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Abstract The interrelationship between the cryosphere and the climate is not always 
operating on Earth over a scale of billions or millions of years. Indeed, most of the time, 
the Earth is regulated at temperatures such that no ice sheet exists. Nevertheless, it is very 
fruitful to understand the conditions where and when ice sheets were triggered during the 
Earth’s history. This paper deals with the paleoclimate and the cryosphere in the last 4.6 Ga 
and explains the different processes that make the climate of the first 4 billion years warm 
despite the weaker solar luminosity. We also describe the more recent evolution in the last 
65 million years when a global decrease in atmospheric C 0 2  from around 4 PAL to 1 PAL 
was associated with a global cooling (1 PAL present atmospheric level =  280 ppm). It is 
in this context that the Quaternary occurred characterized by low atmospheric C 0 2  and the 
presence of two perennial ice sheets in Greenland and Antarctica. The last million years are 
certainly the most documented since direct and reliable C 0 2  measurements are available. 
They are characterized by a complex climate/cryosphere dynamics leading to oscillations 
between long glacial periods with four ice sheets and shorter ones with only two ice sheets 
(interglacial). We are currently living in one of those interglacials, generally associated 
with a C 0 2  level of 280 ppm. Presently, anthropogenic activities are seriously perturbing 
the carbon cycle and the atmospheric C 0 2  content and therefore the climate. The last but 
not least question raised in this paper is to investigate whether the anthropogenic pertur
bation may lead to a melting of the ice sheets.
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1 In troduction

We very often consider that we live in a warm climate. Through this travel in the deep ages 
of the Earth, we shall see that this idea is mostly wrong, depending on the timescale we are 
using. This paper aims at showing the relationships between the climate and the cryosphere 
during the Earth's history. A striking feature is that, most of the time, there is just no 
cryosphere at all. Periods when ice sheets developed are indeed very seldom (Frakes et al.
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Fig. 1 Geological timetable in units of 1,000 years. From the Geological Society of America: 
http :// www. geosociety, org/science/timescale/

Ô  Springer



Surv Geophys (2011) 32:329-350 331

1992). The most common climate state of our planet is in fact warm (see Fig. 1 for a 
geological timetable). Since the Precambrian explosion, 540 Ma ago (Ma =  IO6  years), 
the period that is best documented, the glacial periods are also very infrequent. For 
instance, the dinosaurs, which lasted very long (220-65 Ma), lived during warm climates 
without any ice sheet most of the time (Amiot et al. 2006). In contrast, the period where we 
presently live (the Quaternary) with two ice sheets (one in each hemisphere) in the last
2.6 Ma is indeed a cold period and one of the rare periods on the geological timescale 
where ice sheets did exist. Indeed, for more than 1 Ma, the climate has shifted from glacial 
(80%) to interglacial (20%). During the glacial period, four ice sheets existed. As well as 
Greenland and Antarctica, two extra ice sheets were located over the northern parts of 
North America (Laurentide) and over the north of Europe (Fennoscandia). In the most 
recent 14,000 years, we are in a warm interglacial climate (Holocene) during which human 
population has spread all over the world.

This paper not only considers the role of the cryosphere on past climate, but also deals 
with the future behaviour of the cryosphere under anthropogenic forcing. It discusses what 
we may infer as to the future evolution of Greenland and Antarctica beyond the twenty-first 
century, and whether the large and rapid increase in greenhouse gases may melt the ice 
sheets that normally survive during interglacial conditions. We shall also consider the 
thresholds and the scenarios that may lead to both the onset and decay of the ice sheets 
using coupled climate and cryosphere modelling.

2 Precambrian Climate

In the last 4.6 Ga (Ga =  IO9  years), solar radiation has represented an unparalleled forcing 
factor for providing energy to the Earth. The Sun— this is certainly not the most poetic 
definition— is ‘just’ a nuclear fusion reactor, which “burns” its hydrogen into helium and 
then helium itself. The resulting evolution of the Sun’ s luminosity is well modelled (Gough 
1981; Fig. 2) and shows an increase of ~ 7%  per each billion years (Ga). Therefore, 4.6 Ga 
ago, the young Sun was a ‘weak’ Sun as compared to its present status. The implications
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Fig. 2 Evolution of the Sun’s luminosity with time in the last 4.6 Ga, as predicted by the computer model 
of Gough (1981). The increase is around 7% every Ga. The young Earth therefore experienced a fainter Sun 
~  30% less powerful 4.5 Ga ago than at present
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for the Earth (but indeed also for Venus and Mars) are huge: first, because solar radiation is 
the main source of energy for the Earth system (>99%) and second because we know that 
even the weak variations in solar radiation at the top of the atmosphere (that can reach 
seasonally 15%), due to the orbital parameters of the Earth, have induced relatively large 
climatic variations during the Quaternary period (see Sect. 6  The last million year's cli
mate). Consequently, the Earth should have experienced a drastic cooling due to this weak 
Sun: it should look like the frozen satellites of Jupiter and Saturn. In fact, geological and 
isotopic measurements demonstrate first that liquid water existed on the Earth's surface for 
at least 4 Ga, and second that during the Archaean (4.54-2.5 Ga) and the Proterozoic era 
(2.5-0.54 Ga) (Fig. 1), the Earth was warm with ocean temperatures ranging from 50 to 
70°C (Robert and Chaussidon 2006). As to whether these temperatures really represent the 
Earth's surface temperature remains an open question. There are alternative views that 
question the temperatures deduced from isotopic values and suggest lower temperatures 
(Shields and Kasting 2007). This warm Earth situation raises an apparent contradiction: the 
so-called faint young Sun paradox. Although the greenhouse effect is accepted as the main 
process to counterbalance the weak young Sun, other interpretations (Rosing et al. 2010) 
do pinpoint the possibility of a rather cold Archaean climate. In that study, glaciation is 
avoided because of a lower Earth albedo resulting from the absence of continental mass 
(ocean albedos being much smaller than terrestrial ones) and because of biologically 
induced clouds (low-altitude clouds in the present day climate act as a cooling factor 
whereas this effect did not exist in the deep past). The linear increase in continental 
accretion results in a linear increase in the Earth's albedo all through the Archaean period. 
Both hypotheses (timing of the accretion and cloud properties) are puzzling (Flament et al. 
2008). First they demonstrate that the relationship between continental accretion and 
albedo is not straightforward because the continents remain under the ocean surface during 
a very long period of time; their impact on albedo only becomes important after around 
3Ga. Second, the cloud properties during the Achaean are totally unconstrained. Rosing 
et al. (2 0 1 0 ) are still very controversial.

