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1. INTRODUCTION -
In the ocean, under the surface layer, the flow is quieter 

and some authors do not hesitate to describe the fluid motion 
in these regions as a laminar flow displaying occasional disor­
ganized patches answerable to turbulence (Woods, 1 969 ) •

In a non-homogeneous medium like the ocean, however, the 
word "laminar" cannot possibly refer to the sort of peaceful mo­
tion one can produce in a pipe or a laboratory channel.
Between subsurface layers of varying density, undulating swells, 
called internal waves, form and multiply by non-linear inter­
actions. These interactions, on the one hand, and the variety 
of their sources on the other hand, produce an intricated col­
lection of motions of various scales which is best described by 
a statistical analysis.

The same approach applies then to waves and to turbulence 
and, indeed, if one defines "turbulence" as a field of chaotic 
vorticity (Saffman,1968), the rotational random waves can be in 
corporated in the definition and the ocean can be regarded as 
completely turbulent.

The first objective of the study of ocean flow is then the 
determination of the energy spectrum function which associates 
to each scale of motion (indicated by its wave number vector K) 
a density of energy F(l() and the definition of transport coef­
ficients describing the average diffusion by erratic stirring 
and mixing of momentum, heat, salt, radioactivity, pollution etc

This study has been first approached from two extremes and
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methods of linear wave analysis (Fofonoff,19 6 9 ) have been tried 
simultaneously with phenomenological descriptions of ordinary 
homogeneous turbulence.

Anartificial distinction has thus been introduced, inducing 
several authors to consider two quite separate types of motions 
in the deep ocean and Townsend (1958) writes that, dispite "the 
gradual transition from one flow to another","the two flows are 
so distinct that no common description is likely to be valid".

It is difficult to accept this opinion, however, in view of 
the recent works in the domain which, proceeding from the two 
extremes, have successfully narrowed the difference and support 
the idea of a unified description.

Standard perturbation techniques, starting from the linear 
wave model, allowed Hasselmann (1962,1965,1966,1967,1968) and 
other authors to develop a "weak interaction" theory of ocean 
waves, analogous to weak plasma turbulence (Kadomtsev,1965), in­
teracting phonon ensembles (PeierIs,1 9 5 5 ) and to the recent des­
cription of Clear Air turbulence proposed by Bretherton (1969)» 
This theory approaches the controversed but enthralling theory 
propounded by Kraichnan (1959) Tor homogeneous turbulence. 
Examining the problem from the other side, Webster (19 6 9 ) has 
shown that, even in a range of wave-numbers* where one would ex­
pect wave models to be very accurate, experimental data were not 
in disagreement with the famous Kolmogorov law for strong turbu­
lence .

These results, which contribute to the construction of a 
unified description, agree well with the actual trend, in the 
theory of non-homogeneous turbulence, to represent a fully de­
veloped turbulent shear flow as a superposition of waves 
(Landahi, 1967, Reynolds, Nihoul,1969, 1970).

The purpose, here, is to present the philosophy of some im­
portant features of the existing models and the elements of a 
general description, in the simplest context possible.
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2 . FOURIER ANALYSIS -
Ocean hydrodynamics is currently described by the Boussinesq 

equations. This is an approximation which consists in assuming 
that the fluid is incompressible and the density constant but 
taking into account the density variation in the gravity force 
by the introduction of a buoyancy force.
Let the Brunt-V ais ala frequency N and the buoyancy velocity be 
introduced by

( 1 ) (2 ) N2 = - ; V = ------V y,V ; P0 dX5 4 P0N

where the X^-axis is vertical upwards, g is the acceleration of 
gravity, pQ the reference constant density, p the average devia­
tion from p0 and p 1 the fluctuation around p .

Neglecting the Coriolis effects and assuming the Brunt- 
Vaisälä frequency constant, for simplicity, the Boussinesq equa­
tions may be written :

(3) t7. I  = 0

3V1 so ?(4) —  + V. W i  + ^  -  vv V, - 0

9V? SO ?
(5) ä T  + + i t ;  - w  72 ■ 0

9V ~ p
(6) — i + T.S7Y + - HT4 - v<7 T - 0

‘3

9V.(7) + v.r7V4 + n v 3 = o

where q denotes the pressure counted from the reference state
and divided by p ; Y 1,V0 ,V, are the components of the velocity

0 ' ¿ -> g g a
vector and 2  is the vector-operator (-— , ). The Coriolis
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forces have been neglected to lighten the writing. Since the 
corresponding terms are linear, there would be no difficulty in 
incorporating them in the subsequent analysis. The approxima­
tion merely excludes the very small frequencies, and disregards 
eventual complicated interactions between the oscillations con­
sidered here and other low frequency mechanisms.

