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By Claude J. Frankignoul
Institut de MathématiqueUniversité de Lièget

4000. Liège

1 . INTRODUCTION.
There is evidence that the nonlinear coupling between modes 

is weak in the internal wave frequency range of the ocean-current 
spectrum (Fofonoff, 1969» Hasselmann, 1968). Hence, other mecha
nisms by which internal gravity waves exchange energy with their 
surroundings or with other types of motion might be mainly res
ponsible, in some cases, of the observed spectrum.

Such energy exchange occurs when internal waves are in the 
presence of a mean shear flow (Bretherton, 1966, Phillips, 1966). 
An early attempt to evaluate the influence of this mechanism on 
the shape of the frequency spectra was made by Phillips (1966) 
for a simple non-rotating model. His result must nevertheless 
be interpreted with care, as they are restricted to a narrow band 
of frequencies and obscured by an algebraic error.

The influence of a steady shear on the internal wave spectra 
in a rotating medium has been recently investigated by Frankignoul 
(1 9 7 0 ), on the basis of Phi 11i p s 1 w ork. The mean shear current 
was supposed to be in ageostrophic balance and the wave propaga
tion directions isotropically distributed in the mean with res
pect to the horizontal. The comparison of the equilibrium spec
tral shapes with some relevant oceanic data indicated a good 
agreement.

In most deep sea situations, it is known that, if a steady
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shear flow is to be assumed, the hypothesis of geostrophic ba
lance is more relevant. In the present paper, attention will 
be focused on the effect of a horizontal density gradient on 
the time-behavior and the equilibrium spectral shapes of the 
interhal waves. An attempt will be made to evaluate the in
fluence of the dissipations.

2 • s e r i v a t i l -ii if t r e  :..v sturii:::.
It is assumed that "the fluid is incompressible and non-dissipa- 

tive. The horizontal component of the earth rotation is neglec
ted and the mean shear flow is supposed to be steady, unidirec
tional and depending only upon the depth. To the Boussinesq 
approximation, the linearised equations of motion reads

4t  - fv + w U 1 = - ■—  (1 )dt 3x v

3u _3v _3w
3x 3y 3z+ ~z + ~ = 0  ( 4 )

~  - V M 2 + w N2 = 0 (5)dt

where (u(z),0 ,0 ) is the mean velocity, (u,v,w) the fluctuating 
velocity, b the fluctuating part of the buoyancy, n the non-hy
drostatic pressure per unit mass, f the Coriolis parameter.
N2 = - and M 2 =-^-- ^  are the Brunt-V äi s äl ä frequency and

P 0 dz p o dy
its horizontal analogue, g is the gravitational acceleration,
_ . . d _ 9 TT .3_p the mean non-hydrostatic density; ; ̂  = g^ + u gx *
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Geostrophic and hydrostatic equilibria lead to

fü' = M 2 = -sN2 (6 )

where s is the vertical slope of an isopycnal in the mean density 
field. For simplicity, it is assumed that

U'(z) e  U' e constant
(7)2 2 N (z) e N e constant .

For all these assumptions to be approximately valid, very small 
and very large scale motions must be disregarded. A typical 
region where the model applies roughly is the region below the 
main thermocline, far from boundaries.

By elimination, one gets an equation for w

V 2w + ~ ( f 2 + 2M2 -ra-r-+N2y 2 )w-2M2U t  2M2f = 0.(8)d t N 9z,2 9y 9 z vn ' 9x9y 9x9z v '

Instead of using a normal mode expansion, we assume a wave 
decomposition of the form

w - W(t) ei(kx+ly " k,T'zt) (9)

k and 1 being constant, on the basis of the stretching action of 
the shear, as found by examination of the ray equations (Jones, 
1969> Mooers, 1970). The time-origin is chosen when the wave- 
numb er is horizontal so that negative time is allowed. In order 
to set-up a model which is amenable to analysis, W is assumed to 
be depth-independent. The medium is supposed to be infinitely 
deep and there is no boundary conditions.

As only wave-number components in the direction of the
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mean shear undergo its influence, the form (9 ) is of no use if 
k = 0 : there is no energy exchange "between the shear flow and
the waves (at least to the Boussinesq approximation, see Healey 
and Leblond, 1969), and the present model does not apply. If 
the wave propagates obliquely, its wave number is rotated and 
increases as soon as it becomes horizontal. This was first no
ted by Phillips (1 9 6 6 ).