If the greenhouse effect is able to counteract the low forcing of the weak Sun, the next 
question is to identify which greenhouse gas would be able to counterbalance the weak 
fa in t Sun. Following the original suggestion of Sagan and Mullen (1972), who identified 
NH 4  as a possible candidate, most scientists agreed on identifying carbon dioxide as the 
most appropriate greenhouse gas. The volcanic source of CO2  must have been enhanced 
during the early Earth, whereas the sink of C 0 2, especially through silicate weathering, 
was much reduced because there was no or very little continental surface. Therefore, a high 
level of carbon dioxide in the atmosphere was very likely during the early Earth. However, 
large amounts of atmospheric carbon dioxide would have produced siderite (FeCOs) on the 
continental surface (Rye et al. 1995). Unfortunately, none of the oldest rocks do show the 
presence of any siderite, which leads several authors (Kasting 2004) to suggest that C 0 2, 
by itself, could not “do the job" alone and that another greenhouse gas should have been 
involved. Methane has been suggested as an appropriate candidate, but the next question is 
what would be the possible sink and source o f  methane on Earth?

Something often forgotten about the Earth's atmosphere is that during about half of the
4.6 billion years of the Earth's history, the atmosphere was anoxic (deficient in oxygen). 
An oxygen increase in the atmosphere only occurred 2.2-2.4 billion years ago (Catling and 
Claire 2005; Bertrand 2005). This feature is largely accepted by the community, even if 
there are still some controversies (Ohmoto et al. 2006). Several lines of evidence (Knoll 
2004) pinpoint the fact that methanogene archae appeared very early in the Tree of Life. 
Kasting (2004) developed a scenario where the source of methane on Earth, in opposition
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to the situation on Titan, can only be biological and most likely produced by these archae, 
which were very abundant in the ocean. Indeed, the surface temperature on the Earth is 
much higher than that of Titan, and the environmental conditions do not allow enough of 
the methane emitted by abiotic sources to be stored in the atmosphere at equilibrium.

What about the methane sink? Over the geological timescale, methane behaves as a 
“match". It can produce a strong warming because it is a powerful greenhouse gas (30 
times more efficient than C 0 2), but its residence time in the oxic atmosphere is very short: 
about 10 years. Methane is oxidized and transformed into carbon dioxide, which is a less 
powerful greenhouse gas but one that lasts much longer in the atmosphere: several hun
dreds of years. This is illustrated in the scenario that has been proposed to explain the 
brutal warming of the Paleocene/Eocene era boundary, 55 million years ago (Dickens and 
Francis 2004). Many authors invoked, to explain large 13C variations, the huge methane 
emissions due to the enormous quantity of methane hydrates stored within oceanic sedi
ments. These hydrates are a solid form of methane, in which the CH4  molecules are inside 
a network of crystals as ice crystals. The phase diagram is such that a pressure decrease or 
a temperature increase can provoke a changing phase from solid hydrate CH4  to gaseous 
CH4  (Dickens 2003). The release of methane from the dissociation of the hydrate, highly 
depleted in <51 3 C 1 around —60 %o, explains both the negative carbon excursion observed at 
the Paleocene/Eocene boundary and the subsequent abrupt warming (Zachos et al. 2001). 
This is the “match" effect of methane. Of course, in an anoxic atmosphere, the sink of 
methane is much less efficient. Therefore, both the methane source and sink processes 
discussed here support the possibility of a strong accumulation of methane in an anoxic 
atmosphere.

