
Geosci. Model Dev., 5, 1501-1515, 2012 
www.geosci-model-dev.net/5/1501/2012/ 
doi:10.5194/gmd-5-1501-2012 
© Author(s) 2012. CC Attribution 3.0 License.

Geoscientific 
Model Development

Better constraints on the sea-ice state using global sea-ice data 
assimilation
P. Mathiot12, C. König Beatty1, T. Fichefet1, H. Goosse1, F. Massonnet1, and M. Vancoppenolle13

G eorges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, 
Belgium
2British Antarctic Survey, Natural Environment Research Council, Cambridge, UK 
3Laboratoire d ’Océanographie et du Climat, Institut Pierre-Simon Laplace, Paris, France

Correspondence to: P. Mathiot (pierre.mathiot@bas.ac.uk)

Received: 14 May 2012 -  Published in Geosci. Model Dev. Discuss.: 19 June 2012 
Revised: 1 October 2012 -  Accepted: 5 November 2012 -  Published: 3 December 2012

Abstract. Short-term and decadal sea-ice prediction systems 
need a realistic initial state, generally obtained using ice- 
ocean model simulations with data assimilation. However, 
only sea-ice concentration and velocity data are currently as­
similated. In this work, an ensemble Kalman filter system is 
used to assimilate observed ice concentration and freeboard 
(i.e. thickness of emerged) data into a global coupled ocean- 
sea-ice model. The impact and effectiveness of our data as­
similation system is assessed in two steps: firstly, through the 
use of synthetic data (i.e. model-generated data), and sec­
ondly, through the assimilation of real satellite data. While 
ice concentrations are available daily, freeboard data used 
in this study are only available during six one-month peri­
ods spread over 2005-2007. Our results show that the sim­
ulated Arctic and Antarctic sea-ice extents are improved by 
the assimilation of synthetic ice concentration data. Assim­
ilation of synthetic ice freeboard data improves the simu­
lated sea-ice thickness field. Using real ice concentration data 
enhances the model realism in both hemispheres. Assimila­
tion of ice concentration data significantly improves the total 
hemispheric sea-ice extent all year long, especially in sum­
mer. Combining the assimilation of ice freeboard and con­
centration data leads to better ice thickness, but does not fur­
ther improve the ice extent. Moreover, the improvements in 
sea-ice thickness due to the assimilation of ice freeboard re­
main visible well beyond the assimilation periods.

1 Introduction

Even though sea-ice is an important component of the global 
climate system, it has been observed only rather recently. 
Sea-ice observations are mainly limited to sea-ice concen­
tration (the relative amount of area covered by ice, compared 
to some reference area), to ice drift (displacement of a sea- 
ice field) and, recently, to total sea-ice freeboard (height of 
the top of snow or sea-ice above sea level, hereafter called 
ice freeboard) and thickness. Ice concentration and drift have 
been observed at large scale since the late 1970s, in both 
the Arctic and Antarctic regions, using passive microwave 
sensors on board satellites (e.g. Gloersen et al., 1992). Com­
paratively, ice thickness observations are much sparser, ham­
pering a proper estimate of the ice volume. Originally, they 
stemmed only from upward-looking sonar by submarines in 
the Arctic (Rothrock et al., 2008) and ship-based visual ob­
servations in the Southern Ocean (Worby et al., 2008).

The launch of the lee, Cloud, and land Elevation Satel­
lite (ICESat) in 2003 with laser altimeter system was there­
fore a valuable addition to the previous sea-ice observing 
capabilities. This satellite has shown potential for estimat­
ing ice freeboard, which may, when combined with snow 
depth estimates, be used to retrieve sea-ice thickness (Kwok 
and Cunningham, 2008) in the Arctic. Measuring cam­
paigns have been restricted to March-April and October- 
November (Kwok et al., 2007). However, sea-ice predictabil­
ity is likely to reside partly in its thickness. Therefore, an ac­
curate knowledge of the sea-ice thickness field is required to
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understand and predict the sea-ice evolution, at least up to 
3 -5 yr (Blanchard-Wrigglesworth et al., 2011).

To complete the sketch outlined by the sea-ice observa­
tions, another source of information is provided by regional 
or global ocean-sea-ice general circulation models. These 
models produce consistent fields useful to document and to 
understand the mean state and variability of sea-ice over the 
last few decades (e.g. Fichefet et al., 2003; Rothrock and 
Zhang, 2005). However, the ability of models to accurately 
simulate the variability as well as summer features of the ice 
cover remains limited (e.g. Massonnet et al., 2011).

Those model results and observations could be combined 
to improve sea-ice state estimates using data assimilation 
techniques. Different data assimilation techniques have been 
applied to coupled ocean-sea-ice models, assimilating ice 
concentration (Lisaeter et al., 2003; Lindsay and Zhang, 
2006) and drift (Stark et al., 2008) data in the Arctic. How­
ever, no attention has been paid to the Southern Ocean re­
gion and to ice freeboard data assimilation. Consequently, 
the main objective of this study is to discuss first the im­
pact of sea-ice concentration data assimilation in both hemi­
spheres, and second, ice freeboard data assimilation. To do 
so, we have incorporated an ensemble Kalman filter (EnKF) 
system in the global coupled ocean-sea-ice model NEMO- 
LIM2 (Madec, 2008). Since improving sea-ice drift does not 
impact on ice concentration significantly (e.g. Stark et al., 
2008), ice drift is not assimilated here.

Data assimilation techniques can open many perspectives. 
For example, it has become possible to realise a reconstruc­
tion of sea-ice over the last 40 yr, which could be of great in­
terest for process studies. Furthermore, realistic current sea- 
ice states could be obtained to initialise operational forecast 
models as well as climate prediction systems. In this study, 
we will focus only on the method and not on the applications.

Section 2 describes the ocean-sea-ice model. Section 3 
gives a brief overview of the EnKF method. The data used 
for this work is described in Sect. 4. In Sect. 5, we present 
what improvements can be expected using ice freeboard 
data assimilation by showing results using synthetic (model­
generated) data. In Sect. 6, the impact and benefit of real sea- 
ice concentration and ice freeboard data assimilation are dis­
cussed. Our conclusions are drawn in the final section.

2 Model description and validation

All the simulations analyzed in this study are performed with 
the global ocean modelling system NEMO1 (Madec, 2008) 
including LIM22 (Fichefet and Morales Maqueda, 1997) as 
sea-ice component. This section briefly describes the model, 
the configuration and the atmospheric forcings.

