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1) SUMMARY

a) Context

The improvement of our understanding of ecological processes and the role of 
biodiversity in the Southern Ocean ecosystems remains a high priority on the 
research agenda in today’s changing world and is inextricably linked to sustainable 
development policies on a global scale. Global environmental changes influence 
species distributions and consequently the structure of communities and ecosystems. 
Only advances in our knowledge of the Southern Ocean biodiversity and processes 
important for ecosystem functioning can allow us to address complex evolutionary 
and ecological questions and enable estimations of the expected change of the biota 
distribution and composition. Polar regions experience greater rates of global change 
than any other region in the world. Their biota are highly adapted to the extreme 
environment they are living in and appear vulnerable to shifts in environmental 
conditions. Antarctic marine species are especially more sensitive to temperature 
variation as their physiology is set to a narrow range of temperatures. Also changes 
in food quality and quantity, together with other environmental shifts such as in pH of 
the seawater, are likely to impact densities, biomass and community composition but 
also functional aspects of the Antarctic biota.

Because of the key-role of the Southern Ocean for the global ocean system and the 
growing impact of global environmental change, it is crucial to establish 
comprehensive baseline information on Antarctic marine biodiversity as a sound 
benchmark against which future change can be assessed reliably. It is equally 
important to understand better the ability of taxa to cope with changes in 
environmental parameters (temperature, pH, ice cover, food quantity and quality) 
linked to global change, and this from the individual to the community level. 
Imperative in this approach is to assess how structural and functional characteristics 
of the biota may be affected by a changing climate. Finally, advanced integrative 
spatial modelling of the distribution of key species in relation to environmental 
conditions is needed to predict the future of the marine ecosystems related to climate 
change.

These aspects are addressed in the Bianzo II project by focusing on benthic 
organisms and communities, specifically representatives from three different size 
classes of the zoobenthos: Nematoda (meiobenthos), Amphipoda (macrobenthos) 
and Echinoidea (megabenthos). These three groups are characterised by a high 
diversity and many of the well over 4000 Antarctic benthic species described so far 
(Clarke & Johnston, 2003) belong to these taxa.

These three selected benthic taxa are also ecologically important in terms of 
biomass, their role in biogeochemical cycles (C and N) and the trophic role they fulfil

SSD-Science for a Sustainable Development -  Biodiveristy - Antarctica 5
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in the benthic ecosystem. Furthermore, they are characterised by different 
biogeographical and diversity patterns, spéciation mechanisms, and reproductive and 
dispersal strategies. Because of these differences and the intrinsic ecological 
variability between these taxa, it is difficult to assess the extent to which global 
change will affect the Antarctic benthos in general. Rarely do biodiversity and 
ecological studies focus on multiple benthic groups. Yet, combining putative size 
groups in ecological/biodiversity research is imperative to understand the benthic 
ecosystem as a complex and interactive unity.

b) Objectives

Climate change and its complex and interactive chain of associated effects will affect 
the physiology, distribution, phenology, and ontogeny of many Antarctic benthic 
organisms, but the resulting changes from the species to the community level remain 
poorly quantified and understood. Individual species may appear vulnerable to 
environmental shifts or regime changes, but community and ecosystem responses 
may not act accordingly. Therefore we investigated the biodiversity and responses of 
the three representative groups of benthic organisms to climate change effects from 
individual species, over populations, up to the community level

During its first phase (2007-2008), BIANZO II aimed at investigating (1) biodiversity 
patterns of the Antarctic zoobenthos and their causal processes by focussing on the 
three selected benthic groups (Work package 1: NOWBIO); Furthermore (2) 
trophodynamic aspects of each of the benthic groups, and their ability to cope with 
temperature and temperature-related changes (i.e. food composition and availability) 
but also the effect of phi of the seawater were on the benthos (Work package 2: 
DYNABIO).

In the second phase (2009-2010) of the project, a joint review paper dealing with the 
effects of global climate change on the Antarctic zoobenthos is being written, based 
on the results of experiments, field results and literature data. Information collected in 
previous studies and in the first two work packages of this project was also used to 
develop a habitat suitability model in order to identify the drivers of benthic 
distribution patterns and forecast possible changes of benthic communities related to 
global change (Work package 3: FOREBIO).

SSD-Science for a Sustainable Development -  Biodiveristy - Antarctica 6
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c) Conclusions

i) NOWBIO

(1) Benthic biodiversity in new ice free habitats

Due to large-scale ice-shelf disintegration events, the Antarctic Larsen A and B areas 
along the Eastern Antarctic Peninsula recently became ice-free. Our study is the first 
one to investigate benthic communities and their response to the collapse of ice 
shelves in this area. At the time of sampling, meiofauna community structure at the 
inner stations, most remote from the original ice margin, was not or only slightly 
influenced by colonization, and might be structured by local environmental 
conditions. Communities living close to the former ice-shelf edge are believed to be 
at an intermediate or late stage of succession. Densities and diversity here were 
comparable to those at other more northern Antarctic stations in the Weddell Sea, 
whereas they were considerably lower at the inner stations.

The three echinoid species collected in Larsen A&B areas are good candidates as 
pioneering species in a changing marine environment. They are known as indirect 
developers (or at least non-brooders), consistent with high dispersal capabilities. 
Moreover, this is congruent with the wide Antarctic distribution of these species. 
These examples stand in contrast to other Antarctic echinoids which are known as 
direct developers that brood their young and, accordingly, are supposed to present 
low dispersal capacities. The three Larsen species also display a ‘generalist’ feeding 
behaviour which can also be considered a characteristic of pioneering species. 
Furthermore, the symbiotic communities of echinoids in the Larsen area showed a 
low diversity and a strong similarity with epibionts present on stones, something 
which has not been observed in other regions so far. These results suggest that 
ectosymbioses linked to cidaroids could contribute to benthic colonization of the 
seafloor in these new ice free areas.

The Larsen ice-shelf disintegration also led to the discovery of a low-activity methane 
seep. The observation of elevated densities, subsurface maxima and high 
dominance of one nematode species was similar to other cold-seep ecosystems 
world-wide and suggested a dependence on a chemosynthetic food source. 
However, stable 13C isotopic signals were indicative of phytoplankton-based feeding. 
This implied that the community was in transition from a chemosynthetic community 
to a classic phytodetritus feeding community, a temporary ecotone as it were. The 
characteristic parthenogenetic reproduction of the dominant species is rather unusual 
for marine nematodes and may be responsible for the successful colonisation by this 
single species.

SSD-Science for a Sustainable Development -  Biodiveristy - Antarctica 7



Project SD/BA/02 - Biodiversity of three representative groups of the Antarctic Zoobenthos - Coping w ith  Change
"B IAN ZO II"

(2) Cryptic diversity

There is evidence that the species richness of Antarctic amphipods is 
underestimated, not only for the poorly known deep sea but also for the better- 
studied shelf fauna. Given the fact that we mainly focused on the Atlantic sector (and 
the Ross Sea to a lesser extent), we expect that the total Antarctic diversity is even 
much higher and undocumented. Therefore, additional samples from other areas in 
Antarctica are needed to assess the real diversity, and evaluate whether some 
amphipod species have a true circumpolar distribution.

The discovery of cryptic diversity has potentially profound implications for 
evolutionary theories and biogeography and may be a potentially important factor 
influencing future conservation decisions. Furthermore, the Census of Antarctic 
Marine Life (CAML) stated that there is an urgent need for more genetic barcode 
studies on Antarctic organisms, especially in view of the rate of climate-driven habitat 
changes which might lead to extinctions. Species identification by DNA barcoding 
has been shown here to be efficient for amphipod taxa and will facilitate future 
taxonomic studies, enabling non-specialists to discriminate taxa that are otherwise 
difficult to identify. It will thus make species identifications faster and more accessible 
at a lower cost at the same time. In poorly known amphipod groups, high intraspecific 
genetic divergences suggest overlooked species or species complexes. The barcode 
application can provide a preliminary signal of species richness.

(3) Biogeographical distribution

Based on extensive datasets with distribution records of the three target taxa, a 
common biogeographical analysis was undertaken, aiming at comparing 
geographical and bathymetrical distribution patterns, focusing on the differences 
between meio-, macro- and megabenthos. The analysis aimed to match these 
patterns with the biogeographical schemes of other benthic taxa known from 
literature and to identify potential drivers of the observed patterns. This detailed 
comparative analysis, which is still ongoing, provides new insights into geographical 
and bathymetrical distribution patterns, hotspots of species richness and endemism, 
centre(s) of radiation, circumpolarity and cryptic species, eurybathy, and potential 
causal factors of the observed patterns.

ii) DYNABIO

(1) Trophodynamics

Investigating food preferences in Antarctic benthos is of crucial importance since the 
ongoing climate change may alter the natural balances and the functionality of polar 
ecosystems. Rises in air and water temperature have been claimed to explain shifts 
in the size range of phytoplankton communities, which may, in turn, affect those
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biological components that depend on it. Moreover, warming trends may result in 
shifts in microbiological activity.

The results of this study indicate that shallow-water meiofauna prefer a 
phytoplankton food source rather than microbial food. This stands in contradiction 
with what is found for deep-sea nematodes in the Antarctic, where a microbial food 
source seems to be preferred over phytodetritus. In shallow waters, however, 
phytoplankton is of higher quality than in the deep sea where it has been degraded 
as a result of the sinking process. So these observations may reflect a preference for 
the most qualitative food, rather than a difference between preferences of deep-sea 
and shallow-water nematodes.

Also for echinoids it was shown that trophic flexibility can differ according to species, 
with euechinoid species appearing more “flexible” than cidaroids towards changes in 
food sources.

Therefore, aptitudes to cope with change in food availability clearly need further 
studies on the Antarctic and Sub-Antarctic benthic fauna, from species to ecosystem 
level

(2) Acidification

Although echinoids, having a magnesium calcite skeleton, are assumed to be most 
vulnerable to ocean acidification, experiments have shown that some species appear 
robust to changes in pH. Our results suggest acclimatization of natural populations to 
low pH effects in intertidal and sub-Antarctic areas. However it is not yet possible to 
precisely answer how the echinoid fauna would face global change and how complex 
communities will be impacted. This situation partly results to the lack of data on the 
proximal stress-tolerance processes, and on the nature and weight of interspecific 
interactions in changing communities. In that context, changes in community 
components along gradients crossing contrasted environmental conditions should be 
more precisely examined.

iii) FOREBIO

We also analysed actual species distributions in the Southern Ocean and modelled 
the mechanisms that structure them. The primary data used for the model were 
continuously developed within the NOWBIO work package (e.g. for echinoids the 
database covers more than 4000 georeferenced localities in the Southern Ocean, 
and more than 6000 when the surrounding cold temperate areas are included). This 
has increased the power of the modelling approach and makes it now able to 
compute relevantly species distribution models at the scale of the entire Southern 
Ocean and enables testing for the impact of environmental variables and future 
climate scenarios (“single species” approach).

SSD-Science for a Sustainable Development -  Biodiveristy - Antarctica 9
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d) Contribution of the project in a context of scientific support to 
a sustainable development policy

The achievements of the BIANZO II project contribute significantly to the major 
objectives formulated in the SCAR-EBA-programme and the IPY core activity Census 
of Antarctic Marine Life. Furthermore, not only were several results of BIANZO 
included in the Antarctic Climate Change and Environment (ACCE) report, with the 
BIANZO II achievements we contributed considerably to filling in the earlier listed 
gaps in knowledge, for which the answers are urgently required for policy makers 
(Turner et al., 2009).

The BIANZO consortium illustrated the potentially high sensitivity of several marine 
taxa which are major components of the benthic ecosystem to climate related 
changes such as changes in food supply, ice shelf collapse, seawater acidification 
and temperature rise. By means of sensitivity tables based on what we know from 
own research and a literature review for each of the taxa at different levels of 
biological organization (from populations to communities or habitats) we illustrated 
high sensitivity for specific climate related changes in the Antarctic environment, but 
we also identified major gaps in our knowledge. Furthermore, molecular approaches 
showed the high cryptic biodiversity present in many of the Antarctic taxa, illustrating 
that what we know about biodiversity so far is only the tip of the iceberg. Since the 
climate-induced shift in the food regime leads to a decrease in the rich Antarctic 
seabed biodiversity, we are currently losing biodiversity of which we will never know 
the characteristics or its importance. Finally, by developing a spatial model we 
attempted to forecast the potential impact of climate-related changes on the 
distribution of selected BIANZO taxa.

e) Keywords

Benthos - Climate change - Ocean acidification - Trophic interactions - Cryptic 
diversity - Habitat suitability model
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2) INTRODUCTION

a) Background and rationale

Evolution and Biodiversity in the Antarctic; The response of life to change. The
largest challenge currently facing humankind is the management of the Earth System 
to ensure a sustainable human future. The Antarctic and the Southern Ocean are 
fundamental to the Earth System as they influence the pace and nature of change on 
a global scale. EBA (Evolution and Biodiversity in the Antarctic) an international, 
multidisciplinary programme (www.eba.aq) that has been approved by the Scientific 
Committee on Antarctic Research (SCAR) for 2006 -  2013, aims at understanding 
the evolution and diversity of life in the Antarctic, determining how these have 
influenced the properties and dynamics of present Antarctic and Southern Ocean 
ecosystems, and making predictions on how organisms and communities will 
respond to current and future environmental change. The International Polar Year 
(2007-2008) offered several unique opportunities for scientific and operational 
collaboration in the implementation of this ambitious programme.

Polar Regions experience greater rates of climate change than elsewhere on the 
planet. The biota of these regions is uniquely adapted to its extreme environments, 
and appears vulnerable to shifts in climate and the environment. In this context, it 
was and still is widely recognized that there is an urgent need to undertake a 
structured assessment of the polar oceans biodiversity as a sound benchmark 
against which future change can be reliably assessed. Comprehensive baseline 
information on the Antarctic marine biodiversity was therefore established by the IPY 
core project “Census of Antarctic Marine Life” (2005-2010; www.caml.aq), a regional 
subset of the global programme ‘Census of Marine Life’, an unprecedented ten-year 
initiative, which aimed at assessing and explaining the nature, distribution and 
abundance of the past, present and likely future biodiversity of the oceans 
(www.coml.org).

Relying on a profound knowledge of the Antarctic biodiversity and its evolution, the 
improvement of our understanding of ecological processes involving the role of 
biodiversity in the Southern Ocean ecosystems remains a high priority on the 
research agenda in a changing world. Global environmental changes influence 
species distribution and consequently the structure of communities and ecosystems. 
Only advances in our knowledge of the Southern Ocean biodiversity and associated 
ecological processes will allow addressing complex evolutionary and ecological 
questions and enabling estimations of the expected change in distribution and 
composition of the biota.

SSD-Science for a Sustainable Development -  Biodiveristy - Antarctica
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In 2009 the SCAR Antarctic Climate Change and the Environment (ACCE) report 
was published based on the latest evidence from over 100 world-leading scientists 
from eight countries. This exhaustive overview of the latest research results (Turner 
et al., 2009) identified crucial areas for future scientific research, and addressed the 
urgent questions that policy makers have about Antarctic melting, sea-level rise and 
biodiversity.

Major conclusions in this report were:

Advanced integrative and spatially explicit ecosystem modelling is needed to predict 
the future of the marine ecosystem. Such an approach demands widespread 
samples of ecological key species that are representative for ecological sub-systems, 
such as plankton, benthos or apex predators and long-term measurements of 
ecological key processes such as the response to acidification, warming and 
changes in ice cover and food regime

However, fundamentally important baseline biodiversity and biogeographic survey 
data are still lacking across most of the continent and parts of the surrounding 
Southern Ocean -  those data and systematic and robust monitoring programmes 
across a network of representative locations are required to allow anything other than 
the current ad hoc and serendipitous approach to identifying biological responses to 
any aspect of environmental change in Antarctica

A better understanding of ecological driving forces within Antarctic ecosystems 
(terrestrial and marine) must serve as the basis for developing predictive models of 
the response of the Antarctic biota to climate change.

b) Subject: BIANZO II, coping with change

The achievements of the BIANZO II project contribute significantly to the major 
objectives formulated in the SCAR-EBA-programme and the IPY core activity CAML. 
Furthermore, not only were several results of BIANZO included in the ACCE report, 
with the BIANZO II achievements we contributed considerably to filling in the earlier 
listed gaps in knowledge, for which the answers are urgently required for policy 
makers (Turner eta!., 2009).

During its first phase (2007-2008), BIANZO II aimed at investigating (1) biodiversity 
patterns of the Antarctic zoobenthos and their causal processes by focussing on 
three representative groups of different size categories: the nematodes
(meiobenthos), amphipods (macrobenthos) and echinoids (megabenthos) (Work 
package 1: NOWBIO); (2) trophodynamic aspects of each of the benthic groups, and 
their ability to cope with temperature and temperature-related changes (i.e. food 
composition and availability, pH of the seawater) (Work package 2: DYNABIO).

SSD-Science for a Sustainable Development -  Biodiveristy - Antarctica 12
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In the second phase of the project (in addition to the continuation of NOW- and 
DYNABIO), (3) a joint review paper dealing with the effects of global climate change 
on the Antarctic zoobenthos was written, based on the results of experiments, field 
results and literature data. (4) Information collected in previous studies (ANTAR3, 
ANTAR4, BIANZO I) and in the first two work packages of this project was also used 
to develop a model on the possible changes in the benthic communities due to global 
environmental change (Work package 3: FOREBIO)

Since Antarctic marine research is mainly performed in an international context, we 
contributed to several major international projects (ANDEEP-SYSTCO, CAML, 
ClicOpen, IMCOAS, etc.) and participated in several international oceanographic 
cruises and land-based expeditions (Polarstern cruises, BENTART cruise, Jubany 
field campaigns, etc.) in order to perform experiments and collect samples. These 
international networks offer us great opportunities for interdisciplinary, internationally 
embedded research (Belgium has no marine research facilities in the Antarctic), but 
inevitably, they also pose restrictions on the required berths, ship time, and lab space 
for specific integrated BIANZO objectives. Therefore common overall objectives in 
this research project were often tackled in taxon specific conditions (through different 
networks). Differences in study areas, spatial and temporal scales of investigations 
and approaches hampered the integration of taxon specific results in joint papers or 
reports. However, whereas many specific objectives in WP 1 and 2 are taxon specific 
for these reasons, two major (and some additionally minor) actions were undertaken 
in order to integrate the BIANZO results: (1) the writing of a review paper on the 
sensitivity of Antarctic benthos to global change and (2) the development of a GIS 
based model (in collaboration with the university of Dijon) that maps the habitat 
suitability of major Antarctic taxa within the Echinoidea, Amphipoda and Nematoda in 
relation to a selection of relevant environmental drivers.

c) WP 1 - NOWBIO: Nature, distribution and evolution of the 
benthic biodiversity

i) State of the Art before BIANZO II

Nature and distribution of benthic biodiversity. Knowledge of the Antarctic 
benthic biodiversity was and still is highly patchy in terms of coverage of 
geographical areas, bathymetric zones, habitats, taxonomic groups, ecofunctional 
groups, or size spectra. Vast areas of the High Antarctic continental shelf remain 
untouched and the Antarctic deep sea is hardly explored. During BIANZO I, the 
ANDEEP sampling campaigns allowed a first study of deep-sea sediments in the 
Southern Ocean.
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A recent survey of the Antarctic macrozoobenthos revealed that 4100 spp. are 
presently described (Clarke & Johnston 2003) but reliable extrapolations estimated a 
number of potential species comprised between 11,000 and 17,000 for the entire 
Antarctic shelf (Gutt et al., 2004).

On the other hand, during the last decade, molecular approaches have provided new 
insights in many evolutionary and taxonomic issues. Molecular tools have appealing 
applications such as reliable standardized identification, detection of cryptic species, 
taxonomic assignment of unknown life-history stages or unrecognizable organic 
material, reconstruction of phylogenies and phylogeographic studies. Significant 
advances in the understanding of the evolutionary history of the Antarctic biota are 
gained from modern molecular techniques. They have for instance allowed 
divergence times between taxa to be dated, and radiations such as those of 
notothenioid fishes to be related to climatic or tectonic events. In addition, the 
detection of cryptic species in some benthic groups (Held & Wägele, 2005; Raupach 
& Wägele, 2006), may question our current estimation of species richness and our 
widely accepted view of circum-Antarctic distribution pattern for benthic species (De 
Broyer et al., 2003).

Meiobenthos - Nematodes. Until the early 90’s, hardly anything was known about 
the ecology and diversity of meiobenthic communities in Antarctica, despite the fact 
they represent a major component of the marine benthos in terms of densities and 
diversity. Since then, several researchers from the Marine Biology research group 
(UGent) have focused their research on distribution patterns within the meiobenthos 
in general, and nematodes in particular, mostly in the Atlantic sector of the Southern 
Ocean (e.g. Herman & Dahms, 1992; Vanhove et al., 1995, 1999, 2000, 2004). 
Temporal and spatial variation in subtidal and shelf communities has been described 
(Vanhove et al., 2000; Lee et al., 2001a, b) and community shifts along bathymetric 
gradients were analyzed (Herman & Dahms, 1992; Vanhove et ai, 1995, 1999, 2004, 
Sebastian et al., 2007).

Recently, for a number of selected dominant genera, high local and regional species 
richness was revealed. Several species found in the Antarctic do show a wide 
geographical distribution. However the majority of species investigated was new to 
science. (Vermeeren et ai, 2004; Fonseca et al., 2007; Ingels et al., 2006; De Mesel 
et al., 2006).

Amphipods. In the Southern Ocean, the amphipod crustaceans form the most 
speciose group, which occur at all depths and in very diverse microhabitats (De 
Broyer et al., 2001, 2003). They occupy a wide range of trophic niches (Dauby et al., 
2001) and constitute a primary food source for the upper trophic levels (Dauby et al.,
2003). More than 510 -  mostly benthic - amphipod species have been described 
from the Antarctic region (about 900 species if the sub-Antarctic forms are taken into
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account) with 85% endemics (De Broyer et al., 2003). Amphipods, polychaetes and 
gastropods constitute the most speciose macrobenthic groups in the Southern Ocean 
(Clarke & Johnston 2003).

Echinoids. About 80 species of echinoids occur in the Antarctic (South of the Polar 
Front); this corresponds to 10% of the extant species of echinoids and indicates that 
the Antarctic is a “hot spot” for echinoid biodiversity (David et al., 2005). Antarctic 
echinoids belong to nine families and seven orders, and display highly diverse 
morphologies. The echinoid biodiversity in the Antarctic has been clearly structured 
by the geological and climatic changes. Today, most (65%) of the species belongs to 
two families that have diversified when Antarctica became isolated and underwent 
drastic environmental changes. Because of their ecological distribution and their 
biological features, echinoids are regular members of the Antarctic communities. 
Interestingly, the Cidaroida, one of the most speciose and widespread order of 
echinoids, have developed ectosymbioses with a variety of invertebrates (Hétérier et 
al., 2004, Massin & Hétérier 2004).

ii) NOWBIO objectives

BIANZO II contributed to the establishment of a sound baseline of biodiversity 
knowledge required for assessing future changes in the Southern Ocean, by:

1 Describing and explaining the nature, distribution and abundance patterns of 
the biodiversity of the Antarctic nematodes, amphipod crustaceans and echinoids as 
representative groups of the meio-, macro- and megabenthos. The project focused 
on the exploration of unknown Antarctic areas and habitats in the CAML framework, 
the analysis of local and regional patterns of diversity, distribution and endemism with 
respect to several gradients (depth, basin or latitude), the production of new 
taxonomic and biogeographic syntheses and the development of new identification 
tools.

Specific study objectives are:

a. To assess benthic life under permanent ice shelves (former Larsen A & 
B) and in deep-sea basins;

b. To provide basic data to forecast changes in biodiversity (link with 
FOREBIO);

c. To pursue the study of selected nematode genera at species level to 
allow further evaluation of the level of endemism and local and regional 
species diversity patterns;
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d. To continue the comprehensive taxonomic revision of the Antarctic
amphipod fauna and the synthesis of distribution and ecological data 
(undertaken during BIANZO I with the support of a strong international 
group of experts) and to develop electronic interactive identification 
keys (“Synopses of Antarctic Amphipoda”);

e. To analyze the biogeographic distributions of echinoids in the light of
past and present environmental constraints (link with DYNABIO);

f. To emphasize the ecological, evolutionary and functional significance of
the ectosymbioses developed by cidaroid echinoids.

2 Assessing evolutionary relationships with the surrounding oceans and world 
biodiversity on the basis of molecular phylogeny and phylogeography of key taxa 
(mainly amphipods).

3 Developing and consolidating the existing BIANZO databases and contributing 
to the development of SCAR-MarBIN, the information network on Antarctic marine 
biodiversity.

d) WP 2 - DYNABIO: Ecofunctional role of biodiversity in benthic 
communities and their ability to cope with change

i) State of the art before BIANZO II

Antarctic species were thought to be highly adapted to the extreme environment they 
live in. They show clear adaptations to the stable cold water temperatures and 
seasonal food supply, in the form of, for instance, slow metabolic rates, slow 
seasonal growth and longevity (Knox, 1994; Arntz et ai, 1994), and large body-sizes 
(gigantism, Chapelle and Peck, 1999). Antarctic organisms often have a small 
thermal tolerance window (Arntz et al., 2005) which is for several megafaunal 
organisms and fish much smaller than for Arctic animals (Pörtner et al., 2007). This 
small tolerance, coupled with slow growths and long generation times, drastically 
reduce the ability of benthic organisms to adapt or to evolve new characters (Peck, 
2002, 2005). A change in food composition, quality and quantity, together with other 
environmental shifts (for instance in temperature or pH of the seawater), are likely not 
only to impact densities, biomass and community composition but also functional 
aspects.

Meiobenthos. Functional or physiological aspects of meiofauna in general, and 
nematodes in specific, remain poorly known. Studies on the trophic position of 
meiobenthos in temperate and tropical areas have lead to conflicting results (van 
Oevelen et al., 2006 and references therein) and research in Antarctic and 
Subantarctic sediments are preliminary and restricted to a limited number of habitats
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(Moens et al., 2007). Biomarker analysis of bulk sediment organic matter and of 
nematodes in different regions and sediment types was carried out to assess the 
energy source of meiobenthic fauna in Antarctic shelf sediments (Moens et al., 
2007). The results of this study suggested substantial selectivity of the metazoan 
meiobenthos for specific components of the sedimented organic matter, such as ice 
algae or flagellates, with this selectivity differing between sites and sediments. 
Laboratory experiments on a number of selected species from temperate regions 
showed that reproductive success, growth and metabolic activity of nematodes 
largely depend on temperature, the quality and quantity of food, and to a lesser 
extent salinity, with different species thriving under different conditions (Moens and 
Vincx, 2000a,b). A better understanding of the current functionality of the 
meiobenthic communities in different habitats is needed, and will allow assessing 
how these processes can be affected by changes in the environment. These 
changes might also impact structural aspects of the meiobenthic, and more specific 
the nematode communities, such as community composition and diversity, but also 
densities and biomass.

Amphipods. During BIANZO I trophic diversity was approached on a number of 
selected taxa using different techniques, including SEM observations of feeding 
appendages, stomach content analyses, and other proxy analyses such as stable 
isotopes or lipid contents (Dauby et al., 2001; Nyssen, 2005). A wide variety of 
feeding types have been described, with some of them hyper-specialized and thus 
potentially vulnerable to changes in community structures. At the same time, some 
species appear to be more opportunist in their diet and able to shift from a diet to 
another, depending of the food kind and availability. Of particular interest in this 
project are the scavenging amphipods. Not much is known on their feeding 
requirements and of the importance of large food falls (from the pelagic) in their diet. 
Numerous experiments with bait have shown repeatedly that scavengers recognize 
the appearance of a large food items quite quickly, home in on it in large numbers 
and are capable of consuming it rapidly and completely (De Broyer et al., 2004). Any 
change in pelagic systems that alter frequency or size spectrum of food falls can 
have a direct impact, especially on deep sea communities. Moreover, little is known 
about metabolism of Antarctic scavengers (or other feeding guilds), but it seems 
likely it is related to temperature and food quantity.

Echinoids. In the Antarctic, carnivores (Cidaridae) and deposit-feeders 
(Schizasteridae) are largely predominant and occur “everywhere”. In contrast, 
algivores (mostly Arbaciidae) are almost lacking and restricted to the Peninsula or to 
the sub-Antarctic islands while omnivores (mostly Echinidae) are moderately present 
(David et al., 2005). This is quite different from observations in most other marine 
ecosystems where most regular echinoids are algivores and omnivores (e.g., De 
Ridder & Lawrence 1982). The scarcity of algivores and their restricted distribution
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presumably reflects an unpredictable access to food. Because they are either 
specialists (carnivores or algivores) or generalists (omnivores), we can expect the 
echinoids to cope in different ways with global warming. Seasonality of feeding is 
known to occur for opportunistic echinoids like Sterechinus neumayeri which stops 
feeding during austral winter (Brockington & Peck 2001, Brockington & Clarke, 2001). 
Particular responses to food availability can be expected as it is observed for other 
groups such as brachiopods (Peck et al., 2005). Surprisingly, little is known on the 
trophic plasticity, i.e. on the adaptive response of each of these trophic categories. 
These data would however be fundamental to understand/predict the potential effects 
of global warming on the echinofauna. In the context of global change, increasing 
atmospheric carbon dioxide will result in decreasing ocean pH and carbonate ion 
concentration. This effect will be particularly important at high latitudes (Orr et al., 
2005). Under some scenarios, the entire water column of the Southern Ocean may 
become undersaturated towards aragonite by 2100. These changes in seawater 
chemistry will have severe consequences for calcifying organisms and will 
presumably affect echinoid skeletogenesis. Reduced calcification by both aragonite 
and calcite-secreting organisms under decreased carbonate ion concentrations has 
been documented in planktonic and benthic biota (Riebesell et al., 2000, Shirayama 
& Thornton 2005, Orr et al., 2005). Actually, echinoids secrete high-magnesium 
calcite and/or amorphous calcium carbonate which are even more soluble than 
aragonite. Increased carbon dioxide has already been shown to inhibit skeletal 
growth in a subtropical sea urchin. However, data are lacking for high-latitude 
calcifiers in general and for larvae in particular (Orr et al., 2005).

ii) DYNABIO objectives

1 To investigate different aspects of the ecofunctional biodiversity of Antarctic
benthic organisms,

Specific study objectives are:

a. To study the trophic position of meiobenthos from shelf to lower slope;

b. To analyze the dependence of amphipod crustaceans on food 
availability;

c. To characterize food preferences of selected amphipod species, as well 
as trophic habit plasticity in communities along a latitudinal gradient. In 
parallel, the ecological significance of benthic scavenger assemblages 
will be evaluated by combining feeding ecology and physiology of 
representative species of the Antarctic shelf scavenger guild.
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2 To assess to what extent benthic organisms and communities can cope with
change.