Le t

(8) ) V1( x , t )  = j  W^ x . u )

(9) V2 ( x , t )  = ƒ  W2 (K, u)

(10) v 5( x , t )  = J W3(K,u)

(11) v4 ( x , t )  = i ƒ  W4 (K, u)

i(K.X-wt) dK du

i(K.X-cot) .; — 'dK du

.i(K.X-wt) dK du

Four dimensional Fourier transforms of eq(3) to (7) yield, after 
eliminating the pressure :

(12) A „W = [ C K W ÍK-K' , u-u' )W (K * , u« )d.K ‘ du«« P P  J aß y ß y “ “

where the greek subscripts can take values from 1 to 4.
(Note K^=0) and where a sum is understood whenever a subscript is 
repeated.

The matrix elements C and A „ are given byaß aß

0 3 ) O . = (» -
K K a

aß aß k2
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(14) A =

O

u)+ i vK O

O üo+ í v K"

O N

-N

-N

K2
K2K 5
K 2

n o -  -4 )
K

oo

Denoting ensemble averages by angular brackets, the energy spec 
trum tensor H is defined by

(15) H (K, to) ô(K-^) S ( co-o ) = <W (K,oo)W (ü ,o )) . aP a ß

Energy spectrum functions, measuring the energy distribution in 
wave number space, are then introduced by :

(1 6)

(17)

(18)

(K,w) =  ̂+H22

V s , » )  " E 11+H22+H35

PT ( it » “ ) h i 1+H22 + H 33+H44 '

Four-dimensional Fourier transforms are appropriate to 
describe fluid motions which are homogeneous in space and time.

This cannot be the case here. On the one hand, no attention 
has been paid to possible sources of energy (they would appear 
in the right hand side of eq (4 ) to (7)) and the dynamics of the 
random field in consideration may only result in a general decay. 
On the other hand, the assumption of space homogeneity obviously 
disregards boundary effects at the surface or the bottom of the 
ocean and is related to the hypothesis of constant Brunt-Váis’ál’á
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forces have been neglected to lighten the writing. Since the 
corresponding terms are linear, there would be no difficulty in 
incorporating them in the subsequent analysis. The approxima­
tion merely excludes the very small frequencies, and disregards 
eventual complicated interactions between the oscillations con­
sidered here and other low frequency mechanisms.

Let

(e)) v ^ x . t )  = J W ^ K . u )

(9) V 2 (x,t) = ƒ  w 2 (k ,u )

(10) v 3 (x,t) = J W 3 (K,u )

(11) v 4 (x,t) = i ( W 4 ( K , co)

i ( K . X - w t ) .; — 'dK dto

Four dimensional Fourier transforms of eq(3) to (7) yield, after 
eliminating the pressure »

(12) A RW _ = f C K W 0(K-K> , CÜ-0)' )W (K' , u' )dK‘ du>«“P P J aß Y ß y

where the greek subscripts can take values from 1 to 4-
(Note K^=0) and where a sum is understood whenever a subscript is
repeated.

The matrix elements C „ and A „ are given byaß aß e J

(13) C a = ( 6 ---2-1)
K ' aß aß k2 ’
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frequency. If N were not constant, there would he an extra term
in the right hand side of (7 ) proportional to 

shows a typical variation of In N with depth.

d In N 
dX7 Fig (1)
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D I V E R S I T É  D ' :  L I È G E  
FACULTÉ DES SCIÉIUES APFLiQUÉES 

SERVICE D 'E l iCTROW OUE

Clearly, the Brunt-Vaisala frequency is fairly constant in suffi­
ciently deep ocean butvaries in thethermocline. In addition, how­
ever, to the slow variations shown on fig.1 , sharp changes in the 
Brunt-Vaisala profile have also been observed within narrow sheets. 
This fine structure is ignored here and the model neglects spe­
cial phenomena like internal interfacial waves etc...