3NEMO =  Nucleus for European Modelling of the Ocean
2LIM =  Louvain-la-Neuve sea ice Model

2.1 Model setup

2.1.1 The ocean model

The ocean model is OPA93, a free surface, primitive equation 
ocean general circulation model. The grid, named ORCA2, 
is common to both ocean and sea-ice models. It has a nom­
inal, nearly isotropic, horizontal resolution of 2° (110 km at 
60° N and 90 km at the North Pole). The vertical discretiza­
tion includes 31 levels, with higher resolution near the sur­
face (10m) than below (500 m at 5500 m depth). Surface 
boundary layer mixing and interior vertical mixing are pa­
rameterized according to a turbulent kinetic energy closure 
model (see NEMO reference manual; Madec, 2008). The 
bottom boundary layer parametrization is based on Beck­
mann and Döscher (1997). More details can be found in the 
NEMO reference manual (Madec, 2008).

2.1.2 The sea-ice model

The sea-ice model is LIM2, a large-scale dynamic- 
thermodynamic model designed for climate studies. The 
thermodynamic component of LIM2 is the Semtner (1976) 
three-layer model. The temperature profile of the snow-ice 
system is computed by a one-dimensional heat diffusion 
equation, resolved using one snow layer and two sea-ice lay­
ers. Vertical snow and sea-ice growth and melt rates are de­
rived from the energy budgets at the upper and lower in­
terfaces of the snow-ice system. Open water is taken into 
account using ice concentration as a prognostic variable. 
Within the ice pack, heat budget allows computing ice growth 
in open water. Parameterizations of the most relevant sea- 
ice physical processes are included (brine pockets, lateral 
melting, effective heat conduction due to unresolved subgrid- 
scale ice thickness variations, surface albedo, penetration of 
radiation through the ice, snow ice formation). The veloc­
ity field is determined from a momentum balance consider­
ing sea-ice as a two-dimensional viscous-plastic continuum 
in dynamical interaction with atmosphere and ocean (Hibler, 
1979). More details on LIM2 can be found in Fichefet and 
Morales Maqueda (1997).

2.1.3 Forcing fields and initialization

Atmospheric forcing fields combine NCEP/NCAR daily re­
analysis data of 10 m wind speed and 2 m temperature 
(Kalnay et al., 1996) with monthly climatologies of relative 
humidity (Trenberth et al., 1989), total cloudiness (Berliand 
and Strokina, 1980) and precipitation (Xie and Arkin, 1997). 
A quadratic bulk formula with a drag coefficient of 1.4 x 
IO-3 is applied to compute the surface wind stress. The 
downwelling shortwave radiation, the net longwave radiation 
and the turbulent sensible and latent heat fluxes are computed 
following empirical parameterizations described in Goosse

3 OPA =  Ocean PArallélisé
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2010) for both the NH and the SH over 1979-2005. Our re­
sults are similar to those from simulations performed with 
an earlier version of the model (Timmermann et al., 2005) in 
both hemispheres, as detailed below.

September u> February

0 0.5 1 1.5 m

Fig. 1. Simulated mean sea-ice thickness (1979-2005) in September 
(a, c) and in February (b, d) in the NH (a, b) and SH (c, d). The 
dark and light grey lines correspond to the simulated and observed 
sea-ice edges (15% limit), respectively. Observations come from 
OSISAF (Eastwood et al.. 2010).

(1997). Evaporation/sublimation is derived from the latent 
heat flux. River runoff rates are prescribed from the clima- 
tological dataset of Baumgartner and Reichei (1975) com­
bined with a mean seasonal cycle derived from the Global 
Runoff Data Centre data (GRDC, 2000). To avoid spurious 
model drift, a weak restoring of sea surface salinity towards 
the seasonal Polar Science Center Hydrographic Climatol­
ogy (PHC; Steele et al., 2001) is applied. The time scale se­
lected for salinity restoring is 1 yr.

The spin-up run (named REF), used to initialize all the 
assimilation experiments, covers the period 1960-2007. Ini­
tial conditions of temperature and salinity are based on the 
PHC climatology for REF simulation. Ice is assumed to be 
initially present where the sea surface temperature is below 
0°C. Initial snow depth and ice thickness are 0.5 and 3 m in 
the Northern Hemisphere (NH) and 0.1 and 1 m in the South­
ern Hemisphere (SH).

2.2 Model performance without data assimilation

Figure 1 shows the simulated mean sea-ice thicknesses and 
compares the mean sea-ice extent in February and September 
to the corresponding observations from the Ocean and Sea- 
ice Satellite Application Facility (OSISAF, Eastwood et al.,

2.2.1 Northern Hemisphere

The seasonal cycle of ice extent simulated by the model in the 
NH is rather close to the observed one (Fig. la  and b). How­
ever, in September (Fig. la), the ice extent appears somewhat 
overestimated. Sea-ice protrudes too far southwards in the 
Baffin Bay and in the Barents and Kara Seas. Furthermore, 
a comparison (not shown) with submarine (Rothrock et al., 
2008) and satélite ice thickness estimates (Kwok and Cun­
ningham, 2008; Kwok et al., 2009) indicates that the model 
largely overestimates the sea-ice thickness by about ~ 2  m in 
the East Siberian Sea, in the Faptev Sea and in the Beaufort 
gyre and by about 0.5 m in the Kara Sea and near the North 
Pole. In the Canadian Basin, the ice thickness is overesti­
mated by 0.5 m. As in Timmermann et al. (2005), the win­
ter sea-ice thickness overestimation and the summer melting 
underestimation are related to each other. Note that the ice 
thickness overestimation in the Beaufort, East Siberian and 
Faptev Seas are also present in another recent study with an­
other model, forcing and resolution (Uotila et al., 2012).

The modelled winter sea-ice thickness field in the Arctic 
(Fig. lb) features a pronounced gradient from about ~ 2  m in 
the western Siberian Sea to ~ 4  m at the North Pole and ~ 6  m 
along the Canadian Archipelago, in agreement with previ­
ous simulations with ORCA2-FIM2 (Timmermann et al., 
2005) and with other modelling studies (Vancoppenolle et al., 
2009; Hunke, 2010). Results of the model from Arctic Ocean 
Model Intercomparaison Project (AOMIP) also indicate sim­
ilar behaviour. Johnson et al. (2012) demonstrate that the 
models overestimate thickness of ice thinner than 2 m and 
underestimate the thickness of measured ice thicker than 2 m.