3 Regulation-Deregulation of the Earth’s Surface Temperature

As described earlier, in a context where the Sun is fainter by a rather large amount (—30% 
at 4.6 Ga and —6 % at 0.6 Ga with respect to the present— see Fig. 2), carbon dioxide most 
probably, and methane, would have helped to largely overcompensate the lower solar 
forcing and would explain the warm climates that the Earth enjoyed. Indeed, the Archaean 
and Proterozoic show very few evidences of glaciation. Recently, the existence of a 
Pongolian Glaciation ( ~  2.7 Ga) has been pointed out (Crowell 1999; Young et al. 1998). 
Subsequent glaciations occurred, taking account of error bars, synchronously with the 
atmospheric oxygen rise at 2.4-2.2 Ga, during the so-called Huronian glaciation. This is 
supported by the evidence of glaciation that has been found in Canada (Fig. 3). The third 
glaciation occurred more than 1.5 Ga later during the Neoproterozoic. One can always 
argue that “the absence of evidence (of other glaciations) is not the evidence of absence". 
This remark is indeed valid when dealing with the deep past where we have only scarce 
data. Nevertheless, it appears that glaciations are only accidents on Earth, which is most of 
the time regulated by warm temperatures. But how does this regulation work? And why did 
these accidents occur?

1 The 0 notation is defined by the formula:

( R sample 10% =  100CK-£—- -  1 }
IR standard ƒ

where R stands for isotopic ratio, for example: ^2. or 22
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Fig. 3 Long-term evolution of the relative concentrations of C 0 2 and CH4, as well as of 0 2. To be noticed 
are (1) the rapid decrease in methane coinciding with an 0 2 rise, leading to the Huronian glaciation 
(2.2-2.4 Ga) and (2) the drop in C 0 2 at the beginning of the Neoproterozoic leading to major glaciation 
(750 Ma). (From Kasting 2004)

This regulation is not a new idea. Lovelock performed pioneering work showing that 
many processes including biology make the Earth able to “protect" itself against pertur
bations (Lovelock 1979). Nevertheless, similar to Wegener, with his continental drift 
theory, as long as appropriate and well-quantified mechanisms were not found to explain 
and support this assumption, many scientists remain skeptical of its validity. Long-term 
interactions between the climate, tectonics, and the carbon cycle may therefore be invoked 
for supporting the regulation of the Earth system (Walker et al. 1981).

It is indeed difficult, if not impossible, to infer what the climate was before the Late 
Heavy Bombardment event (Morbidelli et al. 2001) but, through all the period extending 
between 3.8 Ga and the Precambrian (540 Ma), a regulation mechanism was powerful 
enough to maintain a warm climate despite a weaker Sun.

This mechanism is closely related to the carbon cycle at geological timescales. As to the 
source of carbon dioxide, recent publications (Cogné and Humler 2004) show that, for at 
least the last 100 Ma, there is no evidence that the quantity of carbon dioxide produced by 
volcanism has changed. It is indeed a very short time period as compared to 3 billion years 
but, in the absence of recorded variations for that period, we will be conservative and 
consider the source as constant and equal to the present day value. This hypothesis could 
be improved accounting for the variation in the heat flux at the Earth's surface (Mareschal 
and Jaupart 2006). In contrast, silicate weathering, which is the most powerful sink, is 
dependent on tectonics and therefore on paleogeography. If most of the continental mass is 
located in the equator/tropics area, the continents experience huge precipitation. The 
droplets including atmospheric carbon dioxide become acidic and dissolve silicate, which
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is transported by runoff to the ocean, and then sink in the form of carbonates with sedi
ments at the bottom of the ocean, resulting in the decrease in atmospheric carbon dioxide. 
In contrast, if most of the continental mass is located at high latitudes, it will experience a 
dry climate because of low precipitation, resulting in a weak alteration and little erosion. 
This low weathering context would logically correspond to an increase in atmospheric 
carbon dioxide.

More than 90 years ago, soon after Wegener (1915) proposed his tectonic plate drift 
theory, Koppen and Wegener (1924) showed how it would impact the Earth climate on the 
long term. However, one major piece of reasoning was missing in that analysis. Not only 
the climate but also the carbon dioxide content is modified by tectonics through the 
feedback loop produced by the triptych climate/carbon dioxide/tectonics, which remark
ably explains the existence of a warm climate most of the time. When the temperature 
increases, weathering also increases and carbon dioxide decreases; this leads to a cooling 
and vice versa. Therefore, carbon dioxide is a powerful thermo-regulator (Walker et al.
1981).

In spite of this feedback and regulation phenomenon, very rare deviations from  this 
scenario do occur. As previously discussed, the Earth depends on methane and carbon 
dioxide to maintain warm temperatures through the greenhouse effect, thereby over
coming the cooling effect of a faint young Sun; this makes the possible occurrence of 
major glaciations, if the concentration of one of these gases suddenly decreases 
(Fig. 3): the Earth would become a “snowball". A striking point in Kasting's scenario 
(Kasting 2004) is the occurrence of a methane drop and of a simultaneous oxygen 
atmospheric rise corresponding to the so-called Huronian glaciation (2.2-2.4 Ga) 
(Fig. 3).