Specific study objectives are:

d. To assess the impact of change in food quality and quantity and
temperature on structural and functional aspects of meiobenthic 
communities;

e. To characterise the trophic categories of Antarctic and Subantarctic
echinoids and the influence of food resources on their distribution in 
order to determine their potential response to current and future
environmental change in relation to their trophic categories (link with 
FOREBIO).

f. To study the impact of seawater acidification due to increased
atmospheric carbon dioxide on skeletal growth in both larval and adult 
sea urchins. The idea is to infer the potential impact of this acidification 
on sea urchin distributions in the Southern Ocean (link with FOREBIO)

All the results from experimental and field work carried out by the separate institutes 
(BIANZO II phase 1 + new data) were integrated, in combination with literature data,
to produce a review paper that provides an overview about what is known on
potentially climate-related effects, such as change in primary productivity (food 
quality and quantity), glacier melt (increased sedimentation and freshening), increase 
in frequency of iceberg scouring, collapse of ice shelves, acidification, on the three 
benthic groups considered in the project

e) WP 3 - FOREBIO: Forecasts for the XXIst century under global 
change

i) State of the art before BIANZO II

Global coupled ocean-atmosphere models propose climate evolution scenarios that 
forecast a global warming that strongly impacts polar seas. In Antarctica, such 
changes will lead to conditions drastically departing from those of today. The 
evolution of terrestrial and marine environments has already started, but it will 
accelerate in the forthcoming decades. For example, mean air temperature increased 
by 2.5°C in the last 50 years on the Peninsula. This has a severe impact on sea ice 
and ice shelf dynamics (Vaughan & Doake, 1996) and more than 10000 km2 of ice 
shelf disappeared in the last 30 years, including 3.200 km2 from Larsen B in 2002. 
Therefore, even if the exact speed and range of the warming process is still under 
debate, it is certain that Antarctic ecosystems will be faced to the most important and 
rapid changes they have ever experienced in the last 40 My.
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The easiest adaptive solution for organisms faced to change is to follow their habitat, 
and to migrate. This is demonstrated by numerous examples of shift in 
phytosociological associations. Another solution - frequently associated with the 
former one - is to rely on adaptive flexibility, and to acclimate the new conditions 
through a phenological response. A third option is to evolve and to develop new 
heritable characteristics. But this must be compatible with evolutionary rates requiring 
103 to 105 years to be effective (Hoffmann & Parsons 1997) and in the scenario of 
present global warming, this latter solution has to be discarded. In this framework, 
Antarctic and the Southern Ocean represent an interesting case study associating 
shift to the South, local acclimatizations, and new competitions. Indeed, regarding the 
Southern Ocean and their surrounding areas, the future is not a simple matter of shift 
of ecosystems following their climatic belts as it would be for most other places, but a 
more complex and dramatic situation. Antarctic endemic fauna will be trapped by the 
coastline and must acclimate, adapt or disappear, while cold temperate and sub- 
Antarctic fauna should have the possibility to migrate and/or to change their 
phenology. This situation may induce new interactions between local species 
possibly weakened by the warming, and invaders from the North.

The Southern Ocean pristine ecosystem might not be as isolated and protected as 
expected. There still is some controversy about the role of the Polar Front may play 
in acting as a barrier that may reduce successful establishments of occasional 
invaders (Thatje, 2005) and several examples already demonstrate its permeability. 
Such “travellers” represent potential colonialists whose installation was so far 
prevented by the drop of temperature across the Polar Front. But the barrier could 
become considerably weaker, therefore increasing the impact of invading species on 
the Southern ecosystem (Clarke et al., 2005). Therefore, global change 
(temperature, precipitations, ice shelf extension...) consequences should be quite 
dramatic, and it becomes necessary to address the point in order to estimate their 
potential impact. It has been shown that climate change has already had an influence 
on bird colonies (Fraser & Hofman, 2003). The rise of ice scour has a great influence 
on the reduction of shore biota (Barnes, 2005). The reduction of sea surface salinity 
due to glacial melt-water runoff (Dierssen et al., 2002) has induced a shift in primary 
production from diatoms towards the smaller cryptophytes (Moline et al., 2004). 
Several studies have shown that the Antarctic and sub-Antarctic fauna is affected by 
global warming and that some species display new geographical distributions, such 
as the emblematic king crab (Thatje et al., 2005) or spider crab (Tavares & De Melo,
2004).
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ii) FOREBIO objectives

The major objective of FOREBIO was to develop a model on the possible changes in 
the benthic communities due to global environmental change. A Geographic 
Information System (GIS) is constructed, which is being fed with biogeographical 
(georeference), edaphic, oceanographic, climatic and specific biological data. It relies 
on distribution data of the meiofauna (mainly nematodes), amphipods and echinoids 
in order (1) to assess the present day macro-ecological patterns, and (2) to forecast 
the potential impact of climate-related changes on these selected taxa.

Specific study objectives are:

a. To construct a Geographic Information System (GIS)

b. To feed the system with biogeographical (georeference), edaphic,
oceanographic, climatic and specific biological data. It will rely on distribution 
data of the meiofauna (nematodes), amphipods and echinoids

c. To assess the present day macro-ecological patterns,

d. To forecast the potential impact of climate-related changes on these selected
taxa.
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3) METHODOLOGY AND RESULTS

a) Methodology

i) Collection of faunal and environmental material

Samples from previously unknown Antarctic areas and habitats have been collected 
(1) in the deep Weddell and Scotia Sea (ANDEEP l-lll campaigns: 2002, 2005; IPY 
ANDEEP-SYSTCO campaign: 2008), (2) in the formerly ice-covered Larsen A and B 
areas (IPY Polarstern ANT XXIII-8 expedition: 2006-07) and (3) in the 
Bellingshausen Sea (BENTART’06 campaign 2005-5006). During the RV Polarstern 
cruise ANT XXIV-2 to the Southern Ocean and the Weddell Sea in 2007/2008 
meiofauna and environmental samples were taken during and after a phytoplankton 
bloom at 52°S 0°E and along a longitudinal deep-sea transect (1900 -  5300 m) 
covering 49°S to 70°S. For shallow water systems, all meiofauna sampling was 
performed in the shallow-water sediments in front of the Fourcade glacier, Potter 
Cove, King George Island near the Jubany Antarctic station.

Meiobenthic and environmental samples on the shelf and in the deep sea were 
collected by means of a multicorer; meiobenthic sampling in shallower subtidal 
waters (ca. 15 m water depth) was conducted by SCUBA divers using plastic push 
cores, closed off with stoppers. Niskin bottles were used to sample the water column 
above the bottom in the shallow subtidal. All cores used for analyses were retrieved 
with min. 5 cm of relatively undisturbed sediment and supernatant ambient water.

Material for meiofaunal community analyses was fixed with 4% buffered formalin. 
Vertical distribution of the meiofauna was investigated by slicing the sediment core 
intended for community analysis in sediment slices of 1 cm (0-1; 1-2; 2-3; 3-4; 4-5 
cm). Parallel sediment slices were kept frozen for later analysis of environmental 
variables such as sediment grain size, pigment content, etc., and stable isotope 
analysis (513C and 515N) and poly-unsaturated fatty acids analysis (PUFAs). 
Nematodes (100 - 200 per sediment core) were identified up to genus level and 
sometimes species level (depending on the objectives of the individual studies). The 
sampling strategy used for the meiobenthos allowed the assessment of spatial 
variation in terms of community structure and trophic complexity in relation to 
environmental parameters. In combination with data available at Ghent University 
(from the Atlantic part of the Southern Ocean and the Ross Sea), distribution patterns 
of the nematofauna and their possible origin and evolution can be investigated.
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Samples for the analysis of macro- and megafauna were collected with diverse 
sampling gears such as Agassiz trawls and Rauscheri dredges. Various collections 
of amphipods are available for study, including the rich United States Antarctic 
Project (USARP) material provided by the Smithsonian Institution, Washington.

ii) Data development

One of the most important objectives of the BIANZO II project is the collection of 
previously ungathered data and the continuous updating and development of the 
existing data. They are the benchmark against which future scenarios under climate 
change can be tested and serve as the basis for ecological modelling and any 
assessment of taxa, communities and ecosystems in terms of biodiversity, 
biogeography, functioning and sensitivity.

During the whole of the project each partner has endeavoured the completion of 
databases in order to achieve its objectives. For nematodes, genus and species 
data including geographical and ecological information has been gathered from 
newly analysed samples and a multitude of historical and recently published literature 
sources. These data have been integrated in the NeMys database which is 
connected with the SCAR-MarBIN web portal. These data have contributed to the 
joint biogeographical paper and have served as input in the FOREBIO model to 
investigate macro-ecological hypotheses. Starting with the data contained in De 
Broyer et al., (2007), the Antarctic amphipod data has been extended substantially 
with information available from new samples obtained within the BIANZO 
programme, through international collaboration and the investigation of different 
available collections. These data have been added to the Ant’phipoda database 
which is also accessible through the SCAR-MarBIN portal.

For the echinoids, a large number of records have been added to the echinoid 
database, including the “Synopses of Antarctic Echinoids” , an interactive database 
on CD-ROM. These data have been collected through extensive international 
collaboration and investigation of available samples and collections worldwide.

In addition to the biological data gathered by the BIANZO partners a large amount of 
environmental data was collected by the research group from the Université de 
Bourgogne, mainly through international collaboration, and made available within the 
BIANZO consortium and on the SCAR-MarBIN website. Further details on these data 
are mentioned in the FOREBIO sections of this report. In addition, further detailed 
information on data development has been integrated in the different chapters of this 
report.
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iii) Biogeography (related to joint biogeographical paper)

Biogeographical data on Antarctic nematode species and genera have been 
gathered from various literature sources and field observations. Amphipod 
geographic and bathymetric records as well as taxonomical information were taken 
from De Broyer et al., (2007), and echinoid data were taken from David et al., (2005) 
and updated through international collaboration and investigating collections and new 
samples. These datasets are hosted in the BIANZO databases (Nemys.be, 
Ant’phipoda, Antarctic Echinoids), accessible through the SCAR-MarBIN portal 
(www.scarmarbin.be/). We also participated in the Antarctic-South-American 
Interactions (ASAI) in the Marine Environment Workshop and Symposium (nov.2009, 
Rio De Janeiro) in order to investigate the biogeography of Antarctic fauna.

The Southern Ocean extending from the Antarctic continent up to the Subtropical 
Convergence, and including sub-Antarctic islands and part of Patagonia (up to 41 °S 
on the Southern Chile side) was considered. The area was partitioned in 30 
operational geographic regions, more or less following the limits of the geographical 
entities used by Linse et al., (2006), Clarke et al., (2007a), Barnes & Griffiths (2008) 
and Griffiths et al., (2009) to allow a better comparison with previous biogeographical 
studies. Only the species occurring between 0 m to 1000 m depth were taken into 
account, except for the bathymetrical analysis, where all depth records were 
considered.

The bathymetric distribution analysis was performed with species occurring around 
the continent (inoi. Antarctic Peninsula), excluding Scotia Arc and sub-Antarctic 
records. Bathymetric zones include (1) the shelf zone (0-1000 m), divided in three 
sub-zones: 0 to 100 m (phytal zone), 100 to 500 m and 500 to 1000 m depth; (2) the 
bathyal zone (1000-3000 m), divided into two sub-zones: 1000 to 2000 m and 2000 
to 3000 m depth; and (3) the abyssal zone: >3000 m.

PRIMER v6 software (Clarke & Gorley, 2006) was used to perform multivariate 
analyses and determine faunal similarities between the different areas and depth 
zones. Non-transformed presence/absence data were used to build a similarity 
matrix based on Bray-Curtis similarities, which was then used to construct a non- 
metric multidimensional scaling (nMDS) and cluster analyses, in order to display 
faunal similarities. A preliminary analysis of echinoid distribution was also performed 
using the Jaccard Index.

Non-metrical Multidimensional Scaling plots are visualisation plots based on 
similarities or dissimilarities of data in a non-parametric way. MDS is a special case 
of ordination whereby each item is given a location in a predefined N-dimensional 
space based on its relative (dis)similarity (cf. Resemblance matrix whereby different 
types of indices can be used) with other items. This type of ordination plots are
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frequently used in ecological investigations to distinguish between faunal 
components from different areas, habitats, etc. For more information we refer to 
Clarke & Gorley (2006).

iv) Morphological taxonomy

Nematodes. Identification of the nematodes was done using light microscopy, relying 
on on-line identification keys (NeMysKey©) and the pictorial key of Warwick et al., 
(1998). Transmission and scanning electron microscopy were applied for more 
detailed investigations.

Amphipods. New and poorly known species were described, selected families of the 
Antarctic fauna revised and all results synthesised as family monographs to 
contribute to the “Synopses of Antarctic Amphipoda”, with the contribution of the 
Antarctic Amphipodologist Network (16 specialists; 12 countries). Electronic 
interactive keys for selected families were built using the Delta/lntkey software (delta- 
intkev.com/). Drawings of Liljeborgia species were electronically linked with ADOBE 
Illustrator and a WACOM drawing board. During this process, the methods described 
in the literature were improved (e.g. the conception of art brushes for the illustration 
of spines and thick setae). Our innovations (acknowledged by Coleman, 2009), 
considerably speeded up the creation of taxonomic illustrations.

Echinoids. The recently published “Synopses of Antarctic Echinoids” and an 
interactive database (on CD-ROM) are the basic references to identify echinoid 
species. Any new records were added to the database, which in turn is interfaced 
with SCAR-Marbin.

v) Molecular taxonomy and phylogeny

Nematodes. Our collaboration with CEMOFE (Centre for molecular phylogeny and 
evolution, UGent) allowed us to perform molecular analyses when and where 
needed. A selection of specimens was extracted from Antarctic samples at the Scotia 
Arc. These specimens were identified to genus level, photographed and a log file 
was created for them, so that species identification can be vouched in a post-analysis 
phase. Subsequently the specimens were put in molecular grade ethanol and sent to 
the Census of Antarctic Marine Life (CAML) barcoding project for analysis; details 
regarding the analysis protocol can be obtained through the responsible of the CAML 
barcoding initiative.

Amphipods. During the ANTXXIII-8 (November 2007-January 2008) and ANDEEP- 
SYSTCO (November 2008-January 2009) campaigns, new samples of Liljeborgia 
were collected for morphological and molecular studies. Extensive Liljeborgia 
material from various museums, collected between 10 and 4000 m depth, was
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brought together for morphological studies. Part of the material of the Museum of 
Verona was also examined. Genetic characterization of selected deep-sea and shelf 
taxa was conducted by sequencing mitochondrial (COI) and nuclear (28S rRNA) 
gene fragments. A molecular phylogeny of lysianassoid taxa was constructed, using 
both markers in order to reveal the evolutionary patterns in these taxa. The molecular 
analyses also permitted us to evaluate the suitability of the mitochondrial gene COI 
as a barcoding marker for Antarctic lysianassoids to contribute to “Barcode of Life” 
(Hebert et al., 2003), and to detect some possible cryptic species complexes in the 
taxa. The target taxa of our study are Antarctic lysianassoids, more particularly the 
orchomenid genus complex, which comprises the following genera: Orchomene 
(Boeck, 1871), Orchomenyx (De Broyer, 1984), Orchomenella (Sars 1895) 
Abyssorchomene (De Broyer, 1984) and Pseudorchomene (Schellenberg, 1926). 
The samples were collected during several Polarstern expeditions and originate from 
different locations in the Weddell Sea, the Antarctic Peninsula and the Scotia Sea, 
from shelf to abyssal depths. Supplementary samples were obtained from the Ross 
Sea and King George Island. Amplification of the mitochondrial COI gene was carried 
out with the polymerase chain reaction using the universal primers LCO1490 and 
HC02198 (Folmer eta!., 1994). For the 28S, primers 28F and 28R designed by Hou 
et al., (2007) were used for amplification. PCR products were sequenced 
bidirectionally with ABI BigDye terminator sequencing protocols. Sequence analysis 
was performed by using classical and complementary methods for the reconstruction 
of phylogenetic trees (e.g. Maximum Parsimony, Maximum Likelihood, Bayesian 
Method).

vi) Trophic position and dynamics

Nematodes and other meiobenthic groups. Stable isotopes (ö13C; ö15N: different 
C-sources) and poly-unsaturated fatty acids (PUFAs: selective take-up of organic 
matter) analyses were used to investigate trophic position, trophodynamics and 
selective feeding properties.

In the shallow waters of Potter Cove, King George Island, Western Antarctic 
Peninsula, cores were collected by SCUBA divers, closed with stoppers and 
immediately stored at -20°C for analysis. Next to the analysis of natural background 
samples, the trophic position and selective feeding properties of several meiobenthos 
groups in Potter Cove marine sediments has been investigated by pulse-chase 
feeding experiments using 13C labelled food bacteria and diatoms; 13C-labelled 
diatoms (food source 1) and bacteria (food source 2) were freeze-dried in the 
laboratory beforehand and added to 12 sediment cores (6 x 30mg of labelled 
diatoms, 6 x 30mg of labelled bacteria) which were left incubated and aerated at 0°C 
for 10 days. After 5 and 10 days, the cores were sampled and sliced in sediment 
layers of 0-1 cm, 1-2cm, 2-5cm, 5-10cm and then stored at -20°C prior to analysis.
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The sediments were sampled at the beginning and the end of the incubation period. 
For more detailed protocols of the shallow-water Potter Cove experiments we refer to 
Pasotti eta!., (submitted).

For the Weddell Sea area, near Kapp Norvegia, trophic status, dynamics, and 
selective feeding properties of Antarctic deep-sea nematodes were -  next to natural 
background samples -  also investigated within an experimental setup. Deep-sea 
multicore sediment samples from Polar Regions were incubated aboard research 
vessels with 13C-labelled bacteria or diatoms to determine whether the nematode 
community prefers to utilise freshly settled phytodetritus or a bacterial food source. 
The cores were collected at ca. 2400 m water depth and incubated onboard for 1, 7, 
and 14 days in Antarctica (Kapp Norvegia) and the Arctic (Flausgarten site). Natural 
background deep-sea samples were taken with multicorers and stored at -20°C until 
analysis; for the deep-sea feeding experiments, core samples were incubated under 
laboratory-controlled conditions mimicking in-situ habitat and were subsequently 
stored at -20°c until analysis. For more detailed protocols we refer to Ingels et al., 
(2010).

To gain insight in the trophic status and the link between the structural and functional 
nematode (and copepod) diversity on the scale of the Southern Ocean, samples 
were taken with multicorers from a N-S transect along the Greenwich Meridian, from 
the Antarctic Convergence towards a the very south of the Weddell Sea. Samples 
from 6 stations were analysed for 13C and 15N stable isotopes and nematode 
community structure. A number of samples (sediments and nematodes) have been 
prepared for fatty acid analysis to investigate the trophic position and feeding 
behaviour of nematodes within the Antarctic benthic food web and to investigate any 
latitudinal pattern of nematode trophic characteristics in the Southern Ocean. An 
additional station at 52° S was revisited after a phytoplankton bloom had settled to 
enable further comparisons with pre-bloom conditions and study the nematodes (and 
copepods) and their trophic role in the food web relating to phytoplanktonic bloom 
conditions in the Southern Ocean. All samples were collected during the ANDEEP - 
SYSTCO campaign on board of RV Polarstern from 12/2008 -  02/2009; for more 
detailed protocols we refer to Veit-Köhler et al. (2011), Guilini et al. (in prep.). In 
addition, samples from the Larsen sub-ice communities in a post-ice shelf collapse 
phase have been taken and analysed to investigate trophic characteristics of the 
nematode community. Protocols were identical to those mentioned above for deep- 
sea samples.

Amphipods. The promising results obtained during BIANZO I on the trophic position 
of amphipods, were refined by studying new selected species, with emphasis on 
scavengers. Investigations included gut content analyses, morphological 
observations and tracing techniques such as stable isotope or fatty acid analyses to
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identify the origin of food. The importance of prokaryotes in the digestive tract of 
amphipods was assessed by epifluorescence or SE microscopy, and by 
immunological or DNA techniques. Changes in food supply from the water column to 
the benthos (seasonal or long-term) could force amphipods into a "trophic shift". 
Feeding experiments were set-up in aquaria, mainly with scavenging species, using 
different labelled substrates. In parallel, measurements of the energy demand by 
scavengers (metabolic activity, respiration and body composition) were performed to 
evaluate the influence of trophic stress (e.g. climatic, human-induced...) on the 
general energy budget of individuals. These results, together with literature 
information, are being integrated in a balanced model of scavenger assemblage 
trophic links and energy flows, showing the significance of the scavengers’ share in 
overall benthic energy flow and the potential sensitivity of the system to changes in 
food supply.

Echinoids. In literature, regular echinoids are considered opportunistic browsers. 
Although they feed on what is available in their habitat, they usually exhibit some 
food preferences. Various taxa belong to particular trophic groups: carnivores 
(Cidaroidea) versus opportunists (many Euechinoidea). Compared to specialized 
echinoids, the generalists are, at first sight, good candidates to acclimatize to new 
trophic resources. To identify tolerance ranges of Antarctic echinoids (in order to 
propose potential responses to environmental changes, i.e. biological filters for 
FOREBIO) the feeding behaviour of generalist (Echinidae) and specialist (Cidaridae) 
feeding echinoids were characterized through three series of analyses: (1) a 
qualitative inventory of gut content through microscopic observations, (2) a stable 
isotope analysis (gut content, gonads, muscles) and (3) the investigation of genetic 
features of the digestive micro flora by molecular tools (DGGE and 16S rRNA 
cloning). Echinoids were dissected on board of the research vessels. For microscopic 
and genetic observations, gut content samples were isolated and fixed in ethanol 
100%. For isotopic analyses, gut contents, gonads and muscles (Aristotle’s lantern 
musculature) were isolated and kept in liquid nitrogen (at -27°C).

vii)Experiments on the ability of the Antarctic zoobenthos to cope with 
change

Nematodes and other meiobenthic groups. The ability of the Antarctic 
meiobenthos to cope with warming was tested in shallow-water systems within an 
experimental setup. Cores collected by scuba divers were incubated under different 
temperature conditions for a period of 14 days whilst benthic respiration rates were 
investigated. The aim was to investigate the influence of rising temperatures on the 
respiration of the Antarctic benthos: microbenthos, meiobenthos and macrobenthos. 
Temperature treatments were 0°C (ambient temperature), 2°C, 4°C and 6°C. For 
each treatment, four replicate cores were incubated. Cores were kept at temperature
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in water-filled buckets kept at a constant temperature by means of thermostats. 
Water temperature fluctuations were kept to a minimum by frequent inspection and 
adjustment. Every day, 10ml of water was sucked out from each core, at 5cm from 
the sediment surface. The oxygen content of this 10ml water sample was then 
measured using the Winkler method with a spectrophotometer. The same amount of 
water was added separately but at the same temperature as the respective core, was 
added again subsequently. All cores were incubated for 14 days, except for the water 
samples of the 2°C treatment. This incubation was stopped after three days because 
of a temporary heat (7°C) shock, which clearly affected the results. The sediment 
cores were kept for further examination in spite of the temperature failure, however, 
and a new series of 4 sediment and 4 water cores was added for an incubation 
period of 10 days. Sediment was collected the day of sampling (Day 0), after 5 days 
and at the end of the incubation period. From each core, a small amount of sediment 
was taken for bacterial counts and ATP measurements. The remainder of the core 
was sliced (0-1 cm, 1-2cm, 2-3cm, 3-4cm, 4-5cm, 5cm-rest) The samples were 
analysed for several structural and functional, community-related parameters, such 
as densities, vertical distribution, individual and total biomass, nematode community 
composition, diversity and nutrient fluxes.

Echinoids. The impact of acidification on adults and larvae was assessed firstly on 
easy-to-obtain temperate and boreal species, and secondly on Sub-Antarctic 
species, under altered sea-water chemistry. Larvae were grown following standard 
procedures under normal and altered sea-water composition, covering a pH range 
from 8.0 to 6.8. Larval development was characterized using embryotoxicity protocols 
(Warnau et al., 1996), to distinguish between normal and altered general 
morphologies. Spicule development was quantified using image analysis of 
micrographs. Morphology of spicules was monitored by SEM. Metabolic parameters 
and spine regeneration were measured on adult urchins reared in closed-ci reu it 
aquaria with normal and altered sea water chemistry. For both larvae and adults, 
dose-response relationships were established for the different dependent variables 
under study, related to carbonate and dissolved CO2 concentrations. Furthermore, 
cidaroid field specimens from the Weddell Sea were studied in order to assess 
morphological and chemical changes in spines, according to magnesium-calcite 
saturation state along depth.

viii) Communication, integration and valorisation

Workshops and meetings. During the BIANZOII project 7 meetings and workshops 
were organised to communicate results, pursue integration of the results and 
concerted research efforts, and align the partners’ research strategies, as well as 
having discussions with the follow-up committee. Meetings and workshops were held 
on 3/5/2007, 18/6/2008, 20/5/2009, 14/9/2009, 22/2/2010, 17/3/2010, and 21/1/2011.
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The meeting minutes of the meetings that where attended by the follow-up committee 
are available in Annex 2.

Scientific and general outreach. In order to maximise scientific valorisation of the 
BIANZO II results, multiple oral and poster presentations were given at a multitude of 
national and international meetings and conferences. These contributions are listed 
in Section 5 “Dissemination and valorisation.” The BIANZO partners have also 
actively participated in a number of national and international workshops, some with 
significant immediate results in terms of scientific and general outreach; these are 
mentioned in the Section 5. In addition, a number of outreach efforts to the general 
public have been conducted on national and international level. These are also 
mentioned in Section 5.

Review paper on climate change effects. During two initiating workshops 
organized in 2009, discussions were held to obtain the structure, objectives and 
future strategy of a review paper on the expected effects of climate change on the 
major benthic BIANZO taxa including nematodes, amphipods, echinoids but also 
foraminiferans and isopods. A strong basis was laid in the discussions of the first 
workshop, during which an overview was given of the up-to-date information on 
potential climate change effects on the five benthic groups of interest. This helped 
the development of a complete integration of all partner results obtained during the 
BIANZO II project. A flow chart was produced in order to separate the different 
climate change effects and the different levels of interaction between these effects 
and the benthic groups of interest. In addition, a sensitivity table template was 
created, based on own results and literature data in order to have a detailed account 
of what climate change induced factors will influence the different zoobenthic groups 
and to what extent the taxa will be influenced (i.e. the sensitivity table will indicate 
what kind of biotic response a certain effect-range will evoke). Currently, this table is 
being completed and updated by the partners. During several other meetings, the 
progress in this integrated manuscript has been discussed and the manuscript is 
nearing finalisation. A preliminary version of the table will be included in this report as 
well as an outline of the achieved results within this concerted integrative research 
effort. Furthermore, Prof. A. Gooday and Prof. A. Brandt, end-users of the BIANZO II 
phase II project are contributing to the review paper with their expertise on Antarctic 
Foraminifera and Isopoda, respectively.

ix) FOREBIO

For the purpose of developing, discussing and evaluating FOREBIO and the 
construction of the GIS models, several workshops were organized. Three main 
steps were identified in the FOREBIO construction process: 1) building the frame in a 
GIS environment, 2) adding shared data, and 3) adding specific data (taxon related).
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Step 1 was accomplished during 2009 and the GIS-based model is now being 
constructed further. Step 2, involving the addition of shared data has progressed 
substantially and involved many contributors beyond the BIANZO network. All 
BIANZO partners are continuously updating these data with newly available 
information, and substantial progress has been made, especially during the last year. 
For echinoids the database covers more than 4000 georeferenced localities in the 
Southern Ocean, and more than 6000 when the surrounding cold temperate areas 
are included; this has been achieved through amending existing data and 
inventorying samples and collections worldwide. The primary data used for 
FOREBIO actually correspond largely with the data gathered within NOWBIO. For 
nematodes genera data was gathered from the Nemys database and various 
literature sources, and ecological information was included. For amphipods, a 
recapitulatory file was amended, in which all Antarctic and Subantarctic species of 
amphipod are listed with all available data on taxonomy, species descriptors, 
geographic occurrences with detailed latitude and longitude data, indication of the 
locality, mission name and station where the specimens were sampled, water depth, 
gear and additional information. About 70 percent of these data were collected from 
the synopsis of the Amphipoda of the Southern Ocean (De Broyer et al., 2009), 
through the SCAR-MarBIN network. The remaining 30 percent were gathered from 
the IRScNB’s ANT’Phipoda (MISTA) database. The data was compiled and 
standardised and/or converted to fit the template.

Intensive data collection has increased the power of the modelling approach and has 
made it possible to compute species distribution models at the scale of the entire 
Southern Ocean and to test for the impact of environmental variables and future 
climate scenarios (“single species” approach). It will also be possible to analyse 
biogeographical relationships between the different regions of the Southern Ocean 
(“fauna” approach) using ordination or network techniques (this will be accomplished 
before the end of the BIANZOII project in the case of echinoids).