2.2.2 Southern Hemisphere

In the austral winter (Fig. le), the simulated sea-ice edge 
agrees relatively well with observations. Besides, the sim­
ulated summer minimum ice extent is too small around 
Antarctica (Fig. Id). The sea-ice does not extend far enough 
northwards along the eastern side of the Antarctic Peninsula 
and sea-ice is absent in the model off East Antarctica.

The mean simulated Antarctic winter sea-ice thickness is 
0.6 m. This value is close to the ASPeCt climatology (not 
shown), which stems from visual ship-based observations 
(Worby et al., 2008). In the western Ross Sea, the ice thick­
ness is smaller than the circumpolar average, which is con­
sistent with observations in this sector (Jacobs and Comiso, 
1989).

In February (Fig. Id), the opening of the Ross Sea is 
well reproduced by the model. A tongue of thick ice (maxi­
mum thickness about 1.5 m) is simulated from the Amundsen
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Sea to the eastern Ross Sea, as in the ASPeCT climatology. 
Along the eastern side of the Antarctic Peninsula, the mod­
elled ice thickness is greater than in the rest of the pack, as 
observed. Nonetheless, the ice thickness there appears un­
derestimated by more than 2 m during both winter and sum­
mer, compared to both the ASPeCt climatology and satellite 
freeboard-based ice thickness estimates (Zwally et al., 2008). 
This is clasically attributed to a poor representation of the 
cold barrier winds along the Antarctic Peninsula in the forc­
ing fields (Timmermann et al., 2005; Vancoppenolle et al., 
2009; Massonnet et al., 2011).

This brief overview identifies of a number of shortcom­
ings in the results of the control run conducted with the 
model, which are consistent with earlier studies. The discus­
sion above demonstrates, however, that the model shows a 
sufficiently good agreement with the seasonal behaviour of 
sea-ice cover in both hemispheres to permit a sound study 
of the effect of sea-ice concentration and ice freeboard data 
assimilation.

3 The ensemble Kalman filter

The EnKF is a sequential data assimilation technique that 
approximates state estimation error statistics by using an 
ensemble of model runs. The method is fully described in 
Evensen (1994, 2003). A fully non-linear model is used to 
propagate the model error statistics. Gaussian error distri­
butions are, however, still assumed for the analysis as in 
Lisaeter et al. (2003, 2007). Elowever, for many modelled 
variables, this hypothesis is not necessarily realistic, particu­
larly in the case of sea-ice.

As we apply a sequential data assimilation, each ensemble 
member is first propagated up to the next time data are avail­
able (once a day in our case). This is called the “forecast” 
step. Then, the data are used in the analysis step to correct 
the forecast by adding a term proportional to the misfit be­
tween observations and the forecast, as explained in Sect. 3.1. 
This ensemble of analyses is then again propagated forward 
in time until the next analysis step.

Our version of the EnKF is based on the code developed 
by the Nansen Environmental and Remote Sensing Center, 
and described in Burgers et al. (1998). We use the localized 
analysis presented in Sakov and Bertino (2010) to address the 
limitations stemming from the relatively small size of our en­
semble (25 members) compared to the size of the state space. 
The localization radius applied in this study is 800 km. This 
method reduces the spatial domain of influence of observa­
tions during the update. Without localized analysis, there are 
spurious correlations between distant and not physically con­
nected state vector elements (e.g. Floutekamer and Mitchell, 
2001; Keppenne and Rienecker, 2002; Anderson, 2007) due 
to the failure of an ensemble to adequately span the model 
sub-space (Oke et al., 2007).

The analysis update is calculated in the ensemble space 
(Flunt et al., 2007). This technique does not permit observa­
tional errors to be correlated: so, we assume independent ob­
servational errors. Advantages of this technique are to reduce 
the cost of the EnKF and avoid scaling issues among differ­
ent variables. This EnKF scheme is more commonly known 
as a local Ensemble Transform Kalman Filter.

3.1 Formulation of the EnKF

The analysis step for the EnKF consists of the following up­
dates performed on each of the ensemble members:

x°j =  x j  +  K ( d j  -  Hx-0 . (1)

The control vector x j  e  R "xl contains all the relevant vari­
ables (i.e. all two-dimensional and three-dimensional oceanic 
variables and all sea-ice variables except sea-ice temperature 
and heat content) on all grid points of the model for the j -  
th members of the ensemble. The sea-ice heat content and 
temperature are largely non-linear (L distribution, Lisaeter 
et al., 2003). An update of their fields by EnKF leads to non­
physical behaviour (large melting/formation rate) during the 
first step of the forecast. Therefore, we decided to exclude 
these variables from the control vector, n is the dimension of 
the control vector for each ensemble member. x aj is the an­
alyzed state and x^  is the forecast state, while dj  e R /,xl 
is a vector containing the p  available observations at that 
time for the y'-th members of the ensemble. The observa­
tions used for the y-th member are perturbed according to 
the uncertainties in the measurements: dj  = d + €j, where 
d  is the unperturbed observation vector and e j the perturba­
tion for the y-th ensemble member. The operator H e Mpxn 
projects the model state into the observational space. This 
projection ranges from a simple interpolation onto the obser­
vational grid to complex transformations of the model vari­
ables to some observed quantities. K is called the “Kalman 
gain matrix” :

K  =  p f H r ( H p f H r  +  R e ) ” \  (2)

Re e R ^  is an approximation of the observation error co- 
variance matrix. Pg e R "x" is an approximation of the model 
forecast error covariance matrix. The covariance matrix is ap­
proximated because the full error covariance matrix for ob­
servations is poorly known, and -  for the model -  the matrix 
is too large to be computed explicitly in oceanographic appli­
cations. The EnKF approximates it by an ensemble of model 
states E e R "xm, where m is the number of members in the 
ensemble. The ensemble of anomalies A e R "xm is defined 
as

A =  E ^ I - - |- 1 1 7̂ ,  (3)

where 1 is a vector with all elements equal to one and I is the 
identity matrix. The approximated error covariance matrix P
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is then

Pf =  — - AAr . (4)
m — i

Since the assimilation scheme is multivariate, both ocean 
and sea-ice variables are updated in the analysis step. As a 
Gaussian distribution of errors is assumed for sea-ice vari­
ables, this can lead to non physical states. Consequently, we 
verify that the sea-ice concentration and thickness as well as 
snow thickness are non-negative everywhere (otherwise they 
are set equal to zero). Furthermore, we impose a maximum 
value of 1 for sea-ice concentration. Also, note that the EnKF 
is not associated with any freshwater or salt flux towards the 
ocean. Thus, the EnKF could be a potential mass sink/source 
in the system. Finally, the sea surface temperature is con­
strained to be greater or equal to the freezing temperature.