What are the causes o f  these accidents, and what determines their timing? The first one, 
which occurred 2.2-2.4 Ga ago, could be related to biological activity. The methanogene 
archae, which prevailed in the surface ocean since about 3.5 Ga, contributed to methane 
production in the Earth's atmosphere, whereas oxygen producers (cyanobacterias) were 
totally marginal. On the other hand, because methanogene archae cannot survive in an oxic 
environment, they had to immigrate to anoxic refugia when the level of oxygen increased. 
A strong point in K asting's theory is that when the oxygen concentration rises as a result of 
oxygen producers' shifts from marginal to prevailing, the archaes disappeared, with the 
consequence of a sudden drop of atmospheric methane, therefore, triggering a major 
glaciation. It can therefore be concluded following Kasting that the first large glaciation 
(Huronian) was driven by a biological crisis and was “instantaneous" on the geological 
timescale.

4 The Neoproterozoic Era Global Glaciation

Certainly, the most documented ‘snowball Earth' episodes are those of the Neoproterozoic
Era. They consist of three main glaciations: the two oldest ones, the Sturtian (715 Ma) and
the Marinoan (635 Ma), are supposed to be global (Hoffman et al. 1998; Hoffman and
Schrag 2002), whereas the third and most recent one, the Rapitan glaciation (550 Ma),
appears to be essentially regional and linked to the Appalachian uplift (Donnadieu et al.
2004b). Such global glaciations result from a ‘rapid' decrease in the atmospheric C 0 2

content. Different lines of evidence are invoked in support of the existence of these
temporary global glaciations: ( 1 ) paleomagnetism evidence for the presence of an ice sheet
at low latitudes; (2) a strong decrease in <51 3 C; (3) the reappearance, after 1.5 Ga of absence
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Fig. 4 Annual mean variation in insolation at the top of the atmosphere as a function of latitude, for 
different values of the Earth obliquity 90° (crosses), 60° (plus signs), and 23.5° (dots). For high-obliquity 
values, the coldest zones are in the equatorial regions, while for the present obliquity of 23.5°, the polar 
regions are the coldest. (From Donnadieu et al. (2002); Yannick.Donnadieu@lsce.ipsl.fr, FSCE, France)

of banded-iron formations (BIF2); and (4) huge cap carbonate formations overlaying 
glacial diamictites (tillites), which are typical glacial deposits. These observations were 
made by different research teams and, till the end of the last century, no reliable global 
explanation was available, which could help us to understand what was happening during 
the Neoproterozoic.

Concerning the unusual location of the ice sheet at equatorial latitudes and not in polar 
regions, a conclusion based on only few reliable paleomagnetic data, an attractive 
explanation was provided by Williams (1975) and, later on, theoretically demonstrated by 
Williams et al. (1998). Indeed, if the Earth did have at that time a much larger obliquity 
(>60°), it is easy to show (Fig. 4) that the lowest annual temperatures would have occurred 
over the equatorial regions. However, this simple explanation cannot be retained for two 
main reasons. First, Levrard and Laskar (2003) demonstrated that no realistic mechanism 
would be able to produce the large decrease in Earth’s obliquity from a high value of >60° 
to its present-day low value of ~23°. Moreover, Donnadieu et al. (2002) showed that such 
a high obliquity would lead to a huge seasonal cycle, which would be inconsistent with a 
large mid-latitude ice sheet during the Marinoan glaciation.

Further pioneering work was triggered by the American geologist Harland (1964) who 
proposed that glaciations in the tropics (as observed through geological evidences) should 
in fact be global. However, that explanation was not accepted by modellers. A global 
glaciation would have resulted in an increased albedo on the Earth: instead of being a ‘blue 
planet’ with a global albedo of 0.3, the Earth would become a ‘white planet’ with a global 
albedo around 0 .6-0.8 . If such a snowball Earth did ever exist, it should still be here today 
because the only way to escape glaciation would be to increase the Sun’s luminosity by a 
factor of 1.5, which is not possible. The solution to this conundrum came 30 years later 
when Kirschvink (1992) proposed that, during a snowball Earth episode, volcanism con
tinues to be active and carbon dioxide continues to be emitted into the atmosphere. In 
contrast to the normal situation, where it interacts with the terrestrial biosphere and the

2 In an anoxic environment, Fe2+ is soluble in ocean water, whereas Fe3+ is insoluble. Therefore due to 
Fe2+ the iron can accumulate in the ocean as it does today at the bottom of the Red Sea. In oxic conditions 
both oxides are insoluble and iron can no more accumulate i.e. BIF disappeared at 1.8 Ga.
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ocean, C 0 2  would remain in the atmosphere. Because continents were covered by ice 
sheets and oceans by sea ice, carbon dioxide was therefore accumulated in the atmospheric 
reservoir until it was able, through a super-greenhouse effect, to melt the snowball Earth. 
This scenario is consistent with the other three observations listed previously.

As sea ice and land ice sheets completely inhibit the carbon cycle, carbon is no longer 
fractionated and the <513C value remains very similar to its volcanic original value. As the 
ventilation of the ocean covered by sea ice completely declined, oxygenation of the ocean 
drastically decreased. Hence, the reappearance of banded iron formation that prevailed in 
the Archaean and in the early Proterozoic oceans when the ocean was anoxic and iron 
could accumulate and re-form the BIFs. Finally, after millions of years, the concentration 
of carbon dioxide reached a threshold value that resulted in a greenhouse effect strong 
enough to eventually produce a huge deglaciation, huge precipitation, and strong erosion. 
In such a very warm climate, a large amount of carbonates sunk into the oceans, explaining 
the paradox why tillite was overlaid by cap carbonates.