Fourier transforms are actually considered here in the scope 
of a Kry1ov-Bogoluibov-Mitropolsky analysis where the Fourier am­
plitudes are assumed to be slowly varying functions of space 
and time.
Their evolution is thus governed by the "Boltzmann operator"

( ‘9) d t" = "ôt + — * + — * *

An energy balance equation is then written by equating the 
total time derivative 7—  to the rate of change obtained from (1 2 ). 
Physically, the Fourier analysis determines the spectrum of the 
oscillations in the steady state, where the growth of the diffe­
rent Fourier components (due to the instability or acting sources) 
is exactly compensated by their damping due to non-linear inter­
actions and ultimate viscous effects. In the absence of equili­
brium, the oscillation amplitudes will vary with a growth rate 
equal to the difference between the (eventual) linear growth rate 
and the non-linear damping determined from (1 2 ).

In wave like turbulence, the actual frequencies are concen­
trated around some value ß(jC) which, in a non-homogeneous medium, 
must be regarded as a slowly varying fonction of X and t. The 
evolution of the Fourier wave packets can then be assimilated to 
that of a cloud of particles in phase space (X,K) under a 
Hamiltonian ñ(K,X) (e.g.Lighthi1 1 , Witham et al 1967» Hasselmann 
1 9 6 8 , Bretherton 1969)* The X coordinates of each packet change 
at the group velocity implying a change in the Fourier am­
plitudes at a fixed point if their gradients in this direction 
are not zero. The "momenta" (k ) vary at the rate V7̂ Q. This can
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cause a flux through the wave number spectrum. The interaction 
coefficients must be calculated locally.

In stronger turbulence, at smaller scale, this would be a 
very crude description, but presumably slow variations of the 
medium will affect very little such motions whose scale is much 
smaller than its scale of inhomogeneity.
In fact, the part of the medium is played for these turbulent 
eddies by the wake-like weaker turbulence background and it will 
be shown below that adiabatic interactions with the background 
produce a much more important effect of inhomogeneity.

3. t h e l i n e a r  a p p r o x i m a t i o n .
If the non-linear terms are neglected in (12), one finds i

There is thus equipartition between kinetic and potential 
energy. This criterion may be used to investigate the limit of 
validity of the linear approximation (Pofonoff 1969).

Thus

(20)

(21 ) 2 (dispersion relation)

and

(2 2 )

4. THE EÁK C C UP LING APPR'. X Il.i AT IC X .
If the non-linear interactions are small but not negligible,

o 1it seems quite natural to seek a solution of the form W= W+ W
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1where W is a small perturbation which results from the non-linear
beat interactions and is determined by eq.(l2) where W in the

oright hand side is replaced by W.
To take a global account of the action of higher order non­

linear terms which are here neglected and which may produce a 
damping of the individual Fourier component, a term D ßßWß is in­
troduced in the left hand side of (12), the tensor D being sofar 
unknown.

This artificial closure is very important as it incorporates 
the net non-linear contribution to irreversibility and permits 
the definition of a rate of change due to non-linear interactions 
and suitable for (22).
Thus

(23) [A +D 11W v ' L aß aßJ ß

Solving (12) for W„ (after adding D^ßW^to both sides) and intro­
ducing the matrices L and N by

(24) L D= B D n aß ay yß

(25) N o= 3 C _ aß ay yß

wi th

(26)

one gets, from (12) :

•X- "X"
(27) <W (K,w)W (ü ,ct)> = L <W (K,u>)W (ü ,ct)>

a ß  ay y ß

+ fN (K,w) <W (K-K' , t*)-aj1 )W*(ü.,a)W (K',üi>))K dK'doo'. 
J ay y ß y y



- 1 0 -

In zero approximation, the oscillations are assumed uncorre 
lated with a Gaussian distribution (the random phase approxima­
tion). The integral in the right hand side of (27) in thus zero 
at this approximation. The next approximation is obtained by-
including successively in each of the three factors the first or

1der correction W which leads to double integrals (over K 1 and 
ui1 and a', say) of fourth order correlations. These are split 
into sums of products of second order correlations which are ex­
pressed in terms of by (15). The integrations over and a
may then be performed, taking the ô-functions into account. The 
result includes a linear part and anintegral over K' and o 1 of all 
direct non-linear interactions. If is chosen as to cancel
the linear part (assuming that the global influence of the non 
linear higher interactions on the energy rate of change is the 
same at the zeroth and first order), the final result is of the 
f orm

(28) D =-J f Kl H (K-K',u-u «) dK« du'<ls 'laß J ßYs a y   ~

where

(23> V p  - + cq ß (£>") Ka

(50) K ßY8 ’ V - ’“ ') + V
and

<31> V ^ K c . V ' C p V ' C s V  H op(s-JC.„o-„-)HY6(K',u .)dE> 4«>' .

