The uptake and release of material by
the cockle Cerastoderma edule L. in
the Western Scheldt Estuary, SW Netherlands

Niels Cadée

December 1993

National Institute of Coastal and Marine Management /RIKZ
Middelburg, The Netherlands

document GWAQO-93-846X



The uptake and release of material by the cockle
Cerastoderma edule L. in the Western Scheldt Estuary,
SW Netherlands

Niels Cadée

Ministry of Transport and Public Works, National Institute of Coastal and Marine Management /RIKZ,
P.0.Box 8039, 4330 EA Middelburg, The Netherlands

Contents
Abstract
1 Introduction
2 Material and methods
2.1 Benthic Ecosystem Tunnel experiments
2.2 Sample analysis
2.3 Calculation of mass fluxes
2.4 Calculation of clearance rate in the tunnel
2.5 Laboratory measurements of clearance rate
2.6 Diatom composition of cockle stomachs and near-bottom water
2.7 Statistical analysis
3 Results
4 Discussion
5 Conclusions
Acknowledgements
Literature cited
Appendix 1 - Calculation of budgets for the Western Scheldt

Appendix 2 - Concentration and flux data of BEST experiments

14

18

18

19

22

24



Abstract

In situ experiments were carried out on natural cockle beds in the Western
Scheldt in autumn, spring and summer, using a Benthic Ecosystem Tunnel. From
this tunnel, inflowing and outflowing water was sampled at regular intervals
and analyzed for seston, POC, PON, POP, chlorophyll-a, phaeophytin-a and dis-
solved inorganic nutrients. In two cases, significant uptake of chlorophyll-a
and release of ammonium and phosphate have been observed in tunnel experi-
ments, but in general differences between inflow and outflow were not signifi-
cant and uptake and release alternated. Filtration rates were comparable under
field and laboratory conditions. However, improvements are required on the
measuring devices to achieve more accurate flux measurements. Preliminary
budget calculations of benthic-pelagic coupling for cockles in relation to
benthic and pelagic algae were done with literature data. It is shown that in
spring, cockles may have a limited impact on phytoplankton in the Western
Scheldt, but that in autumn this impact may be large due to lower primary
production and increased cockle biomass. Cockles may ingest a substantial por-
tion of benthic diatom daily production, when benthic diatoms are suspended
and available for filtration.

1 Introduction

Bivalve filter feeders are dominant organisms in many estuaries, and can
have a profound influence on biological processes (e.g. Cloern 1982). Bivalve
species occurring in high densities have the potential to filter the total
water volume of an estuary at a rate comparable to the water residence time
(Smaal and Prins 1993). Already in 1952, Verwey pointed at the important role
of cockles and mussels in organic matter transport in the Wadden Sea. Since
then, a growing number of experiments has been carried out which show substan-
tial rates of uptake and release of material on beds of bivalve filter fee-
ders. Experiments were done in mesocosms (e.g. Doering and Oviatt 1986), by
taking water samples over a bivalve bed (Fréchette and Bourget 1985a, 1985b,
Fréchette et al. 1989, Smaal et al. 1986, Peterson and Black 1991, Muschenheim
and Newell 1992) or with various kinds of flumes placed on bivalve beds (Dame
et al. 1984, Dame and Dankers 1988, Dame et al. 1991, Prins and Smaal 1990,
Prins and Smaal in press, Asmus and Asmus 1991, Zurburg 1993). Postma (1954)
was the first to indicate the importance of phosphate excretion by bivalves,
Release of other nutrients from bivalve beds, notably ammonium and silicate,
has been reported later (e.g. Dame et al. 1984, Prins and Smaal 1990). When
these nutrients are released through direct bivalve excretion or bacterial
mineralization of faeces and pseudofaeces, they can be recycled by phytoplank-
ton in the water column. This process is an aspect of benthic-pelagic coupling
(Dame et al. 1980, Prins and Smaal 1990, for a review of benthic-pelagic cou-
pling in general, see Graf (1992)). Some model calculations show that, in some
estuaries, bivalve filter feeders can act as a euthrophication control wvia
benthic-pelagic coupling (Officer et al. 1982, Loo and Rosenberg 1989, Herman
and Scholten 1990). In this wview, filter feeders increase the turnover of
phytoplankton by excreting nutrients, but keep phytoplankton at a low level
even in bloom situations by high feeding rates.

In this study the focus is on the common cockle Cerastoderma edule L., a
bivalve filter feeder. In the Western Scheldt Estuary, cockles occur in densi-
ties of up to 7400/m? with biomass maxima of 340 g AFDW/m? on intertidal mud-
flats, and dominate the macrobenthos biomass in the marine part of the estuary
(Ysebaert and Meire, 1991). Commercial fishery on cockles is extensive in the
area. The Western Scheldt is the estuary of the River Scheldt, and has a total
surface of ca 300 km?, of which tidal flats comprise 80 km?. The estuary has a
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tidal discharge of 44,000 m®/s at Vlissingen, while the river input is only
100 m®/s. Nutrient levels, especially of N and P, are high, due to waste water
discharge along the River Scheldt. Phytoplankton is dominated by diatoms,
although in spring, a bloom of the flagellate Phaeocystis sp. may occur (Koe-
man et al. 1992). On the surface of intertidal mudflats, benthic diatoms grow
abundantly (Sabbe and Vyverman 1991, D. de Jong, unpubl. data, and own obs.)
For other estuaries it has been reported that benthic diatoms can be suspended
in the water column and thus become available as food for filter feeders (de
Jonge 1992, de Jonge and van Beusekom 1992, Muschenheim and Newell 1992).