Hoffman's snowball Earth theory supported by these successes became very popular, in 
explaining most of the apparently paradoxical features that occurred during the Neoprote
rozoic Era. Nevertheless, many questions remained unsolved (Ramstein et al. 2004a). Why 
did carbon dioxide largely decrease after the Neoproterozoic perturbation and why was the 
Neoproterozoic not preceded by similar events during the first billion years of the Earth 
history? The answers to these questions were provided by Donnadieu et al. (2004a), thanks to 
a fruitful collaboration between geochemists and climate modellers (Goddéris et al. 2007).

Less than 10 years ago, the influence of paleogeography on C 0 2  was suggested in order to 
explain the large decrease in carbon dioxide. It was known for a long time that continents 
were oscillating between the building-up of a large supercontinent that subsequently broke 
into several smaller continents drifting away from each other. The last of these supercon
tinents was called “Pangaea" that broke up in the period extending between the Triassic and 
the Cretaceous (Fig. 1). The preceding one, of interest to us here, was called “Rodinia". It 
was sitting on the equatorial band and spread to ±40° (Fig. 5a); it was aggregated before 
1 Ga and began to break up only around 800-750 Ma (Fig. 5b; Donnadieu 2004a).

Very peculiar characteristics of that breakup ought to be stressed. While the initial 
supercontinent extended to low latitudes (Fig. 5a), most of its fragments after break-up 
remained in the tropical belt (Fig. 5b). Referring to the preceding discussions on how C 0 2-  
climate-tectonics act together to regulate the temperature at the surface of the Earth, it is 
understandable that this post break-up configuration, where all the fragments remained in 
the tropics, is the most favourable for producing large atmospheric C 0 2  decreases, because 
these tropical continental masses experienced huge precipitation and massive erosion, 
creating a large sink of atmospheric C 0 2  through silicate weathering as demonstrated by 
Donnadieu et al. (2004a). That major C 0 2  decrease (Fig. 5) is consistent with a drastic 
cooling that finally shifted the Earth towards a snowball Earth. To escape such a situation, 
greenhouse warming from volcanic C 0 2  stored during several million years in the atmo
sphere is certainly a robust countermechanism (Kirschvink 1992; Hoffman et al. 1998). 
Nevertheless, it has been shown recently (Le Hir et al. 2008a, b) that, first, the concept of 
no interaction of atmospheric C 0 2  with oceans is difficult to maintain and, second, that the 
acidification of the surface oceans due to enormous quantities of C 0 2  suddenly in contact 
with oceans depleted of C 0 2  when the sea ice melts is inconsistent with biological evo
lution (Le Hir et al. 2008a). For these reasons, the behaviour of the carbon cycle during and 
after a snowball Earth has been substantially modified in the last few years. Le Hir et al. 
(2008c) showed that atmospheric C 0 2  has to penetrate the ocean during a snowball Earth 
period, while Pierrehumbert (2004) showed that the threshold in C 0 2  necessary to melt the
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Fig. 5 Top panel annual mean temperature (degrees Celsius) reconstructed for the geological context of 
800 Ma BP with the Rodinia supercontinent standing in the Equatorial region. The atmospheric C 02 
concentration introduced in the climate/C02 model is 1,800 ppm. Bottom panel Annual mean temperatures 
50 Ma later, i.e.. 750 Ma BP. Rodinia has broken into several plates, all of them lying in the tropical band. 
This configuration corresponds to optimal weathering, leading to a computed drop in C 0 2 of 1,300 ppm. 
which corresponds to an equilibrium value of 500 ppm at 750 Ma (in the 750 Ma reconstruction, the isolines 
represent the temperature difference between 800 Ma and 750 Ma). (From Y. Donnadieu. Yannick.Don- 
nadieu@lsce.ipsl.fr, LSCE, France)

ice was much higher than predicted. The amount of atmospheric carbon dioxide following 
these glaciations kept evolving with tectonic activity during the last 500 Ma. However, the 
Sun's luminosity that increased to a value of about 5% higher today than at the end of the 
Cambrian Period (Fig. 2) was able to compensate the decay of atmospheric C 0 2, pre
venting the re-occurrence of a snowball Earth.