3.2 Ensemble generation

The initial conditions for all the members are provided by 
the REF simulation without perturbation. Perturbations only 
apply to the wind fields. Winds are particularly important for 
both the sea-ice motion and surface heat in both hemispheres 
(Watanabe and Flasumi, 2005; Bitz et al., 2002). Conse­
quently, to generate the ensemble of model states (25 mem­
bers in our case), we have chosen to perturb only the wind 
forcing. As the surface fluxes are computed by the CLIO at­
mospheric bulk formulae in our experiments, a perturbation 
of the wind field affects both the momentum and heat fluxes. 
This ensures the dispersion of our ensemble.

3.2.1 Wind perturbation

To create a perturbed wind forcing field that is consistent 
with the spatial structure of the variability of observations, 
we selected an approach based on the covariance of the data. 
We started by gathering samples of data (wind fields in our 
case) at discrete times. The samples should be sufficiently 
different so that we could assume the data were not corre­
lated. The sampled data were arranged in a matrix Y e R mx", 
where m is the total number of samples and n is the size of 
each sample (also called the state vector). In the case of our 
two-dimensional wind field, n is nx x  ny , where nx and ny 
are the number of grid points along the x-  or y-directions, re­
spectively. We extracted the wind field every 11 days, start­
ing on 6 January, for 1950 to 2008, inclusive. This gave us 
a total of m =  1947 atmospheric states that we assumed to 
be independent of each other. As a next step, we found the 
mean state and subtracted it from each row in Y, thus creating 
the matrix of anomalies X. The covariance matrix T  e  R "x" 
could directly be constructed using X e R mx" or -  to save 
space and to speed up computations -  using Rp e Rmxn ob­
tained from a QR-decomposition of X =  QRp as presented:

1505

where Q e R mxm is an orthogonal matrix.
Therefore, a random perturbation P  e  R "xl with the same 

covariance properties as the original data could be created as 
follows:

p  = \ r ^ R p z ’ ®y m  F

where each element of z  e  R mxl is sampled from the normal 
distribution J\f(0, 1). To create a perturbed wind field state 
for a particular ensemble member on that day x p, one has to 
add the original wind field state x 0 to the perturbation P  to 
get Xp = x 0 + a P .  In our case, x 0 is the original wind field 
of a day, x p the perturbed wind field and a  a scale factor.

We computed separate covariance matrices Rp for the 
zonal and meridional components of the wind field. Never­
theless, to create consistent wind field perturbations, we used 
the same perturbation vector z  for the two components. The 
scale factor a  selected here is 0.5. We did not assume any 
temporal correlation between the perturbations. However, the 
model smooths the effect of the perturbation. This leads to an 
effective scale factor lower than 0.5 (not diagnose here). It is 
worth mentioning that no inflation was applied to enlarge the 
spread of the ensemble.

4 Description of the assimilated data

4.1 Synthetic observation data

In order to evaluate the potential of the EnKF data assimila­
tion system in a controlled framework, we first assimilated 
synthetic sea-ice data. The synthetic dataset was extracted 
from a simulation with perturbed forcing, supposedly repre­
senting sea-ice observations. The snow, ice and water den­
sities were taken equal to 330.0 kg m- 3 , 915.1 kg m-3 and 
1023.9 kg m- 3 , respectively. Localization in time and space 
are the same as the real sea-ice data described in the next 
part. To ensure that the EnKF will correct the model ensem­
ble when using real observations, the synthetic data have to 
be built in such a way that the bias between synthetic data 
and model output is similar to or larger than the bias be­
tween real observations and model output. So, the synthetic 
data have been built as for the REF simulation but with the 
DRAKKAR forcing set 4 (DFS4) described in Brodeau et al. 
(2010) instead of the NCEP/NCAR forcing set. The simu­
lated ice extent and thickness are underestimated with the 
DFS4 atmospheric forcing in both hemispheres (not shown), 
thus the bias between the model ensemble and synthetic data 
are larger, in both hemispheres, than in the case where real 
sea-ice observations are used (comparison of green lines in 
Figs. 2 and 3). The uncertainties in the synthetic observations 
are identical to the ones of the real observations.
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Fig. 2. Time series o f the sea-ice extent (top) and volume (bottom) 
difference compared to synthetic obseivations for both the NH (full 
lines) and the SH (dashed lines) over 2005-2007. Green lines rep­
resent the FREE run difference, red lines the IC run difference, blue 
lines the FB run difference and black line the FB-IC difference. 
Grey shading areas indicate periods when the ice freeboard data are 
available.

4.2 Real observational data

4.2.1 Sea-ice concentration

The sea-ice concentration data used in this study come from 
the OSISAF framework (Eastwood et al., 2010), which pro­
vides data and their uncertainties at daily frequency. OS­
ISAF sea-ice concentrations derive from the multi-channel 
microwave brightness temperatures collected by two satel­
lite instruments: the Scanning Multichannel Microwave Ra­
diometer (SMMR) (1979-1987) and the Special Sensor M i­
crowave/Imager (SSM/I) (1987-2007) (Gloersenetal., 1992; 
Cavalieri et al., 1997). The nominal resolution of this prod­
uct is 12.5 km. To avoid indirect data, we excluded gap ar­
eas filled through extrapolation (missing orbit, missing scan 
lines and polar observation hole) as well as areas where a 
coastal correction is applied. For our analysis, to limit com­

0 ice extent

20

J
o

Time [month]
 Ant. IC  Arc. IC  Ant. FR E E  Arc. F R E E  Ant. O S ISA F Arc. OSISAF

b) ice extent (m odel-obs.)
3.b

2.5

J
“o

-0.5

-1.5

- 2

Time [month]
 Ant. IC  Arc. IC  Ant. F R E E  Arc. FREE

Fig. 3. Times series o f sea-ice extent over 2005-2007 (a). The ob­
servations are in black. The red lines correspond to the IC run and 
the green lines to the FREE run. The dashed lines are for the NH 
and the solid lines for the SH. (b) Differences between model and 
obseivations are plotted with the same codes. Grey shading areas 
indicate periods when the ice freeboard data are available. A one 
week smoothing is apply on both figures.

putational costs, data were interpolated on the model grid us­
ing a bilinear interpolation scheme. The uncertainties in sea- 
ice concentration vary in time and in space. During summer, 
the error was estimated up to 20 %, while during winter the 
deviation between ice concentration measurements and ice 
charts are around 10 %. Close to the ice edge or in areas with 
very compact sea-ice (sea-ice concentration of about 100%), 
the uncertainties are lower, about 7 %, throughout the year.