Species distribution models have been performed by matching abiotic data of the 
environment to occurrence data using a GIS (software ArcGIS version 9.3) and 
modelling of fundamental niches has been possible with Maxent (version 3.3.2), a 
program using a maximum entropy modelling procedure (Phillips et al., 2006). 
Maxent was developed for assessing species distributions from « presence-only » 
data. It aims at evaluating the target probability distribution, i.e. the real probability 
distribution of a species over the whole study area. This can be done under present 
day conditions to establish suitability distribution maps, but can also contribute to the 
modelling of future scenarios and predictive distributions. Additionally, Maxent offers 
the possibility to undertake post-hoc appraisals of the reliability of the results and of 
secondary data. A complementary exploration has been conducted using GARP 
(Stockwell and Peters 1999), a program using a genetic algorithm rather different to
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that of Maxent, and allows to check the consistency of the results provided by both 
approaches.

b) Results

The scientific results of all research groups are represented according to the 3 work 
packages within BIANZOII (NOWBIO, DYNABIO, and FOREBIO). Where possible, 
integration of the results was pursued. For each topic the appropriate objectives 
within each WP have been mentioned.

i) NOWBIO -  Nature, distribution and evolution of the benthic
biodiversity

(1) Structure and function of fauna in the Larsen area -  Responses to 
large-scale ice shelf collapse

NOWBIO objectives 1 -a, (b, c, e)

Direct warming effects are observed all over the world, but the Antarctic Peninsula is 
considered one of the fastest warming areas in the world (King et al., 2003; 
Chapman & Walsh, 2007). Extreme warming near the peninsula was manifestly 
expressed in 2002, when 500 billion tons or 3250 km2 of ice from the Larsen B ice shelf 
collapsed at the eastern side of the Antarctic Peninsula, and this in only one month’s 
time (31/01-07/03/2002) (Fig. 7). A few years before, in 1995, the ice shelf of the nearby 
Larsen A region had already disintegrated completely. The collapse of these ice 
shelves has indeed been attributed to extreme warming, and the Larsen B collapse 
happened during the warmest summer on record for the area (Scambos et al., 2000). 
Ice-shelf collapse initially leads to increased iceberg disturbance and may have 
detrimental effects on surface primary productivity (Arrigo et al., 2002). Later, the 
formerly ice-covered area opens up, leading to increased primary production and the 
opportunity to enter the area for scientific investigations.

Between 11/01/2007 and 22/01/2007, the Larsen area was investigated by a team of 
researchers with the German research vessel Polarstern (campaign ANT-XXIII/8). A 
synoptic approach was applied, including different spatial scales, different groups of 
organisms (from pelagic to benthic, from primary producers to apex predators) and 
different environmental characteristics at a limited number of sampling stations (Gutt 
et al., in press). Representatives of the BIANZO II consortium sampled and 
investigated the continental shelf benthic fauna in the area. The Antarctic shelf is 
notoriously rich at local as well as regional scales (Arntz et al., 1994), and effects of 
large-scale ice-shelf collapse events were still visible after 5 years. The investigations 
of the BIANZO II group were meant to provide information on the following topics: (1) 
Current status of the Larsen benthic shelf fauna; (2) Biogeography and taxonomy of
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certain benthic taxa; (3) Response of the Larsen benthic fauna to large-scale ice- 
shelf disintegration events/ability of this fauna to cope with a changing environment; 
(4) Recolonization speed of the Larsen benthic fauna after large-scale ice-shelf 
disintegration events (5) Identification of the fauna of newly discovered habitats.

(a) Meiofauna

During the ANT-XXIII/8 Polarstern campaign, the Larsen region was sampled for the 
first time (Fig. 1., indicating stations sampled). Our study was the first that 
investigated benthic communities in this area by studying the meiobenthic response 
to the collapse of ice shelves in the Antarctic (Raes et al., 2010).
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Fig. 1. Map of the study area, with indication of all sampling stations and the maximum 
ice extent at Larsen A and B between 1992 and March 2002 (Based on BAS, AMM and 
ESA ERS imagery). The world map is shown in Mollweide projection

Four factors related to ice coverage were considered to have had an influence on the 
investigated meiobenthic communities (incl. nematodes): (1) length of the period for 
which each station has been free of shelf ice cover, (2) distance of each station from 
a rich source of nematodes for colonization, (3) primary production in the water 
column above the stations, and (4) local environmental factors, such as sediment 
granulometry and pigment concentration.

Food availability is a major structuring factor for meiobenthic and nematode 
populations and communities (Vanhove et al., 2000; Gutzmann et al., 2004), and 
oligotropha conditions are known to affect meiobenthic and nematode abundance 
negatively (Vincx et al., 1994; Vanreusel et al., 2000). Extensive and long-term ice 
cover impedes or, in case of sea ice persisting only for weeks or months, delays 
phytoplankton production, consequently severely impacting the entire pelagic 
ecosystem (Arrigo et al., 2002) and the benthic communities. Still, living (and even 
rich) benthic communities can exist underneath large ice shelves (Oliver et al., 1976;
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Riddle et al., 2007; Post et al., 2007). In the area of Larsen B_South, a pre-collapse 
benthic community was also present at the ocean floor, judging from the low number 
of iceberg scour marks and the age of sponges collected there (Gutt et al., in press).

The nematode data indicated that pre-collapse, sub-ice communities were 
impoverished and characterised by low densities, low diversity and high dominance 
of a few taxa. This may still be visible at a station located deep inside the Larsen B 
embayment, where the nematode genus Halomonhystera was dominant. Post­
collapse re-colonization of the “inner” stations, i.e. those located furthermost from the 
former ice-shelf edge, is believed to be a long-term process. At the time of sampling, 
community structure at the inner stations was not or only slightly influenced by 
colonization, and might be structured by local environmental conditions. Our results 
indicate that a locally increased food supply after ice-cover removal could provoke a 
faster, local response of the nematode assemblages compared to the response due 
to recolonisation. Communities living close to the former ice-shelf edge are believed 
to be at an intermediate or late stage of succession, with a dominance of the 
Microlaimus nematodes, a common Antarctic genus and quick colonizer. Densities 
here were comparable to those at other Antarctic stations in the range of densities 
found at other locations in the Weddell, Scotia and Ross Seas (Herman & Dahms, 
1992; Vanhove et al., 1995; Fabiano & Danovaro, 1999; Vanhove et al., 2004; 
Gutzmann et al., 2004; Ingels et al., 2006), whereas they were considerably lower at 
the inner stations (Raes et al., 2010).

Following ice shelf disintegration, density increase at the inner stations is considered 
to be a slow process, related to increased food supply, and/or colonization from 
adjacent ice-free areas. At a colonisation rate of 60.8 m.y'1 (Lee et al., 2001), it would 
take more than 1000 years for the nematode community at station B_West to fully 
recover its abundance levels. Time needed for the first colonizers to reach the inner 
Larsen stations seems to be in the order of magnitude of at least a decade or more. 
This corresponds with recovery speed of macrofauna after iceberg scouring, reported 
by Barnes & Conlan (2007).

The significantly higher densities, higher diversity and significantly different 
community structure at B_South in comparison with the inner stations, can be 
explained by the longer period free of ice cover and, hence, open to potentially 
increased food supply from sea-surface phytoplankton blooms, in combination with 
the proximity of the open, western Weddell Sea as a nearby source for advected food 
and colonization. Quick colonizers might have seized the opportunity to swiftly invade 
the new space. Microlaimus, the dominant genus here, is a rather important and 
usually (sub)dominant nematode genus in the Antarctic and Subantarctic (Vanhove 
et al., 1999, Vanhove et al., 2004, Ingels et al., 2006, Sebastian et al., 2007). It is 
also known as an opportunistic genus that benefits from increased but unpredictable
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organic food input (Van Gaever et al., 2004; Van Gaever et al., 2006), and a 
successful and fast colonizer (Lee et al., 2001a).

Stations A_South and B_North are physically separated by the Drygalski Glacier cliff, 
so faunal exchange between both stations is very unlikely. Thus, only the recent 
availability of fresh food could have resulted in the comparable nematode community 
composition and dominance of Thalassomonhystera here. Thalassomonhystera is 
known as an opportunistic genus, which could have taken advantage of the fresh 
food input, outcompeting several other taxa. The food-rich environment at these 
stations is most likely the result of a recent phytoplankton bloom in the area. The 
close proximity of land and increased run-off of meltwater from its glaciers create 
excellent conditions for the development of large summer blooms (Dierssen et al., 
2002; Clarke et ai, 2007a).

Our BIO-ENV analysis revealed no perfect match between environmental variables 
and the observed biological patterns. In our opinion, these patterns can only be 
explained by a combination of historical (length of ice-free period), geographical 
(position in the Larsen area) and present-day environmental (food supply, sediment 
granulometry) effects.

In conclusion, the meiofauna in the Larsen A and B areas has been strongly 
influenced by the presence and sudden removal of the ice cover in this region, and is 
only slowly replenished through colonization from the open Weddell Sea. In fact, in a 
large-scale analysis based on nematode genus relative abundance data, a clear 
separation between the Larsen stations and other biogeographical areas in the 
(sub)Antarctic was shown (Fig. 2).
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Fig. 2. nMDS based on nematode community data (relative abundance per samples). 
The nematode communities for the different biogeographical regions are clearly 
separated in 3-dimensional space (here represented in 2 dimensions with acceptable 
stress value of 0.16)
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The significantly lower average values of taxonomic distinctness (A*) at B_North (and 
B_West), and the significantly higher value of variation in taxonomic distinctness (A+) 
for the entire nematode community at station B_North indicate both a low taxonomic 
spread in the community at this station (i.e. relatively more similar taxa), and a high 
unevenness in its phylogenetic structure, related to an increase in abundance of an 
opportunistic genus (Thalassomonhystera). The station is also characterized by a 
high dominance of nematodes. A negative correlation between evenness and a 
combination of abundant food and fine sediment could be an explanation for the low 
diversity at B_North (Tietjen 1977; Sebastian et ai, 2007).

The ice-shelf disintegration in the Larsen B (2002) area along the Eastern Antarctic 
Peninsula also led to the discovery of a low-activity methane seepage area. Since 
both previous ice coverage and reduced cold seep activity are likely to influence 
benthic meiofauna communities, the nematode assemblage of this low-activity cold 
seep was characterised and compared to other recently ice-free Larsen A and B 
stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well 
as cold-seep ecosystems world-wide.

The presence of a low-activity cold-seep area in the Larsen region, posed several 
new questions regarding the status and trophic position of the meiobenthic 
community, following ice-shelf collapse. Hauquier et al. (accepted) found that 
densities in the seep samples were relatively high (>2000 individuals per 10cm2) and 
showed subsurface maxima at a sediment depth of 2-3cm. All samples were 
dominated by one nematode species of the family Monhysteridae, which was 
identified as a Halomonhystera species and contributed between 79 and 87% to the 
total community. This combination of high densities, subsurface maxima and high 
dominance of one species has been observed many times in cold-seep ecosystems 
world-wide and indicated a dependence on a chemosynthetic food source. A 
hypothesis rejected by 13C stable isotope results, which indicated a phytodetritus- 
based food web. This suggested that the community was in transition from a 
chemosynthetic community to a classic phytodetritus feeding community, a 
temporary ecotone as it were. Newly-formed intense phytoplankton blooms following 
the removal of ice, with subsequent sinking of detritus to the sea floor may explain 
the high densities and low diversity. However, stable 13C isotopic signals (ranging 
between -21.97 ± 0.86%o and -24.85 ± 1.89%o) were indicative of phytoplankton- 
based feeding. It was concluded that the recent ice-shelf collapse and enhanced food 
input from surface phytoplankton blooms were responsible for the high density and 
low diversity communities. The characteristic parthenogenetic reproduction of the 
highly dominant Halomonhystera species is rather unusual for marine nematodes 
and may be responsible for the successful colonisation by this single species. The 
results also confirmed the colonisation hypotheses posed by Raes et al., (2010), 
which is explained above.
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In addition to the characterization of the nematode community, a new genus of the 
family Ethmolaimidae was found, based on a new species. Specimens of this species 
were recovered from reduced, chemosynthetic sediments in Larsen area (low-activity 
cold seep) at 800 m water depth. Up until now, the family Ethmolaimidae comprised 
eight genera: Comesa, Ethmolaimus, Filithonchus, Gomphionchus, Gomphionema, 
Nannolaimus, Neothonchus and Trichethmolaimus. The new genus is being 
described by Bezerra et al. (in prep.). The discovery of a new nematode genus from 
previously unstudied Antarctic habitats, such as the Larsen area, indicates the 
relatively undocumented nature of Antarctic biodiversity. New species are 
continuously discovered as sampling effort increases and stresses the importance of 
the continuation of taxonomic and biodiversity research to unveil the true extent of 
biodiversity in the Antarctic as has been demonstrated by the Census of Antarctic 
Marine Life (CAML). The fact that this new genus was also identified in samples of 
the Gulf of Cadiz at the Darwin mud volcano (1100m) in the NE Atlantic enforces the 
meiofauna paradigm, even on the species level, and adds to our understanding of 
global distribution of the Nematodes. Molecular studies in the nearby future should 
confirm whether the newly discovered species/genera are separated on genomic 
level, which in turn, will increase our knowledge on molecular nematode diversity on 
a global scale.

(b) Echinoids

The three species collected in Larsen A&B areas (Sterechinus antarcticus, 
Sterechinus neumayeri and Notocidaris mortenseni ; unpublished data) are known as 
indirect developers (or at least non-brooders), consistent with high dispersal 
capabilities. Moreover, this is congruent with the wide Antarctic distribution of these 
species (David et al., 2005). On the contrary, it departs from other Antarctic echinoids 
which are known as direct developers that brood their young and, accordingly, are 
supposed to present low dispersal capacities. The three species display a ‘generalist’ 
feeding behaviour that can be considered as characteristic of pioneering species. 
Therefore. Considering echinoid life and feeding strategies, the three species are 
good candidates as pioneering species in a changing marine environment.

(2) Ectosymbioses on echinoids 

NOWBIO objectives 1- f

To test the contribution of cidaroid ectosymbioses to local benthic communities, their 
abundance, distribution, richness, diversity and similarity indexes were compared to 
those of sessile epibionts occurring on drop stones (Hardy et al., 2011). For this 
purpose, several cidaroid species and stones were collected at six contrasted areas: 
Weddell Sea, South Shetlands, Antarctic Peninsula (including Larsen embayments 
where ice shelves collapsed very recently), Bellingshausen Sea and
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Dumont d’Urville Sea. Our results demonstrate the importance of cidaroids for local 
epibiont diversity. However, contrasting patterns of diversity were found in the 
different sampling areas, likely due to contrasting environmental conditions (latitude, 
depth and currents). In contrast with other areas, the symbiotic communities in the 
Larsen embayments show low diversity values and a strong similarity with epibionts 
present on stones, the cidaroids sharing more than 80% of epibionts with the 
surrounding stones. These results suggest that ectosymbioses linked to cidaroids 
could contribute to benthic colonization of the seafloor in the Larsen embayments. 
With time, secondary successions are expected to occur, increasing the difference 
between epibiotic communities on cidaroids and those on stones, and lead to the 
situations observed in unperturbed sites.

(3) Systematics and phylogeography of Southern Ocean amphipods 

NOWBIO objectives 1-d, 2, 3

A thorough descriptive study of Liljeborgia species of the Southern Ocean was 
carried out, in order to establish a foundation for biogeographical and phylogenetic 
studies of this genus, and a model for phylogeographic studies of Southern Ocean 
amphipods in general. Liljeborgia is an ideal test group because it is present both in 
shallow and deep water and because the number of species is neither too small nor 
too large.

The twelve valid species previously recorded in the Southern Ocean were re­
described as their previous descriptions were outdated and/or very poor. Based on 
material from different museums, thirteen new species were described and named, 
two new species were described but not named (the material was in a bad condition), 
one species proved to be invalid and the records of two species in the Southern 
Ocean were considered as resulting from erroneous identifications.

Antarctic and sub-Antarctic species could be divided into two previously 
unrecognized morphological groups (d'Udekem d'Acoz, 2008), which were 
subsequently considered as subgenera (d'Udekem d'Acoz, 2010). Actually, the vast 
majority of Liljeborgia species from other parts of the world can also be classified in 
these two subgenera. Species from the continental shelf were often closely related 
with abyssal species, suggesting recent faunal exchanges between depth layers. The 
Antarctic, sub-Antarctic archipelagos and Magellan region were populated by 
different species of Liljeborgia. In the Southern Ocean, some species were only 
known from the Scotia Arc and islands of the Antarctic Peninsula, while others were 
only found in the eastern Weddell Sea. However, due to the limited amount of 
material available for some species, it was not possible to definitively confirm that 
such species are local endemics within true Antarctic waters. All these data were 
included in two large monographs (d’Udekem d’Acoz, 2008; d’Udekem d’Acoz,
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2009). In addition, the Scandinavian Liljeborgia species of the group fissicornis 
(Crustacea, Amphipoda) have been studied, resulting in the discovery of 3 new 
species. All those northern species are completely devoid of eyes, while similar 
species from the Antarctic and sub-Antarctic continental shelf (those of the group 
georgiana) do have eyes. It is hypothesized that the group fissicornis, which is 
specific to cold waters, derives from ancestors living on the continental shelf of the 
Southern Ocean and belonging to the group georgiana. These ancestors would have 
adapted to deep-sea environments, losing their eyes completely. Then they would 
have migrated northwards through the cold abyss, and reached the cold but shallow 
waters of the Arctic/sub-Arctic continental shelf, without redeveloping visual organs 
(d’Udekem d’Acoz & Vader, 2009). The subsequent discovery of a related abyssal 
blind species in the equatorial Eastern Atlantic (d'Udekem d'Acoz & Hendrycks, 
submitted) supports this hypothesis. Furthermore another group of related species 
from the two poles has been detected: L  cnephatis and relatives (Southern Ocean: 
blind deepwater and eyed shelf species) and L  macronyx (Scandinavia: shelf blind 
species) (d'Udekem d'Acoz, 2010). Since the two groups of Liljeborgia are not at all 
related (they belong to separate subgenera), this suggests a replication of the same 
scenario.

Recent molecular analyses revealed that a number of so-called “circum-Antarctic” 
benthic crustacean species are a complex of cryptic species with a restricted 
geographic distribution. In order to investigate these issues for the genus Liljeborgia, 
fragments of the COI gene were sequenced and used as DNA barcode. Twenty-five 
specimens were successfully sequenced so far and were clustered in a Neighbour- 
Joining tree (Fig. 3; Kimura two-parameter model), which focuses on the georgiana 
species group.

In the morphospecies L  georgiana, specimens from the same area (e.g. the Ross 
Sea or Bouvet Island) have the same haplotype. In contrast, distant populations are 
genetically distinct, as a probable result of the low dispersal capacity of Liljeborgia 
species. This result sharply contrasts with orchomenid lysianassoids, in which some 
highly mobile species exhibit a remarkable genetic homogeneity throughout the 
Southern Ocean. Interestingly, the specimens initially identified as 7_. georgiana’ from 
the continental slope (1,500 m) are genetically very distinct from other shelf samples; 
a related but clearly distinct morphospecies (L  semperhiemalis) is positioned in 
between. A second examination of the deep 7_. georgiana’ has revealed small but 
significant differences with L  georgiana and was be described as a new species, L  
Bathysciarum d’Udekem d’Acoz, 2009. The different taxonomic units in the genus 
Liljeborgia (morphospecies and different haplotypes of the same species) seem to 
have a regional rather than a global distribution.
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Fig. 3. Neighbour-Joining tree for the Antarctic Liljeborgia.

In the framework of the ongoing revision of the Southern Ocean amphipod fauna, 
undertaken with the collaboration of the “Antarctic Amphipodologists Network” , two 
new families, the Alicellidae fam. nov. and the Valettiopsidae fam. nov., are 
described based on genera traditionally considered as lysianassoid amphipods. The 
Alicellidae fam. nov. are deep-sea scavengers often associated with thermal vents. 
The family contains 6 genera: Alicella Chevreux, 1899; Apotectonia Barnard & 
Ingram, 1990; Diatectonia Barnard & Ingram, 1990; Paralicella Chevreux, 1908; 
Tectovalopsis Barnard & Ingram, 1990; Transtectonia Barnard & Ingram, 1990. The 
Valettiopsidae fam. nov. are deep-sea scavenging amphipods that contain two 
genera, Valettiopsis Holmes, 1908 and Valettietta Lincoln & Thurston, 1983 (Lowry & 
De Broyer, 2008).

An up-to-date catalogue of Antarctic and sub-Antarctic Phoxocephalidae has been 
established, including 35 species. An extensive list of bibliographical references with 
synonymy, detailed information on geographic and bathymetric distribution, 
ecological data, museum locations of type-material, remarks on taxonomic and 
biogeographical status, are provided for each species. The catalogue is based on 
taxonomic and ecological literature until 31 December 2006. Additional unpublished 
records of species from the Antarctic and Subantarctic collections at the Alfred 
Wegener Institut für Polar- und Meeresforschung, Bremerhaven, and at the Museo 
Argentino de Ciencias Naturales “Bernardino Rivadavia” , Buenos Aires, have been 
included. The taxonomic status of all Southern Ocean species has been checked. 
Species allocated to the genera Paraphoxus and Parharpinia, and Fuegiphoxus 
uncinatus require further study to clarify genus allocation. Most of the Southern
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Ocean phoxocephalus have a wide bathymetric distribution, equally present in the 
Antarctic and sub-Antarctic regions. The highest species richness is found above 200 
meters depth in the sub-Antarctic region. Of 35 phoxocephalid species reported, 25 
are endemic to the Southern Ocean s. lat., 15 are endemic to the Antarctic region 
and 6 are endemic to the sub-Antarctic region, the latter distributed only in the 
Magellan province. Endemicity at genus level attains 22% for the whole Southern 
Ocean, with 3 genera restricted to the Magellan province and one genus to the West 
Antarctic, Magellan and sub-Antarctic island provinces. Habitat and substrate 
preferences, dietary and burrowing behaviour are scarcely known for most of the 
phoxocephalid species from the Southern Ocean (Alonso de Pina et ai, 2008).

Another study focuses on the DNA barcoding and the phylogeography of the 
Antarctic lysianassoid genus complex Orchomene (Havermans et al., 2011). A 
neighbour-joining analysis (Fig. 4) confirmed the monophyly of all species 
investigated by multiple specimens. The mean of interspecific K2P divergences 
between species (except species complexes) is 14.5%, ranging from 6.3% (between 
Pseudorchomene coatsi and Pseudorchomene sp.) to 20.1% (between 
Abyssorchomene chevreuxi and Orchomenella (O.) acanthurus). The frequency 
distribution of pairwise K2P distances within and between well-defined orchomenid 
species is shown in Fig. 5. Interspecific divergence exceeds intraspecific divergence 
to such an extent that a “gap” can be observed. This gap range is the interval 
between the highest intraspecific and the lowest interspecific distances (Astrin et al., 
2006; Meier et al., 2008). In our case, the gap range is about 3.9%. This clear 
barcoding gap observed in our COI dataset means that the assignment of a 
specimen to a particular species based on a “threshold” value of sequence 
divergence would mostly work for this group and would be also efficient to detect new 
and/or cryptic species (Hebert et al., 2003; 2004). The results of the 28S rDNA 
confirmed the cryptic species complexes within the orchomenid genus complex.

Furthermore, the neighbour-joining analysis (Fig. 4) revealed clades corresponding to 
undescribed species (Abyssorchomene sp.1, Abyssorchomene sp. 2 and 
Pseudorchomene sp.). Moreover, mitochondrial data reveal distinct, monophyletic 
clades in Orchomenella (O.) pinguides, Orchomenella (O.) franklini, Orchomenella 
(Orchomenopsis) cavimanus and Orchomenella (Orchomenopsis) acanthurus. The 
genetic divergence between the clades within these four Orchomenella species is 
congruent with species-level divergences in the orchomenid genus complex. In 
addition, representatives of these four Orchomenella species occur in (partial) 
sympatry. For example, in Orchomenella (Orchomenella) franklini, specimens coming 
from the same sample locations at Joinville Island pop up in clades separated by 
high genetic distances (Fig. 4). In other species (e.g. Abyssorchomene plebs, 
Abyssorchomene sp.1, Pseudorchomene coatsi), low genetic divergences could be 
observed. For example, A. plebs showed an average K2P distance of 0.2 % between
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specimens of the Antarctic Peninsula, the Scotia Sea, the eastern Weddell Sea and 
Bouvet Island, as well as between specimens from shelf (270 m) and abyssal depths 
(2889 m) in the Scotia Sea (Fig. 4).

In addition, a phylogenetic analysis with the combined dataset (COI and 28S rRNA) 
showed that the taxonomy of the orchomenid genus complex is based on diagnostic 
characters that are a result of convergent evolution (Havermans et al., 2010). A 
revision of taxonomy within this lysianassoid group is needed to improve systematic 
and biodiversity studies. Furthermore, the detection of cryptic species may have 
some influence of the current views on species richness and distributions in the most 
abundant group of amphipods in the Southern Ocean. Finally, the DNA barcoding 
permitted to detect some new species, which contributed to a more accurate 
estimation of the species diversity within this lysianassoid group.
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Fig. 4. A neighbour-joining analysis of the COI sequences based on K2P distances of 
the Antarctic orchomenid species, with the locality indicated for some species. This 
highlights the presence of species complexes in O. (O.) acanthurus 0 .(0 .) cavimanus, 
O. (O). pinhuides and O. (O.) franklini.
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(4) Comparative biogeography of Antarctic meio- macro- and
megabenthos

NOWBIO objectives 1-e; 2; 3

Based on new and complete datasets with distribution records of four target taxa, a 
common biogeographical analysis was undertaken, aiming to compare geographical 
and bathymetrical distribution patterns, focusing on the differences between meio-, 
macro- and megabenthos. The analysis included nematodes, amphipods, asteroids 
and echinoids. The analysis aimed to match these patterns with the biogeographical
schemes of other benthic taxa, in particular with the recent comprehensive
biogeographical analyses performed on molluscs (Linse et al., 2006; Clarke et al., 
2007b), bryozoans (Barnes & Griffiths, 2008) and general macrobenthos
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(Griffiths et al., 2009). Another goal was to identify potential causal factors of the 
observed patterns.

The classic Southern Ocean biogeographical scheme designed by Hedgpeth (1969, 
1970) and Dell (1972), mostly based on benthic distribution patterns, was to a large 
extent confirmed by biogeographical studies on e.g. Demospongia (352 spp.: Sara et 
al., 1992), Hexacorallia (122 spp.: Rodriguez et al., 2007), Sipunculida (16 spp.: 
Saiz-Salinas & Pagola-Carte, 1999), Polychaeta (558 spp.: Knox & Lowry, 1977; 
Glasby & Alvarez, 1999; Sicinski & Gillet, 2002), Pycnogonida (264 spp.: Munilla & 
Soler Membrives, 2009), Amphipoda (445 spp.: Knox & Lowry, 1977; 815 spp.: De 
Broyer & Jazdzewski, 1993; 1996; De Broyer et al., 2007), Echinoidea (79 spp.: 
David et al., 2005), and Ascidiacea (237 spp.: Primo & Vasquez, 2007). Recent 
extensive databases on Gastropoda (895 spp.) and Bivalvia (379 spp.) (Linse et al., 
2006; Clarke et al., 2007b), Bryozoa (1681 spp.; Barnes & Griffiths, 2008) allowed for 
new in-depth multivariate biogeographical analyses and provided new insights into 
the biogeography of the Southern Ocean benthos. Moreover, Griffiths et al., (2009) 
attempted to generalize Southern Ocean (s.l.) benthos biogeographical traits, partly 
challenging the Hedgpeth-Dell classic scheme. No biogeographical analysis of the 
nematode species of the Southern Ocean has been performed so far. The 
biogeography of Southern Ocean amphipod species was investigated by Knox & 
Lowry (1977), Watling & Thurston (1989) and De Broyer & Jazdzewski (1993, 1996). 
The amphipod, echinoid (David et al., 2005) and asteroid (McKnight, 1976) 
distribution patterns detected mostly fit into the Southern Ocean biogeographical 
scheme established by Hedgpeth (1970) and Dell (1972).

Distribution data on the Antarctic benthos in general increased enormously during the 
last two decades. Moreover, extensive biogeographical databases are now being 
built for some species-rich groups and new insights are progressively provided by 
molecular analyses. In particular, a number of potential cryptic species has been 
detected in Antarctic isopods and molluscs (e.g. Page & Linse, 2002; Held, 2003; 
Held & Wägele, 2005; Raupach & Wägele, 2006) and these results may question our 
current estimation of species richness and our widely accepted view of circum- 
Antarctic distribution patterns for benthic species (De Broyer et al., 2003).

New complete distribution datasets for Southern Ocean species of the four model 
taxa were built within the framework of the BIANZO II project (Fig. 6), including 
Nematoda (meiobenthos: 341 spp.; 1367 records; Raes & Vanreusel, unpubl.y, 
Amphipoda (macrobenthos: 859 spp.; 8046 records; De Broyer et al., 2007); 
Asteroidea (megabenthos: 209 spp.; 3689 records; Danis & Jangoux, unpubl.) and 
Echinoidea (megabenthos: 79 spp.; 1895 records; David et at, 2005).
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Fig. 6. Distribution records of Nematoda, Am phipoda, Asteroidea and Echinoidea.