5 Climate Evolution Since the Precambrian (540 Ma)

The interrelationship between tectonics, climate, and the carbon cycle has played a major 
role in the regulation of and variation in atmospheric carbon dioxide most of the time. That

750 Ma reconstruction

800 Ma reconstruction
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Fig. 6 This curve depicts the most recent results from the GEOCARB model of Berner for the evolution of 
CO2  concentration in units of PAL (1 PAL =  280 ppm). The grey envelope shows the importance of 
uncertainties. The window inside the vertical lines corresponds to the Cretaceous-Palaeocene period. (Lrom 
Berner 1994)

regulation tends to maintain a rather warm climate. Ice sheet build-ups are therefore rare 
events (Ramstein et al. 2004b). The Paleozoic era that follows the Cambrian (543-250 Ma) 
experienced a continuous but not linear decrease in temperature and in atmospheric C 0 2. 
Whereas the reconstructions of atmospheric C 0 2  concentrations are very scarce (Royer 
2006; Knoll 2004), a decrease from 20 PAL to 10 PAL between the beginning and the end 
of the Paleozoic (Fig. 6 ) seems to be contemporaneous with the Hirnantian glaciation 
(Trotter et al. 2008). This glaciation has for long been difficult to explain because it 
occurred in a period of high concentration of atmospheric C 0 2  over a long time (that spans 
from 500 ka to several Ma). The causes of the long-term cooling, which eventually led to 
glaciation, were not understood and are still discussed. Some hints of explanation (Kump 
et al. 1999) were proposed referring to phenomena associated with Taconic orogeny. The 
uplift of this mountain range that produced large areas covered with basalt had, as a 
consequence, an increase in orogenic precipitation and a decrease in atmospheric C 0 2. As 
basalt erodes 5-10 times faster than granite, these phenomena resulted in a larger C 0 2  sink 
and a long-term decrease in atmospheric C 0 2  (Désert et al. 2003). Nevertheless, this 
hypothesis has been challenged by different authors and therefore is still an open question. 
Nardin et al. (2011) attributed the long-term C 0 2  drawdown for one-third to fresh volcanic 
rocks (increased weathering) and two-third to tectonics. The drift in plate tectonics had, as 
a consequence, that a larger area of the continent was submitted to huge precipitation in the 
Inter-Tropical Convection Zone (ITCZ), resulting in drastically increased erosion and 
altogether in a decrease of atmospheric C 0 2. This is the context in which at the late 
Ordovician, the so-called Hirnantian, a glaciation might have occurred (Le Heron et al. 
2007). Therefore, it seems that the onset of glaciation did require a weak atmospheric C 0 2  

and the presence of continents at high latitude. The absolute value of atmospheric C 0 2  

generally given is 10 PAL, however, with large uncertainties (Boucot and Gray 2001). This
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Fig. 7 Reconstruction of atmospheric C 0 2 concentrations for the Mesozoic and the Cenozoic since 
250 Ma, derived from two different models GEOCARB (circles Berner 1994) and GEOCLIM (squares 
Donnadieu et al. 2006). The major difference between these two models is the evaluation of the sink. Large 
uncertainties remain independently of the models used. (Reconstruction from compilation by Royer D.A. 
2006)

value is rather large, but accounting for the lower insolation (—4% relative to present), the 
threshold for triggering the inception of ice sheets may have been even higher during the 
Paleozoic.

The last important glaciation occurred at the Permo-Carboniferous boundary at 
« 3 0 0  Ma BP due to both a low atmospheric carbon dioxide content (Figs. 6 , 7) and 
paleogeography, since a large fraction of the continental mass was located at high latitudes 
in the southern hemisphere (Fig. 8 a). This Permo-Carboniferous glacial phase is quite well 
known in comparison with previous glaciations. Glacial deposits occurred first in South 
America 340 Ma ago, and the major phase of glaciation is from 320 to 285 Ma, with 
ultimate glacial proxy occurring at 270 Ma in Australia. These two forcing factors were 
introduced in the simulations of the Permo-Carboniferous glaciation. Figure 8  shows that 
annual temperatures reach negative values (in degrees Celsius) over the high southern 
latitudes of the Pangea continent. Also plotted in Fig. 8 b are the albedo values corre
sponding to the summer seasons showing that perennial snow cover extended throughout 
the whole of South Gondwana (South Africa, South America, India, Australia, and Ant
arctica). This result is consistent with the moraine deposits found on these continents, an 
observation that led Wegener (1915) to imagine that all these areas were, at that time, 
placed in the same location. Later on, when the Pangea drifted towards the northern 
hemisphere, the continental mass slowly shifted from high to low latitudes and the alter
ation/erosion increased, implying a severe drop of atmospheric carbon dioxide, as simu
lated by the GEOCLIM (climate-carbon cycle) model of Donnadieu et al. (2006).
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Fig. 8 During the Permo-Carboniferous, 300 Ma BP, a large glaciation occurred that covered the high 
latitudes of South Gondwana. The top panel shows the annual mean temperature in degrees C and the 
bottom one the summer albedo (December to February) for the southern hemisphere. A high albedo due to 
the large snow cover over south Gondwana prevailed even during the summer season, in good agreement 
with geological data. (From Gilles Schneiders, LSCE, 2005)
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Fig. 9 Evolution of the biodiversity and of atmospheric C 0 2 (crosses) during the Triassic and the Jurassic 
periods. The red and black curves correspond to calcareous plankton evolution during the same period. The 
dashed curve corresponds to the GEOCARB III model. (Goddéris et al. 2008)
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Fig. 10 Equator to pole temperature gradient derived from á180  data during the mid-Cretaceous and 
compared with that of present-day values showing that the mid-Cretaceous temperatures are higher and 
more flat than present ones. It should be noticed that most of the á 180  data are derived from carbonate 
sediments resulting in rather smoother and more “flat" temperature changes with latitude. More recent á lsO 
data derived from phosphates lead to a stronger equator to pole gradient

Interestingly, the appearance of calcareous plankton corresponds to the period of large 
carbon dioxide decrease at the Triassic-Jurassic Transition (Rhetian: 200 Ma) (Fig. 9), 
which is synchronous with an increase of carbonates in the ocean providing favourable 
conditions for the emergence of calcareous foraminifera.

