Cultural eutrophication in the Greater North Sea Cause, symptoms, mitigation

How can science guide ecologically-relevant and economically sustainable decisions?

Christiane Lancelot Ecologie des Systèmes Aquatiques

CONTENT

I-The Global Eutrophication Context

II-Eutrophication in the Greater North Sea

III-Science Support to Combat Eutrophication

I-The Global Eutrophication Context

- ✓ Global trends in nutrient loads
- Mechanisms behind eutrophication
- ✓ Undesirable effects

Global Nutrient Loads

Since 1950: the <u>Great Acceleration</u>: a connected global system population * socio-economy * green revolution

As a consequence:

Global increase of N (18%), P (13%) river inputs Global retention (18%) of Si

Seitzinger et al. 2010

Beusen et al., 2009

Exacerbated by release from growing aquaculture, atmospheric and groundwater inputs

Cultural Eutrophication

Modification of the natural N:P:Si balance of coastal waters towards N and P excess → primary production **7**Undesirable if this nutrient excess appreciably degrades ecosystem health and/or the provision of goods and services

MSD-TG5 report 2010; Fereira et al. 2011

DESIRABLE

Change in coastal N:P:Si nutrient status

Different symptoms!

The functioning of Marine Ecosystems

Marine Ecosystem: Generic Process

Cultural eutrophication: Generic Process

Undesirable symptoms of eutrophication: HABs

Foam deposits

Algal deposit & H₂S release

High-biomass HABs

Phaeocystis globosa

Ulva

Toxic HABS

Dinophysis

II-Eutrophication in the Greater North Sea North Sea OSPAR regions Rhine/Meuse Southern Bight Scheldt English Channel Somme Seine city with pop. >500,000 pop. > 100/km2 pop. > 200/km²

- ✓ Historical key dates
- ✓ Nutrient sources today
- ✓ Eutrophication symptoms

Eutrophication in the greater North Sea: key dates

- √ 1950-1970

 Great Acceleration
- ✓ After 1970
 Eutrophication symptoms
 Environmental awareness
- ✓ 1975-1991

 Governance (OSPAR, HELCOM)

 Combination of professional judgment and political art :e.g. 50% №1985 N and P loads First EU Directives (WWT, Nitrate)
- ✓ Since 2000 (WFD and MSD)

 Awareness of the 'land-sea' connectivity, regime shifts, thresholds, points of non-return → Ecological Quality Objectives.

 Sustainable coastal sea.

Model reconstruction after Lancelot et al., 2007; Passy et al., 2013

Eutrophication in the greater North Sea: current status

Ocean color 2011

Nutrient enrichment

Winter nitrate concentration

Atmospheric deposition fraction total N

Troost et al., 2013

III-Science Support to Combat Eutrophication

What can be done to improve the situation and how can we appraise mitigation actions?

- ✓ Integrated Impact Assessment Pathway/toolkit
- ✓ Case study: Phaeocystis blooms

Impact Assessment Pathway:integration of coupled biogeochemical models in a DPSIR loop

(1) Ruelland et al. 2007; (2) Billen and Garnier 1999; (3) Lancelot et al., 2005

WWT upgrading

GAP

Some possible scenarios

Garnier et al., 2012

Overall conclusion and futuring

The fact

Human activity is modifying the quantity and quality of nutrients (N, P, Si) delivered to the coastal sea;

This N & P enrichment has boosted non-diatom species often undesirable/harmful;

Most attempts to reducing N & P loads have not decrease coastal problems because of end-of-pipe solution choice rather than acting on the NUE (nutrient use efficiency) process.