For nematode biogeography, species level diversity information at such a broad 
scale has never been reported in literature before. However, on the genus level, 
nematode diversity is comparable to that in the Atlantic and Mediterranean, and 
much higher than in the Arctic Ocean (Vanhove et al., 1999). Amphipod species 
richness recorded in the geographic regions considered here is shown in Table 1. 
When comparing respective areas per region, some regions appear as biodiversity 
hotspots: Weddell Sea, Peninsula + South Shetland Islands, Ross Sea, South 
Georgia, Kerguelen Islands and Bouvet Island. However, except for Bouvet Island, all 
of these regions are obviously also the most intensively sampled. There are about 
900 species of echinoids in the World Ocean, and 79 of them occur south of the 
Antarctic Polar Front. These Antarctic species belong to 7 of the 19 Post-Paleozoic 
echinoid orders and are represented by 9 families (Table 2).
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area (km2)
N.
recs.

N.
genera

N.
spp.

N. endemic 
spp.

% endemic spp. 
per region

Weddell sea 639681 658 102 195 12 6.1
Dronning Maud + Enderby Ld 407434 93 19 28 1 3.5
Dronning Maud Ld 58
Enderby Land 35 19 25 0 0
Prydz Bay region 614 54 75 8 10.6
Davis S. and Wilkes Ld 79 35 47 7 14.9
Adelie Coast + Oates Ld 279 57 93 7 7.5
Ross Sea 679693 749 60 104 11 10.6
Amundsen Sea 31 1 1 0 0
Bellingshausen Sea & Peter Is. 336011 59 16 22 6 27.3
Antarctic Peninsula and South 
Shetland Is.

457953 495 141 321 70 21.8

South Orkney Is. 91170 10 61 85 5 5.9
South Sandwich Is. 80294 36 19 21 3 14.3
South Georgia 122672 324 97 172 25 14.5
Shag Rocks 26 18 19 1 5.3
Bouvet I. 2626 5 31 31 1 3.2
Heard & McDonald Is. 27332 20 13 14 3 21.4
Magellan area 660552 1104 120 210
Southern Chile 147186 63 29 31 4 12.9
Southern Argentina 488073 126 47 65 14 21.5
Tierra del Fuego + Estrecho de 
Magallanes

96920 606 87 134 24 7.9

Falkland Is. 158879 309 71 107 22 20.6
Prince Edward & Marion Is. 3894 194 49 62 13 21.0
C rozet Is. 68455 64 16 18 0 0
Kerguelen Is. 252265 361 71 97 23 23.7
Macquarie I. 96 25 31 4 12.9
Auckland I. 88 37 45 7 15.5
Campbell Is. 93 30 41 4 9.7
Antipodes Is. 7 7 7 0 0
Bounty I. 1 1 1 0 0
Tristan da Cunha and Gough Is. 2293 45 27 32 8 25.0

Antarctic 34800000 5183 205 536 388 72.3
Southern Ocean s.l. 8046 301 859 651 79.8

Table 1. Rate of Amphipod endemism for each sub-region of the SO (s.l.).

Several studies recorded the distribution of nematode species within a number of 
selected, dominant genera over the Atlantic sector of the Southern Ocean 
(Vermeeren et al., 2004; Fonseca et al., 2006; De Mesel et al., 2006, Ingels et al., 
2006). Within the Southern Ocean, many nematode species are rare and only found 
once or twice. In Acantholaimus, 34 of the 55 species were found at only a single 
station, and 36 species in only one of the four studied regions (i.e. Drake Passage, 
Bransfield Strait, Kapp Norvegica or Vestkapp; De Mesel et al., 2006). In contrast, 
some species are found in a very broad area: 25 of the 89 species of Molgolaimus,
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Dichromadora and Acantholaimus described above were found in more than 3 
Antarctic regions: South Sandwich Trench, Weddell Sea, Drake Passage or 
Peninsula (Bransfield Strait). Most of the species found in Antarctic sediments were 
new to science, which may indicate a high degree of Antarctic endemism at species 
level. Molgolaimus communities in the Southern Ocean and the Indian Ocean have 
only one species, Molgolaimus sabakii, in common (Fonseca et al., 2007), and 
Dichromadora communities at similar depths in the Arctic and Atlantic Ocean were 
completely different in composition compared to the Southern Ocean (Vermeeren et 
al., 2004). However, faunal exchange with lower latitudes might be possible via the 
deep sea (Brandt et al., 2007a) and via shallow-water migration routes (Ingels et al., 
2006). Whether some nematode species have a true circumpolar distribution is 
unknown at present. Desmodorella aff balteata, which was found at many of our 
study sites in Antarctica, is very similar to D. balteata found at hydrothermal vents in 
the East Pacific Rise at a depth of 2000m. Desmodora campelli, originally described 
from the sub-Antarctic Campbell Islands south of New Zealand, has also been found 
in Chile and Argentina and recently at both sides of the Scotia Arc. Although this 
information is very fragmented and these species have often only been reported from 
a restricted number of sites, it does suggest a very wide distribution over the 
southern hemisphere. According to Fonseca et al., (2006), morphologically similar 
species occur in the same geographical region. This does not support the idea of a 
common origin of deep-sea nematodes, or of Antarctica as a source or sink for 
benthic biodiversity, but it rather implements that spéciation could be driven locally.

orders families N.
genera

N.
spp.

% endemic 
genera

% endemic 
spp.

Cidaroida Cidaridae 5 (3 ) 21
(17)

60 % 81 %

Echinothurioida Echinothuriidae 1 1 0 0

Arbacioida Arbaciidae 1 1 0 0

Temnopleuroida Temnopleuridae 1 3 0 0

Echinoida Echinoidae 3 7 (4 ) 0 5 7%

Holasteroida Plexechinidae 1 2 (1 ) 0 5 0%

Pourtalesiidae 6 (1 ) 8 (5 ) 17 % 6 2 %

Urechinidae 4 (1 ) 6 (3 ) 25 % 5 0%

Spatangoida Schizasteridae 8 (3 ) 30
(20)

37 % 6 7 %

7 orders 9 families 30 (8) 79
(50)

27 % 6 3 %

Table 2. Echinoid biodiversity in the Southern Ocean (s.s.). Number of endemic taxa are in 
brackets.
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Fig. 7. Amphipod faunal similarity of shelf regions (based on Bray-Curtis similarity index)

Atlantic 
Total species _

Ocean
Indian Ocean

Australia + 
Zealand

New ^ ,r. ^
Pacific Ocean

Species richness of echinoid species according to longitudinal sectors
Atlantic
Ocean

54 32 14 21

Indian
Ocean

50 20 20

Australia, NZ 20 13
Pacific
Ocean

27

Similarity coefficients (Jaccard index = C /N 1+N2-C) between the echinoid fauna
Atlantic
Ocean

54 0.44 0.23 0.35

Indian
Ocean

50 0.40 0.35

Australia, NZ 20 0.38
Pacific
Ocean 27
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Similarity coefficients (Jaccard index = C/N1+N2-C) between the echinoid fauna (depths < 500 m)
Atlantic

43 0.39
Ocean

0.07 0.29

Indian
28Ocean

0.21 0.26

Australia, NZ 6 0.24
Pacific

20Ocean

Similarity coefficients (Jaccard index = C/N1+N2-C) between the echinoid fauna (depths: 500 -  1000 m)
Atlantic

38 0.18
Ocean

0.10 0.16

Indian
22Ocean

0.12 0.21

Australia, NZ 7 0.12
Pacific 
^  12 
Ocean

Similarity coefficients (Jaccard index = C/N1+N2-C) between the echinoid fauna (depths: > 1 0 0 0  m)
Atlantic

29 0.21
Ocean

0.16 0.12

Indian
17Ocean

0.39 0.08

Australia, NZ 8 0.21
Pacific
Ocean

Table 3. Species richness and similarity coefficients for Antarctic echinoids, related to 
longitudinal distribution.

More than 20% of the amphipod species occurring in the regions of Bellingshausen 
Sea, Peninsula and South Shetland Is, Heard I., Falkland Is., Prince Edward and 
Marion I. and Kerguelen Is. are endemic (Table 1). The endemic species from the 
Peninsula and South Shetland Is., South Georgia, Kerguelen Is. and Falkland Is. 
represent respectively 8.15, 2.91, 2.68, 2.56% of the total Southern Ocean (s./.) 
endemics. The whole fauna of gammaridean and corophiidean amphipods presents 
an endemism rate of 72.3% in the Antarctic zone and 79.8% in the Southern Ocean 
(s./.). Strong faunal similarities of amphipods (more than 50 % of shared species) 
were found respectively between Peninsula+South Shetlands and the Weddell Sea, 
the Ross Sea and Adélie+Oates Coasts, Tierra del Fuego and Southern Argentina. 
There is a less marked similarity between the Falkland Islands and Southern Chile, 
and between Auckland and Campbell Islands. Around 40% faunal similarity was 
detected respectively between the South Orkney Islands and South Georgia, 
between the clusters Adélie+Oates Coasts / Ross Sea and Peninsula+South 
Shetlands / Weddell Sea, and between Davis Sea+Wilkes Land and Dronning Maud 
Land. The Antarctic and sub-Antarctic regions sensu Hedgpeth (1969) remain clearly 
distinct (Fig. 7).
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Endemism in Antarctic echinoid species is particularly high: 68% of the species are 
endemic to the Southern Ocean {s.s.). The dominant Cidaridae and Schizasteridae 
are remarkable as most of their species (80% of the Cidaridae species and 83% of 
the Schizasteridae species) are endemic.

High level of endemism is also observed for Pourtalesiidae and Urechinidae, 
although these families are less diversified at the species level. Eight Antarctic 
echinoid species display a circumpolar distribution. Six occur along the coast and 2 
off the coastal zone. The coastal species belong to the Cidaridae (Ctenocidaris 
rugosa, Notocidaris platyacantha), to the Echinidae (Sterechinus neumayeri) and to 
the Schizasteridae (Abatus cavernosus, Abatus philippi, Abatus shackletoni). These 
species are either carnivorous or opportunistic carnivorous browsers or 
deposit/bottom feeders; none of them are strict vegetarian browsers. A brooding 
behaviour has been reported for 4 of them. Longitudinal distribution of species 
richness (partly based on Jaccard index and 4 longitudinal sectors) is presented in 
Table 3.

Distribution patterns of the Antarctic zoobenthos are also influenced by bathymetry. A 
shift in nematode genus composition is obvious from shelf to lower slope (Vanhove et 
al., 1995). For instance, the typical deep-sea genus Acantholaimus occurred quite 
abundantly on the Antarctic shelf (De Mesel et al., 2006). Eurybathic distribution 
patterns in Antarctica are well-described for macrofauna but are less known for 
meiofauna. Our findings indicate that nematode genera might also have a wider 
depth range in Antarctica compared to other parts of the world. A wide depth range 
was found in several Acantholaimus species: between 200 m and 2000 m. Muthumbi 
& Vincx (1997) found some Acantholaimus species to occur between 500 m and 
2000 m water depth. More information both from Antarctica and from other parts of 
the world is needed to confirm eurybathic species distribution.

The bathymetric distribution of Antarctic amphipod species (Scotia Arc excluded) 
reveals three distinct groups: a shelf cluster (0-99 m and 100-499 m), a deep shelf- 
upper slope cluster (500-999 m and 1000-1999 m) and a deep slope-abyssal cluster 
(2000-2999 m and >3000 m) (Fig. 7). Half of the 72 Antarctic amphipod species 
occurring below 1000 m are shelf species that extend their distribution: from a few 
tens of metres depth up to the upper slope at a maximum depth of 1500-2000 m (in 
one case even 2894 m). Eighteen species (15 Antarctic endemics) are restricted to 
the bathyal zone (1000-3000 m) and 13 species (nine endemics) to the abyssal zone 
(>3000 m depth). A number of scavenger species occur on both shelf and slope, 
showing in some cases an extended level of bathymetry (De Broyer et al., 2004). 
Eurythenes gryllus is the only scavenger species found on shelf, slope and in the 
abyssal zone.
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It is known as a deep-sea, pan-oceanic stenothermal species, with a benthopelagic 
life style, that can occur far above the seafloor (Thurston, 1990). Two other species 
with a widely eurybathic range are Orchomenopsis cavimanus (6-3070 m) and 
Abyssorchomene scotianensis (385-3070 m), but small morphological differences 
have been observed between shelf and deep-sea populations, and a molecular 
analysis is required to detect potential cryptic species before confirming such very 
wide eurybathy.

Total species 0 - 5 0 0  m 5 0 0 -  1000 m > 1000 m

Echinoid species richness according to depth ranges

0 -  500 m 52 43 21

5 0 0 -1 0 0 0  m 50 24

> 1000 m 41

Similarity coefficients (Jaccard index = C/N1+N2-C) between the echinoid fauna according to depth 
ranges

0 -  500 m 52 0.73 0.29

5 0 0 -1 0 0 0  m 50 0.36

> 1000 m 41

Table 4. Species richness and similarity coefficients 
bathymetrical distribution.

for Antarctic echinoids, related to
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Fig. 7. Cluster analysis of Southern Ocean bathymetric zones (Amphipod data, Bray-Curtis 
similarity index)

In echinoids, there are stronger similarities between the shelf (from 0 to 500 m depth) 
and the deeper shelf or upper slope (from 500 to 1000 m) than between the slope 
and the deep-sea (below 1000 m) (Table 4). The same distribution pattern is 
observed in the four main retained longitudinal regions.

This detailed comparative analysis, which is still ongoing, provides new insights into 
geographical and bathymetrical distribution patterns, hotspots of species richness 
and endemism, centre(s) of radiation, circumpolarity and cryptic species, eurybathy, 
and potential causal factors of the observed patterns.

ii) DYNABIO -  Ecofunctional role of biodiversity in benthic communities 
and its ability to cope with change

(1) Trophic position, food selectivity, and trophodynamics of Antarctic 
shallow-water and deep-sea meiofauna (nematodes)
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DYNABIO objectives 1-a; 2-d

Investigating meiobenthos food preferences is of crucial importance since the 
ongoing climate change may alter the natural balances and the functionality of polar 
ecosystems. Rises in air and water temperature have been claimed to explain shifts 
in the size range of phytoplanktonic communities (Moline et al., 2004), which may, in 
turn, affect those biological components that depend on it. Moreover, warming trends 
at the Western Antarctic Peninsula in the atmosphere and surface waters (Clarke et 
al., 2007) may result in shifts in microbiological activity. Both these scenarios may 
influence the importance of phytoplankton (phytodetritus for deep-sea benthos) and 
bacteria as food sources for meiobenthic detritivorous or bacterivorous metazoans.

In November 2007 the uptake of two labelled food sources (diatom species and 
bacteria) was investigated in an experiment, in order to identify food selectivity and 
preferences at Potter Cove on King George Island, close to the Antarctic Peninsula 
(Pasotti et al., submitted). ö13C values for Cumacea were greatest with an average of 
-14.57%o (Fig. 8), which is close to that of the filter feeder Nacella concinna (Corbisier 
et al.,2004) and that of kelp (ö13C = -14.4%o) as reported by Kaehler et al., (2000) for 
Prince Edward Islands (Subantarctica Nematodes exhibited an average stable ö13C 
signal of -19.35%o (Fig. 8 ), which is lighter (more depleted in 13C) than reported for 
the nematode community at Martel Inlet (ö13C= -15.6±0.7%o, Skowronski (2002), 
Corbisier et al., (2004)) but higher than the values (ö13C = -24.8±1.3%o) found for 
nematodes in the Bransfield Strait (230m depth, Moens et al., 2007). Corbisier et al., 
(2004) reported average values of stable ö13C for microphytobenthos and macro 
algae of Martel Inlet shallow water sediments, of -16.7%o and -23.6%o to -21.1 %o, 
respectively. Nematodes showed an intermediate value in between these two food 
sources which may mean they can feed on bacteria that degrade macro algae and 
possibly on microphytobenthos. Copepods show an average ö13C value of -17.89%o 
(Fig. 8), which is close to microphytobenthic values reported by Corbisier et al. 
(2004).
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The results indicate that shallow-water nematodes, copepods and cumaceans at 
Potter Cove prefer a phytoplankton food source rather than microbial food (Fig. 8). 
This stands in contradiction with what is found for deep-sea nematodes in the 
Antarctic, where a microbial food source may be preferred over phytodetritus (Ingels 
et al., 2010). In shallow waters, however, phytoplankton is of higher quality than in 
the deep sea where it has been degraded as a result of the sinking process. So 
these observations may reflect a preference for the most qualitative food, rather than 
a difference between preferences of deep-sea and shallow-water nematodes. 
Deeper shelf nematodes may rely on the accumulation of a persistent food bank that 
buffers the benthic ecosystem from the seasonal variability of the surface productivity 
(Smith et al., 2006). The shallow-water meiobenthos, on the other hand, may have
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adapted to the seasonal nature of food pulses and try to gain more profit from fresh 
micro-algal food than from bacterial biomass. Antarctic shelf sediments do not seem 
to be limited in food availability (Vanhove et al., 2000) and it seems that the microbial 
activity of degrading phytoplankton is so temperature-limited in winter that labile 
(non-degraded) organic material is permanently available for detritivores (Smith et 
al., 2006). Nematodes seem to have taken up at a slower rate than copepods and 
cumaceans (Fig. 9). Cumacea appears to be the fastest (higher uptake at 5 days) 
group in taking up the micro-algal food source (Fig. 9). After 10 days of incubation 
time nematode uptake increased substantially, whilst copepod uptake slowed down 
and cumaceans already started respiring what they had incorporated. The fast 
uptake and respiration (high activity) of cumaceans can be explained by their 
behaviour at the sediment-water interface. Cumacea are active swimmers and their 
position in the water layer immediately above the sediment enables them to “catch” 
the administered food before it can settle on the sediment surface. Once the food 
had completely settled, nematodes and copepods would have had the advantage 
over cumaceans, by being able to move quickly in the upper layers of the sediment 
and graze the food source. The fact that Cumacea exhibit a decrease of labelling 
within 10 days may be due to a change in food choice (i.e. between 5 and 10 days 
they started targeting non-labelled food sources) or a lack of labelled food present in 
the sediments. Unfortunately we have no sediment data to confirm this.

0-1 cm layer

Nematodes

Copepodes

Cumaceans
0,6
0,4
0,2

B10
Bacteria

D5 D10
Diatoms

Fig. 9. Total uptake per community (total number of individual). Based on average 
individual numbers calculated from the 3 environmental replicates.

Nematodes are assumed to play an important role in the carbon flux within the polar 
bathyal food webs, but knowledge on their natural diets is poor. The selective feeding 
properties of Antarctic deep-sea nematodes were also investigated within an 
experimental setup (for protocol details, see Ingels et al., 2010). Natural carbon
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isotope signals of nematodes and organic sedimentary carbon showed a clear 
average offset (+3.2 %o) indicating selective feeding of the nematode community as a 
whole. The contribution of bacteria to the diet of nematodes explained this 13C offset 
and observed natural 13C isotopic signatures. The nematodes showed a clear, 
relatively rapid (maximum at 6 -  7 days) and significant selective response to the 
pulse of 13C enriched bacteria in surface sediments of both regions. This indicated 
that bacteria were preferred over fresh phytoplankton as a carbon source for both 
Arctic and Antarctic deep-sea nematode communities. These results indicate the 
importance of bacteria as a contributor to nematode food and presents arguments for 
the assumed intermediate trophic position of the nematofauna in the Antarctic deep- 
sea benthicfood web (Ingels et ai, 2010).

Previous studies showed that nematode standing stock in deep-sea sediments is 
closely linked to organic matter input, but their response to seasonally varying 
phytodetritus deposition seems often delayed in time. There is growing evidence that 
nematodes feed on bacteria rather than using fresh phytodetritus as a food source in 
the deep sea (e.g. Ingels et al., 2010). In order to further test the uptake rate and 
potential preference for microbial- related food sources, an ex situ enrichment 
experiment was performed during the ANT XXIV-2 expedition on board of RV 
Polarstern (11/2007-02/2008). Samples from Maud Rise (2120 m depth) were 
injected with several 13C labelled substrates to label the natural microbiota. When 
grazing on bacteria took place, the 13C label can be traced in the nematodes. 
Together with a natural biomarker analysis of selected genera, an integrated view on 
the degree of selectivity and food preferences of nematodes for particular 
components of the deep-sea ecosystem will be obtained. A parallel experiment at 
1200 m depth in the Hausgarten site (Arctic Ocean) revealed little or no uptake of 
bacteria by nematodes.

In order to unravel the role of meiofauna in the C-flow through deep-sea sediments of 
the Antarctic in relation to their biodiversity, and the link between meiobenthic 
diversity and function, it is essential to reveal interactions in the benthic food web and 
the trophic position of different meiobenthic taxa and functional groups at locations 
with contrasting food input. So far, it remains unclear what drives the high local 
biodiversity of small benthic taxa in the deep-sea, but a relation in productivity is 
possible. A repeated sampling near the Southern Polar Front and more southward 
allowed the estimation of the variation in local biodiversity in relation to changing 
productivity levels. For this purpose a total, 6 deep-sea stations were sampled in the 
Southern Ocean at a N-S transect along the Greenwich Meridian. Sediment samples 
were also taken during and after a phytoplankton bloom at 52°S 0°E (December 
2007, end of January 2008) to investigate the effect of phytoplankton bloom and 
subsequently the particulate food flux to the deep sea bed (Guilini et al., in prep.;
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Veit-Köhler et al., 2011). These studies contribute to the generalised energy-flux 
model and food web research, an objective of the ANDEEP-SYSTCO project.

Along the N-S transect, the observed patterns of ö13C and ö15N for the two dominant 
taxa Nematoda and Copepoda did not reflect water depth as might be assumed for 
deep-sea communities which rely on the input of organic material from the water 
column. Patterns of ö13C and ö15N were more related to the geographical position 
and the oceanographic situation at the sea surface. Meiofauna organisms showed 
gradually declining ö13C (-22 to -28%o) and ö15N values (12 to 6%o) along the N-S 
transect. For the nematodes, this suggests a differentiation in nematode functional 
diversity along the transect as illustrated in Fig. 10. An exception to this relationship 
was observed for the communities of the southernmost station at 70°S where ö13C (- 
25%o) and ö15N (7.5 to 9.5%o) were more enriched.

The world’s oceans show regional differences in surface water dissolved inorganic 
carbon (DIC) ö13C. South of the Subantarctic Front the values of surface water DIC 
ö13C sharply decrease. This already depleted DIC available for micro-algal primary 
production partly explains our findings of lower ö13C at the deep-sea floor towards the 
southern stations. Carbon fixation by ice algae (more enriched ö13C) seemed to play 
a significant role for the benthic food web at the southernmost station of our study.

Among other factors, a northward transport of surface water is known to be 
responsible for differences in nitrate concentration and nitrate ö15N between the high 
Antarctic and the Subantarctic. This situation was reflected in our findings where we 
observed clearly enriched ö15N values in meiofauna organisms from the most 
northern stations.

At the stations located at 52°S 0°E, fresh phytodetritus originating from the observed 
phytoplankton bloom in the water column had reached the sea floor by the time of the 
second visit. Abundances of bacteria and most major meiofauna taxa did not change 
considerably between the two sampling dates. For copepods, the second most 
abundant meiofauna taxon after the nematodes, the enhanced input of organic 
material did not lead to an observable increase of reproductive effort. Flowever, a 
significant migration of meiofauna towards the sediment surface could be observed 
following the remains of the phytoplankton bloom that had reached the sea floor. 
Vertical shifts in meiofauna distribution between December and January could be 
explained by changing porewater oxygen concentration, total sediment fatty acid 
content and pigment profiles. Higher oxygen consumption after the phytoplankton 
bloom has to be attributed to an enhanced respiratory activity of the living benthic 
component, as neither meiofauna nor bacteria reacted with an increase in individual 
numbers to the food input. Based on our results we assume that low temperatures 
and ecological strategies are the underlying factors for the delayed response of
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benthic deep-sea copepods to the modified environmental situation in terms of egg 
and larval production.

-18

6,0 7,0 8,0

6 15N

9,0 10,0 11,0 12,0 13,0

-22

2 -24

■  52°S

▲ 52°S revisited

♦  Antarctic Convergence 

Central Weddell Sea

f Southernmost

•  Maud Rise

-28 •# •

-30

Fig. 10. 513C and 51SN results from nematode specimens collected along a N-S 
gradient in the Southern Ocean.

(2) Trophic and metabolic aspects of amphipods 

DYNABIO objectives 1-b, c

Eight species of peracarids have been analysed to determine their fatty acid 
composition. Hierarchical clustering and multi-dimensional scaling (MDS) were 
performed based on Bray-Curtis similarity, applied to relative abundance data 
(PRIMER v5; Clarke & Warwick, 1994). Because pelagic species were available, 
they were included to be compared with their benthic homologues. Statistical 
analysis separated 8 species into 3 distinct groups at the 80% similarity level (Table 
5).

As expected, the first cluster combines the pelagic species Cyllopus lucasi and 
Hyperiella dilatata. Both species share the highest proportion of docosahexaenoic 
acid (DHA) which is consistent with a carnivorous or omnivorous diet on flagellates. 
The PUFA 18 :4 (n-3), which dominates in the species Ampelisca richardsoni (24%), 
is a major FA in the prymnesiophyte Isochrisis sp and the cryptomonad Chroosomas 
salina (Phleger et al., 2002 and references therein). As already demonstrated in 
Nyssen et al., (2005), scavengers in the third cluster are typically characterised by a 
very high proportion of MUFAs composed of 18C. Various hypotheses might explain 
the scavenger’s particular fatty acid composition as a very intensive de novo
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biosynthesis. However, a detailed analysis of the underlying mechanism will be an 
important task to be developed in the near future.

CLUSTER 1 CLUSTER 2 CLUSTER 3

(89,4%) (92,3%) (80,4 %)

33% 45,7%
CLUSTER 1

18:4n-3 /  22 :6n-3 18 :1n -9+ 7 /2 2  :6n-3

49,2%
CLUSTER 2

18:1 n-9+7 /1 8  :4n-3

CLUSTER 3

Table 5. Results of SIMPER analysis : within group similarity (% in parenthesis), average 
dissimilarity (%) and separating fatty acids (FA) (most discriminant).

An experiment on trophic level change in three Antarctic scavengers indicates that 
the speed of adjustment in body tissue stable isotope ratio as a reaction to a new 
food source differs between species and depends on lifestyle. This hasn't been 
revealed before. Fourteen amphipod species, belonging to two families drastically 
different in trophic habit (Lysiannassidae: mainly opportunistic with a great trend to 
scavenging; Iphimediidae: specialists consuming particular prey such as hydrozoans 
and bryozoans), and one isopod species were analysed for stable isotope ratios.

Metabolic rate is a proxy of overall energy expenditure (production + respiration + 
excretion) of an organism, and hence it is one possible way of estimating energy flow 
through the individual organism. Oxygen consumption rates of unfed (deprived of 
food for at least three days), unstressed, and inactive animals were used as a proxy 
of standard metabolic rate. Oxygen content was assessed using a modified 
intermitted flow system and oxygen micro-optodes connected to a Microx TX 3-array 
(® PreSens GmbH, Neuweiler, Germany). During the last cruise, certain expected 
amphipod species were surprisingly not found. So, owing to the fact that mainly 
isopod species have been sampled in adequate supply, nearly all experiments have 
been focused on those. One amphipod (Eurythenes gryllus) and two isopods 
(Glyptonotus antarcticus and Natatolana oculata) have been used in experiments.

The Specific Dynamic Activity (SDA) experiment was designed to provide a detailed 
picture of the post-prandial metabolism increase. We encountered many problems 
with the physiological experiments. First, only experiments implying isopods lead to
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valid results. Data for E. gryllus have been discarded because of total absence of 
feeding. So, we changed the protocol and extended starvation as well as feeding 
periods. Even after all changes made, non-feeding events repeated several times in 
all species. Secondly, we did encounter technical problems with the water circulating 
system. During some experimental runs, the diminution of oxygen was more 
pronounced in the reference chamber than in chambers with animals. This response, 
probably due to bacteria in the system, was dealt with by cleaning and renewal of the 
water. Nevertheless, the problem persisted, so all components (tubes, optodes, 
chambers) had been replaced and the system was rebuilt. The experiments provided 
the first metabolic data available for those Antarctic amphipods. The first striking 
feature we registered with scavengers was their ability to cope with long periods of 
starvation. For the experiments with N. oculata, we let the animals starve for six 
weeks (the maximum observed is in the order of several months), and some 
specimens did not feed even after such a long period without food. Our specific 
dynamic action (SDA) results for G. antarcticus are in good agreement with the 
scarce existing literature. In addition, the digestive tract of 7 species was dissected 
and prepared for SEM observation, results for this study are not yet available.

(3) Temperature effects 

DYNABIO objectives 2-d

In November 2007, a laboratory temperature experiment was carried out at the 
Dallmann laboratory, Jubany station, located near the coast of Potter Cove on King 
George Island. Clearly, this area is very suitable for performing experiments dealing 
with the influence of temperature changes on marine benthos, since it is situated in 
one of the most rapidly warming areas of the Antarctic.

The absorption data are summarized in Fig. 11. There is a strong decline in oxygen 
concentration (expressed as an absorption coefficient) for all sediment treatments, 
although the rate of decrease becomes greater with each temperature increase, 
whereas the 6°C treatment reaches the ‘anoxic’ phase after 7 days, the 0°C 
treatment has not reached this phase yet after 14 days. Although the same trend is 
clear for the water samples, it is less pronounced and subject to small fluctuations. 
When comparing the sediment and water cores, the oxygen-consuming effect of the 
benthos is obvious.
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Fig. 11. Absorption data of the benthic communities for different temperature 
treatments.

More data (densities, biomass, ATP...) will become available when the sediment 
samples are fully analysed.

The impact of increased food availability on benthic respiration was also investigated: 
on 19/11/2007, the sediment of some cores was covered by a thick, dark-yellow- 
green layer of benthic diatoms. Four such cores were incubated at 0°C and 
compared with the sediment cores taken on 15/11/2007, which did not have any 
observable diatom layer. Although the initial oxygen concentration (Day 0) was not 
the same for both treatments, there still was a pronounced trend: benthic respiration 
was higher in the food-enriched cores, resulting in a faster decline in oxygen 
concentration in these cores, compared to the ‘normal’ (not-enriched) sediment 
cores. In order to test the set-up of the experiments, and to enable a bipolar 
comparison, analogous experiments were carried out at Koldewey station, 
Spitsbergen (78°55’N; 11°56’E). Although the ambient temperature was higher here 
(4°C), and temperature steps of 4°C were used instead of steps of 2°C, the 
experiments yielded similar results.