Another interesting period is that of the Mid-Cretaceous Cenomanian period 100 Ma ago 
that coincided with a high level of carbon dioxide (Figs. 6 , 7) and a high sea level, leading to 
a warm and uniform climate, with rather weak seasonal cycles and a large decrease in the 
equator-to-pole temperature gradient (Fluteau et al. 2007; Fig. 10). In contrast, however, to 
the good agreement obtained between the models and the available data for previous periods 
(Permo-Carboniferous and Rhaetian Periods), the rather low-temperature gradient deduced 
from (5lsO measurements in calcite cannot easily be reproduced (Barron and Washington
1982). That disagreement has been shown to be due to the data reconstruction process 
(Pucéat et al. 2007). Regional comparison of model results with data for different Cretaceous 
climates has depicted reliable features (Fluteau et al. 2007).

During the Cenozoic era (65-2.6 Ma), the atmospheric CCF decreases from 4 PAL to 1 
PAL and the temperature tends to drop. A major shift from a warm to a cold climate did 
occur 34 Ma ago with the onset of the Antarctic glaciation. Different model simulations 
have shown that the most important feature that explains this shift is in fact a decrease in 
atmospheric carbon dioxide (DeConto and Pollard 2003; Pagani et al. 2005; Fig. 11). 
Moreover, the opening of the Drake Passage, between South America and Antarctica, also 
played a role in this transition. Greenland's glaciation occurred only 3 Ma ago. If the most 
recent evaluations of the different forcing factors (carbon dioxide drawdown, Rockies 
uplift, Panama Passage closure and changes in tropical ocean dynamics) show their con
tribution to explain the Pliocene climate; nevertheless, carbon dioxide alone is the major 
player in explaining Greenland's inception (Lunt 2008).

6 The Last Million Year’s Climate

Since Greenland's glaciation 3 Ma ago, the climate in the northern hemisphere has 
changed drastically, with first a period of successive ice sheets build-ups and decays with a
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Fig. 11 Antarctic ice sheet (AIS) climate-cryosphere topography for different atmospheric C 0 2 
concentrations and different Drake Passage (DP) configurations (fully coupled CLIMBER-GRISLI 
experiments). The two left panels show the AIS derived using a pC 02 set to 4 PAL in case of a closed 
DP (top a) and open DP (bottom b). The middle panels show the AIS topography for pC 02 set to 4 PAL for 
the case of a closed DP (c) and open DP (d), respectively. The right panels represent the AIS obtained for 
pC 02 set to 2 PAL. with closed DP (e) and open DP (f). The ice sheet thickness is expressed in [m]. The red 
line represents the grounding line; it is possible to note the presence of ice shelves for the simulations (c) to 
(f). (Prom Bonelli et al. 2009)

periodicity of 40 ka, and since around 1.2 Ma ago a periodicity of 100 ka (Paillard 2008). 
For that last period, hopefully, we can measure the temperature as well as methane and 
carbon dioxide levels through the analysis of successive layers of Antarctic ice cores— 
glaciologists even hope to be able to go back as far as 1.5 million years (Jouzel and 
Masson-Delmotte 2010). This is a huge progress in contrast to the long past, for which the 
partial pressure of carbon dioxide was indirectly deduced from various indicators such as 
boron isotopes or stomata with much larger uncertainties (Figs. 6 , 7). As shown in Fig. 12, 
the different cycles are indeed not similar in terms of temperature and greenhouse gases, 
and there are still many unsolved questions to properly understand the climate of the 
Quaternary. The last glacial-interglacial cycle from 130 ka BP to present is certainly the 
best documented. Using a model of intermediate complexity (Petoukhov et al. 2000) that 
allows runs of long simulations coupled with ice sheet models, Ritz et al. (1997) and 
Bonelli et al. (2009) have succeeded in simulating altogether: the onset of glaciations 
(115 ka BP), the paroxysm at the last glacial maximum (21 ka BP), the fast decay of the 
ice sheets and the more stable climate of the Holocene Period (last 10 ka) (Waelbroeck 
et al. 2002). Figure 13 allows a comparison between the associated sea-level variations as 
reconstructed from data and from models (Bonelli et al. 2009).
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Fig. 12 From top to bottom Antarctic records of atmospheric methane concentration (ppb) (Loulergue et al. 
2008), atmospheric carbon dioxide concentration (ppm) (Petit et al. 1999) (Siengenthaler et al. 2005) (Lüthi 
et al. 2008), and deuterium, a proxy for Antarctic temperature (Jouzel et al. 2007), (Masson-Delmotte et al. 
2010). They are compared with the estimates of past changes in sea level (Bintanja et al. 2005 ) derived from 
a stack of marine records (Lisiecki and Raymo 2005) and with the past variations in the Earth's orbital 
parameters, eccentricity, precession parameter, and obliquity. Data are displayed as a function of time in 
thousands of years before 1950 (ka before present). (From Pol et al. 2010)