4.2.2 Total sea-ice freeboard

The total sea-ice freeboard (hereafter called ice freeboard) 
is the sum of snow depth and sea-ice freeboard. Ice thick­
ness can be derived from it if snow depth and density are 
known. Kwok and Cunningham (2008) estimated the latter 
using Advanced Microwave Scanning Radiometer (AMSR) 
sea-ice motion fields, European Centre for Medium-Range
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Table 1. ICESat Campaigns available from the National Snow lee 
Data Center.

Campaign name Period Span in days

ON05 4 Nov to 24 Nov 2005 21
FM06 22 Feb to 27 Mar 2006 34
MJ06 24 May to 26 June 2006 34
ON06 25 Oct to 27 Nov 2006 34
MA07 12 Mar to 14 Apr 2007 34
ON07 2 Oct to 5 Nov 2007 37

Weather Forecasts (ECMWF) snow accumulation and a sea­
sonal climatology of snow density (Warren et al., 1999). As 
the determination of snow parameters carry substantial un­
certainties, it is recommended to directly assimilate ice free­
board into the model.

The ice freeboard data used in this study was provided by 
the National Snow lee Data Center. These data are available 
only for the Arctic below 86° N. The data spanned six ICE- 
sat laser campaigns (see Table 1). Islands, icebergs and land 
areas were filtered out with a criterion based on large eleva­
tion variations (more than 4 m) along the track. A zero ice 
freeboard was assigned to areas where ice concentration is 
below 20 %. This is an empirical limit to avoid the ice free­
board contamination introduced by open ocean water waves. 
Yi and Zwally (2010) give a complete description of the al­
gorithms used to process the data. As for sea-ice concentra­
tion data, ice freeboard data were interpolated on the model 
grid each day. The uncertainties in ice freeboard data were 
assumed equal to the standard deviation of all data available 
in each model grid cell, i.e. 15 cm on average over all the data 
points and over all the periods.

5 Impact of the assimilation of synthetic sea-ice data

In experiments with synthetic sea-ice data assimilation, all 
the components of the system are known, in contrast to the 
real case in which only some observed variables are avail­
able. Furthermore, we knew that the unperturbed synthetic 
observations are compatible with the model physics. As we 
had access to the true control vector, we were able to eval­
uate, with those synthetic data, the improvement brought by 
data assimilation of an observed variable such as ice concen­
tration on the ice volume variable for which adequate obser­
vations were missing. We were able to profit by the conse­
quent advantages of assessing the quality of the data assimi­
lation procedure, the sensitivity of ice thickness to assimila­
tion of ice concentration, as well as by the potential improve­
ment due to the assimilation of ice freeboard.

1507

Table 2. Description of the simulations carried out with synthetic 
observations and real data assimilation.

Experiment sea-ice concentration 
(synthetic/real)

lee freeboard 
(synthetic/real)

FREE NO NO
IC YES NO
FB YES YES

5.1 Experimental setup

The assimilation experiments covered the period 2005-2007. 
An ensemble of 25 members were used. Each member was 
forced with a slightly different wind field (see Sect. 3.2). Ini­
tial conditions for each member were taken from the REF 
simulation. Assimilated data were the synthetic observations 
described in the previous section. The assimilation scheme 
was called each day.

Three experiments were performed (see Table 2):

-  “FREE” where winds were perturbed but no data were 
assimilated:

-  “IC” where sea-ice concentration data were assimilated:

-  “FB” where both sea-ice concentration and ice free­
board data were assimilated:

The discussion below covers the ensemble means of each 
simulation.

5.2 Results

The FREE simulation shows, in comparison to synthetic ob­
servations, large discrepancies in Arctic sea-ice extent (up to 
3 millions km2 at the beginning of September, Fig. 2a) and 
volume (up to 12 000 km3 in August, Fig. 2b). In the SH, dif­
ferences between synthetic observations and FREE are also 
large (Fig. 2). As expected, IC exhibits a sea-ice extent that 
is closer to synthetic observations than FREE in NH as well 
as in SH. The root mean squared error (RMSE) of sea-ice 
extent decreases by 85 % in IC in the NH, and by 87 % in the 
SH (Table 3). The RMSE of sea-ice volume also decreases 
in IC by 66 % in NH and by 88 % in SH compared to FREE. 
The adjustment of the sea-ice volume ends after the first sum­
mer in both the NH and SH (Fig. 2). It is the time needed to 
transform the excess of multi-year sea-ice still present during 
summer in FREE (compared to the synthetic observations) 
in seasonal sea-ice in IC, which corresponds to the synthetic 
observations.

Assimilating both ice concentration and ice freeboard (FB 
simulation) does not further affect the ice extent (Table 3). 
This is due to the spatial coverage of ice freeboard data, 
which do not reach the ice edge (data are automatically ex­
cluded if sea-ice concentration is lower than 20%). How­
ever, the ice volume is improved in FB as compared with
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Table 3. Root mean squared error (RMSE) of sea-ice extent and 
volume between data assimilation experiments using the synthetic 
data and the synthetic obseivations themselves in the NH and SH. 
respectively, from the begining of October and February (end o f the 
adjustment phase) to the end of the simulation. Within parentheses 
are the reductions of RMSE for each simulation (compared to the 
FREE simulation).

Experiment RMSE (NH) RMSE (SH)

sea-ice extent (x lO 6 km2)

FREE 1.51 (n.a.) 3.83 (n.a.)
IC 0.22 ( -8 5  %) 0.51 (-8 7 % )
FB 0.22 ( -8 5  %) 0.51 (-8 7 % )

sea-ice volume ( x i 0 3 km3)

FREE 10.44 (n.a.) 4.25 (n.a.)
IC 3.55 (-6 6 % ) 0.49 ( -8 8  %)
FB 3.06 (-7 1  %) 0.49 ( -8 8  %)

IC in the NH. The RMSE is decreased (as compared with 
FREE) by 71 % in FB, and 66 % in IC. It is worth noticing 
that the improvements due to ice freeboard assimilation in 
October-November and in March-April on sea-ice volume 
remain throughout the year (Fig. 2). The largest improve­
ments are seen during the two first ice freeboard measurment 
campaigns (ON05 and FM06). These improvements are ac­
companied by some discontinuity (Fig. 2) clearly due to the 
lack of data during several months.