Using the form (9), equation (8 ) reduces to

3 d
K~ -“ ■[( 1+T2 )W] + — -[(1 + 2S sin $ T + P 2 T 2 )W] + 2(p2 T+s sin $ )W = 0 

8T
(1 0 )

where $ specifies the angle between the horizontal wave number 
vector and the steady current direction, and where

T = U' eos $ t

U 1 eos $

3. ASYMPTOTIC SOLUTION FOR LARGE K¿ .
As in the previous works based on the wave decomposition

2(9), an asymptotic solution can be found when K is large. This
corresponds usually to a very large dynamical stability of the

-1mean flow. To the first order in K , one has

- 4  ^ + i f / n c L T
W ~ G(1+T ) 4 (1+2 s sin $ T+F T ) e (12)

where G is a constant and n the intrinsic frequency defined by
1

n - N( U 2  s sln Î TH~F-̂ - ) 2 . (13)
1 + T
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The frequency n changes continuously with tine and tends to the 
inertial frequency as t increases, so that energy is transferred 
towards low frequencies for T > 0. The frequency hand in the 
geostrophic case is larger than in the cases where there is no 
mean flow or when the mean flow is in ageostrophic balance.
m  • 2 2Taking for simplicity F and s much smaller than unity, as is 
verified in most physical situations, the frequency limits are 
given by

As discussed by Mooers (1970) in the case where 3> = 90°, only 
the low frequency limit can be effectively affected.

The vertical component of the group velocity Cg, given by

allows for an estimation of the vertical distance d over which 
the energy at any point runs from a time t^ to a time t£ , by in
tegrating (1 5 ) between t^ and t2 • Typical value of d is d^ 
corresponding to t^ = 0 ,  t^ E 00 . For conditions found at Site
D (39c2 0 1N ,7 0 °l) at a depth of 2000 meters, one has dQ ~ 0(2\),
X being the horizontal wave-length. For not too large scale, 
the vertical displacement of the wave energy is small; this 
could partly justify the omission of boundary conditions. The 
dispersion relation is

1

)2 < n < IT (l + s2sin2 $)2 . (1 4 )

(n2-f2 )m2 = (N2 -n2 ) (k2+l2 ) + 21m f TJ » (16)

where m is the vertical component of the wave number.
There is an energy exchange between the wave and the mean 

flow. The mean Reynolds stress produced by the wave is given by
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—  1 - ¿  1-P0 uv --- -  pQ G2 eos $ T(1+T2 ) 2 (1+2s sin § T+F2T2 )2 (17)

an overbar indicating the mean value. For T > 0, the Reynolds 
stress is negative and energy is extracted from the wave motion 
and transferred to the mean current. The rate of energy transfer 
is indicated by the behavior of the horizontal and vertical ki
netic energy density of the wave

Eh ~  4 P0 G2T2 (1+T2 )~ 2 ( 1 + 2 s sin $ T+F2T2 )1//¿ ( 18 )

3 1 / 2
Ev ~  4 Po g 2 (1+t2)~ 2 (l + 2s sin $ T+F2T2 ) . (1 9 )

After a time long enough, tends to a constant value whereas 
Ev vanishes, and the intrinsic frequency becomes the inertial 
frequency. Hence, the effect of the shear is to transform the 
internal wave motions into inertial oscillations, provided no
thing interrups the process (see below).

If there is an energy transfer between waves and mean flow, 
one cannot rigourously assume the steadiness of the mean current. 
However, if the isotropy of the wave propagation directions is 
assumed, all wave energy contributions to the mean current ba
lance. Then, the assumption of a steady shear, though being 
invalid locally, can be justified.

It must be noted that the transfer of the wave energy to 
the mean flow is identical to the phenomenon of critical layer 
absorption, as showed Booker and Bretherton (1 9 6 7 ). No criti
cal level occurs here as it corresponds to a fixed frequency 
(normal mode decomposition), while, in Phi H i p s  1 model, the fre
quency is varying and the absorption of vertical momentum con
tinuous .
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4. SHEAR INSTABILITY AND DISSIPATIVE EFFECTS.
As an effect of the mean shear, the vertical scale of the 

wave motion is reduced, increasing the shear produced by the 
wave. This shear tends to become infinite as n tends to f, so 
that the Richardson number unavoidably becomes smaller than 1/4, 
the critical value for shear instability (necessary but not suf
ficient condition).