(4) Trophic studies on echinoids 

DYNABIO objectives 2-e

Preliminary results have been obtained by Marquet (2007) through the comparison of 
three series of echinoid samples (family Echinidae): (1) Paracentrotus lividus from 
Brittany, (2) Paracentrotus lividus from the Mediterranean Sea and (3) Sterechinus 
antarcticus from the Antarctic Peninsula (BENTART-06; Margarita Bay).
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Results based on the nature of the gut content and on isotope analyses indicate that 
Sterechinus antarcticus from the Antarctic Peninsula is both a carnivore and a 
deposit feeder, feeding mainly on sessile animals and sediments. In contrast, the 
European species Paracentrotus lividus feeds mainly on vegetal material. 
Interestingly, P. lividus displays some flexibility in its feeding behaviour along the 
latitudinal gradient (Brittany versus Mediterranean Sea): the Mediterranean 
individuals are strictly vegetarian while those from Brittany display a wider spectrum 
of food sources, feeding both on animals and plants/algae.

Pierre Becker (Post-doctoral fellow supported by the BIANZOII-1 contract) 
investigated a larger set of samples collected along the Antarctic Peninsula (depth 
ranges: from 100 to 350 meters) during the campaigns BENTART 06 (R.V. 
Hesperides) and ANT XXIII/8 (2007; R.V. Polarstern). He focused on one species of 
Echinidae Sterechinus antarcticus (from 8 stations; Table 6) and three species of 
Cidaridae (Ctenocidaris gigantea, Ctenocidaris perrieri and Notocidaris mortenseni) 
(Table 7). The gut content, gut microflora and stable isotopes analyses of S. 
antarcticus (4-5 individuals/station) were characterized. For the Cidaridae species, 
the gut content was observed for 3 individuals per station. Molecular techniques were 
applied on N. mortenseni (3 individuals from PS69/702-9) and C. perrieri (2 
individuals from PA39-1), but no bacterial DNA could be amplified from their gut 
content.

Station Locality Position
(start)

Mean
depth
(m)

Trawl

PS69/654-6 Elephant Island 61 °22.80’S/ 
56°03.84’W

342.5 Small
Agassiz trawl

PS69/685-1 Joinville Island 62°34.61’S/ 162.8 Bottom trawl
00 55°39.38’W
>< PS69/702-9 Larsen B South 65°57.85’S/ 218.2 Large
X « 60°28.42’W Agassiz trawl
C
< PS69/703-2 Larsen B West 65°30.81’S/ 

61 °40.06’W
339.0 Bottom trawl

PS69/725-6 Larsen A 64°54.80’S/
60°37.46’W

180.6 Large
Agassiz trawl

■e
cc

H—»

PA39-2

PA43

Margarita Bay 

Adelaide Island

160

250

Large
Agassiz trawl 
Large

c
CD
m

Agassiz trawl
LOW47 Bransfield Strait 115 Large

Agassiz trawl

Table 6. List of stations analysed for Sterechinus antarcticus.
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Species Station Locality Position
(start)

Mean Trawl 
depth (m)

Ctenocidaris PS69/689-3 Joinville 62°27.28’S/ 216.9 Small
gigantea Island 55°20.74’W Agassiz

00 trawl

= Notocidaris PS69/702-9 Larsen B 65°57.85’S/ 218.2 Large
>< mortenseni South 60°28.42’W Agassiz
C trawl<

PS69/721-2 Larsen B 
North

65°55.41’S/
60°34.01’W

296.6 Large
Agassiz
trawl

Bentart Ctenocidaris
perrieri

PA39-1 Margarita
Bay

160 Large
Agassiz
trawl

Table 7. List of the stations analysed for Cidaridae.

The results show that all sampled S. antarcticus individuals had sediment pellets in 
their digestive tube but additional fragments of animals (crustaceans, bryozoans, 
hydrozoans and skeletal parts of other invertebrates) may also occur. In Cidaridae 
(C. gigantea, C. perrieri and N. mortenseni), the digestive contents always consist of 
animal remains (hydrozoans and bryozoans). Stable isotope analyses (S. 
antarcticus) show that delta 13C values of the gut contents (-24.12 ± 0.92) are in the 
range of various marine animals including crustaceans, cnidarians and polychaetes 
but far from macro algae (-30 to -31). Interestingly, there is a marked enrichment of 
13C in the gonads (-19.43 ± 0.67) that could be indicative of a broader source of 
nutriments (i.e. sediments). Stable-nitrogen isotope ratio (delta 15N) of the muscles 
(6.47 ± 0.53) corresponds to scavenging marine animals such as ophiuroids and 
isopods. These results stress the importance of sediments and its associated organic 
matter in the diet of S. antarcticus. Bacterial communities associated with the gut of 
S. antarcticus were characterized by DGGE (Denaturing Gradient Gel 
Electrophoresis) and 16S rRNA gene cloning analyses. DGGE was used to compare 
bacterial diversity of the microflora of sea urchins from different stations (bacterial 
DNA from the gut of three individuals was pooled for each station). Fig. 12 illustrates 
a DGGE gel obtained from the gut microflora of S. antarcticus at seven stations near 
the Antarctic Peninsula: Elephant Island (654-6), Joinville Island (685-1), Larsen B 
South (702-9), Larsen B West (703-2), Larsen A (725-6), Margarita Bay (PA39-2) 
and Bransfield Strait (LOW47). No bacterial DNA was amplified from samples of 
Adelaide Island (station PA43). A replicate gel was performed, with an identical 
pattern. Ten phylotypes were revealed on the gels. Only one phylotype (band 1) was 
present in gut contents from all stations. Other phylotypes were detected in one to
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five stations. The bacterial microflora thus varies according to sites and is 
consequently not specific.

E Jl LBS LB LA M BS

9 *
10*

Fig. 12. DGGE gel profile of the 16S rRNA gene fragments from the gut microflora of S. 
antarcticus. BS: Bransfield Strait, El: Elephant Island, Jl: Joinville Island, LA: Larsen A, LBS: 
Larsen B South, LBW: Larsen B West, MB: Margarita Bay.

Three clone libraries were obtained from the gut microflora of S. antarcticus collected 
at Elephant Island (72 clones, 43% of coverage value), Larsen B West (40 clones, 
65% of coverage value) and Margarita Bay (40 clones, 20% of coverage value). Two 
samples were pooled for construction of each library. Sequences with at least 97% of 
similarity were gathered, giving 78 operational taxonomic units (OTU). All OTUs were 
assigned to one or two of the three stations but never to all stations. The most 
numerous sequences from all libraries belonged to the Proteobacteria and 
particularly Gamma- and Alphaproteobacteria. Planctomycetes was the second most 
represented group but accounted only for 9% of the total clones and was absent from 
Larsen B West. Interestingly, about two thirds of the OTUs were related to bacteria 
from marine sediments. These sediments were of various origins including Wadden 
Sea, Yellow Sea, Baltic Sea, Bering Sea and Arctic Ocean. OTU 20, accounting for 
10 clones from Elephant Island and Larsen B West, was close (96-98% similarity) to 
Psychromonas profunda, a psychropiezophilic bacterium isolated from deep Atlantic 
sediments (Xu et a i, 2003a). Some OTUs belonging to various bacterial groups were 
related to cold-seep sediments, most from the Japan Trench. In addition to bacteria 
from sediments, OTU 37, representing 12 clones had 97-99% of sequence identity 
with Colwellia psychroerythrus, a psychrophila bacterium associated with sea ice 
from Antarctic coastal areas (Bowman et al., 1997). Most of the remaining OTUs 
were related to bacteria associated with marine invertebrates such as corals,

SSD-Science for a Sustainable Development -  Biodiveristy - Antarctica 66



Project SD/BA/02 - Biodiversity of three representative groups of the Antarctic Zoobenthos - Coping w ith  Change
"B IAN ZO II"

sponges and crabs or to Moritella sp. Members of this genus such as M. marina 
(Urakawa et al., 1998), M. profunda (Xu et al., 2003a), M. abyssi (Xu et al., 2003b), 
M. dasanensis (Kim et al., 2008) and M. japonica (Nogi et al., 1998) are generally 
psychrophila bacteria from deep-sea water or sediments. Our data indicate that the 
gut microflora of S. antarcticus are bacteria occurring in the environment.

In conclusion, the diet of S. antarcticus (Echinidae) differs from that of Ctenocidaris 
gigantea, C. perrieri and Notocidaris mortenseni (Cidaridae). In both families, all the 
investigated species are carnivores/scavengers. However, S. antarcticus ingests a 
wider set of animals and is also a deposit-feeder. Its diet is clearly not restricted to 
food of animal origin. Noteworthy, no macro algae were found in its gut, probably due 
to low availability or absence of this resource in the investigated stations, especially 
at their depth range (100-350 meters). Interestingly, the digestive bacterial microflora 
of S. antarcticus is not symbiotic, varies with station (as only one of the ten 
phylotypes detected by DGGE was found in all stations) and presumably fluctuates 
with the nature of the ingested food. Moreover, cloning analyses did not reveal 
clones common to all libraries. Consequently, the digestive microflora is neither 
specific nor symbiotic but rather consists of transient bacteria. These bacteria 
seemingly originate from the pellets of sediments ingested by the echinoid as a 
majority of the clones were related to bacteria from marine sediments. The presence 
of bacteria related to cold-seep sediments has to be stressed as a recent survey at 
the Larsen lee Shelf reports the presence of a chemosynthetic-based ecosystem in 
this area (Domack et al., 2005). No bacterial amplification was obtained for the gut 
contents of Cidaridae, which could indicate that their bacterial microflora is poorly 
developed. These echinoids could rely on intrinsic digestive enzymes; these 
enzymes could degrade bacteria, preventing their proliferation in the gut. However, 
further morphological analyses of the digestive tube of these sea urchins are needed 
to confirm this hypothesis. Regarding its feeding behaviour, S. antarcticus might be 
well-adapted to cope with changes in food resources resulting from global warming. 
Cidaridae would most presumably be more sensitive to changes although one cannot 
exclude their acclimatization to a new set of preys.

(5) Ocean acidification effects 

DYNABIO objectives 2-f

Anthropogenic CO2 emissions have been largely absorbed by oceans, resulting in a 
surface pH which is already 0.1 units lower than during pre-industrial times and is 
expected to decrease by 0.3-0.4 units by the end of the century. As a consequence, 
oceans are experiencing a reduction in CO32', which is leading to a drop in calcium 
carbonate saturation. The Southern Ocean will suffer even lower concentrations of
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CO32' due to lower surface temperatures and the presence of large amounts of 
upwelled deep water rich in CO2.

The main goals of this work were to: (1) determine the impact of seawater 
acidification on larval and adult sea urchins and (2) establish dose-effect 
relationships for the most significant effects.

(a) Larval development.

The first experiments were done using Paracentrotus lividus, a temperate species, in 
order to adjust the techniques. Controlled lower pH values were obtained by bubbling 
CO2 in seawater. The total alkalinity and pH (total scale) were measured and the 
PCO2 and total inorganic carbon calculated, as well as the magnesium-calcite 
saturation state. The larvae were grown at pH between 8.0-6.8 until the 
echinopluteus stage (3 days) and fertilization, cleavage and larval development were 
characterized using embryotoxicity protocols to distinguish normal and altered 
morphologies. At lower pH, significantly more larvae showed an abnormal 
morphology and a reduced size. The highest pH at which significant effects on 
fertilization and cleavage were recorded was 7.6. On the contrary, larval 
development was only affected below pH 7.4, a value equal or lower than that 
reported for several subtidal species. This suggests that sea urchins inhabiting 
stressful intertidal environments produce offspring that may better resist future ocean 
acidification, indicating a possible acclimatization or adaptation to pH stress

Arbacia dufresnei was studied at control (8.0) and lower pH (7.7 and 7.4) waters. The 
results show that sub-Antarctic populations of A. dufresnei are susceptible to a larval 
development delay caused by low pH seawaters, with no significant increase of 
abnormal forms in the tested pH. The obtained Lowest Observed Effect 
Concentration (LOEC) for post-oral arm length (PL) was pH=7.4. Larvae were 
isometric between pH treatments. Even at calcium carbonate saturation states lower 
than 1, skeleton deposition occurred, indicating calcification was most likely affected 
in an indirect way. The A. dufresnei larvae do not seem to be more sensitive than 
other lower latitude species to ocean acidification, reinforcing the idea of resilience of 
polar and sub-polar sea urchin larvae towards acidification and underlining its 
potential to invade further Antarctic ecosystems.

(b) Adults

Adult sea urchins were grown at pH values between 8.0-7.4 during 3-4 weeks. 
Ocean acidification effects on echinoderms, more specifically on sea urchins, seem 
to be highly species specific and tolerance to pH can depend on their life history 
(Clark et al., 2009, Dupont et al., 2010, Moulin et al., 2010). P. lividus and A. 
dufresnei seemed to present some degree of coelom io fluid buffer capacity and low 
seawater pH had no effect on the gonads and body wall metabolic status.
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Furthermore, spine regeneration was slightly affected, but at which stage, i.e. wound- 
healing or calcification rate, low pH affected this process remains unclear. We 
propose that the capacity to withstand to low pH within the range predicted for 2100- 
2300 is probably linked to the origin of the studied individuals. The P. lividus ones 
came from a temperate intertidal population submitted to cycling daily and seasonal 
pH fluctuations (see Moulin et al., 2010 for pH example of intertidal pool daily 
fluctuation). The A. dufresnei individuals belonged to a sub-Antarctic population 
where cold water pH is expected to be lower thanks to CO2 higher solubility. The 
study species appear able to overcome ocean acidification, opening the scope for 
possible acclimatization of natural populations to low pH effects.

Cidaroid urchins have particular spines covered by a polycrystalline cortex which 
becomes exposed to seawater when mature as they are no longer covered by an 
epidermis like the spines of other sea urchins. Despite these characteristics, 
numerous species live below aragonite saturation horizon, especially at high 
latitudes. We investigated the morphology and the magnesium content of 
Ctenocidaris speciosa spines collected at different depths from the Weddell Sea. The 
cortex of C. speciosa presents a thicker inner cortex layer and a lower Mg content 
below the aragonite saturation horizon. Exposed stereome appeared more affected 
than cortex. It seems that the naked cortex of cidaroid species effectively resists low 
calcium carbonate saturation state and pH. We suggest that this could be thanks to 
the important organic matrix that surrounds the crystallites of the cortex.

(6) Sensitivity of Antarctic Zoobenthos to global change-induced drivers

DYNABIO objectives: integrative synthesis on the sensitivity of Antarctic zoobenthos 
and the first steps towards FOREBIO

Climate change over the past few decades has already caused significant biological 
and ecological changes in global marine and terrestrial ecosystems (Hughes, 2000, 
Thomas et al., 2004, Walther et al., 2002), and will continue to impact our planet. 
Many species are susceptible to climate change, and those of the marine 
environment are particularly vulnerable because of the physical and biochemical 
alterations brought to our oceans by increasing emissions and rising temperatures. 
This is particularly the case for the Antarctic, especially at the Antarctic Peninsula, a 
region which is experiencing one of the fastest rates of regional climate change on 
Earth. Continued warming together with increasing CO2 concentrations in the SO is 
causing a cascade of environmental effects with far-reaching consequences for the 
benthic fauna.

Within BIANZOII, we have reviewed the ability of five abundant Antarctic benthic taxa 
(Foraminifera, Nematoda, Amphipoda, Isopoda, and Echinoidea) to cope with 
changes in environmental parameters (temperature, pH, ice cover, ice scouring, food
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quantity and quality) linked to global change from the individual to the community 
level (Ingels et al., conditionally accepted). During the BIANZOII workshop of 20th 
May 2009 at the Marine Biology Department, Ghent University, presentations were 
given on the up-to-date information gathered through literature reviews on possible 
climate effects on the benthic groups of interest. Subsequently, a flow chart was 
constructed, indicating the main effects of climate change on the Antarctic benthic 
environment.

An elaborate discussion resulted in a sensitivity table visualizing the preliminary basic 
structure of the review paper on climate change induced effects. Sensitivity tables for 
all groups are currently being finalised. The manuscript, which is now conditionally 
accepted (Ingels et ai, conditionally accepted) has the following aims: 1) To identify 
the drivers of faunal changes in the Southern Ocean, 2) To identify the differences in 
the responses (strength and weakness) in different benthic faunal groups, 3) To 
identify the impact of global change on the Antarctic benthic fauna.

What follows is an account of the major global change induced drivers that may 
impact the Antarctic Zoobenthos, an extract from the paper that resulted from it. 
Following that review, is the preliminary assessment of the sensitivity of each 
considered group to these drivers. The results and discussion in this section are 
based on reviewing the literature, integrated with BIANZOII results. The review goes 
beyond the scope of the three zoobenthic groups contained within the research aims 
of BIANZO II and includes information for Foraminifera and Isopods (contributions by 
AJ Gooday and A Brandt, respectively). Any information from this section/extract 
should be referenced accordingly (Ingels et al., conditionally accepted)

(a) Global change induced drivers for Antarctic benthic faunal change

Since 2000, global anthropogenic CO2 emissions have been rising at unprecedented 
rates and exceed worst-case scenarios developed by the Intergovernmental Panel 
on Climate Change (IPCC) (Raupach et al., 2007). As atmospheric CO2 

concentrations rise, ocean CO2 uptake increases and the chemical balance of sea 
water is disturbed, causing the phi to decrease. Consequently, the production of 
biogenic calcium carbonate (both aragonite and the less soluble calcite) becomes 
more difficult for certain marine organisms (Gazeau et al., 2007, Orr et al., 2005). 
Increasing temperatures and CO2 solubility will cause the calcium carbonate 
saturation horizon and CCD to shoal, hence exposing organisms to new saturation 
states which may impact their calcification processes. Southern Ocean waters 
experience faster acidification rates because of low surface temperatures increasing 
CO2 solubility and greater upwelling of deep water containing high levels of CO2 due 
to organic matter remineralisation. By 2100, the entire SO water column will become 
undersaturated with respect to aragonite, whilst the calcite horizon will remain at 
~2200 m water depth, although in the Weddell Sea calcite undersaturation is said to

SSD-Science for a Sustainable Development -  Biodiveristy - Antarctica 70



Project SD/BA/02 - Biodiversity of three representative groups of the Antarctic Zoobenthos - Coping w ith  Change
"B IAN ZO II"

reach the surface waters (Orr et al., 2005). Since preindustrial times, the average 
surface seawater pH has already been reduced by approximately 0.1 units and 
projected pH changes in the SO surface waters by 2100 range 0.3 -  0.5 units 
(Caldeira & Wickett, 2003, McNeil & Matear, 2008, Orr et al., 2005). The predicted 
decrease of pH and CO2 solubility changes may impede animals’ calcification 
potential and other physiological processes such as growth and respiration (Pörtner 
et al., 2004). Furthermore, ocean acidification can cause phytoplankton community 
shifts which will influence community structure of the higher trophic levels that are 
reliant on the phytoplankton (Hays et al., 2005). Acidification may also influence 
activity of bacteria (produce CO2) and Zooplankton (which consume phytoplankton) 
resulting in changes in the structure and functioning of the marine ecosystem as 
whole (Pörtner et al., 2004). Marine biota, however, do not respond uniformly to 
ocean acidification and resulting ecosystem responses to acidification will be different 
than species responses (Caldeira & Wickett, 2003).

Whilst global oceanic uptake of anthropogenic CO2 is estimated at about 25-40% 
(Matear & Hirst, 1999, Takahashi et al., 2009), the SO below 50° S is responsible for 
only 4-9 % of global anthropogenic CO2 storage (Sabine et al., 2004, Takahashi et 
al., 2009). However, air-sea CO2 fluxes into the SO are relatively high, but its 
capacity as a sink is limited because most CO2 is transported northward through 
deep-water movements (Caldeira & Duffy, 2000). Several climate change studies 
based on the carbon-climate system predict a decrease in efficiency of the oceans as 
a sink for anthropogenic CO2 (Matear & Hirst, 1999, Plattner et al., 2001). Positive 
feed-back caused by increasing sea-surface temperatures, carbonate chemistry 
alterations, and changes in ocean circulation will outweigh negative feed-back effects 
(e.g. increased primary production), hence reducing global oceanic CO2 uptake by up 
to nearly 30% during the 21st century (Matear & Hirst, 1999). This is particularly the 
case for the SO, where the impact of warming, transport processes, and biological 
effects is larger than in other oceans (Sabine et al., 2004) due to its sensitivity to 
changes in stratification of the water column and to the fact that this is the region of 
the world in which deep mixing is normally able to reach into the vast volume of deep 
water that holds excess biogenic carbon (Sarmiento & Orr, 1991).

Besides reducing CO2 solubility in seawater, rising temperatures may have direct 
impacts on the physiology of stenothermal organisms (Peck, 2005) as well as on the 
extent of sea ice, hence on the life history and biology of many species (Barnes & 
Peck, 2008). Next to affecting the physiology, phenology and ontogeny of species, 
temperature increases may also modify geographic distributions of species and alter 
biological invasion processes (Walther et al., 2009). Within the next 100 years, 
moderate temperature shifts are expected; models suggest a 0.5 to 1.0 °C rise in SO 
surface waters in summer, with local temperature increases up to 2.0 °C, but winter 
temperatures will only increase with a maximum of 0.5 °C. Regardless of seasons,
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bottom waters from the surface down to 4000 m depth are expected to warm on 
average by around 0.25°C, with possible higher temperatures at deeper shelf depths 
(Barnes et al., 2009a).

The effect of rising atmospheric and sea surface temperatures in the Antarctic have 
already caused significant changes in sea-ice density over the last 50 years (Zwally 
et al., 2002), especially at the Antarctic Peninsula (Cook et al., 2005). Recent models 
predict a reduction in Antarctic sea ice extent of 24 to 33% (Arzel et al., 2006, 
Bracegirdle et al., 2008), but with considerable regional variation. Numerous 
Antarctic marine organisms depend on the seasonally dynamic interface between ice 
and water and small temperature differences can have large effects on this interface 
and its associated organisms. Variation in sea-ice density and extent does not only 
influence the sympagic or ice-associated fauna, such as certain copepods, 
amphipods, algae and micro-organisms, it will also impact animals that depend on 
algae blooms for food, such as benthic animals relying on phytodetritus from the 
euphotic zone. A southward retreat of sea ice will modify the extent and density of 
algae blooms with ramifying effects down the food web (Smetacek & Nicol, 2005). 
Furthermore, ice melt can lead to substantial release of ice fauna into the water 
column where it may enhance phytoplankton growth (Gradinger, 1999) or sink to the 
sea floor, serving as food for the benthos (Gradinger, 2001). The gradual 
disintegration of ice shelves will also reveal new habitats for both pelagic and benthic 
organisms as well as euphotic primary production, which in turn may influence the 
quality and quantity of food available to the benthos (Bertolin & Schloss, 2009, 
Thrush et al., 2006). In addition, ice shelves attenuate the effect of tidal waves and 
strong winds on local hydrography, especially in shallow waters. Uncovered waters 
through a reduction of sea ice extent may therefore lead to increased hydrodynamic 
disturbance impacting the benthos.

Not only sea ice is under the threat of rising temperatures; deglaciation on land 
increases glacial discharge in the coastal zones, resulting in higher sedimentation 
rates which are likely to have a considerable but localised impact on benthic 
communities (Barnes et al., 2009a). Large scale retreat of maritime glaciers and ice 
shelves (Cook et al., 2005) will also increase the number of floating icebergs in the 
short term, leading to increased scouring rates and drop stone densities with 
detrimental consequences for the benthos (Gutt & Piepenburg, 2003, Lee et al., 
2001a, b). Nevertheless, such benthic disturbance will remain limited to the 
continental shelf, where it is shallow enough for floating icebergs to impact the 
seabed. In the long term, however, ice scour rates, depth of ice berg scours and drop 
stone intensity are expected to decrease. As ice sheets and glaciers become thinner 
and retreat towards land, the number and size of scouring ice bergs that are released 
into the waters will diminish. On the other hand, reduced iceberg scouring in the long
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term may act to lower diversity of benthic communities by reducing disturbance 
frequencies (Gutt & Starmans, 2001, Johst eta!., 2006).

The compounded effects resulting from increased seasonal melting of glaciers, ice 
sheets and ice shelves, reduced brine rejection and rising water temperatures are in 
the long term likely to increase freshwater input and reduce salinity along Antarctic 
coastal waters (Jacobs et al., 2002), especially at the Antarctic Peninsula. However, 
no large salinity changes are expected during the 21st century, except above 400m 
water depth, where it may drop with up to 0.3 units (Barnes et al., 2009a). Surface 
water freshening can have a wide range of effects on both the water column and the 
seabed, including increased stratification of the water column hence reducing light 
and oxygen penetration with detrimental biological effects (Barnes et al., 2009a).

Rising temperatures reduce the solubility of oxygen in water, but deoxygenation of 
Antarctic surface waters solely through increasing temperatures is unlikely to reach 
levels deleterious for benthic organisms. However, thermal changes co-occur with 
enhanced stratification, increased C02 levels and elevated oxygen demand of 
organisms, which exacerbate the development of hypoxic zones with potentially 
harmful impacts on marine ecosystems (Hofmann & Schellnhuber, 2009). 
Furthermore, increased stratification will reduce the flow of dense, oxygen-rich 
surface waters to the deep sea, hence reducing oxygen availability in this 
environment (Matear et al., 2000). Because the Antarctic is the principal source of 
oxygen-rich waters for the global deep-sea environment, reduced flow and 
deoxygenation effects may have far-reaching repercussions for the global marine 
biota (Hofmann & Schellnhuber, 2009, Pörtner, 2010).

Rising temperatures and to an extent salinity changes may act to affect hydrographic 
barriers such as the Polar Front in the SO. The Polar Front represents a distinctive 
biogeographical discontinuity, setting boundaries for faunal exchange mainly in the 
upper pelagic. Such exchange may be influenced by regional climate change, 
enabling invertebrate larvae to establish more southward and threaten Antarctic 
marine biota (Clarke et al., 2005). However, the considerable temperature changes 
required to enable invasive migration of larvae from more northward locations and 
their establishment in the Antarctic, render such threats unlikely (Thatje, 2005).

Climate change and its complex and interactive chain of associated effects will affect 
the physiology, distribution, phenology, and ontogeny of many Antarctic benthic 
organisms, but the resulting changes from the species to the community level remain 
poorly quantified and understood. Individual species may appear vulnerable to 
environmental shifts or regime changes, but community and ecosystem responses 
may not act accordingly. In what follows we provide an overview on what is known 
about the responses of five important groups of benthic organisms to climate change 
effects from individual species, over populations, and how we think this could affect
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the community level. In order to summarize impacts on taxa and understand the 
potential community impact, we reviewed taxon by taxon and produced a sensitivity 
table, which shows each taxon’s reaction or presumed reaction to the varying 
environmental threats.

(b) Responses of benthic biota to environmental change: Foraminifera, 
Nematoda, Isopoda, Amphipoda and Echinoidea.

Foraminifera. Foraminifera! assemblages in the waters around the Antarctic 
continent are likely to respond to many of the environmental shifts associated with 
climatic changes. In particular, species with calcareous tests will be disadvantaged 
by any shoaling of the CCD resulting from ocean acidification. Based on a survey of 
records from the SO, Saidova (Saidova, 1998) concluded that carbonate dissolution 
is one of the principle factors influencing the distribution of these assemblages. At 
present, the depth of the CCD around the Antarctic continent is highly variable, 
ranging from a few hundred metres on the shelf (Anderson, 1975, Ward et al., 1987) 
to 4000 m or more in oceanic areas, such as the Weddell Sea (Dittert et al., 1999, 
Mackensen et al., 1990). The occurrence in some intra-shelf basins, notably the 
bathyal Crary Trough (384-1079 m) in the SE Weddell Sea, of foraminifera! 
assemblages consisting almost entirely of agglutinated species reflects the shallow 
CCD (~550 m) in this part of the Weddell Sea (Anderson, 1975). Similar 
predominately agglutinated assemblages have been recognised at depths of 620-856 
m and 79-796 m in the Ross Sea (Ward et al., 1987). We anticipate that such 
assemblages will become more widespread in the future.

Climatic changes may modify both the quantity and quality of organic matter fluxes to 
the seafloor. Such inputs, particularly of labile phytodetritus, exert a strong influence 
on the density and composition of foraminifera! assemblages (Altenbach et al., 1999, 
Loubere & Fariduddin, 1999) as well as the bathymetric distribution of particular 
foraminifera! species (De Rijk et al., 2000). Some deep-sea species bloom in 
response to seasonally-pulsed phytodetritus inputs (Gooday, 1988). These 
‘phytodetritus species’ occur in the abyssal Weddell Sea where, as in the North 
Atlantic, they are often found living within phytodetrital aggregates (Cornelius & 
Gooday, 2004). Indirect impacts arising from changes in the organic matter flux are 
also possible. A long time-series study (1989-2002) at the Porcupine Abyssal Plain 
(NE Atlantic) has revealed decadal-scale trends in the abundance of some 
foraminifera! taxa, in addition to seasonal fluctuations (Gooday et al., 2010). One 
possibility is that these longer-term changes are associated with sharp increases in 
the abundance of megafaunal holothurians which in turn reflect changes in the 
quantity and quality of organic matter reaching the seafloor (Billett et al., 2010). It is 
possible that similar faunal shifts among benthic foraminifera will occur in the SO in
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future decades, as changes in the pH and temperature affect the composition of 
surface phytoplankton.