Eq.(28) and (31) constitute a set of coupled integral equations 
which can be regarded as the generalization of Kraichnan's equa­
tions .

In the absence of stratification (v^=0), assuming homogeneity 
and isotropy, on can write
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K  K

( 3 2 )  H a ß ( K , c o )  =  G ( K , u > )  ( b  -  - % • & )

a P  a ß

( 3 3 )  B a ß  =  ( o j + i v  K 2 + t ) )  1  5 a ß .

Substituting in (31)» one gets :

( 3 4 )  J  P c ( K , u )  =  j [ H 1  1 + H 2 2  +  H 5 3 ]  =  G  (  K ,  t o  )  =

w + i v K 2 + n |  2  f  K 2  S  ( K ,  K  '  )  G ( K ' , t o ' )  G  (  K - K  1 ,  t o - t o  1 )  d K  1 d t o  1

w h e r e

1  (K t K > )  ( K . K « ' )  ( K . K 1 ) ( K . K " ) ( K < . K " )

( 3 5 )  S ( K , K « ) = 1  [ 1 - 2    y  2 ~ 2  +  - 7 ^ - 2 - - - - - - - - - - - - - - - - - - - - - - - - — ]

K  K 1 K "  K  K >  K "

with K" = K-K' .

El (34) and (35) are identical to Kraichnan's equations. An 
important characteristic of eqs. (3 1 ) or (34) is that they re­
tained only d i l'e c t interactions in the energy exchanges; the in­
teraction between the Fourier component K,co and the component _K* ,
to' appearing as a res on ant imput of energy to K,to from K" = K-K! ,
( j O "  =  ( j O — t o  i  .

This result is obtained here as a consequence of the weak coupling 
approximation and indeed, turbulence being a mixing process which 
degrades information, one should expect that the indirect inter­
action of three modes through the turbulent motion as a whole 
should not convey phase information among them in the limit where 
the motion consists of the excitation of an infinitely large 
number of weakly dependent degrees of freedom.
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5. t h e  l i i - i t e r -.ï e a;; ■: " f l i n .:- ArFKCx:::.,!';
A consequence of the weak coupling hypothesis is that an 

individual mode K,,to gains or loses energy only by triangular 
interactions with modes K. * , co * ; K"io" such that K = K> + K", 
co = oo ' + oo".

Since the number of these modes is large and the amplitude of 
the oscillations of an individual mode is determined by the in­
tegral of its triangular interactions, it is not unreasonable 
to think that, even in stronger turbulence where the global non­
linear interaction is 0 (1), the interaction of the Fourier com­
ponent K,oo with each separate component K'jW1 is comparatively 
small.

It is thus tempting to extend the weak-coupling approxima­
tion to strong turbulence. One can object however that this ap­
proximation implicity allows only resonant interactions between 
Fourier components and that such a model does not seem to be ap­
propriate for interactions between modes of very different wave­
lengths .

One visualizes, indeed, the non-linear effects as fostering
the viscous decay and producing at every wave number an increased
damping expressed by the imaginary part of D (or p). Let this

 ̂ 2damping be grossly described by an "eddy viscosity term" vK 
(which incorporates the ordinary viscosity). At moderate numbers, 
this effect (and also the contribution from the real part of I) ) 
may be regarded as small. Then, one should expect the energy to 
be concentrated on the frequency axis around the eigenfrequency 
(21) given by

( 36 ) d e t j A | = 0

and a wave like description to be valid.
In the region of wave numbers 0 (k ), the "waves" will have a 

 ̂— 1 ~~ 2lifetime t ~ v K and although one given mode nay initially 
be localised, it will spread out in general as time passes to
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fill a region of space whose characteristic size L will he of 
the order of the distance through which the "wave" propagates 
during its lifetime i.e.