These results show that the data assimilation method 
brings the modelled ice extent and volume closer to the syn­
thetic data than in the FREE run in both hemispheres (Fig. 2). 
The next part of this study examines if our conclusions re­
main valid when using real observations.

6 Impact of the assimilation of real sea-ice data

6.1 Experimental setup

Two simulations were carried out to highlight the utilily of 
sea-ice concentration and ice freeboard data assimilation in 
the case where real observations are used: an experiment 
with assimilation of real sea-ice concentration data (IC), and 
a simulation with assimilation of both real sea-ice concen­
tration and ice freeboard data (FB) (Table 2). The reference 
simulation (FREE) is the same as in the previous section. All 
these simulations cover the period 2005-2007. The model 
setup, the initial conditions, the forcing fields, the model pa­
rameters, the assimilation method, the ensemble size and the 
generation of the ensemble were the same as in the experi­
ments conducted with synthetic data (Sect. 5). The only dif­
ference between the previous experiments and these ones are 
the type of data used. In the previous section, the data are 
synthetic observations, while here real sea-ice concentration 
and freeboard data are used.
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Fig. 4. Sea-ice concentrations during the minimum of sea-ice extent
in 2007 in the NH (a, b) and SH (c, d). Colors show the sea-ice con­
centration in IC simulation (a, c) and in the OBS (b, d). The thick 
black line represents the sea-ice extent in the FREE simulation.

ice volume

WE
'o

 Vol. FB I  Vol. IC I  Vol. FREE | —  Vol. Kwok et al. (2009)

Fig. 5. Time series over 2005-2007 of the sea-ice volume in the 
Arctic Ocean for the FREE (green line). IC (red line) and FB (blue 
line) runs. Black lines are the mean sea-ice volumes provided by 
Kwok et al. (2009). The two sea-ice volume estimates (model and 
obs) are on the domain used in Kwok et al. (2009) (i.e. the Arctic 
Ocean). Gray areas indicate the periods when ice freeboard data are 
available.
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Fig. 6. Sea-ice thickness differences at the 2007 maximum (a, b) 
and minimum (c, d) sea-ice extent in Arctic. Colors show the sea- 
ice thickness differences between FB and IC (b,d) and between IC 
and FREE (a, c).

Fig. 7. Sea-ice thickness during the MA07 (March-April) campaign 
in the FREE. IC and FB runs (a, b, c respectively), and in the ob­
servations (d) (Kwok et ah. 2009).

6.2 Assimilation of real sea-ice concentration data

6.2.1 Sea-ice cover in the Northern Hemisphere

The impact of real data assimilation on sea-ice extent and 
volume are similar to those obtained with synthetic data. 
FREE overestimates the mean sea-ice extent, particularly 
during summer months (Fig. 4) along the Siberian coast and 
in Baffin Bay. Assimilation of ice concentration data reduces 
this bias (Figs. 4 and 3) for all seasons, but particularly in 
summer when the errors of FREE are the largest. During 
freeze-up, the sea-ice extent in both IC and FREE remain 
close to each other.

During the first months of 2005 (since May), the Arctic 
ice volume is similar in IC and FREE (Fig. 5). After the 
first summer, the sea-ice volume in IC is much lower than in 
FREE (Fig. 5). This is due to a lowered summer sea-ice ex­
tent in IC that induces a large substitution of multi-year sea- 
ice (area covered by sea-ice in summer, mainly composed of 
sea-ice thickness greater than 2.50 m, Fig. 4) present in the 
Beaufort and East Siberian Seas in FREE by a seasonal sea- 
ice (area covered by sea-ice in winter and not in summer, 
mainly composed of sea-ice thickness lower than 2.50 m in 
winter) in IC (Fig. 4a). In October 2005, the total Arctic sea- 
ice volume in IC is 5 x  IO3 km3 smaller than in FREE (40 % 
of Arctic volume in FREE during summer). As compared 
with the sea-ice volume estimate from Kwok et al. (2009),

after 10 months (end of the first summer in the simulations), 
IC is clearly better during summer (Fig. 5). This change of 
sea-ice concentration propagates into the multi-year ice. Af­
ter three years of simulation, the whole sea-ice pack is af­
fected (Fig. 6a and c). Areas where sea-ice is seasonal in IC 
and multi-year in FREE show a lower sea-ice thickness in IC 
(ice thickness differences up to —2 m). In areas where sea-ice 
is, in both simulations, multi-year (or seasonal), differences 
are lower in both winter and summer (up to — 0.6 m).

Over the entire ice pack during both winter and summer 
(Figs. 5, 7 and 8), IC reduces the ice thickness overestima­
tion seen in FREE. However, the decrease of ice thickness in 
IC is too strong along the ice edge, especially during summer 
in central Arctic (Fig. 8). This is a sign that the model tends to 
underestimate ice thickness in summer and also to produce a 
too thin sea-ice during the first winter months on the Siberian 
side of the Arctic. Several hypotheses can explain this too 
low ice thickness near the ice edge during summer: either the 
atmosphere-ice heat flux, as derived from the forcing fields, 
is overestimated: or the model representation of mass source 
and sink processes leads to excessive melting. During win­
ter, sea-ice in IC is too thick in the Beaufort Sea. In the rest 
of the sea-ice pack, sea-ice thickness in IC is very close to 
observations. However, the sharp sea-ice thickness gradient 
observed is much weaker north of the Canadian Archipelago 
in all the experiments.
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Fig. 9. Times series over 2005-2007 sea-ice volume produced each 
day in the Arctic by the model (dashed line) and by the EnKF (solid 
line) for FB (blue). IC (red) and FREE (green). Gray areas indicate 
the periods when ice freeboard data are available.
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Fig. 8. Sea-ice thickness during the ON07 campaign in the FREE. 
IC and FB runs (a, b, c respectively). and in the obseivations (Kwok 
et ah. 2009). The black line corresponds to the sea-ice edge simu­
lated in FB at the minimum extent (17 September 2007).