To calculate the frequency below which the motion might 
become unstable, we define a minimum Richardson number by adding
the shear produced by the wave to the overall mean shear, which

2can be neglected as K > > 1 .  Calling a the wave amplitude at 
t = 0 and \ the horizontal wave-length, a. critical curve can 
be drawn in a (n, -̂ ) diagram (fig.1). The larger is the wave 
amplitude, the smaller is the frequency below which instability 
may occur. Let us mention that the appearance of a dynamical 
instability does not imply that the wave itself is destroyed.

So far, dissipative effects have been neglected as is usual
ly done in a wave theory. However, the evolution towards a 
vanishingly small scale in the vertical direction accelerate 
the viscous damping. This should prevent the wave from the 
occurrence of shear instability, in some cases.

Detailed investigation of the combined effects of viscosity, 
heat and salt diffusion leads to very tedious algebra, but bounds 
of their influence can be obtained more easily by using
T   0 0 ^
—  = —  + {j —  - v<7 in the basic equations instead of the former dt at 9x
value. According to the choice of v-kinematic viscosity or ther
mal diffusivity (the salinity being neglected)- one gets upper 
or lower bounds of the dissipative effects. The analysis is 
rigourous for unitary Prandlt number.

Calculation leads to an equivalent asymptotic solution; it 
can be shown that solution (1 2 ) is still valid, except that there 
is an additionnai factor
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e Kr, F (1+T2 ) dT
J T o

with (20)

T q corresponds either to the generation of the wave or to the time
of entrance of a wave in such a region of shear, and must be in
troduced because the dissipations are irreversible.

It can be shown that, provided the ratio of the wave ampli
tude to the wave length is not large, there will be no dynamical 
instability. For illustration of the damping effect, one can 
calculate that the amplitude of a wave (\=200 m) generated at 
Site D (2000 m) is reduced by a factor D such that 1.05 < D <
1.45, after the lapse of time necessary for the frequency to de
crease from N to 0 .I5 N.

The statement of section 3 must be modified to take into 
account the phenomenom described in this section. In most cases, 
the wave frequency will become rather close to f, but will never 
reach it. Two mechanisms - shift towards lower frequencies (when 
n becomes close to f), damping of the horizontal oscillations - 
will strongly contribute to give a transient character to a given 
low frequency Fourier component. Hence, the shear will act to 
transform the internal waves into nearly inertial transient oscil
lations, if the inertial angle of incidence of the wave is appro
priate.

The action of the shear on internal waves could then be an 
important mechanism for the appearance of inertial oscillations 
in deep sea, and the observed transient character of those waves 
is easily explained in our model.
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5• EQUILIBRIUM SPECTRAL SHAPES.
The main interest of the unusual wave decomposition (9 ) is 

that it allows to derive equilibrium spectral shapes from simple 
arguments.

In his paper, Phillips (1966) assumed there was a steady 
source of internal waves which has been acting long enough for 
a steady spectrum to develop. Then, the frequency spectra can 
be derived simply because, as each wave is rotated, its amplitude, 
velocity and frequency are modified. A fundamental problem is to 
find a suitable energy source in deep sea, far from boundaries; 
very little is known on this subject.

Phi H i p s  1 results are based on the Uoppler-shifted wave fre
quency and their use for time-dependent spectra at a fixed point 
must be interpreted with care. In fact, provided the source is 
fixed and steady, there will be no temporal variation in the fre
quency spectra at a given place, but only a direct dependance to 
the source frequency spectrum. Also, all wave energy transferred 
to the mean flow will accumulate and U cannot be supposed to de
pend only upon the depth, except to a rough approximation.

An assumption of more statistical character was made by 
Frankignoul (1970) and will be used here. We assume there is a 
large supply of many waves coming in the region of shear, in an 
undetermined manner but isotropically distributed with respect to 
the horizontal. This does not answer to the question of the 
source of the waves, but is not too restrictive. Because of the 
isotropy of the wave propagation directions, all Doppler-Shift 
effects balance in the mean and the frequency n can be used for 
measurements at a fixed point, provided they are long enough.
Also, it is easy to see that the frequency spectra will be simi
lar to the spectra obtained by assuming the existence of a steady 
source (by considering a pair of waves, symétrie about the hori
zontal plane). Using Phillips 1 method (1 9 6 6 ) to derive the spec
tral shapes,it is found that the horizontal and vertical kinetic 
energy density spectra E^ and E^ , and the potential energy
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spectrum P are respectively of the form