The disintegration of ice shelves, leading to a shift from an oligotrophic to a more 
eutrophic system in areas formerly covered by permanent ice, may affect 
foraminifera! community composition. Murray and Pudsey (Murray & Pudsey, 2004) 
described ‘live’ (rose Bengal stained) and dead (unstained) foraminifera! 
assemblages from an area of seafloor to the east of the Antarctic Peninsula that 
previously lay beneath the Larsen lee Shelf, which disintegrated in 1995. The 
samples were collected during the 1999-2000 and 2001-2002 seasons. ‘Live’ 
foraminifera! densities in these samples were high, reflecting the high levels of 
primary production in the ice-free surface waters. Presumably, densities were lower 
prior to the ice shelf disintegration, although in the absence of baseline data from 
before the breakup of the ice-shelf, this cannot be demonstrated. An important 
difference between ‘live’ and dead assemblages is the higher proportion of 
agglutinated tests in the latter (43-98% compared to 25-66%). Since calcareous 
foraminifera are generally associated more closely with eutrophic conditions than 
agglutinated species, this could reflect an increase in surface primary production 
since 1995. Unfortunately, this attractive interpretation is compromised by the likely 
post-mortem dissolution of calcareous tests (Murray & Pudsey, 2004).

The breakup of ice shelves and the consequential increased prevalence of 
dropstones may have either a negative or a neutral impact on many sediment- 
dwelling organisms, but it would provide sessile foraminifera with additional surfaces 
on which to live. Dropstones are often densely encrusted with these organisms. A 
total of 36 species (1 calcareous and 35 agglutinated) have been recognised on drop 
stones from the abyssal NE Atlantic (Gooday, unpublished). The Discovery Reports 
(Earland, 1933, Earland, 1934, Earland, 1936) include 40 species that were found 
attached to stones and other hard substrates; all of them agglutinated.

Finally, the effects of oxygen depletion, if any, on benthic foraminifera! assemblages 
will depend on degree of oxygen depletion and whether or not it is permanent. 
Evidence from permanent oxygen minimum zones suggests that hypoxia will affect 
bathya! foraminifera species only when oxygen levels fall below a critical value, 
possibly 0.5 ml I'1 or less (Gooday, 2003, Levin, 2003). Such concentrations possibly 
could develop in basins with restricted circulation. Species exposed to periodic (e.g. 
seasonal) hypoxia may be susceptible to less severe levels of oxygen depletion 
(Levin et a i, 2009). However, these fluctuating conditions are usually associated with 
large rivers that disgorge large amounts of organic matter and nutrients onto 
continental shelves at lower latitudes. The most likely outcome in Antarctic waters is 
some diminution of oxygen levels that are not sufficient to affect benthic foraminifera.

SSD-Science for a Sustainable Development -  Biodiveristy - Antarctica 75



Project SD/BA/02 - Biodiversity of three representative groups of the Antarctic Zoobenthos - Coping w ith  Change
"B IAN ZO II"

Nematoda. Antarctic nematode species and communities are likely to show variable 
susceptibility to global change effects in the Antarctic, whereby species responses 
will ultimately depend on their physiological ability to cope with the changing 
conditions, and community responses depend on species and their interactions. 
Although no information on specific nematode responses to environmental change 
are available for the SO, experimental laboratory studies on species from coastal and 
estuarine areas in temperate regions indicate that rising temperatures, food quality 
and quantity and salinity changes may have significant effects on the life history, 
reproduction and feeding characteristics of many species (Forster, 1998, Gerlach & 
Schrage, 1971, Heip et al., 1978, Heip et al., 1985, Ishida et al., 2005, Kim & 
Shirayama, 2001, Moens & Vincx, 2000a, b, Pascal et al., 2008a, b, Price & 
Warwick, 1980, Takeuchi et al., 1997, Tietjen & Lee, 1972, Tietjen & Lee, 1977, 
Tietjen et al., 1970, Vranken & Heip, 1986, Vranken et al., 1988, Warwick, 1981, 
Wieser et al., 1974, Wieser & Schiemer, 1977, Woombs & Laybournparry, 1984). 
The effect ranges tested in these studies, however, go well beyond the expected 
environmental changes in the Antarctic; hence species responses to the predicted 
changes are likely to be weaker. Nevertheless, a temperature increase of 2°C may 
shorten generation times, increase reproductive capacity and respiration, and result 
in a more opportunistic feeding behaviour of certain nematode species.

Salinity changes of only 0.3 within the next 100 years are unlikely to alter life 
characteristics of nematode species significantly, especially in coastal areas, where 
they are adapted to seasonal variability, but it may affect shelf-depth nematodes 
which are not adapted to such dynamic conditions. Intertidal experimental studies 
have shown that only extreme salinity changes (salinity of 0 or 40 %o) induce higher 
mortality rates, and affect respiration and assimilation rates, whilst fecundity, 
development times and sex-ratios remained similar under such aberrant salinity 
conditions(Moens & Vincx, 2000a, b). However, some studies indicate that 
decreasing salinity can increase generation times of some species whilst reducing 
the productive potential of others (Tietjen & Lee, 1972).

Climate change induced changes in density and composition of algae blooms may 
influence the quantity and quality of food that reaches the benthos (Hays et al., 2005, 
Smetacek & Nicol, 2005). Whilst food density is known to affect respiration, growth, 
reproduction, and feeding characteristics of certain nematode species, the observed 
trophic plasticity of many nematodes prevents us from drawing conclusion on clear 
patterns. However, as a result of different species responses to changes in quality 
and quantity of food sources, population recruitment, structure, sustenance, and 
trophic interactions within the food web may be impacted and lead to changes in 
nematode communities in terms of abundance, biomass, and structural and 
functional diversity. However, it is important to realise that the investigated rates of 
(experimental) abiotic change do not fall within the expected ranges of climate
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change and severe impacts on species level are therefore not expected. Different 
species, however, cope differently with abiotic change and community shifts in favour 
of more resilient species is therefore likely occur.

Temperature changes and associated physicochemical modifications can adversely 
affect nematode communities. In the 1990s, an anomalous temperature drop of only 
0.4°C in the Mediterranean deep sea caused a significant decrease in nematode 
abundance and functional diversity, concomitant with increased species richness and 
evenness (Danovaro et al., 2001, Danovaro et al., 2004). The small temperature shift 
allowed the community to change and resemble more Atlantic nematode 
assemblages, possibly through migration of species into slightly colder 
Mediterranean waters. Even when normal temperatures returned, nematode diversity 
was only partially restored to previous values (Danovaro et al., 2001, Danovaro et al., 
2004). This suggests that deep-sea nematode communities are very much affected 
by relatively small temperature changes. The same may hold true for shallow waters; 
phenological studies have indicated that nematode abundance and biomass 
decrease with increasing sediment temperatures (Yodnarasri eta!., 2008).

Rising temperatures have already decreased ice extent and density significantly, with 
far-reaching consequences for nematode communities through increased iceberg 
disturbance and changes in quality and quality of food. Iceberg scouring significantly 
affects the nematode community, with removal of over 95% of individuals and a 
consequent drop in diversity (Lee et at, 2001a, b). Although initial scouring in shallow 
coastal waters has a deleterious effect, nematode abundance can recover within 
weeks. Scouring recovery in these areas occur through recolonisation, but without 
evidence for successional stages, suggesting that the nematofauna in frequently 
disturbed areas is well adapted to ice disturbance (Lee et al., 2001b). Such 
successional colonisation and changes in nematode composition, however, are 
apparent in areas that have become ice free, such as the Larsen area at the 
Antarctic Peninsula (Raes et al., 2009a, Vaughan et al., 2003). Recent collapse of 
the Larsen ice shelves has accelerated colonisation of the new ice-free shelf areas 
because increased primary production at the surface is now able to supply the 
benthos with food. As a result, nematode communities transformed after ice-shelf 
collapse from a depauperated, low-diversity status, to a richer and denser community 
dominated by opportunistic species (Raes et al., 2009a). In coastal areas, reduction 
of ice extent exposes the shallow waters and benthic environment to wind-driven 
currents and disturbance events, which may lower nematode abundance and 
diversity as has been shown in the Magellan area (Chen et al., 1999) and Arctic 
coastal areas (Urban-Malinga et al., 2004). At the same time increased production of 
macro-algae and phytoplankton may act to increase nematode densities and change 
community composition (Fabiano & Danovaro, 1999, Skowronski & Corbisier, 2002, 
Urban-Malinga & Burska, 2009, Urban-Malinga et al., 2009, Vanhove et al., 2000,
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Vanhove et al., 1998). In addition, increased benthic food deposition may lead to 
deoxygenation of the water through higher decomposition rates and increased 
respiration (Hofmann & Schellnhuber, 2009). Among the meiofauna, nematodes are 
the most tolerant to low oxygen concentrations and may attain high densities and 
dominance (Gutierrez et al., 2008, Levin et al., 2009, Neira et al., 2001 a,b). 
Nevertheless, hypoxia in bottom waters may alter community composition by 
favouring those nematode species tolerant to low oxygen levels (Hendelberg & 
Jensen, 1993). However, food availability has a greater impact on nematode 
communities than oxygen levels in surface sediments(Vanreusel et at, 1995). This is 
supported by Cook et al. (Cook et al., 2000) who gave evidence that not severe 
hypoxia, but food quality was the main predictor of nematode abundance in the 
oxygen minimum zone of the Arabian Sea. Deoxygenation of Antarctic bottom waters 
may have severe consequences for benthic biota, with nematodes being less 
affected than other taxa. Community responses to hypoxia may therefore lead to a 
state in which nematodes are likely to be the dominant metazoan group.

Experimental studies whereby the effect of CO2 sequestration on meiofauna was 
investigated indicate that nematodes are relatively sensitive to high CO2 

concentrations in seawater (Barry et al., 2005, Barry et al., 2004, Fleeger et al., 2006, 
Fleeger et al., 2010, Takeuchi et al., 1997). According to Takeuchi et al. (Takeuchi et 
al., 1997) drastic impacts only seem to occur under pH conditions of 5.5~6 or less 
(Takeuchi et al., 1997) and Kurihara et al. (Kurihara et al., 2007a) reported no lethal 
effects when pH was lowered with 0.80 units below normal (CO2 concentration of 
>2000 ppm above ambient). However, the effect that CO2 and pH have on 
nematodes (and copepods) can be dependent on the type of source (Barry et al., 
2005, Pascal et al.). Other studies have reported that severe hypercapnia associated 
with pH levels of 5~6 severely impairs the survival of nematodes, but also reductions 
in pH of only 0.2~1.0 units below normal can result in high nematode mortality (Barry 
et al., 2005, Barry et al., 2004, Carman et al., 2004, Fleeger et al., 2006, Fleeger et 
al., 2010). This suggests that ‘moderate’ CO2 exposure, compared to the range of 
exposures possible following C02 release, causes high mortality rates in the most 
abundant sediment-dwelling metazoans (Fleeger et al., 2006).

Peracarid crustaceans: amphipods and isopods. Both amphipods and isopods 
are marine ectotherms which are generally considered to be among the most 
stenothermal organisms on Earth (Aronson et al., 2007, Peck & Conway, 2000), and 
are characterized by slow physiological rates, growth, and great age (Peck, 2002, 
Peck & Brey, 1996). They are expected to show particular vulnerability to a change of 
conditions they are adapted to, and responses to rising temperatures are therefore 
expected on the species level.
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Research performed on the Antarctic amphipod Themisto gaudichaudi indicated that 
individuals living in warmer water exhibit an increased respiration rate, faster growth, 
earlier sexual maturity and a smaller body size (Auel & Ekau, 2009). At higher 
temperatures, the increasing oxygen demand reduces the aerobic scope of animals 
(Peck, 2002) and the demand for food will increase with increasing metabolic needs, 
leaving less resources for growth and reproduction. In turn, a smaller body size will 
limit the range of prey they are able to feed on and reduce their mobility. Moreover, 
smaller adult size and reduced mobility may negatively affect reproduction rates and 
increase predation risk to a point where predation losses may prevent survival of the 
population. At the same time, smaller individuals seem more tolerant to acutely 
elevated temperatures than larger individuals within the same species (Peck et al., 
2009). It is likely that where warming is significant over monthly to annual time scales 
large individuals will be more affected than small ones, especially considering that 
thermal tolerance levels are lower under chronical temperature rises compared to 
acute temperature increases (Pörtner et al., 2007). The early loss of larger 
individuals will impact the population severely since they represent the major 
reproductive component (Peck et al., 2009). Sea water temperature increases of only 
a couple of degrees may hence affect peracarids’ physiology and are likely to modify 
drastically the distribution of T. Gaudichaudi and many other amphipod species (Auel 
& Ekau, 2009). Such a selective removal of the larger individuals within a species will 
probably result in an ecological imbalance, with major consequences for the 
peracarid community as a whole. Temperature-dependent, selective removal will also 
be exhibited between peracarid species since temperature effects depend on the 
feeding behaviour and activity of individual species. Measuring the thermal tolerance 
limits of 14 Antarctic benthic invertebrates, Peck et al. (Peck et al., 2009) found that 
the most active animals, three species of preying/scavenging amphipods in this case, 
exhibited higher tolerance to increasing temperatures than less active species. Such 
discrepancy between active groups such as predators and juvenile individuals and 
more passive organisms such as sessile feeders could have far-reaching 
consequences on the community level by disturbing the ecological balance and 
complexity.

For isopods, temperature has an effect on rates of transcription of several proteins in 
the muscles, including actin and myosin heavy chains, with increasing levels of 
expression as temperature increases in temperate and Antarctic species. In the 
Antarctic Glyptonotus antarcticus rates of protein syntheses were extremely low 
compared to the temperate isopod Idotea rescata. This was probably due to the 
relatively high energetic cost of protein synthesis for G. antarcticus in cold Antarctic 
waters in association with low rates of oxygen uptake (White, 1975). An experimental 
study on the effect of temperature and salinity on vital biological functions (response 
to food odour, righting, swimming and reburying) of the Antarctic isopod Serolis polita
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suggests that Antarctic isopods are vulnerable to environmental changes and their 
ability to cope with them is limited. Some biological functions (righting and burying) 
were more affected than others (swimming). Interaction effects between temperature 
and salinity showed that S. polita was more vulnerable to lower salinities when 
exposed to higher temperatures (Janecki et al., 2010). The predicted higher 
temperatures and concomitant decrease in salinity may therefore affect isopod 
survival to a greater extent than originally thought. Salinity change in itself does not 
seem to have a strong effect on isopods, but there is some evidence that isopod 
populations from intermediate salinities were more polymorphic than populations 
from extreme salinities (Heath, 1975). However, recent investigations of physiological 
responses to salinity changes of the isopod Idotea chelipes from the Baltic brackish 
waters documented that osmotic adjustment may be more or less costly in terms of 
energy according to salinity (Lapucki & Nonnant, 2008).

The outcome of global change effects on the survival of individual organisms or 
populations will not be dictated by its physiological limits, but by ecophysiological 
constraints on its capacity to perform critical biological functions, such as locomotion 
and feeding (Pörtner et al., 2007). A temperature effect on the walking and righting of 
Antarctic crustaceans compared to temperate species (Young et al., 2006) showed 
that even though Antarctic species have a lower thermal dependence, the thermal 
scope within which they can perform biological functions is reduced compared to 
temperate species. This implies that Antarctic peracarids are very much adapted to 
the narrow, cold temperatures, but also that they are much more vulnerable to 
aberrant temperature changes than their temperate relatives.

Despite the lack of calcium carbonate in the exoskeleton of amphipods and isopods, 
implying that lower pH values and shoaling of the CCD would not affect their 
structural development, ocean acidification presents a real threat to Antarctic 
peracarids. Several studies (Kurihara et al., 2004a, Kurihara et al., 2004b, Spicer et 
al., 2007) have shown that acidification will not affect crustaceans in terms of 
developmental success to the same extent it will affect bivalves (Kurihara et al., 
2007b) or sea urchins (Havenhand et al., 2008), but it would certainly retard their 
embryonic development (Egilsdottir et al., 2009) and in synergy with other factors, 
such as reduced salinity, it can reduce the number of hatchlings (Egilsdottir et al., 
2009, Vlasblom & Bolier, 1971). For the isopod

Glyptonotus antarcticus haemolymph pH values between 7.85 and 8.2 have been 
measured. Acid -based changes due to respiratory adjustment are poorly buffered in 
G. antarcticus due to the low protein buffering capacity of the haemolymph, implying 
that it is unable to compensate for temperature changes (Jokumsen et al., 1981). 
Therefore, species being affected would probably migrate to more favorable
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environments or suffer removal from the ecosystem in case such migration is 
unfeasible.

Climate change has affected crustaceans, including isopod and amphipod species, in 
the past. For example, Thatje & Fuentes (Thatje & Fuentes, 2003) argued that 
oceanographic changes in the Polar Front may have caused reinvasion of anomuran 
and brachyuran crab larvae into the Antarctic from Subantarctic regions. Whilst the 
cold Antarctic temperatures pose limits to performance that exclude modern 
predators and circulation patterns form physical barriers preventing invasion from 
more northern latitudes, global warming is now slowly removing the barriers posed by 
cold temperatures and circulation patterns, enabling higher trophic level predators 
such as crabs, durophagous bony fish or sharks (Aronson et al., 2007) to invade the 
Antarctic and influence the often indigenous character of its marine life. Mouritsen et 
al. (2005) showed that a 3.8°C increase in ambient temperature of the Wadden Sea 
is likely to result in a parasite-induced population collapse of the widespread 
amphipod Corophium volutator by increasing the transmission rate of their 
microphallid trematode parasites. Although this study is based on a North Atlantic 
species, one can easily envisage such a threat to SO amphipod species. Increasing 
rates of invasion, predation and/or competition, and increased risk of parasitism 
caused by climate change could not only affect the sustainability of certain species, it 
may disturb and alter amphipod species distribution and benthic community 
composition.

In analogy, following the Cretaceous extinction of Decapoda, the isopod families 
Serolidae and Antarcturidae radiated on the SO continental shelf, indicating 
successful diversification after re-invasion. In contrast, a genetic population study 
performed by Leese et al. (Leese et al., 2008) showed that there is currently no 
effective gene flow for the species Serolis paradoxa between Patagonia and the 
Antarctic Peninsula and that a genetic connection has been absent for time 
exceeding the last glacial maximum. The authors argue that specimens from the 
Strait of Magellan and the Falkland Islands very likely represent two distinct species 
that separated in the mid-Pleistocene (about 1 MY BP) (Leese et al., 2008). Due to 
their size of few millimetres up to a few centimetres in the deep sea, the brooding 
and usually less mobile isopods (excluding Munnopsidae) are thought to have a 
reduced gene flow. However, even though isopods are not very mobile, they may 
respond with migration to climate change nowadays (Barnes et al., 2009b), 
especially in the SO deep sea where 50% of all Isopoda sampled during the 
ANDEEP expeditions are Munnopsidae (Malyutina & Brandt, 2007) which can swim. 
However, besides their migration potential, Isopoda must also have the ability to 
adapt to changing environments because they successfully colonized all marine 
environments from the tropics to the poles and from the shelf to the deep sea; the 
deepest records of the family Macrostylidae are from > 10.000 m. It is therefore
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considered unlikely that extinction will occur in Isopoda due to climate change. 
However, at local scales, global change effects may affect individual species, 
generating selection pressures that favour more tolerant species or ecological groups 
over more vulnerable ones. Benthic isopod assemblages are therefore likely to 
change and this might also affect species’ vulnerability on longer time scales.

Quantity and quality of food is important for all animals, especially early 
developmental stages, but Isopoda are brooders and at least the offspring or early 
developmental stages are relatively independent from food input. However, it is 
known that the SO Isopoda have larger eggs than their boreal and tropical relatives 
(Wägele, 1989, Wägele, 1987, Wägele, 1988), and variability in food resources may 
affect the their ontogeny. Trophic diversity of Antarctic amphipods is very high, 
covering nearly all possible feeding types and displaying high plasticity (Dauby et al., 
2001). This suggests that many amphipod species have a wide dietary spectrum and 
are able to take advantage of different food sources. Shifts in food quality and 
quantity may therefore not have a severe impact on the survival of these species, 
although shifts in community composition are likely.

Isopod species composition is correlated with sediment composition. Some prefer 
coarser substrates, while others occur in muddy sediments (Brandt, 1993, Brandt, 
1995, Brandt & Piepenburg, 1994, Brandt et al., 1996). Thus, a change in sediment 
composition will ultimately affect the species composition of habitats. In the deep 
sea, which is usually characterized by very fine sediments, Isopoda thrive and are 
very speciose. One could therefore expect that after glacial melting and an increase 
in fine sediment fraction on the shelf, that eurybathic deep-sea species could easily 
colonize the Antarctic shelf and replace those species which cannot cope with the 
environmental change.

Echinoids. During their life cycle, echinoids are susceptible to a variety of stresses 
and perturbations, and they display distinct biological and acclimation capacities. 
Juveniles and adults are epifaunal or endofaunal benthic organisms while, depending 
on the species, earlier developmental stages are pelagic or benthic (Pearse et al., 
1991, Poulin & Feral, 1996).

Departing from the effects reported for stenothermal Antarctic brachiopods, mollusks 
and fishes (Brockington & Clarke, 2001, Peck, 2005, Peck et at, 2004), the seawater 
temperature rise in the Antarctic (ca. 2°- 4°C in the next 100 years for surface waters, 
IPCC 2007), could have minor impact on the metabolic activities of post-metamorphic 
echinoids. This is documented for Sterechinus neumayeri in the Antarctic (Belman & 
Giese, 1974, Brockington & Clarke, 2001, Brockington & Peck, 2001), and is 
supported by several acclimation experiments using tropical (Klinger et al., 1986, 
Lares & McClintock, 1991, Ubaldo et al., 2007), and temperate shallow water species 
(Lawrence et al., 2009, Siikavuopio et al., 2006, Siikavuopio et al., 2008, Ulbricht,
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1973b), as well as deep-water species (Ulbricht, 1973a). However, contrary to adults, 
early life stages could show high sensitivity to seawater temperature rises as 
indicated by studies carried out on early life stages of S. neumayeri. This shallow- 
water species has planktotrophic pelagic larvae (Bosch et al., 1987). Gamete release 
coincides with the austral summer (Freire et al., 2006) and embryonic and larval 
development has an optimal window between 0.2°C and 1.7°C outside which 
development can be impaired (Stanwell-Smith & Peck, 1998). Furthermore, the influx 
of fresh water from melting ice shelves due to global warming can result in a 
reduction of larval recruitment. Reductions in salinity from 34 to 30 psu slowed down 
development rates and decreased the development success of S. neumayeri 
embryos (Cowart et al., 2009). Little is known about the effect of lower salinities on 
adult Antarctic echinoids. In general, when exposed to salinities within their tolerance 
range, metabolic rates of echinoderms are not affected (Farmanfarmaian, 1966). In 
fact, acclimated sea urchin populations have showed an increased tolerance (higher 
in adults than in juveniles) when exposed to lower salinities (Himmelman et al., 
1984).

Antarctic post-metamorphic echinoids are opportunistic feeders, allocate little energy 
to feeding and are able to react rapidly in the presence of sporadic nutrients (Andrew, 
1989, Lawrence & Lane, 1982, Lawrence & McClintock, 1994). Together with the fact 
that a large range of food items is used by each species (De Ridder & Lawrence, 
1982, Jacob et al., 2003, Lawrence, 1975, McClintock, 1994), this suggests that 
Antarctic echinoids would be able to acclimatize to changes in food resources, i.e., to 
changes of the benthic components they rely on, such as preys and algae, as a 
result of seawater temperature rise. Trophic flexibility has been demonstrated for 
Sterechinus antarcticus in the Weddell Sea (Raes et al., 2009b), and for S. 
neumayeri in the Ross Sea where the individuals show a shift from feeding 
predominantly on detritus (locations with more permanent sea ice in the South) to 
feeding on more freshly produced algal material (proximity to ice-free water in the 
North and East) (Norkko et al., 2007). Interestingly, all Antarctic species recurrently 
ingest detritus. According to Norkko et al. (2007), such a detrital pathway may reduce 
the impacts of large seasonal fluctuations in the availability of primary production. 
However, long-term consequences of dietary shifts on echinoid populations are 
complex to predict because of reciprocal effects between different stages of the 
feeding process which can vary between species. Independently from seawater 
temperature, the quality and quantity of the ingested food can influence each feeding 
step, going from ingestion to nutrient allocation to either somatic or gonadic growth, 
but, in turn, the size of the individual (resulting from somatic nutrient allocation) and 
its reproductive status (resulting from gonadic nutrient allocation) can also influence 
the feeding steps (Beddingfield & McClintock, 1998, Lawrence, 1975, Lawrence & 
Lane, 1982, Otero-Villanueva et al., 2004, Vadas, 1977). This is well documented in
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aquaculture studies (Daggett et al., 2005, McBride et al., 1999, Otero-Villanueva et 
al., 2004, Russell, 1987, Siikavuopio et al., 2006, Siikavuopio et al., 2008), and for 
the Antarctic species S. neumayeri (Brey et al., 1995, Brockington & Clarke, 2001, 
Chiantore et al., 2002) and S. antarcticus (Brockington & Peck, 2001). Data 
concerning global-change effects on pre-metamorphic stages are scarce, especially 
for the effects of diet quality on the development of planktotrophic larval stages. 
According to Marsh et al. (1999), feeding larval stages of S. neumayeri are not 
dependent on phytoplankton availability to complete their early development (up to 
day 60), and the uptake of dissolved organic matter by embryos and larvae could 
compensate for a scarcity of particulate food sources. However, food quality and 
quantity is known to influence greatly the survival, growth and developmental 
success in larvae as well as metamorphosis and post-larval development in 
temperate and tropical species (Vaitilingon et al., 2001). Clearly, more research on 
Antarctic species is needed.

Seawater pH reductions within the range of future predictions impair the larval 
development of the Antarctic species S. neumayeri to a lesser extent than for 
temperate and tropical species (Clark et al., 2009). One could argue that sea urchins 
from naturally stressful environments can cope better with a changing environment. 
An alternative hypothesis is that slower metabolism rates can improve resistance to 
hypercapnia (Pörtner, 2008). For S. neumayeri significant effects were recorded at 
pH 7.6, a value expected to occur by 2100 according to some predictions, but the 
short duration of the experiment means that these predictions may not apply to pH 
effects in the long run (Dupont et al., 2010). However, several studies have 
demonstrated that even though adult sea urchin mortality does not increase when 
exposed to lower pH waters, gonad growth can be affected (Kurihara, 2008, 
Siikavuopio et al., 2007). Unfortunately, impacts of ocean acidification on adult 
Antarctic echinoids physiology are unknown and require further study. Interestingly, 
the spines of Ctenocidaris speciosa, (Weddell sea) which are lacking an epidermis 
and are hence directly exposed to physical and chemical conditions of seawater, 
showed adaptations that provided them with an advantage in acidified deep-sea 
environments (Catarino eta!., unpublished data).

Early echinoid life stages are particularly sensitive to stressors and perturbations 
(Melzner et al., 2009, Pörtner & Farrell, 2008), making them vulnerable in terms of 
recruitment success and long-term viability of populations (López et al., 1998, 
Morgan, 1995). This is in agreement with the global change induced effects on pre- 
metamorphic stages mentioned above. Under the predicted environmental change, 
one of the main challenges for the future of Antarctic echinoid populations will be the 
ability of echinoids to successfully complete their development. Impairment of gonad 
development or gamete quality in adults could further affect reproduction and 
recruitment processes. There is very little information available on the effect of

SSD-Science for a Sustainable Development -  Biodiveristy - Antarctica 84



Project SD/BA/02 - Biodiversity of three representative groups of the Antarctic Zoobenthos - Coping w ith  Change
"B IAN ZO II"

changing availability and quality echinoid food resources, so the long-term effect of 
diets shifts on the viability of echinoids populations is a great unknown.

iii) FOREBIO -  Forecasts for the XXIst century under global change

FOREBIO objectives a-d

As to amphipods, nearly ten thousand rows of data were obtained, giving detailed 
information on 892 species (including 60 undescribed species) from 312 genera.

Many reports have already shown that Polar seas are impacted by the present-day 
global warming. To cope with new climate induced changes and survive, Antarctic 
and Subantarctic marine organisms can migrate, acclimatize or adapt to new 
prevailing conditions. In addition, new interactions between southernmost species 
and invaders from Sub-Antarctic regions can be expected. Indeed, new 
biogeographical distributions have already been documented.

The first step of FOREBIO was to analyse actual species distributions in the 
Southern Ocean and understand mechanisms that structure them. They are different 
according to scale of observation. At local scale, species distributions are fully 
determined by proximal environmental parameters (chemical, physical and 
biological). At larger scale, they are both inherited from history (Earth history, clade 
history, etc.), and determined by environmental conditions. The second step was to 
have access to forecasts regarding the main environmental factors at the temporal 
scale of several decades (predictions including the end of this century). At this point, 
PhD-student Benjamin Pierrat and the team in Dijon have built up a comprehensive 
approach to explore those two steps. The organisation of FOREBIO is illustrated in 
the flow chart in Fig. 15.
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Fig. 15. Flow chart indicating the various steps of the development of the FOREBIO model, 
based on GIS and Maxent/GARP modelling techniques.