Towards solutions: de-eutrophication toolkit

- ✓ Interlinked suite of ecological and socio-economic models
- ✓ Scenario-driven approach: dialogue between science and society

Acknowledgements

EU FP6
Thresholds of Environmental sustainability

IAP TIMOTHY (**T**racing and **I**ntegrated **Mo**deling of Natural and Anthropogenic Effects on **Hy**drosystems (TIMOTHY) Case study:The Scheldt River Basin and Adjacent Coastal North Sea

AMORE (Advanced **Mo**delling and **R**esearch on **E**utrophication)

EU FP7 AWARE

Adaptative management: Increased connectivity between politic, science, public

Ecosystem **Mo**dels as **S**upport to **E**utrophication **M**anagement In the North Atlantic Ocean

Cited references

- Beusen, A.H.W., Bouwmann, A.F., Durr, H.H., Dekkers, A.L.M., Hartmann, J. Global patterns of dissolved silica export to the coastal zone: results from a spatially explicit global model. *Global Biogeochem. Cycles*, **23**:GB0A02, doi: 10.1029/2008GB003281 (2009)
- Billen, G., Garnier, J.,1999. Nitrogen transfers through the Seine drainage network: a budget based on the application of the Riverstrahler model. Hydrobiol. 410, 139-150
- Ferreira JG, Andersen JH, Borja A, et al. (2011) Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive RID C-5701-2011. Estuar Coast Shelf Sci 93:117–131. doi: 10.1016/j.ecss.2011.03.014.
- Garnier J, Passy P, Rousseau V, Gypens N, Callens J, Silvestre M, Billen J, Lancelot C. 2012. The diseased southern North Sea: current status and possible solutions. In: Sustainable Water Ecosystems Management in Europe. Bridging the knowledge of citizens, scientists and policy-makers. Ed C. Sessa. EU report series, IWA Publishing, London, NY. Lancelot C., Spitz, Y., Gypens, N., Ruddick, K., Becquevort, S., Rousseau, V., Lacroix, G., Billen, G., 2005. Modelling diatom and *Phaeocystis* blooms and nutrient cycles in the Southern Bight of the North Sea: the MIRO model. Mar. Ecol. Progr. Ser. 289, 63-78.
- Lancelot, C., Gypens, N., Billen, G., Garnier, J., Roubeix, V., 2007. Testing an integrated river-ocean mathematical tool for linking marine eutrophication to land use: the *Phaeocystis*-dominated Belgian coastal zone (Southern North Sea) over the past 50 years. J. Mar. Sys. 64, 216–228.
- Lancelot, C., Rousseau, V., Gypens, N., 2009. Ecologically based indicators for *Phaeocystis* disturbance in eutrophied Belgian coastal waters (Southern North Sea) based on field observations and ecological modelling. J. Sea Res. 61, 44-49. Lancelot, C., Thieu, V., Polard, A., Garnier, J., Billen, G., Hecq, W., Gypens, N., 2011. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating *Phaeocystis* colony blooms in the Southern North Sea: An integrated modeling approach. Sci. Total Environ. 409, 2179–2191.
- Lancelo C, Passyy P, Gypens N. 2014. Model assessment of present-day Phaeocystis colony blooms in the Southern Bight of the North Sea (SBNS) by comparison with a reconstructed pristine situation. Harmful Algae 37:172-182.
- Passy, P., Gypens, N., Billen, G., Garnier, J., Lancelot, C., Thieu, V., Rousseau, V., Callens, J., 2013. A Model reconstruction of riverine nutrient fluxes and eutrophication in the Belgian Coastal Zone since 1984, 2013. J. Mar. Syst. 128, 106-122.
- Ruelland, D., Billen, G., Brunstein, D., Garnier, J., 2007. SENEQUE 3: a GIS interface to the RIVERSTRAHLER model of the biogeochemical functioning of river systems. Sci. Tot. Environ. 375, 257-273.
- Seitzinger, S.P. *et al.* Global river nutrient export: a scenario analysis of past and future trends. *Global Biogeochem. Cycles*, **24**: GB0A08, doi:10.1029/2009GB003587 (2010).
- Sivystski, J. 2012. Anthropocene: an epoch of our making. Global Change issue 78.
- Troost, TA, Blaas M, LOS FJ. 2013. The role of atmospheric deposition in the eutrophication of the North Sea: a model analysis. J. Mar. Sys. 125: 101-112