Thus the state of turbulent motion must be regarded as a 
system of many wave packets. As long as the ratio (37) is large, 
these packets exist for a very long time and are almost unloca­
lised in space so that a wave-like description is appropriate.
As the ratio increases, the packets tend to concentrate and 
appear more as turbulent eddies.

This suggests two apparent ly different descriptions of the ran­
dom velocity field; the two descriptions overlapping in this re­
gion of wave-numbers where 1, estimated from the turbulence con-

— 1cepts (i.e. 1=K ) is equal to (37)»
If, as a practical experimental situation, the observations made 

by Woods (1969) Malta are used, the following estimations
can be made (M.K.S units)

-AEddy viscosity : 10 ■r

Brunt-Vais ala frequency ! if ~ 10 j

2 V -11 ~ ~ 10 ; 1 ~ 0. 3.

The size of the largest eddy of the typically turbulent mo­
tion should thus be of the order of 30cm. This figure is in ex­
cellent agreement with Woods’s observations (Woods 1969).

This suggests that typical turbulence is found within pat­
ches (of size ~ 3 0 cm, in the exemple treated); these patches 
moving in the non-homogeneous background of the larger scales 
wave-like motions. One should expect then that, as in (20), 
wave packets move about in wave number space, leading to a strong
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correlation between nearby Fourier components which now describe 
essentially one and the same wave packet.

In this interpretation, the interaction between the mode 
_K,uj and a "distant" mode _K' , cd 1 cannot be considered as the re­
sonant input to _K,u) from the nearby component K",oj" because 
and ¥" describe the same wave packet and cannot be considered 
independently of one another.

It is thus necessary to distinguish between two types of 
interactions and to bring in this distinction it is convenient 
to break up the region of integration with respect to IC1 , w' 
in the non-linear terms into three parts : the principal region 
where K and K', to and co' are comparable, the "long wave" region 
where the prime quantities are much smaller and the short wave 
region where they are much larger.

The weak coupling analysis can be applied to region (1) the con­
tribution from region (3) is presumably small as little energy 
is contained in wave numbers K ' >> K, K" ~ K ' >> K. The contri­
bution from region (2) can be taken into account by expanding in 
this region W(K.-K' ) in Taylor series around K.

Limiting the treatment to the first approximation, one 
writes :

is a random quantity given by the sum of a large number of 
individually random and weakly correlated amplitudes and its 
distribution may be assumed Gaussian.

The contribution from region (2) may then be incorporated in 
the matrix A by changing the frequency u> to the relative fre­
quency

where

(39) ¥ K
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( 40 ) u) = ui- co... .vv

The final result is that one recovers eq.(3l) with the diffe­
rence that the range of integration in the non-linear tern is 
restricted to cover the region (1) and that the energy spectrum 
tensor is now calculated in a system of coordinates moving with
the long wave pulsations. The true spectral functions E areqs
obtained by averaging over w_ i.e. „w

%

(4 1 ) H(K,w)=~- I H (K, w-to„) e Wo dio,7
o J

where

(42) cd2 = 2 K K *  f H .(K',oo<) dK ’ du«
r  ( ' 2 )  r °  ~  ~

The application by Kraichnan of eq.(34) to ordinary homogeneous
-3/2isotropic turbulence lead to a K spectral law instead of the

-5/3well-known Kolmogorov K law. The present analysis suggests
that this discrepancy might be due to Kraichnan overestimating 
the part played by the large-scale fluctuations, which is in 
fact no more than the convection of higher modes which are de­
formed adiabatically in the process.
Indeed, by setting the lower limit of the integration over K' , 
a)1 in (34) equal to £ _K; E,to where £ is a small constant number 
(i ~ l/l)t Kadomtsev (1965) has obtained the Kolmogorov spectrum.