Indeed, being able to simulate a global cycle correctly leads to investigating the long
term behaviour of present-day ice sheets. Indeed, there is a natural variability induced by 
volcanic eruptions and high-frequency insolation variations but the anthropogenic forcing 
is, and will be, by far the major driver for long-term climate and consequently for ice sheet 
behaviour in the next few centuries. Using the same models and different scenarios, we 
stress that for accumulated carbon dioxide emission larger than 3,000 gigatons of cumu
lated carbon in the atmosphere (Fig. 14), the irreversible melting of Greenland may occur 
(Charbit et al. 2008; Fig. 15). Moreover, this 3,000 gigatons value is certainly overesti
mated because many processes are too coarsely parameterized in the model. For example, 
the spatial resolution of 40 km used in the models does not allow account to be taken of 
some explicit physical characteristics of ice streams, which are only 4 km large. Moreover, 
the nature of the different types of sediments that lie under the ice sheet and play an 
essential role in the sliding process is not accounted for yet in the models. Indeed, a 
comparison of this simulation with satellite data shows an underestimation of the ice 
streams' motion for present day.

7 Conclusions

During this travel through the Earth's past climate, we have shown that the presence of ice 
sheets, namely the existence of the cryosphere, is an infrequent component of the Earth's 
climate system. These periods are less than 5% of the Earth's history, but they are very 
exciting to document and simulate because there is strong evidence which describes them.
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Fig. 13 Atmospheric C 0 2 concentrations (in ppm) and estimated see levels relative to present (in m). Panel 
a forcing factors used for the simulation from 126 ka to present. (1) Summer insolation at 65°N (right), (2) 
C 0 2 evolution as deduced from Antarctic ice cores (left). Panels b and c sea level evolution from proxy data 
(b) and from model simulations (c) evidencing a fairly good agreement between both estimations. (From 
Bonelli et al. 2009)

It is a challenging exercise for climate modellers to find the conditions under which the 
build-up of an ice sheet begins, is maintained and then decays.

In the long-term future, it would not be very surprising that human activity might lead to 
the melting of the ice sheet and later to its disappearance. This is what is foreseen in the 
short to mid term for Greenland and west Antarctica. First, this is because industrial 
development has induced extraordinarily fast and huge increases of concentrations of 
atmosphere. Secondly, as shown in this paper, the presence of ice sheets is not a very
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Fig. 14 C 0 2 emission scenarios (a) and atmospheric C 0 2 concentration (b). C 0 2 emission scenarios used 
in the set of experiments (EXP1) {left panel) and the corresponding atmospheric C 0 2 concentration 
accounting for the natural absorption of C 0 2 {right panel). The cumulative emissions corresponding to all 
EXP 1 scenarios are 1,000 GtC {black), 1,500 GtC {grey), 2,000 GtC {blue), 2,500 GtC {green), 3,000 GtC 
(purple), and 3,500 GtC (red). These values are reached in the year 2200. At that time, the maximum C 0 2 
contents in the atmosphere are 592, 748, 904, 1,060, 1,215, and 1,371 ppm, respectively. (Charbit et al. 
2008)
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Fig. 15 Simulated ice volumes obtained with the six scenarios described in Fig. 14. Simulated ice volumes 
for the lowest value obtained for Greenland ice sheet show first a melting, then stabilization, whereas for a 
level larger than 3,000 GtC the total melting of Greenland is irreversible on the time scale of 10,000 years 
(10 ka). (Charbit et al. 2008)

frequent feature; they only exist under conditions of low concentartions of atmospheric 
carbon dioxide. Industrial development deeply perturbed the carbon cycle, rapidly trans
ferring into the atmosphere huge amounts of carbon that was previously stored on the 
continents or underneath the ocean. This perturbation has been clearly evidenced by the 
measurements of C 0 2  taken since 1950 in the Earth's atmosphere. The increased con
centration from 280 ppm (preindustrial value) to 390 ppm as of 2010 is largely outside the 
range (180-280 ppm) of the last million years as deduced from Antarctic ice cores. In a
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few decades, atmospheric CO 2  concentration will reach 420 ppm, a level that existed tens 
of M a ago, when no Greenland ice sheet was present on the Earth.

The present ongoing climate change situation seems to be different from all climate 
transitions described in this paper that did occur over geological timescales (Ramstein 
2011). Indeed, anthropogenic perturbations happen ‘instantaneously’ and most o f the 
different reservoirs— ocean surface, vegetation, and ice sheet— are not in equilibrium. 
Because of its intensity and abruptness, that scenario is more reminiscent o f a  biodiversity 
crisis than to the ‘smooth’ climate evolution of the past described in this article. On the 
other hand, because the perturbation is associated with human activity, there is some hope 
that it may be brought under control, particularly because the greenhouse gas emission 
scenarios for the twenty-first century have not yet been written. Unfortunately, the resi
dence time of CO 2  in the atmosphere is several hundred years (Fig. 14), and the conse
quences and effects o f anthropogenic perturbations may still last for several centuries into 
the future.
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