These changes in sea-ice thickness and extent lead to 
changes in ice production. Thin ice supports stronger con­
ductive heat fluxes than thick ice (Ebert and Curry, 1993; 
Maykut, 1986). Therefore, the model produces more sea-ice 
in IC than in FREE (Fig. 9) in winter. During the melting pe­
riod, the sea-ice that is thinner in IC than in FREE disappears 
faster, further enhancing the melting rate because of a more 
efficient ice-albedo feedback.

As the FREE simulation overestimates the sea-ice extent 
and thickness during the melting period and in winter, the 
EnKF tends to keep the model in agreement with observa­
tions and to remove the excess of sea-ice. However, between 
July and September, each year, the EnKF creates sea-ice. 
This may seem surprising as FREE still has too large an 
ice extent at this time when the centre of the pack begins to 
freeze, but the marginal sea-ice zone is still melting. EnKF is 
producing sea-ice in the entire pack (except in marginal ice 
zone in Barents Sea) at a rate of about 1 cm of sea-ice per 
assimilation step for month of August 2006. This means that 
the ice does not consolidate fast enough in the pack and melts 
too fast in the sea-ice edge in the Atlantic sector in NEMO- 
LIM. Causes of this behaviour might be biases in the forcing 
or a too strong positive ice-albedo feedback during summer.

In the present model setup, the EnKF does not conserve 
oceanic salt in the model, since the ice-ocean freshwater flux 
associated with the ice growth/melt induced by the filter is

not taken into account. Data assimilation leads thus to a net 
increase in oceanic salt content in IC, as compared to FREE 
(not shown).

6.2.2 Sea-ice cover in the Southern Hemisphere

In the Southern Ocean, FREE overestimates the winter ice 
extent, while in summer, the agreement with observations is 
quite good (Fig. 3). However, this agreement in summer is 
due to a compensation of errors in different regions (Fig. 4c 
and d). There is an excess of sea-ice in the Ross Sea and 
along Dronning Maud Land Coast and a lack of sea-ice at 
the tip of the Antarctic Peninsula, along the East Coast of 
Antarctica and in the Bellingshausen Sea in FREE. Assimila­
tion of ice concentration data corrects all these biases. How­
ever, some problems persist. Areas where ice concentrations 
are low (below 15 %) are missing in both FREE and IC. Sum­
mer ice concentrations below 50 % are almost absent. During 
freeze-up, the sea-ice extents of both IC and FREE are simi­
lar until the end of June. Afterwards, until the end of winter, 
IC is clearly more realistic than FREE (Fig. 3).

Sea-ice thickness differences between IC and FREE are 
significant in both winter and summer (Fig. 10). During sum­
mer, the ice thickness differences correspond well to the dif­
ferences in ice edge location (Fig. 4c). During winter, ice 
thickness is smaller in IC than in FREE almost everywhere 
(—30 cm), except in the western Weddell Sea (+40 cm) and 
near Pridz Bay (+20 cm). Timmermann et al. (2004) in a sim­
ilar model configuration had a lack of sea-ice in these area. 
However, in the other locations, they found good agreement 
between the model results and the ASPeCT data (Worby 
et al., 2008). Therefore, the increase in ice thickness in the 
Weddell Sea (and Pridz Bay) improves the simulation. In the 
other areas, sea-ice in IC is too thin.
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Fig. 10. Sea-ice thickness differences at the time of minimum (a) 
and the maximum (b) in 2007. Colors show the sea-ice thickness 
differences between FREE and IC.

6.2.3 The innovation vector

Previous sections have demonstrated that the data assimila­
tion method used leads to good agreement between model 
(IC simulation) and the ice concentration observations (OS­
ISAF). However, the estimation of the model error covari­
ance matrix by the filter (related to the choice of ensemble 
generation and choice of the observation errors) has not been 
evaluated. We will base our discussion on a simple compari­
son between the innovation vector (the vector difference be­
tween observations and model state in the observation space) 
and the error covariance matrix, as presented by Lisaeter 
et al. (2003). A short description of the method employed 
to compare innovation and errors is presented below.

The innovation vector of member j  (Xj) is given as

Xj = d  — Hor; . (7)

We can define the second order momentum of the innova­
tion (Q) as

Q = XJX], (8)

where the overbar defines an ensemble average.
If we consider the model estimate and the observations to 

be given as a true value (Hoy) plus an error, we obtain

H x  j = H x t

and

d =  Hor,

^mod

^obs

0)

(10)

Assuming independence of the observation errors and the 
models errors, this leads to

Q  =  ( f obs _  e m o d ) ( e obs _  e m o d ) r  =  R_|_HPeH7 (11)

where the overbar means an ensemble average. Evaluation of 
the quality of the error estimates can now be simply done by

 RM S(Q ) RMSIR+HPH1)

Fig. 11. Boxplot showing the RMS of the innovation covariance ma­
trix (RMS (Q)) in blue and the RMS of the model plus observation 
error-covariance matrix (RMS(R + H PeH r )) in red during May 
and December in IC simulation. Thin crosses denote the outliers, 
while the end (beginning) of the whisker corresponds to the 3rd 
(1st) quartile plus (minus) 1.5 times the interquartile range. Note 
that the vertical axis is non linear. All RMS estimates are taken only 
over cells where the observations have an ice concentration larger 
than 0.

comparing the RMS(Q) to RMS(R- 
is defined by

RMS(Q) =  / —trace(Q).

-HPeHr ), where RMS

(12)

RMS(Q) and R M S(R + H PeH r ) are shown in Fig. 11 for the 
months of May and December. The variability of the model 
and observation errors during May 2005 and 2006 and during 
December 2005 are very large. This is due to the presence of 
several observation days presenting very large errors in the 
observations (outliers in Fig. 11). After May 2006, the vari­
abilities of the errors and of the innovation are almost iden­
tical. The median RMS of the innovation and of the EnKF 
errors (forecast and observations) are commensurate (around 
0.11 for the summer and winter). This could mean that we 
have accurately estimated the errors. However, a compari­
son of individual contributions (not shown) concludes that 
the similarity between innovation and errors is mainly due 
to large observation errors. Consequently, the ensemble gen­
eration method would not be optimal if used with other ob­
servation products with lower observation errors. We may be 
required, in this case, to increase the wind perturbation but 
also perturb other forcing fields such as the temperature and 
the radiation.

