zooplankton life- 
hi stories.
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vii There should be broad publication o f the results o f 
plankton monitoring programmes, especially those that 
link temporal fluctuations to environmental or fisheries 
conditions to demonstrate the value of Zooplankton 
observations as ecosystem indicators that may provide 
early warning o f shifts in ocean ecosystems.

Data access issues
Protecting existing data from loss (e.g. moving data from 
written documents in filing cabinets to computer archives) 
is clearly the top priority. Analysed data need to be 
submitted to, and made available through, a central data 
repository. One such repository is the W orld Ocean 
Database at the US National Oceanographic Data Center 
(www.nodc.noaa.gov/OCL/plankton), which archives data 
produced by various levels o f processing and with various 
degrees o f confidentiality. It is the responsibility o f those in 
charge o f Zooplankton programmes to ensure this is done, 
and programmes such as the Global Oceanographic Data 
Archaeology and Rescue (GODAR) are available to help 
with recovery o f old data.

A further key requirement is to process samples that have 
been collected but remain unanalysed in jars. Considering 
the huge number o f such samples, this will be a major and 
expensive task, and for complete analysis it may have to 
wait for machine-automated or new genomic methods. 
Targeted processing o f subsamples could be an alternative 
for specific global comparison projects. Statistical analyses 
o f spatial and temporal autocorrelation scales should be 
undertaken to guide such subsampling, so that retrospective 
studies are done efficiently.

Methodological issues
One approach to resolving issues relating to different 
sampling techniques is to develop and promote a standard­
ized protocol. This approach has been advocated by the 
Joint Global Ocean Flux Study, which specified a sampling 
methodology to ensure data inter-comparability. However, 
this has the disadvantage o f changing sampling techniques 
and therefore disrupting ongoing time-series for those 
programmes that are not using the standard approach. 
Moreover, it does not allow for the adoption o f regionally 
specific optimal protocols. It is unrealistic to sample higher 
latitude regions, which are dominated by Zooplankton with 
large individual body sizes, using the same small-mesh 
sampling gear that would be appropriate for tropical regions 
with small-bodied Zooplankton. It would be better to 
conduct rigorous intercalibration experiments (e.g. Reb­
stock, 2002b; McKinnell and Mackas, 2003) to document 
gear-related differences and, to the extent possible, develop 
conversion factors among the different gears. It is also 
important that each time-series programme documents 
changes in sampling protocols.

W ith respect to taxonomic identification issues, potential 
identification problems need to be resolved, perhaps 
through planned comparisons among relevant laboratories. 
In addition, it would be useful if  ongoing and future 
Zooplankton observation programmes retained “voucher 
specimens” preserved in ethanol. These could be used later 
with future molecular and biochemical techniques to re­
solve issues of taxonomic consistency. It may even be 
desirable to retain entire Zooplankton samples (or subsam­
ples) for analyses by future methods. Stable isotope 
analyses can provide a different perspective on global 
ecosystem (foodweb structure) responses to climate forcing 
(Rau et aí., 2003), but have not been examined in many 
collections.

For post-collection statistical analysis methods, we rec­
ommend that common visualization and statistical tools be 
developed. Such common methods made widely available 
would enable data gaps, autocorrelation issues, etc., in 
different programmes to be dealt with using consistent 
approaches. This task might be undertaken by one o f the 
large data archive centres. Once developed, these statistical 
tools will need to be made user-friendly and broadly 
available.

Life-history issues
Analyses o f time-series data will help to improve un­
derstanding o f life history and ecosystem processes for 
Zooplankton by identifying critical unknowns. These can 
then be investigated with a combination o f time-series 
observations and directed process studies. The between- 
species and between-region comparisons o f copepod life- 
history strategies o f Yamaguchi and Ikeda (2000) and 
Kobari and Ikeda (1999, 2001b) are proving useful, but 
similar analyses are needed for other taxa and regions.

Structural issues
The first step towards improving recognition o f the impor­
tance o f Zooplankton in marine systems, and of comparing 
global fluctuations o f Zooplankton, is to publish the results 
o f plankton monitoring programmes in the primary litera­
ture. In particular, published comparisons o f local Zoo­
plankton time-series with local (or large-scale) variations in 
physical conditions, climate, or fisheries can stimulate 
cross-basin and inter-ocean comparisons. Some o f this is 
occurring, particularly within the CPR programme in the 
North Atlantic (Beaugrand et aí., 2002; Beaugrand and 
Reid, 2003; and others) and with the long time-series from 
Station P and CalCOFI in the North Pacific (Brodeur and 
Ware, 1992; Roemmich and McGowan, 1995; Rebstock, 
2002a). But, for many other regions, Zooplankton sample 
analysis or publication o f the results o f time-series Zoo­
plankton sampling is lacking. Equally important is to 
preserve (archive) and make Zooplankton time-series data 
widely accessible to encourage large-scale synthesis, and
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thereby generate support for long-term Zooplankton sam­
pling programmes within the scientific, and ultimately 
broader, community.

To increase understanding among fimding agencies of 
the value o f sustained Zooplankton observation pro­
grammes, there is a need to: (1) document and publish 
the evidence that large-scale climate variability strongly 
impacts Zooplankton populations and the potential mecha­
nisms for these connections, and (2) demonstrate that 
observations o f Zooplankton, as might be implemented in 
ocean observing systems, will provide early recognition of 
shifts in ecosystem structure, and that these indicators are 
important for characterizing the state (ecosystem quality) of 
regional seas. It is also important that individual scientists 
communicate research findings in venues and through 
methods that the public and decision-makers understand.

W ith regard to the difficulties o f fimding global Zoo­
plankton comparisons, the Global Ocean Ecosystems Dy­
namics (GLOBEC) project, the North Pacific Marine 
Science Organization (PICES), the International Council 
for the Exploration of the Sea (ICES), and other inter­
governmental and non-governmental organizations should 
play a large and active role in supporting dedicated work­
shops and providing a framework for these comparisons. 
Many o f these organizations and programmes do have 
groups addressing different aspects o f these questions, but 
none appear to be considering global comparisons as 
described here.

Conclusions
What is needed to facilitate global comparisons o f Zoo­
plankton population fluctuations, and to imderstand what 
drives these fluctuations and their implications for the 
sustainability o f marine systems, is an analysis similar to 
that done by Kawasaki (1983, 1992) for small pelagic fish 
stocks (Figure 1A). This analysis has spurred the imagina­
tion o f fisheries biologists and generated much discussion 
and criticism on (1) how to do such comparisons, (2) the 
processes underlying such apparent synchrony, and (3) the 
relative roles o f exploitation (fishery harvest) vs. environ­
mental effects on temporal fluctuations. It has stimulated 
a great number o f similar comparisons with other species of 
fish (e.g. Pacific salmon, Figure IB). A  global analysis for 
Zooplankton, similar to that done for fish, from diverse 
regions o f the world’s oceans can be expected to be equally 
stimulating. There has not been a rigorous, statistically 
robust, and detailed inter-comparison o f time-series 
changes o f Zooplankton populations from multiple sites in 
several ocean basins that would directly address the issue of 
global synchrony. An added advantage o f examining 
Zooplankton stocks for global synchrony is that there is 
no direct exploitation of Zooplankton stocks (except for 
Antarctic krill), which removes one o f the sources o f direct 
forcing of marine population variability. As indicated in

this article, there are many details and issues to be resolved 
before such an analysis is likely to be produced. However, 
the results will be worth the effort.
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