The primary data correspond to the data gathered within the NOWBIO work package, 
and they have been largely and continuously updated (e.g. for echinoids the 
database covers more than 4000 georeferenced localities in the Southern Ocean, 
and more than 6000 when the surrounding cold temperate areas are included). This 
has increased the power of the modelling approach and makes it now able to 
compute relevantly species distribution models at the scale of the entire Southern 
Ocean and to test for the impact of environmental variables and future climate 
scenarios (“single species” approach). Species distribution models have been 
performed matching abiotic data of the environment to occurrence data using a GIS 
(software ArcGIS version 9.3) and modelling fundamental niches with Maxent 
(version 3.3.2), a program using a maximum entropy modelling procedure (Phillips et 
al., 2006). It will also be possible to analyse biogeographic relationships between the 
different regions of the Southern Ocean (“fauna” approach) using ordination or 
network techniques (this will be accomplished before the end of the BIANZOII project 
in the case of echinoids). In March 2010 and January 2011, workshops were held to 
evaluate and discuss the FOREBIO model, test its functions and statistical 
operations and determine hypotheses with regards to forecasting climate change 
induced effects on the Antarctic zoobenthos.
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The first case study involves echinoids (Pierrat et al., submitted.). Among the set of 
environmental data available at the scale of the whole Southern Ocean (close to 120 
abiotic layers - the secondary data of the chart - have been added to the GIS and are 
now available for all BIANZO partners), 10 abiotic variables that are ecologically 
significant to echinoids have been selected: depth, slope, sea ice coverage, sea 
surface and seafloor temperatures, seafloor salinity, sea surface nitrogen oxide and 
chlorophyll a concentrations, granulometry and biogenic (either siliceous or 
calcareous) component of sediments. For species considered so far (Sterechinus 
group), models are mostly determined by three variables: depth, sea-ice coverage 
and sea surface temperature, which together account for 80 % to 90 % of the 
distribution patterns. In the near future, biotic secondary data involving taxa that 
possibly act on echinoid occurrences such as algae (source of food), gastropods 
(predation), etc., will be added to the model and tested. Regarding the future 
predictability of the distributions, changes in sea-ice coverage and in sea surface 
temperature are expected and new distribution models could be computed if 
predicted future values were introduced in the analysis. However, other variables are 
also expected to change in the future (chlorophyll a, seafloor temperature, seafloor 
salinity...), but predicted data for these variables do not exist yet, at least not at the 
scale of the whole Southern Ocean. This limitation has led us to discuss future 
distributions only qualitatively so far.

A preliminary attempt, using GIS and Maxent, has also been made for the amphipod 
genus Orchomene, in order to build maps of suitable distribution areas. Three 
outputs are illustrated below (Fig. 16a-c). The first map (Fig. 16a) corresponds to a 
probability suitable distribution; each pixel of the map is given a probability of 
presence of the genus, owing to the secondary data retained in the analysis. The 
second map (Fig. 16b) is binary (presence/absence) with a threshold fixed in such a 
way that all pixels with a probability greater than the lowest value obtained for a real 
presence are switched on (yellow area). The third map (Fig. 16c) is built the same 
way, but with two thresholds of different strength. Such maps allow comparisons of 
actual and observed distributions with suitable areas obtained under more or less 
stringent conditions. They help in identifying areas of patent lack of knowledge, but 
most importantly they lead to a better understanding of the interaction between 
abiotic parameters and the distribution of taxa, thereby helping in deciphering the 
parts played by environmental (edaphic) and historical factors, respectively, in 
explaining distribution patterns.
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Fig. 16. Suitable distribution areas, predicted with GIS and Maxent for the amphipod 
genus Orchomene.

For nematodes, biogeographical/ecological data was subjected to an exploratory 
Maxent exercise to explain and predict the occurrence of certain nematode genera 
and ecological groups. These analyses are still undergoing.

In summary: 1) the primary data are now up to date, but we continue to improve the 
databases with newly collected materials; 2) a large set of secondary abiotic data, 
pertaining to the scale of the whole Southern Ocean, is now in ArcGIS (120 layers) 
and available to all BIANZO partners; 3) biotic secondary data are directly available 
through the ScarMarBin portal; 4) a user guide detailing the different steps of the 
approach (GIS, Maxent and GARP) has been presented and distributed to BIANZO 
partners; 5) two papers are currently submitted for echinoids; 6) by the end of the 
BIANZOII project, new data sets of nematodes and amphipods will be used to 
explore precise ecological questions/hypotheses.
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4) POLICY SUPPORT

a) Effective support to policy-relevant processes

i) ACCE report

Several BIANZO results were incorporated in the Antarctic Climate Change and the 
Environment (ACCE -  SCAR) Report (Turner et al., 2009). We acted as co-author in 
chapter 5 but contributed with research results to other chapters too. This 
comprehensive report focuses on the impact and consequences of rapid warming of 
the Antarctic Peninsula and the Southern Ocean. It describes what we currently 
know, and illustrates how human activity is driving rapid climate change. By 
integrating multidisciplinary evidence into a single source it helps scientists and 
policy makers to understand the distinction between environmental changes linked to 
the Earth’s natural cycles, and those that are human induced. The work is particularly 
important because it puts Antarctic climate change into context and reveals the 
impact on the rest of the planet

(http://www.scar.org/publications/occasionals/acce.html)

ii) EBA and diversitas programmes

The BIANZO II project further contributed to the research priorities defined by the 
Belgian Science Policy call for proposals, in particular to the priorities set up by 
DIVERSITAS and the SCAR EBA programme.

Among the five fundamental research themes of DIVERSITAS, BIANZO II 
contributed to theme 1 (origin, maintenance and change of biodiversity) by the results 
of work package FOREBIO. The work package DYNABIO focused on theme 2 (role 
of biodiversity in ecosystem functioning) and work package NOWBIO addressed the 
theme 3 (systematics: inventory and classification).

On the other hand, BIANZO II contributed to 4 of the 5 SCAR EBA specific 
objectives:

Evolutionary history of the Antarctic organisms (NOWBIO: phylogeny and 
phylogeography of selected taxa, cryptic species,...)

Evolutionary adaptation to the Antarctic environment (DYNABIO: trophic adaptations, 
ability to cope with change)

Patterns and diversity of organisms, ecosystems and habitats in the Antarctic and 
controlling processes (NOWBIO: spatial variations, unknown areas,...)
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Impact of past, current, and predicted future environmental change on biodiversity, 
and the consequences for Antarctic marine (terrestrial and limnetic) ecosystem 
function (FOREBIO: modeling the impact of temperature-related changes)

iii) International Polar Year and Census of Marine Life

The International Polar Year (IPY) is a large scientific programme that focused on the 
Arctic and the Antarctic and took place from 2007 to 2009. IPY, organized through 
the International Council for Science (ICSU) and the World Meteorological 
Organization (WMO), is actually the fourth polar year, following those in 1882-3, 
1932-3, and 1957-8. IPY involved over 200 projects, with thousands of scientists 
from over 60 nations examining a wide range of physical, biological and social 
research topics. It was also an unprecedented opportunity to promote polar research 
to a wider audience and to bring the effect of climate change in polar regions under 
political attention.

BIANZO II contributed to the International Polar Year (2007-2008) as IPY activity 
391. The project was also integrated in the “Census of Antarctic Marine Life” (CAML, 
2005-2010), an IPY core project. The CAML is a five-year project focusing the 
attention of the public on the ice-bound oceans of Antarctica. Its objective is to study 
the evolution of life in Antarctic waters, to determine how this has influenced the 
diversity of the present biota, and to use these observations to predict how it might 
respond to future change. We were invited and participated in several workshops 
organized by CAML (Rio De Janeiro, November 2009; Wilhelmshaven May 2010) 
were we contributed with the BIANZO consortium to a synthesis paper (Kaiser et al., 
in prep.)

iv) Data management

A special effort is devoted to make the results and data generated by the project 
widely available by contributing to the Global Biodiversity Information Facility (GBIF), 
notably via the Belgian Biodiversity Platform and its Antarctic component SCAR- 
MarBIN. In a context of global environmental change and alarming loss of 
biodiversity, the need to develop the biodiversity knowledge over the world was 
strongly emphasized by the Convention on Biological Diversity (CBD). Flowever, the 
CBD provisions are not directly applicable to the Antarctic Treaty region as they 
concern only sovereign territories. Many of the CBD elements are already implicitly 
included in the Antarctic Treaty instruments, but the provisions for a systematic 
inventory of biodiversity, and for managing and disseminating the biodiversity 
information (“clearing house mechanism”) among others remain to be fully 
implemented
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b) Recommendations in the framework of policy support

The ACCE report provides clear evidence for warming of the Southern Ocean which 
is causing changes in the ecosystem. The BIANZO consortium illustrated the 
potentially high sensitivity of several marine taxa which are major components of the 
benthic ecosystem to climate related changes such as changes in food supply (Ingels 
ef a/.,2010; Pasotti eta!., submitted), ice shelf collapse (Raes et al., 2010; Hauquieref 
a., accepted), seawater acidification (Colao (check name of ana et al) and 
temperature rise (Raes et a., in prep). By means of sensitivity tables based on what 
we know by research and a literature review for each of the taxa at different levels of 
biological organization (from populations to communities or habitats) we illustrated on 
one hand the high sensitivity for specific climate related changes in the Antarctic 
environment, but on the other hand we also identified major gaps in our knowledge 
(Ingels et al, conditionally accepted). Furthermore molecular approaches showed the 
high cryptic biodiversity present in many of the Antarctic taxa (Havermans et al., in 
press, 2010), illustrating that what we know on biodiversity so far is only the tip of the 
iceberg. Since the climate-induced shift in the food regime leads to a decrease in the 
rich Antarctic seabed biodiversity, we are losing biodiversity already of which we 
never will know its characteristics or its importance.

Therefore our major recommendation for present and future policy is to strengthen 
at national and international level the need for a global reduction of CO2 emissions in 
order to slow down climate change. Since the start of negotiations on the Kyoto 
Protocol, the Belgian authorities have taken in general a favourable position towards 
an ambitious climate change regime, both at international and European level. The 
Belgian position largely results from the clear awareness that a global threat calls for 
a global solution. However for several aspects (e.g. transport, renewable energy) the 
actions of Belgian authorities are maybe still too modest, considering the speed and 
the size of impact of rapid climate change in the Antarctic.

Knowing that loss of ice from the West Antarctic ice sheet will not only impact 
Antarctic ecosystems, but that it is likely to contribute some tens of centimetres to 
global sea level by 2100, policy makers need to increase the pressure on the 
international community to initiate more effective global scale actions.

We further identified three crucial future research initiatives, mainly in the context of 
climate change and framed in programmed, international priorities of Antarctic 
research. These initiatives were based on the results of the BIANZOII project and 
inspired by the recommendation of the ACCE report.
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I. Biodiversity research

Fundamentally important baseline biodiversity and biogeographic survey data are still 
lacking across most of the continent and parts of the surrounding Southern 
Ocean.Those data and systematic and robust monitoring programmes across a 
network of representative locations are required to allow anything other than the 
current ad hoc and serendipitous approach to identifying biological responses to any 
aspect of environmental change in Antarctica. Without a baseline biodiversity survey 
across much of the continent and Southern Ocean, objective documentation of future 
biological change and assessment of impacts will be impossible. Also more data on 
the marine biota are required from especially poorly studied areas like the Amundsen 
Sea, as the basis for the simulation of the impact of a warming ocean on marine 
biodiversity. While the study of this diversity has an importance of its own, a sufficient 
level of knowledge of the diversity (both morphological and molecular) of the present 
taxa is an inescapable prerequisite for any descriptive, analytical or predictive 
environmental study.

II. Species and community response to change

More evidence should be sought for the possible effects of change in ocean 
acidification in Southern Ocean organisms. Also shifts in primary production and their 
impact on the marine food web should be further investigated. Individual and species 
level responses (including resilience/resistance) to environmental variability and 
change require integration across communities, trophic webs and ecosystems. 
Continued long-term and large-scale observations of functional and structural 
changes in ecosystems are essential to assess the sensitivity of ecological key 
species and to ground-truth predictive models

III Modelling climate change effects

Advanced integrative and spatially explicit ecosystem modelling is needed to predict 
the future of the marine ecosystem. Such an approach demands widespread 
samples of ecological key species that are representative for ecological sub-systems, 
such as plankton, benthos or apex predators and long-term measurements of 
ecological key processes such as the response to acidification, warming and 
changes in ice cover and food regime.
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5) DISSEMINATION AND VALORISATION

a) Follow-up committee

The follow-up committee consists of a heterogeneous group of people from different 
Belgian and European institutes. The group includes representatives of the scientific 
community (Prof. Dr. A. Brandt, Prof. Dr. A. Gooday, Prof. Dr. F. Dehairs), but also 
the coordinator of the Belgian Biodiversity Platform (Dr. H. Segers), the SCAR- 
MarBIN Scientific Coordinator (Dr. B. Danis), a representative of the department of 
Economy, Science and Innovation of the Flemish government (Dr. R. Flerman) and a 
representative of the media (Dr. G. Chapelle). Each from a different background, they 
have provided constructive remarks, criticisms and valuable input. In addition, Prof. 
A. Gooday and Prof. A. Brandt committed to contribute to the review paper on 
climate change with their expertise on Antarctic Foraminifera and Isopoda, 
respectively. The follow-up committee was invited on a regular base and feedback 
was given on our progress and the next steps to be taken in order to achieve the 
project objectives.

b) Scientific and general outreach activities

Scientific communication. During the project a multitude of oral and poster 
presentations have been given on national and international conferences and 
meetings. An exhaustive list of these is presented below. The numerous 
contributions by different members of the participating institutes have enabled 
successful scientific outreach and have led to productive discussions with scientists 
and fruitful collaborations, and invitations to join in workshops and meetings 
worldwide. BIANZO has been recognised by many Antarctic scientists worldwide as 
an exciting project with important objectives, producing relevant results for a wide 
spectrum of biological/ecological scientists.

Communication with general public. During the course of the project many 
initiatives have been undertaken to engage in informing the general public. Invitations 
by external institutes and/or organisations to present our science to the general 
public have been gladly accepted and has resulted in numerous contributions.

The ANT-XXIII/8 expedition with the RV Polarstern to the Larsen A and B regions 
attracted a lot of media attention. The work on meiofauna (UGent) was featured in 
articles in De Morgen (27/02/2007) and Het Nieuwsblad (27/02/2007). The Ghent 
University group also contributed to the section “Op Expeditie” of the Dutch magazine 
Natuur, Wetenschap & Techniek (July-August 2007). The IRScNB-KBIN group was 
featured in numerous press articles (e.g. Le Soir (26/02/2007), Het Laatste Nieuws 
(27/02/2007), La Dernière Heure (28/02/2007), Het Nieuwsblad (03/03/2007). A radio
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interview was given by H. Robert to RTBF directly from the Polarstern. A sequence 
on the RTBF TV Journal was also devoted to the results of the Larsen expedition. 
The work of the ULB group was presented in an article in “Le Soir” (December 20th, 
2006).

The publication in Nature (Brandt et al., 2007), with co-authors from the Ghent 
University group and IRScNB-KBIN, resulted in articles in all Flemish newspapers, a 
radio interview, an article on the web page of the BBC and a short contribution in the 
VTM news.

Photographs by Jeroen Ingels (UGent) were shown during the Nacht van de 
Wetenschap (VUB, 2007). The UGent group is also consulting with the KINA 
museum in Gent to organise an exhibition on their Antarctic research.

Prof. Vanreusel talked about the life on board of Polarstern at the exhibition on the 
Belgian Princess Elisabeth Station at Tour & Taxis (Brussels, September 8th 2007; 
Twee maanden lang op een ijsbreker op zoek naar leven in de Antarctische 
diepzee).

Two RTBF broadcasts of “Semence de Curieux” were devoted to Antarctic marine 
biodiversity (interview C. De Broyer, IRScNB-KBIN, March/April 2007). Another 
interview concerning bioregionalisation of the Southern Ocean appeared on the IPF 
SciencePoles website (C. De Broyer, October 2007)

The work on Antarctic echinoids was presented to the general public at the Science 
en fête (CNRS (Centre National de la Recherche Scientifique) and uB; October 13th 
- October 14th, 2007) by posters (Inventaire des oursins antarctiques, de Bruxelles à 
Google Earth; Les “autobus” de la mer-études d’oursins antarctiques). A movie of ca. 
6’ was made by De Marchelier & David (2007) for Mission Culture Scientifique (uB): 
Les oursins de I’ Antarctique. This movie was shown at the Nuit des Chercheurs (uB; 
September 28th, 2007). Our partner at uB also featured in an article in the French 
newspaper Le Bien Public (La Recherche en Bourgogne: Les oursins antarctiques 
sont-ils condamnés à disparaître?; June 24th, 2007) and in the CNRS International 
magazine (Spotlight on the poles; n°6 April 2007, 18-23).

c) List of outreach activities

Outreach activities are listed per partner and in chronological order

i) UGent

Contribution on Antarctic marine biodiversity research in 3-monthly journal on popular 
sciences for a general public (MENS ,Nr77 Oct, Nov, Dec, 2010).
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Lecture/presentation by Francesca Pasotti to secondary school classes on science in 
Antarctica organised by the International Polar Foundation (IPF, Educapoles) in 
December 2010

Bezerra TN, Pape E, Flauquier F, Ingels J, Vanreusel A (2010) New genus of the 
family Ethmolaimidae (Nematoda: Chromadorida), found at Gulf of Cadiz and 
Antarctica. Fourteenth International Meiofauna Conference, Aula Academica, 
Ghent, 11-16 July 2010. Book of Abstracts, oral presentation 90

Veit-Köhler G, Guilini K, Sachs O, Sauter E, Peeken I (2010) Antarctic deep-sea 
meiofauna and bacteria react to deposition of particulate organic matter after 
phytoplankton bloom Fourteenth International Meiofauna Conference, Aula 
Academica, Ghent, 11-16 July 2010. Book of Abstracts, poster presentation 201

Veit-Köhler G, Guilini K, Würzberg L, Mayr C (2010) Geographical and 
oceanographical patterns of meiofauna stable isotope signatures in the deep 
Southern Ocean. Fourteenth International Meiofauna Conference, Aula 
Academica, Ghent, 11-16 July 2010. Book of Abstracts, oral presentation 79

Guilini K, Vanreusel A (2010) ANDEEP-SYSTCO (ANTarctic benthic DEEP-sea 
biodiversity: colonisation history and recent community patterns -  SYSTem 
COupling), from census to ecosystem functioning. Belgian International Polar 
Year Symposium, Royal Academy for Belgian Sciences and Arts, Brussels, 
Belgium, 26th May 2010. Oral presentation

Flauquier F, Ingels J, Vanreusel A (2010) Characterisation of the nematode 
community of a low-activity cold seep in the recently ice-free Larsen B area, 
Eastern Antarctic Peninsula, in: (2010). Seventeenth Benelux Congress of 
Zoology (BCZ 2010) - 'Classical Biology in Modern Times' October 22-23, 2010, 
Ghent, Belgium: Abstract book. pp. 68.

Ingels J, Vanreusel A, Martin P, De Ridder C, David B, Guilini K, Pasotti F, Hauquier 
F, d’Udekem d’Acoz C, Robert H, De Broyer C, Havermans C, Dubois P, 
Catarino AI, Pierrat B, Saucede S (2010) BIANZO II -  Biodiversity of three 
representative groups of the Antarctic zoobenthos -  Coping with change. 
Belgian International Polar Year Symposium, Royal Academy for Belgian 
Sciences and Arts, Brussels, Belgium, 26th May 2010. Oral presentation.

Pasotti F, Raes M, Vanreusel A, De Troch M (2010) Investigating the responses of 
meiofauna in Potter Cove (King George Island, West Antarctic Peninsula) from 
a climate change perspective: an experimental approach. Fourteenth 
International Meiofauna Conference, Aula Academica, Ghent, 11-16 July 2010. 
Book of Abstracts, oral presentation 62

Pasotti F, Vanreusel A (2010) ClicOpen and IMCOAST projects. Belgian International 
Polar Year Symposium, Royal Academy for Belgian Sciences and Arts, 
Brussels, Belgium, 26th May 2010. Poster presentation

Pasotti F, Vanreusel A, De Troch M (2010) Investigating the responses of meiofauna 
in Potter Cove (King George Island, West antarctic Peninsula) from a climate 
change perspective: an experimental approach. SCAR XXXI - 4th Open 
Science Conference -  Antarctica: Witness to the past and guide to the future, 
CD-ROM. Abstract number 588

Vanreusel A, Raes M, Hauquier F, Ingels J (2010) Response of nematode 
communities after large-scale ice-shelf collapse. SCAR XXXI - 4th Open
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Science Conference -  Antarctica: Witness to the past and guide to the future, 
CD-ROM. Abstract number 791

Ingels J, A Vanreusel, P Martin, C De Ridder, B David, K Guilini, F Pasotti, F 
Flauquier, C d’Udekem d’Acoz, FI Robert, C Flavermans, P Dubois, AI Catarino, 
B Pierrat, T Saucede (2010) Assessements of BIANZO II-  Coping with change. 
CAML Workshop “Southern Ocean benthic biodiversity and biogeography: What 
are the key spatial patterns in macro-and megabenthos and what drives them? 
German Centre of Marine Biodiversity Research (DZMB) in Wilhelmshaven 
(Germany) 21-25/3/2010, oral presentation

Bezerra T & A. Vanreusel (2009) Biodiversity of Nematoda at the Southern Ocean. 
Oral presentation hold during a symposium on 'Antarctic-South American 
Interactions in the Marine Environment (ASAI)", organised by the South 
American Consortium for the Census of Antarctic Marine Life (LA CAML) in Rio 
de Janeiro, Brazil 5-6/11/2009

Participation by TN Bezerra (UGent) in Workshop "Antarctic-South American 
Interactions in the Marine Environment (ASAI)". organised by the South 
American Consortium for the Census of Antarctic Marine Life (LA CAML) in Rio 
de Janeiro, Brazil on 3-4/11/2009

Active participation in a workshop on the response of marine and terrestrial biota to 
climate change along the Western Antarctic Peninsula, Mqdralin, Poland, 24 -  
29/8/2009 - organised in the framework of ClicOpen (Impact of CLImate 
induced glacial melting on marine and terrestrial COastal communities on a 
gradient along the Western Antarctic PEN insula)

Organisation and active participation of a CoML (Comarge) workshop on Large-scale 
patterns in bathyal free-living nematodes at Ghent University (28/01-01/02, 
2008).

Vanreusel A (2007) Twee maanden lang op een ijsbreker op zoek naar leven in de 
Antarctische diepzee. Oral communication at the exhibition on the Belgian 
Princess Elisabeth Station at Tour & Taxis (Brussels, 8/9/2007)

Raes M, Guilini K, Vanreusel A (2007) Meiofauna at the Poles - Coping with Change. 
Poster presentation at Thirteenth International Meiofauna Conference, Recife, 
Brazil (29/7-3/8/2007). Abstract book Poster p. 99

Raes M, Guilini K, Vanreusel A (2007) Meiofauna at the Poles - Coping with Change. 
Poster presentation at Biodiversity and Climate Change Conference, Brussels, 
Belgium (21-22/5/2007). Abstract book p. 47-48

ii) IRScNB-KBIN

Flavermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin, P (2010) DNA 
barcoding reveals both cryptic as true circumpolar species in Antarctic 
Lysianassoidea (Amphipoda). Poster presentation (CH) at the XlVth 
International Colloquium on Amphipoda, 13-18/09/2010, Seville, Spain

Flavermans C (2010). Incongruence between molecular phylogeny and 
morphological taxonomy: A case study of Antarctic lysianassoids. Poster 
presentation (CH) at the XlVth International Colloquium on Amphipoda, 13- 
18/09/2010, Seville, Spain
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Hendrycks E, De Broyer C, Havermans C (2010) Preliminary results of baited trap 
amphipod collections from the DIVA-3 cruise. XlVth International Colloquium on 
Amphipoda, Seville, Spain, 13-18/09/2010

d'Udekem d'Acoz C (2010) Contribution to the knowledge of European Liljeborgiidae, 
with systematic remarks on the family. Poster (CUA) presentation at XIV 
International Colloquium on Amphipoda, University of Sevilla, 13-18/9/2010

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2010). DNA 
barcoding reveals both cryptic as true circumpolar species in Antarctic 
Lysianassoidea (Amphipoda). Poster Presentation (CH) at the International 
Polar Year Oslo Science Conference, 8-12/06/2010, Oslo, Norway

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P, (2009) DNA
barcoding reveals both cryptic as true circumpolar species in Antarctic
Lysianassoidea (Amphipoda). Poster presentation (CH) at the Belgian 
International Polar Year Symposium, 26/05/2010, Brussels, Belgium

Ingels J, A Vanreusel, P Martin, C De Ridder, B David, K Guilini, F Pasotti, F 
Hauquier, C d’Udekem d’Acoz, H Robert, C Havermans, P Dubois, AI Catarino, 
B Pierrat, T Saucede (2010) BIANZO II -  Biodiversity of three representative 
groups of the Antarctic zoobenthos -  Coping with change. International Polar 
Year Symposium 26 May 2010, Belgian National Committee on Antarctic 
Research, Académie des Sciences, Bruxelles

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2010) DNA
barcoding reveals both cryptic as true circumpolar species in Antarctic
Lysianassoidea (Amphipoda). Participation and Poster Presentation (CH) at the 
workshop on “Southern Ocean Benthic Biodiversity Patterns” organized by 
CAML (Census of the Antarctic Marine Life), 21-25/03/2010, Wilhelmshaven, 
Germany.

Ingels J, A Vanreusel, P Martin, C De Ridder, B David, K Guilini, F Pasotti, F 
Hauquier, C d’Udekem d’Acoz, H Robert, C Havermans, P Dubois, AI Catarino, 
B Pierrat, T Saucede (2010) Assessements of BIANZO II-  Coping with change. 
Workshop “Southern Ocean benthic biodiversity and biogeography: What are 
the key spatial patterns in macro-and megabenthos and what drives them? 21- 
25/3/2010, German Centre of Marine Biodiversity Research (DZMB) in 
Wilhelmshaven (Germany)

Udekem d'Acoz, C.d'., Robert, H., Martin P., 2009. Distribution and phylogeographic 
patterns of the genus Liljeborgia (Crustacea, Amphipoda, Liljeborgiidae) in Polar 
Seas. Poster presentation (CUA) at CAML Final Symposium, Census of Antarctic 
Marine Life: diversity in Southern Ocean ecosystems. Université degii Studi di 
Genoa, Italy

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2009) 
Incongruence between molecular phylogeny and morphological taxonomy: A 
case study of Antarctic lysianassoids. Oral presentation (CH) at the EDIT Young 
Taxonomist Symposium, 15-17/12/2009

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2009) DNA 
barcoding reveals both cryptic as true circumpolar species in Antarctic
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Lysianassoidea (Amphipoda). Oral presentation (CH) at the 10th VLIZ Young 
Scientists’ Day, 27/11/2009, Oostende, Belgium

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2009) DNA 
barcoding reveals cryptic diversity in Antarctic Lysianassoidea (Amphipoda)”. 
Oral presentation (CH) at the Xth SCAR International Biology Symposium, 26- 
31/07/2009. (Student/Early Career Award for the communication)

De Broyer C, Danis B (2009) How many species in the Southern Ocean? CAML final 
Symposium, Census of Antarctic Marine Life: diversity and change in Southern 
Ocean ecosystems, Genoa, Italy, 18-20/5/2009

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2009) DNA 
barcoding reveals cryptic diversity in Anatrctic species of Orchomene sensu lato 
(Crustacea: Amphipoda: Lysianassoidea). CAML final Symposium, Census of 
Antarctic Marine Life: diversity and change in Southern Ocean ecosystems, 
Genoa, Italy, 18-20/5/2009

d’Udekem d’Acoz C, Robert H, Martin P (2009) Distribution and phylogeographic 
patterns of the genus Liljeborgia (Crustacea, Amphipoda, Liljeborgiidae) in 
Polar Seas. CAML final Symposium, Census of Antarctic Marine Life: diversity 
and change in Southern Ocean ecosystems, Genoa, Italy, 18-20/5/2009

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2009) DNA 
barcoding reveals both cryptic as true circumpolar species in Antarctic 
Lysianassoidea (Amphipoda). Poster presentation (CH) at the VLIZ Young 
Scientists’ Day, 06/03/2009, Brugge, Belgium

Udekem d'Acoz, C. d'., Robert, H. & P. Martin (2008) Systematic and phylogeny of 
Liljeborgia from Antarctic and other seas: preliminary results. Poster 
presentation (CUA) at International Symposium, Advances in Crustacean 
Phylogenetics, October, 7-11 2008, Rostock, Germany

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2008) DNA 
barcoding reveals both cryptic and eurybathic, circumpolar species in Antarctic 
Lysianassoidea. Participation and oral presentation (CH) at the “International 
workshop on cosmopolitism in the abyss” organized by CeDAMar (Census of 
the Diversity of Abyssal Marine Life), 15-18/12/2008, Wilhelmshaven, Germany

De Broyer C, Danis B, 63 Taxonomic Editors (2008) The Register of Antarctic Marine 
Species: Towards a comprehensive inventory of the Southern Ocean 
biodiversity. Poster presentation at World Conference on Marine Biodiversity, 
Valencia, Spain (11-15/11/2008)

De Broyer C, Robert H, the Antarctic Amphipodologists Network (2008) Census of 
Antarctic Marine Life: The Synopsis of the Amphipoda of the Southern Ocean. 
Poster presentation at World Conference on Marine Biodiversity, Valencia, 
Spain (11-15/11/2008)

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2008) DNA
barcoding reveals both cryptic as true circumpolar species in Antarctic
Lysianassoidea (Amphipoda). Poster presentation (CH) at the “Journée 
doctorale BEE”, 17/11/2008, Louvain-la-Neuve, Belgium

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2008) DNA
barcoding reveals both cryptic as true circumpolar species in Antarctic
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Lysianassoidea (Amphipoda). Oral presentation (CH) at the Benelux Congress 
of Zoology, 30-31/10/2008, Liège, Belgium

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2008) DNA 
barcoding reveals both cryptic and true circumpolar species in Antarctic 
Lysianassoidea (Amphipoda). 1st International Symposium “Advances on 
Crustacean Phylogenetics” , Rostock, Germany, 7-11 October 2008

d’Udekem d’Acoz C, Robert H, Martin P (2008) Systematics and phylogeny of the 
genus Liljeborgia (Amphipoda, Liljeborgiidae) from the Southern Ocean and 
other seas: preliminary results”). 1st International Symposium “Advances on 
Crustacean Phylogenetics” , Rostock, Germany, 7-11 October 2008

De Broyer C, Danis B, 59 Taxonomic Editors (2008). The Register of Antarctic 
Marine Species: Towards a comprehensive inventory of the Southern Ocean 
biodiversity. Poster presentation at the SCAR XXX Open Science Conference. 
St Petersburg (July 8-11, 2008)

De Broyer C, Robert H, the Antarctic Amphipodologists Network (2008) Census of 
Antarctic Marine Life: The Synopsis of the Amphipoda of the Southern Ocean. 
Poster presentation at the SCAR XXX Open Science Conference. St 
Petersburg (July 8-11, 2008)

Havermans C, Zoltán Tamás N, Sonet G, De Broyer C, Martin P (2008) Participation 
at the “ International Workshop on Barcoding of Deep-Sea Organisms” 
organized by CeDAMar (Census of the Diversity of Abyssal Marine Life), 13- 
16/05/2008, Wilhelmshaven, Germany

Danis B, Brandt A, Gutt J, Koubbi P, Rodhouse P, Wadley V, De Broyer C (2007) 
Antarctic marine biodiversity challenged by global change: the CAML / SCAR- 
MarBIN benchmark. Proceedings International Symposium Polar Environment 
and Climate: The Challenges. Brussels, 5-6 March 2007, pp. 132-133

iii) ULB/uB

Catarino AI, Guibourt V, Moureaux C, Dubois Ph (2010) Response of echinoids spines to 
ocean acidification. SETAC Europe 20th Annual Meeting. Seville, Spain. Poster 
presentation

Catarino AI, Moulin L, Claessens T, Dubois Ph (2010) Intertidal sea urchins response to 
ocean acidification: fertilization and larval development. SETAC Europe 20th Annual 
Meeting. Seville, Spain. Poster presentation Pierrat B, Saucede T, De Ridder C, 
Festeau A, Laffont R, David B (2010) Biogeography and macroecology of Antarctic and 
sub-Antarctic echinoids . 7th European Conference on Echinoderm: Echinoderm 
Research 2010, Göttingen, Germany, Oral communication.