Eh cC T2 (1 + 2 s sin2 î>T+F2T2 ) (s sin $ T2+ (1-F2 )T-s sin $ )_1 (21)

Ey cC ( 1 +2 s sin2 ï>T+F2T2 ) (s s in T2+ ( 1 -F2 )T-s sin 4>)"1 (22)

P cpcpCC (1 + ,r2)(s sin ® T 2+(1-F2 )T - s sin $)~1 . (23)

To express the spectra in function of the frequency, formula 
(1 3 ) must be used. A simple analytical form is found when 
$ E 0 :

Eh * n2 (N2-n2 )2 (n2-f2 )~ 2 (2 4 )

Ey oC n2 (N2-n2 )~“  (n2-f2 )~2 (2 5 )

1 1
P ^  cC(N2-n2 )"2 (n2-f2 ) " "  . (26)

The hypothesis of geostrophic balance only affects the low 
frequency part of E^ and P - they show a peak at the inertial 
frequency - , as compared with results obtained in the ageostro- 
phic case, otherwise very similar.

To compare (2 4 ) - (26) with observations, it must be noted 
that both ends of the curves cannot be representative of the 
ocean-current spectra. Indeed, at very low frequency, the waves 
we have studied are subject to shear instability, whereas at very 
high frequencies, the model itself is invalid, since the micro- 
structure has been neglected and only a mean N has been used.
As, in the real oceans, other motions are also present at very 
low and very high frequency, a good agreement cannot be expected 
near the limits of the internal wave frequency range.

The model can be tested in a region, far from boundaries, 
where the mean Brunt-Väisäla frequency is roughly constant - this
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i9 often observed below the main thermocline - and where there 
is a mean shear which is roughly steady and unidirectional, at 
least in periods long enough for the transfer process to occur. 
The value of the shear affects only the time scale of the fre
quency shift of the waves, and contributions from different pe
riods of time where the model is valid will add in the same way, 
no matter what is the direction and magnitude of the mean shear.

Measurements made at Site D (3 9 02 0 'N ,7 0 °W), below the main 
thermocline, seem to be suitable for a comparison with the com
puted spectral shapes (Frankignoul, 1970). Fig. 2 shows a com
parison between the calculated horizontal kinetic energy spectrum 
and observations made at a depth of 2000 meter, in a region where 
the model applied best. The agreement is good, as in the ageos- 
trophic case. There is no other really relevant observations 
which can be used to check the validity of the model. In 
(Frankignoul, 1970), comparison has been made with vertical ki
netic energy and temperature fluctuations spectra recorded at 
the lower edge of the thermocline (where N is not constant) but 
the accuracy of the measurements is weak and the model rather 
inappropriate so that no conclusion can be drawn.

The effects of the dissipation on the equilibrium spectra 
cannot be investigated in detail but it can be seen intuitively 
that they will not seriously affect the value (24)-(26) in con
sidering two waves coming in the region of shear, with propaga
tion directions symétrie about the horizontal plane. The fre
quency of one wave is shifted towards higher frequencies, while 
the frequency of the other one is shifted towards lower fre
quencies. As the dissipation depends only upon the time elapsed, 
the low and high frequency regions of the spectra will be affec
ted in a similar way and the spectral shape will not be influen
ced by the dissipations.
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6 . CONCLUSIONS.
The effect of a constant steady and unidirectional shear 

on internal waves is to modify their frequency, wave-number and 
amplitude, and finally to transform them into inertial oscilla
tion.,, after all vertical kinetic energy has been transferred 
to the mean current. Consideration of dissipative effects in
troduces a limited life-time of the wave and gives a transient 
character to the low-frequency waves, in agreement with the ob
servations of inertial oscillations.

The good agre ement between spectra of the horizontal kinetic 
energy computed from the model and some relevant observations 
bears out the interest of studying the effect of the shear on 
internal waves.
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LEGENDS FOR FIGURES.

Figure 1. Curves relating the 
which instability may occur to 
to the wave length, at t = 0. 
site D, 2000 m. Dissipations

non-dimensional frequency under 
the ratio of the wave amplitude 
Numerical values correspond to 

are neglected.

Figure 2 . A comparison of the horizontal kinetic energy density 
spectrum observed at Site D, 39 020>N ,70°W; (2206, 2000m, June
1 9 6 7 ) with the calculated spectrum. Arbitrary magnitude of the 
computed curve has been chosen to fit the observations.
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