6.3 Assimilation of sea-ice concentration and freeboard

To better constrain the ice thickness, we can also assimi­
late the ice freeboard in addition to the ice concentration. 
As shown in Sect. 5, assimilating both variables improves
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Fig. 12. Mean values of ice thickness (a). snow depth (b) and ice freeboard (c) (green for FREE, red for IC and blue for FB) in the central 
Arctic at the same locations as ICEsat obseivations; obseivations are in light grey. Snow depth is extracted from ice freeboard data and sea-ice 
thickness (derived from ICEsat freeboard Kwok and Cunningham. 2008). Snow density is assumed constant (330 kg m - 3 ). The numbers at 
the top of the plot are the mean number o f data points available each day during the corresponding ICEsat campaign.

the representation of sea-ice volume, as compared with as­
similation of ice concentration alone. Ice freeboard data over 
2005-2007 is cut into 6 campaigns (Table 1). Each data cam­
paign does not contain the same number of daily data (inter­
polated on model grid), from 87 in MJ06 to 378 in MA06 
(Fig. 12).

As ice freeboard is a combination of ice thickness and 
snow depth, the simulated ice freeboard could be realistic 
for bad reasons (error balance) and improvement on ice free­
board fields could result only from an increased realism of ice 
thickness or snow depth alone. The comparison of the mod­
elled mean ice thickness over the central Arctic (Fig. 12a) 
shows a large overestimation in all simulations (up to +2 m 
in FREE and +1.5 m in IC and FB) during winter campaigns 
and a reasonable agreement during summer campaigns in IC 
and FB (+25 cm). By contrast, the snow depth is underesti­
mated in all seasons (Fig. 12b). The simulated snow depths 
are quite similar in IC and FB. Without data assimilation,

snow thickness is greater in FREE: +5 % in fall and sum­
mer, up to +15 % compared to IC and FB in winter. A com­
parison between IC and FB indicates that the assimilation of 
ice freeboard data improves the sea-ice thickness and slightly 
degrades the snow field. Unexpectedly, overestimation of ice 
thickness and underestimation of snow depth in FREE lead 
to a quite realistic ice freeboard, while IC and FB simulate 
an ice freeboard too small (—5 cm) during fall and summer 
(Fig. 12c). However, during winter, IC and FB ice freeboards 
are much more realistic than FREE ice freeboards. The main 
reason is the large ice thickness error, which is not balanced 
by the snow depth underestimation.

The mean snow depth, ice thickness and freeboard in IC 
and FB are qualitatively close to each other. Furthermore, 
these simulations show the same large scale geographical 
distribution of ice thickness. However, during ON07, as for 
the MA07 campaign (Figs. 8 and 7), ice is thinner in the cen­
tre of the Arctic Basin, by up to 70 cm near the North Pole
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(unobserved area due to satellite orbit) (Fig. 6bd). The in­
trusion of thick sea-ice in the Beaufort Sea is also less pro­
nounced in FB, which is more realistic.

In winter, sea-ice volume in the Arctic Ocean (as defined 
by Kwok et al., 2009) is closer to observations in FB than 
in IC (Fig. 5). In fall, the FB ice volume is smaller than ob­
served, while multi-year sea-ice is better represented in FB 
(Fig. 8). This inconsistency is due to an error compensation 
in IC. In IC, the too thin sea-ice close to the ice edge during 
the minimum (new ice) is balanced by a thicker multi-year 
sea-ice in Beaufort gyre. As the new sea-ice close to the ice 
edge is almost not affected by ice freeboard data assimilation, 
this error balance is less important in FB.

7 Conclusions

The impact of sea-ice concentration and freeboard data as­
similation using an ensemble Kalman filter is assessed in a 
global coupled ocean-sea-ice model. To do this, three types 
of experiments were carried out: one without data assimila­
tion (referred to as FREE), one with ice concentration data 
assimilation (IC), and one with both ice concentration and 
freeboard data assimilation (FB). The simulations covered 
the entirety of the globe, over 2005-2007, with a relatively 
low spatial resolution (2°).

First, data assimilation experiments using synthetic obser­
vations (from a reference simulation, which is considered as 
the truth) were conducted in order to evaluate the data assim­
ilation system independently of model errors. Both synthetic 
ice concentrations and freeboards were assimilated each day. 
As expected, IC sea-ice extent fits very well to synthetic 
data in both hemispheres. Assimilating ice freeboard data 
has been shown to reduce differences in total ice volume, 
even with the relatively short temporal coverage of the data 
(February to April and October to November). Ice extent is 
similar in IC and FB.

The second step of the study was to assimilate in the model 
real data of ice concentration and freeboard. For sea-ice con­
centration, the results are similar to those obtained in previ­
ous studies (e.g. Fisaeter et al., 2003). The errors between 
modelled and observed sea-ice extents are much larger in 
FREE than in IC in both hemispheres and in both summer 
and winter. Due to large sea-ice extent differences between 
IC and FREE, large differences of ice thickness are observed 
between IC and FREE after the first summer (more than 1 m 
along the Russian coast). After three years, these discrepan­
cies do not remain confined at the sea-ice edge but propa­
gate to the whole sea-ice pack (about 50 cm over all the thick 
sea-ice). Comparison with ice thickness reconstruction from 
ICESat reveals an improvement of the sea-ice thickness field 
in IC compared to FREE.

In order to improve the sea-ice thickness field, assimilation 
of sea-ice concentration data are completed by assimilating 
both sea-ice concentration and freeboard data. Comparison

with thickness fields available during the ICESat campaign 
indicates an improvement of the modelled sea-ice thickness 
and volume in FB as compared to IC. The overestimation of 
sea-ice thickness in the Beaufort Gyre is decreased by 20 cm. 
However, the improvement in sea-ice volume comes at the 
cost of less accurate snow cover: there is no effect on sea-ice 
extent. This improvement of sea-ice volume only concerns 
the Arctic region, and is minor compared to the one obtained 
in IC as compared to FREE.

Experiments show that if the main error of the model is 
in the sea-ice extent, the simulation with data assimilation 
reaches a new equilibrium state after the first summer both in 
the Arctic and in the Antarctic. One limitation of the assimi­
lation of ice freeboard data is the presence of discontinuities 
in sea-ice volume during winter campaigns. An additional 
limit is that data used to validate the method stem from the 
same dataset used in the assimilation step. This study demon­
strates that the methodology proposed is adequate to estimate 
sea-ice extent and volume. This method is thus adequate for 
practical application such as sea-ice reanalysis during the 
satellite period or in attempt of climate prediction.
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