Ingels J, A Vanreusel, P Martin, C De Ridder, B David, K Guilini, F Pasotti, F Hauquier, C
d’Udekem d’Acoz, H Robert, C Havermans, P Dubois, AI Catarino, B Pierrat, T
Saucede (2010) BIANZO II -  Biodiversity of three representative groups of the 
Antarctic zoobenthos -  Coping with change. International Polar Year Symposium 26 
May 2010, Belgian National Committee on Antarctic Research, Académie des 
Sciences, Bruxelles

Ingels J, A Vanreusel, P Martin, C De Ridder, B David, K Guilini, F Pasotti, F Hauquier, C 
d’Udekem d’Acoz, H Robert, C Havermans, P Dubois, AI Catarino, B Pierrat, T
Saucede (2010) Assessements of BIANZO II-  Coping with change.
Workshop “Southern Ocean benthic biodiversity and biogeography: What are the key

SSD-Science for a Sustainable Development -  Biodiveristy - Antarctica 99



Project SD/BA/02 - Biodiversity of three representative groups of the Antarctic Zoobenthos - Coping w ith  Change
"B IAN ZO II"

spatial patterns in macro-and megabenthos and what drives them? March 21st to 
March 25th 2010, German Centre of Marine Biodiversity Research (DZMB) in 
Wilhelmshaven (Germany)

Moulin L, Catarino AI, Claessens T, Dubois Ph (2010) Effects of seawater acidification on 
early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). 
Marine Pollution Bulletin, doi 10.1016/j.marpolbul.2010.09.012.

Pierrat B, David B, Saucede T (2010) Biogeography and macroecology of Antarctic and sub- 
Antarctic echinoids , SCAR XXXI & Open Science Conference Antarctica -  Witness to 
the past and guide to the future, Buenos Aires, Argentine, Poster presentation.

Pierrat B, David B, Saucede T (2010) Biogeography and macroecology of Antarctic and sub- 
Antarctic echinoids, ClimEco2 Summer school, Brest, France, Poster and oral 
communication.

Pierrat B, David B, Saucede T (2010) Biogeography and macroecology of Antarctic and sub- 
Antarctic echinoids. CAML, DFG and CeDAMar workshop on Antarctic benthic 
biodiversity patterns, Wilhemshaven, Allemagne, Oral communication.

Pierrat B, David B, Saucede T (2010) What environmental parameters shape the spatial 
distribution of Antarctic echinoids, CAML, DFG and CeDAMar workshop on Antarctic 
benthic biodiversity patterns, Wilhemshaven, Germany, Poster presentation.

Pierrat B (2009) Biogeography of Antarctic and sub-Antarctic echinoid fauna, NIWA short 
seminar, National Institute of Water and Atmospheric research, Wellington, Nouvelle 
Zelande.Oral communication.

Pierrat B (2009) Impacts du réchauffement climatique sur les oursins antarctiques avec une 
caractérisation écologique et biogéographique par un SIG », Forum des Jeunes 
Chercheurs, Dijon, France, Oral communication.

Catarino Al, Dubois Ph (2009) Impact of seawater acidification on the sea urchin skeleton
growth. 13th International Echinoderm Conference. Hobart, Australia. Poster
presentation

Catarino AI, Dubois Ph (2009) Impact of seawater acidification on the sea urchin skeleton 
growth. Training workshop on the fundamentals of carbon biogeochemistry. EPOCA, 
CARBOOCEAN and IOC projects. Bergen, Norway. Poster presentation

Catarino AI, Dubois Ph (2009) Impact of seawater acidification on the sea urchin skeleton
growth. Workshop on Bivalve Biomineralization. CALMAR project. Brussels, Belgium.
Poster presentation

Catarino AI, Guibourt V, Moureaux C, Dubois Ph (2009) Response of echinoids spines to 
ocean acidification. EMBO workshop: Evo-Devo meets marine ecology: new frontiers in 
ocean science through integrative biology. Sant’Angelo d’lschia, Napoli, Italy. Poster 
presentation

Guibourt V, Catarino AI, Moureaux C, Dubois Ph (2009) Effect of seawater acidification on 
cidaroid spines. 13th International Echinoderm Conference. Hobart, Australia. Poster 
presentation

Guibourt V, Catarino AI, Moureaux C, Dubois Ph (2009) Effect of seawater acidification on 
cidaroid spines. Training workshop on the fundamentals of carbon biogeochemistry. 
EPOCA, CARBOOCEAN and IOC projects. Bergen, Norway. Poster presentation

Hardy C, David B, Rigaud T, De Ridder C, Saucède T (2009) Biodiversity and colonization of 
Antarctic cold waters: the importance of symbioses associated to echinoids. Oral 
communication at CAML Final Symposium, Genoa, Italy (May 18th -  May 20th).
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Catarino AI, Dubois Ph (2008) Impact of seawater acidification on the sea urchin skeleton 
growth. Second Symposium of the Ocean in a High-C02 World, Monaco. Poster 
presentation

David, B., Manjon-Cabeza, M.E., Moya, F., Choné, T., Saucède, T., De Ridder, C., 2008. 
The impact of global warming on polar seas: expected changes on Antarctic echinoid 
fauna and forecasting the future? Oral communication at XXth International Congress 
of Zoology, Paris, France (August 26th - August 29th, 2008).

David, B., Manjon-Cabeza, M.E., Moya, F., Choné, T., Saucède, T., De Ridder, C., 2008. 
Biogeography of the Magellan-Antarctic echinoids. Forecasts for its evolution. Oral 
communication at World Conference on Marine Biodiversity, Valencia, Spain 
(November 11th - November 15th, 2008).

Guibourt V, Catarino AI, Dubois Ph (2008) Effect of seawater acidification on cidaroid spines. 
Second Symposium of the Ocean in a High-C02 World. Monaco. Poster presentation

Hardy C, Saucède T, David B, De Ridder C, Rigaud T (2008) Biodiversity and colonization of 
Antarctic cold waters: the importance of symbioses associated to echinoids. Oral 
communication at XXth International Congress of Zoology, Paris, France (August 26th - 
August 29th, 2008).

Rigaud T, Saucède T, De Ridder C, David B (2008) Ectosymbiosis on echinoids and local 
benthic biodiversity in Antarctic deep sea. Oral communication at World Conference on 
Marine Biodiversity, Valencia, Spain (November 11th - November 15th, 2008).

Saucède T (2008) An illustration of the French Research in Antarctic: a study of biodiversity 
patterns in the marine fauna. Oral communication at Symposium on Antarctic Climate 
Change, Malaga, Spain (October 7th -  October 10th, 2008).
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6) PUBLICATIONS

a) Published and accepted/in press

Alonso de Pina G, Rauschert M, De Broyer C (2008) A catalogue of the Antarctic and sub- 
Antarctic Phoxocephalidae (Crustacea: Amphipoda: Gammaridea) with distribution and 
ecological data. Zootaxa 1752, 1-40

Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday A, Hilbig B, Linse K, Thomson M, 
Tyler P (2007a) The biodiversity of the deep Southern Ocean benthos. In: Rogers, AD, 
Murphy E, Clarke A, Johnston N (eds) Antarctic ecology: from genes to ecosystems. 
Philosophical Transactions of the Royal Society, Biological Sciences 362, 39-66

Brandt A, C De Broyer, B Ebbe, KE Ellingsen, AJ Gooday, D Janussen, S Kaiser, K. Linse, 
M Schueller, MRA Thomson, PA Tyler, A Vanreusel (2011 online, will be published in 
2012) Southern Ocean Deep Benthic Biodiversity. In: Rogers AD, Johnston NM, 
Murphy EJ, Clarke A (eds) Antarctic Ecosystems: An Extreme Environment in a 
Changing World. Blackwell Publishing Ltd.

Brandt A, Gooday AJ, Brandäo SN, Brix, S, Brökeland W, Cedhagen T, Choudhury M, 
Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe JA, Janussen D, 
Kaiser S, Linse K, Malyutina M, Pawlowski J, Raupach M, Vanreusel A (2007b) First 
insights into the biodiversity and biogeography of the Southern Ocean deep sea. 
Nature 447, 307-311

Brenke N, Guilini G, Ebbe B (2011) Characterization of the seafloor at the SYSTCO stations 
based on video observations and ground truthing sedimentology. Deep Sea Research 
Part II: Topical Studies in Oceanography 58: 2043-2050.

Catarino Al, De Ridder C, Gonzalez M, Gallardo P, Dubois Ph (2011) Sea urchin Arbacia 
dufresnei (Blainville 1825) larvae response to ocean acidification. Polar Biology, doi: 
10.1007/S00300-011-1074-2

d' Udekem d'Acoz C (2010) Contribution to the knowledge of European Liljeborgiidae 
(Crustacea, Amphipoda), with considerations on the family and its affinities. Bulletin de 
l'Institut Royal des Sciences Naturelles de Belgique, Biologie, 80: 127-259

d’ Udekem d’Acoz C (2008) Shelf and abyssal Liljeborgia of the Southern Ocean (Crustacea, 
Amphipoda, Liljeborgiidae). Bulletin de l’Institut Royal des Sciences Naturelles de 
Belgique, Biologie, 78: 45-286

d’ Udekem d’Acoz C (2009) New records of Liljeborgia from Antarctic and sub-Antarctic 
seas, with the description of two new species (Crustacea: Amphipoda: Liljeborgiidae) . 
Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Biologie, 79: 243-304

d’ Udekem d’Acoz C, Robert H (2008) Systematic and ecological diversity of amphipod 
crustaceans. In: Gutt J. (Ed.), The Expedition ANTARKTIS-XXIII/1 of the Research 
Vessel "Polarstern" in 2006/2007. Berichte zur Polar- und Meeresforschung 569, 48-56

d’ Udekem d'Acoz C, Vader W  (2009) On Liljeborgia fissicornis (M. Sars, 1858) and three 
related new species from Scandinavia, with a hypothesis on the origin of the group 
fissicornis. Journal of Natural History 43(33-34): 2087-2139

Danis B, Brandt A, Gutt J, Koubbi P, Rodhouse P, Wadley V, De Broyer C (2007) Antarctic 
marine biodiversity challenged by global change: the CAML / SCAR-MarBIN 
benchmark. Proceedings International Symposium Polar Environment and Climate: 
The Challenges. Brussels, 5-6 March 2007, pp. 132-133
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Danovaro R, Gambi C, Dell’Anno A, Corinaldesi C, Fraschetti S, Vanreusel A, Vincx M, 
Gooday AJ (2008) Exponential decline of deep-sea ecosystem functioning linked to 
benthic biodiversity loss. Current Biology 18, 1-8

David B, Stock SR, De Carlo F, Hétérier V, De Ridder C (2009) Microstructures of Antarctic 
cidaroid spines: diversity of shapes and ectosymbiont attachments. Marine Biology 
156, 1559-1572

De Broyer C, Clarke A, Koubbi P, Pakhomov E, Scott F, Vanden Berghe W  & Danis B (eds), 
2008. The SCAR-MarBIN Register of Antarctic Marine Species (RAMS). World Wide 
Web electronic publication. Available online at: http://www.scarmarbin.be/species.php

De Broyer C, Danis B (eds) 2008. SCAR-MarBIN: The Antarctic Marine Biodiversity 
Information Network. World Wide Web electronic publication. Available online at: 
http://www.scarmarbin.be/

De Broyer C, Danis B, with 64 SCAR-MarBIN Taxonomic Editors (in press). How many 
species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine 
species. Deep-Sea Research II, doi:10.1016/j.dsr2.2010.10.007

De Broyer C, Lowry JK, Jazdzewski K, Robert H (2007) Catalogue of the Gammaridean and 
Corophiidean Amphipoda (Crustacea) of the Southern Ocean with distribution and 
ecological data. In: De Broyer, C. (Ed.) Census of Antarctic Marine Life. Synopsis of 
the Amphipoda of the Southern Ocean. Vol. 1, Part 1-Part2. Bulletin de l'Institut Royal 
des Sciences Naturelles de Belgique: Biologie 77 (Suppl. 1), 1-325

De Broyer C, Robert H (eds) 2008. Amphipoda. In: The SCAR-MarBIN Register of Antarctic 
Marine Species (RAMS). World Wide Web electronic publication. Available online at: 
http://www.scarmarbin.be/ramsAmphipoda.php

Denis M (2007) Les crustacés amphipodes symbiotiques d’ascidies antarctiques. Cycle 
annuel et adaptations. Mémoire de Licence en Biologie animale, ULg, 57 pp. (pdf not 
available)

di Prisco G, Danis B, De Broyer C, Dettaï A, Ellis-Evans C, Huiskes A, Verde C, Wilmotte A, 
(2007) FP 7: Research on climate change in polar environments must include effects 
on biota of both polar regions. Proceedings International Symposium Polar 
Environment and Climate: The Challenges. Brussels, 5-6 March 2007, pp. 140-142

Diaz A, Feral J-P , David B, Saucede T, Poulin E (2011) Evolutionary pathways among 
shallow and deep sea echinoids of the genus Sterechinus in the Southern Ocean. 
Deep-Sea Res. Part II (in press)

Fonseca, G., Muthumbi, A.W., Vanreusel, A., 2007. Species richness of the genus 
Molgolaimus (Nematoda) from local to ocean scale along the continental slopes. 
Marine Ecology 28, 446-459

Genin A (2007) Approche pluridisciplinaire des stratégies alimentaires de quelques crustacés 
amphipodes inféodés à la litière de Posidonia oceanica (L.) Delile. Mémoire de Licence 
en Biologie animale, ULg, 55 pp. (pdf not available)

Guibourt V (2008) Effets de l'acidification des oceans sur les piquants des oursins 
cidaroïdes. Mémoire de fin d'études, ULB, Bruxelles, Belgium, (pdf not available)

Veit-Köhler G, Guilini K, Peeken I, Sachs O, Sauter EJ, et al. (2011) Antarctic deep-sea 
meiofauna and bacteria react to the deposition of particulate organic matter after a 
phytoplankton bloom. Deep Sea Research Part II: Topical Studies in Oceanography 
58: 1983-1995.

Gutt J, Barratt I, Domack E, d’Udekem d’Acoz C, Dimmler W, Grémare A, Heilmayer O, Isla 
E, Janussen D, Jorgensen E, Kock K-H, Lehnert LS, López-Gonzáles P, Langner S, 
Linse K, Manjén-Cabeza ME, Meißner M, Montiel A, Raes M, Robert H, Rose A, Sañé
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Schepisi E, Saucède T, Scheidat M, Schenke H-W, Seiler J, Smith C (accepted) 
Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea 
Res. Part II

Hardy C (2008) Importance des oursins cidaridés et de leurs symbiontes pour la biodiversité 
benthique en Antarctique. Mémoire de Master 1, uB, 30 pp. (pdf not available)

Hardy C (2009) Biodiversité benthique en Antarctique: rôle des symbioses liées aux oursins. 
Mémoire de Master 2, uB, 50 pp (pdf not available)

Hardy C, David B, Rigaud T, De Ridder C, Saucède T (2011) Ectosymbiosis associated with 
cidaroids (Echinodermata: Echinoidea) promotes benthic colonization of the seafloor in 
the Larsen embayments, western Antarctica. Deep-Sea Res. Part II. 58, 84-90. Doi: 
10.1016/j.dsr2.2010.05.025

Hauquier F, Ingels J, Gutt J, Raes M, Vanreusel A (2011) Characterisation of the Nematode 
Community of a Low-Activity Cold Seep in the Recently Ice-Free Larsen B Area, 
Eastern Antarctic Peninsula (Accepted) PLoS ONE 6(7): e22240. doi: 10.1371/ 
journal.pone.0022240

Havermans C (2007) Orchomenella (Orchomenopsis) cavimanus (Crustacea : Amphipoda): 
a eurybathic circum-Antarctic species or a complex of cryptic species? A morphological 
and molecular approach. Mémoire de diplôme en Etudes approfondies en Sciences 
Biologiques, UCL, 72 pp

Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P (2011) DNA barcoding reveals new 
insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: 
Amphipoda: Lysianassoidea). Deep Sea Research Part II: Topical studies in 
Oceanography doi: 10.1016/j.dsr2.2010.09.028

Havermans C., Nagy ZT, Sonet G, De Broyer C, Martin P (2010) Incongruence between 
molecular phylogeny and morphological classification in amphipod crustaceans: A case 
study of Antarctic lysianassoids. Molecular Phylogenetics and Evolution 55, 202-209

Hétérier V, David B, De Ridder C, Rigaud T (2009) Ectosymbiosis is a critical factor in the 
local benthic biodiversity of the Antarctic deep sea. Marine Ecology Progress Series 
346, 47-76

Ingels J, Van Den Driessche P, De Mesel I, Vanhove S, Moens T, Vanreusel A (2010) 
Preferred use of bacteria over phytoplankton by deep-sea nematodes in polar regions. 
Marine Ecology Progress Series, 406, 121-133. Doi: 10.3354/meps08535

Ingels, J, Vanreusel A, Brandt A, Catarino AI, David B, De Ridder C, Dubois P, Gooday AJ, 
Martin P, Pasotti F, Robert H (conditionally accepted) Possible effects of global 
environmental changes on Antarctic benthos: a synthesis across five major taxa. 
Ecology and Evolution

Keil S, De Broyer C., Zauke G-P (2008) Heavy metals in benthic crustaceans from the 
Weddell Sea shelf. International Review of Hydrobiology 93, 106-126

Linse K, Brandt A, Bohn J, Danis B, De Broyer C, Hétérier V, Hilbig B, Janussen D, López 
González PJ, Schwabe E, Thomson MRA (2007) Macro- and megabenthic 
communities in the abyssal Weddell Sea (South Atlantic). Deep Sea Research II 54, 
1848-1863.

Lowry JK, De Broyer C (2008) Alicellidae and Valettiopsidae, two new callynophorate 
families (Crustacea: Amphipoda). Zootaxa 1843: 57-66

Marquet N (2007) Fluctuations in natura du comportement alimentaire chez les échinides 
Echinacea. Mémoire de Licence, ULB, 59 pp (no pdf available)

Moulin L*, Catarino Al*, Claessens T, Dubois Ph (2011) Effects of seawater acidification on 
early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816).
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Marine Pollution Bulletin, doi 10.1016/j.marpolbul.2010.09.012 (*authors contributed 
equally to this article)

Moulin L, Catarino AI, Claessens T, Dubois Ph (2010) Effects of seawater acidification on 
early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). 
Marine Pollution Bulletin, doi 10.1016/j.marpolbul.2010.09.012

Raes M, Rose A, Vanreusel A (2009) Response of nematode communities after large-scale 
ice-shelf collapse events in the Antarctic Larsen area. Global Change Biology, 16, 
1618-1631

Rose A, Raes, M (2008) Meiofaunal communities from the Antarctic Larsen A & B iceshelf 
and Subantarctic shelf areas. In: Gutt, J. (Ed.) The expedition ANTARKTIS-XXIII/8 of the 
research vessel "Polarstern" in 2006/2007: ANT-XXIII/8; 23 November 2006-30 January 
2007 Cape Town-Punta Arenas. Berichte zur Polar- und Meeresforschung 569, 69-75. 
ISSN 1618-3193

Rullman J-P (2009) Répartition géographique des symbioses liées aux oursins en 
Antarctique. Mémoire de Master 1, uB, 25pp. (pdf not available)

Saiz Jl, García FJ, Manjón-Cabeza ME, Parapar J, Peña-Cantero A, Saucède T, Troncoso 
JS, Ramos A (2008) Community structure and spatial distribution of benthic fauna in 
the Bellingshausen Sea (West Antarctica). Polar Biology 31, 735-743

Saucède T (2008) Ecological diversity of Antarctic echinoids. In: Gutt J (Ed.) The expedition 
ANTARKTIS-XXIII/8 of the research vessel "Polarstern" in 2006/2007: ANT-XXIII/8; 23 
November 2006-30 January 2007 Cape Town-Punta Arenas. Berichte zur Polar- und 
Meeresforschung 569, 37-41

Sebastian S, Raes M, De Mesel I, Vanreusel A (2007) Comparison of the nematode fauna 
from the Weddell Sea Abyssal Plain with two North Atlantic abyssal sites. Deep-Sea 
Research II 54, 1727-1736

Sicinski J, Jazdzewski K, De Broyer C, Presler P, Ligowski R, Nonato EF, CorbisierTN, Petti 
MAV, Brito TAS, Lavrado HP, Blazewicz-Paszkowycz M, Pabis K, Jazdzewska A, 
Campos LS (in press) Admiralty Bay Benthos Diversity: a long-term census. Deep Sea 
Research II.

Vanreusel A, Fonseca G, Danovaro R, da Silva MC, Esteves AM, Ferrero T, Gad G, 
Galtsova V, Gambi C, Genevois V, Ingels J, Ingole B, Lampadariou N, Merckx B, 
Miljutin DM, Miljutina M, Muthumbi A, Netto SA, Portnova D, Radziejewska T, Raes M, 
Tchesunov A, Vanaverbeke J, Van Gaever S, Venekey V, Bezerra T, Flint H, Copley J, 
Pape E, Zeppeli D, Martinez P, Galerón J (2010) The importance of deep-sea habitat 
heterogeneity for global nematode diversity. Marine Ecology 31 (1), 6-20. Doi: 
10.1111/j. 1439-0485.2009.00352.x

Verheye M (2010) Systématique et diversité génétique des eusirus de l’céan Austral 
(Crustacea, Amphipoda, Eusiridae) Mémoire de diplôme de Master en Biologie des 
Organismes et Ecologie (UCL, FUNDP)

Zeidler W, De Broyer C (2009) Catalogue of the Hyperiidean Amphipoda (Crustacea) of the 
Southern Ocean with distribution and ecological data. In: De Broyer C. (ed.). Census of 
Antarctic Marine Life. Synopsis of the Amphipoda of the Southern Ocean. Bulletin de 
l’Institut royal des Sciences naturelles de Belgique, Biologie 79, Supplément 1: 1-104

b) Submitted

Catarino AI, Bauwens M, Dubois Ph (submitted) Acid-base balance and metabolic response 
of the sea urchin Paracentrotus lividus to different seawater pH and temperatures. 
Environmental Science and Pollution Research
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Catarino Al, De Ridder C, Gonzalez M, Gallardo P, Dubois P (submitted) Sea urchin Arbacia 
dufresnei (Blainville 1825) larvae response to ocean acidification. Journal of 
Geophysical Research - Biogeosciences

Catarino AI, Guibourt V, Moureaux C, De Ridder C, Dubois Ph (submitted) Effect of ocean 
acidification on cidaroid sea urchin spines. Polar Biology

Catarino, A.I., De Ridder, C., Gonzalez, M., Gallardo, P., Dubois, Ph. (submitted) Sea urchin 
Arbacia dufresnei (Blainville 1825) larvae response to ocean acidification. Journal of 
Geophysical Research - Biogeosciences.

d' Udekem d'Acoz C, Hendrycks E (submitted) A new deep-sea Liljeborgia (Crustacea: 
Amphipoda: Liljeborgiidae) from the DIVA II cruise in the equatorial Eastern Atlantic. 
Proceedings of the Biological Society of Washington

Gutt J, Zurell D, Bracegridle TJ, Cheung W, Clark MS, Convey P, Danis B, David B, De 
Broyer C, di Prisco G, Griffiths H, Laffont R, Peck L, Pierrat B, Riddle MJ, Saucede T, 
Turner J, Verde C, Wang Z, Grimm V (submitted) The use of correlative and dynamic 
species distribution modelling for ecological predictions in the Antarctic: a cross- 
disciplinary concept.

Nyssen F, Heilmayer O (submitted) High Antarctic amphipods: relationships between 
metabolism and feeding habits. J. exp. mar. Biol. Ecol. (pdf not available)

Pasotti F, Raes M, De Troch M, Vanreusel A (submitted) Feeding ecology of Potter Cove 
shallow water meiofauna:insights from a stable isotope tracer experiment. Marine 
Ecology Progress Series

Pierrat B, Saucede T, De Ridder C, Festeau A, Laffont R, David B (submitted) Large-scale 
distribution analysis of Antarctic echinoids using ecological niche modelling.

Rose A, Raes M, Ingels J, Vanreusel A, Martinez Arbizu P (submitted) Antarctic meiobenthos 
after Larsen lee Shelf disintegration -  Do long-term ice-covered continental shelf 
communities resemble those of the deep sea? Global Change Biology

c) In preparation

Bezerra TN, Pape E, Hauquier F, Ingels J, Vanreusel A (in prep) New genus of the family 
Ethmolaimidae (Nematoda: Chromadorida), found at Gulf of Cadiz and Antarctica

Catarino AI, Guibourt V, Moureaux C, De Ridder C, Dubois Ph (in prep) Antarctic cidaroid 
spines and ocean acidification: lessons from the deep

Catarino AI, Moulin L, Claessens T, Medakovic D, Gonzalez M, Gallardo P, André L, Dubois 
Ph (in prep) Coping with ocean acidification: adult sea urchins responses to low pH 
conditions

d’Udekem d'Acoz C, Havermans C (in prep) Two new Pseudorchomene species from the 
Southern Ocean, with phylogenetic remarks on the genus and related species 
(Crustacea: Amphipoda, Lysianassoidea)

Gallardo P, André L, Dubois Ph (in prep) Ocean acidification effects on acid-base balance, 
metabolism and spine regeneration of two sea urchin species

Guilini K, G Veit-Köhler, Mayr C, De Troch M, Van Gansbeke D, A Vanreusel (in prep.). 
Evidence for the trophic state and bentho-pelagic coupling of deep-sea nematodes 
across the Southern Ocean.

Gutt J et al. (including David, B. Pierrat, B., and Soucéde, T (in prep) The use of correlative 
and dynamic species distribution modelling for ecological predictions in the Antarctic, a 
cross-disciplinary concept
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Kaiser S, Brandäo SN, Brix S, Barnes DKA, Bowden D, Ingels J, Leese F, Linse K, 
Schiaparelli S, Arango C, Bax N, Blazewicz-Paszkowycz M , Brandt A, Catarino Al, 
David B, De Ridder C, Dubois P, Ellingsen KE, Glover A, Griffiths HJ, Gutt J, Halanych 
K, Havermans C, Held C, Janussen D, LörzAN, Pearce D, RiehIT, Rose A, Sands CJ, 
MembrivesAS, Schüller M, Strugnell J, Vanreusel A, Veit-Köhler G, Wilson N, Yasuhara 
M (in prep) Pattern, process and vulnerability of Southern Ocean benthos - a decadal 
leap in knowledge and understanding

Kuypers M (2008) Description de l’incubation chez l’holothurie antarctique Echinopsolus 
acanthocola (Dendrochirotida, Psolidae); Mémoire de Licence, ULBF, Michel L, Dauby 
P, Brey T (in prep) Differential isotopic turnover (C and N) detected in Antarctic 
scavenger amphipods

Pierrat B, David B, Soucède T (in prep) Predicting potential distribution of a benthic disperser 
in the Southern Ocean: the echinoid Sterechinus

Veit-Köhler G, K Guilini, L Würzberg & C Mayr (in prep.). Meiofauna stable isotope 
signatures reflect geographical and oceanographical patterns of the deep southern 
ocean.
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9) ANNEX 1 : COPY OF THE PUBLICATIONS
Availab le at http ://users.ugent.be/~ iingels/B IANZQ /fina l% 20Report/Annex1% 20- 
% 20PDFs% 20of% 20publications/

10) ANNEX 2: MINUTES OF THE FOLLOW-UP COMMITTEE 
MEETINGS

Availab le at http ://users.ugent.be/~ iingels/B IANZQ /fina l% 20Report/Annex2% 20- 
% 20PDFs% 20of% 20m eeting% 20reports% 20w ith% 20fo llow -up% 20com m ittee/
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