6. PHENOMENOLOGICAL APPROACH.
At present, one has no rigorous method of performing the 

separation between resonant and adiabatic non-linear interactions 
and of reducing the integral equations. In considering strong 
turbulence the limited Y/eak coupling approximation certainly 
opens new ways prolonging Kraichnan's ideas but, in the meantime,
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phenomenological approaches like 
required to interpret the observ 

According to Kolmogorov, ov 
the Reynolds number is large eno 
gligible role and, in the absenc 
of energy, a quasi equilibrium i 
is there fairly homogeneous and 
e through the spectrum. The val 
perties of the turbulence. This 
natural assumption that the ener 
a resonance character, in which 
transferred only to modes with 
portion of energy handed down 
pass through the entire range 
One may assert therefore that 
mined only by the fluctuation 
value of the spectral function 
This means that e must be expre 
where E(k ) is the average of o
The only dimensionnally correct 

(43) e ~ [K3 E(K)]1/2

Kolmogorov's theory are still 
ati ons.
er a wide range of scales (if 
ugh) the viscosity plays a ne- 
e of a direct input or output 
s established. The turbulence 
there is a constant energy flux 
ue of e determines the local pro­
hypothesis is equivalent to the 

gy transfer between modes is of 
the energy of a mode K can be 

nearly the same scale. Thus a 
from a given scale to another must 
of intermediate scales of motion, 
for each K the value of e is deter- 
level at this scale, i.e by the 
at the corresponding wave number, 
ssible in terms of K and, say E(k ) 
(k ) over a sphere of radius K. 
combination is then

K E(k )

i.e.

(44) E(K) ~ e 2/3 K~3 3 .

It is interesting to note that Kolmogorov's reasoning ap­
plies equally well to three-dimensional and two dimensional tur­
bulence although the interpretation is different. In three-di­
mensional turbulence the cascade of energy is directed from the 
large scale eddies where presumably energy is being provided 
(or has been stored) by external stirring devices,
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towards the small scale eddies where it is dissipated by vis­
cosity.

As pointed out by Kraichnan ( 1967 ) > in two dimensional tur-
-5/3bulence, the K range entails backwards energy cascade from

higher to lower wave numbers and can only be expected in 
eddies whose scale is larger than the scale of the energy re­
servoir.

Quasi-tw0 -dimensional flow is not unrealistic in the ocean 
in vievi of the stratification.

Innany coses, experimental data are obtained for the horizont a 1 
specific energy measured at a given point as a function of time.
A Fourier analysis in time gives the distribution in frequency, 
often interpreted in terms of wave number by invoking Taylor's 
hypotheses.

According to Taylor's hypothesis, if there is a mean velocity 
field, large in comparison with the components of turbulent velo­
city fluctuations, which advects the turbulent cells past the 
point of measurements, spacial scales are observed as correspon­
ding time scales, i.e. there is some linear relationship between
wand K. Now, from eq.(l2), it is readily seen that

■¥r -X-m [ W ^ + ¥ 2¥ 2] is the sum of two terms; the first of which is 
simply the right hand side of (12) multiplied by XI ̂ with the 
summation on ß and y limited to 1 and 2 and the second of which 
is proportional to K 7 and contains terms in Y1̂  and XI ̂ .
We may thus regard the first term as representing a cascade in­
teraction between components of the horizontal energy of diffe­
rent scales while the second term describes interactions with
the vertical and buoyancy fluctuations.

In a stably stratified medium, one may speculate that these 
interactions and the interactions between XI ̂ and XI ̂ result in 
a net transfer of energy from the horizontal kinetic energy to 
the potential energy. In this case, the second interaction term 
expresses an inhibition of the horizontal fluctuations. Since 
this term is proportional to K 7 , it affects predominantly the
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turbulent eddies whose wave number vector has an important 
component. It would be without influence on eddies with an ho­
rizontal wave number vector if the non-linear cascade did 
not redistribute energy over all directions as much as it trans 
fers it from scale to scale.

In weak turbulence however, in the wave like region, this 
redistribution will presumably not work fast enough and horizon­
tal energy will tend to be concentrated in horizontal wave num­
ber vectors while the strength of the inhibition term diminishes 

If this interpretation is correct, the agreement found by 
Webster (1969) between observational data at Site D and the
-5/3K law might indicate, in this range of wave number where

buoyancy effects are important, the existence of two-dimensional 
turbulence with a net energy transfer from the fluctuations at 
frequency of 1 cycle per hour^ ) towards inertial frequencies.

Some evidence in support of the possibility of such a 
backward transfer in stratified fluids are given by Fj/rtoft
(1953).
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