The aim of this study was to test the suitability of a flume method, the
Benthic Ecosystem Tunnel (see section 2.1), for measuring uptake and release
of material by a mnatural cockle bed in the Western Scheldt. For comparison,
clearance rates of individual cockles taken from the tunnel were determined in
the laboratory. The results of the first three experiments were used (1) to
compare clearance rates of cockles in the field and individual cockles held in
the laboratory, (2) to compare nutrient release from a natural cockle bed and
rates extrapolated from individual excretion rate measured in the laboratory,
and (3) to estimate the influence of cockles on material fluxes in the Western
Scheldt estuary. Some preliminary results of diatom composition of near-bottom
water and stomach contents of cockles will also be presented. The research
fits into a framework of studies by the National Institute of Coastal and
Marine Management into carrying capacity and sustainable use of water systems.
Ultimate goal of the experiments on cockle beds is to quantify the influence
of the cockle population of the Western Scheldt on C and N cycles in the estu-
arine ecosystem. For this purpose some budget calculations were done with
literature data.

B Molsnplaat
\ Vilssinge Sloe Harbour

Figure 1 Map of the Western Scheldt. The experimental site is designated by a black dot.



2 Material and Methods
2.1 Benthic Ecosystem Tunnel experiments

Three experiments were carried out on Molenplaat, an intertidal mudflat
in the Western Scheldt (see fig. 1), where cockles occur in fairly high densi-
ties (up to 1384/m?, Ysebaert and Meire 1991). In September 1992 a site along-
side a tidal channel was used, lying 75 cm below mean water level, emerged for
about 4.5 h per tide. In April and June/July 1993 experiments were carried out
on a higher part in the middle of the mudflat, at 24 cm below NAP, emerged for
about 6 h per tide. Dates of experiments were within a few days of neap tide.
Experiments were done with a Benthic Ecosystem Tunnel (BEST), a device for
measuring in situ uptake and release of material on a bivalve bed by sampling
water flowing in and out of the tunnel. The tunnel is aligned to the mean
current direction. For all three experiments, a BEST of 12 x 0.8 m was used
(fig. 2), with 10 m between the two sampling points. It consists of 25 em high
stainless steel side plates, pushed about 5 cm into the sediment, and covered
by perspex U-shaped segments. The side plates are fastened with bolts to iron
poles, driven ca. 60 cm deep into the sediment. Height of the perspex roof
above the bottom was ca. 40 cm, cross-sectional area was about 0.308 m?, and
7.5 m? of cockle bed was covered between sampling points. For the June 1993
experiment, the BEST of the IBN-DLO served as a control. This tunnel has a
cross-sectional area of about 0.225 m?, and covers a surface of 8.3 m? between
sampling points. Samples of in- and outflowing water were taken with battery-
driven pumps. Current velocity in the tunnels was measured with electro-magne-
tic induction current meters (Marsh-McBirney and NSW Meerestechnik) mounted
inside the tunnel halfway between sampling points. Current velocity outside
the tunnel was measured in 1993 with a meter mounted outside the tunnel. These
devices were operated from a small boat anchored alongside the tunnel. Because
of low natural densities, cockles from the surrounding area were added on the
experimental site, two weeks in advance of an experiment. In April, several
thousands of cockles from the Sloe harbour area were bought from a cockle
fisher and also added to the natural population, two weeks in advance of the
experiment. In the control tunnel, in June/July 1993, cockles were removed
from the sediment. In April and June/July 1993, current velocity in the tun-
nels was reduced by placing five iron rods of 1 cm diameter into the sediment
at the entrance of the tunnel, at equal distances. Reduced water flux through
the tunnel enhanced the possibility of detection of material fluxes.

outflow

current velocity meter

L

out sample
inflow

0.8 m in sample

data logger

Figure 2 Schematic representation of Benthic EcoSystem Tunnel



Experiments lasted two subsequent tidal cycles. Sampling started when water
level above the mudflat reached ca. 1 m. Samples of in- and outflowing water
were taken at 30 min (1992) or 20 min (1993) intervals and sampling stopped
when water level dropped below 1 m with the receding tide. Samples were trans-
ported in 1 1 polythene bottles to the laboratory and filtered within a few
hours, and stored before further analysis took place. After each experiment,
cockle density and frequency distribution in the tunnel were determined by
taking 10 bottom cores of 1/16 m?. Samples were stored at -20°C. Shell length
was measured to the nearest 0.1 mm with callipers, along the longest axis of
the shell. The soft parts were excised from the shell, and DW and AFDW were
determined by respectively drying for 48 h at 70°C, and combusting for 2 h at
450°C.

2.2 Sample analysis

Number of particles with equivalent spherical diameter > 3 um in each
sample was determined with a Coulter counter. Seston was determined by filte-
ring 500 ml of sampled water over a pre-weighed, ashed Whatman GF/C glass
fiber filter, rinsing with about 100 ml distilled water, drying the filter for
24h at 60°C, and weighing. Particulate organic carbon (POC) was determined as
weight loss after ashing of the seston filter. Particulate organic nitrogen
(PON) and phosphorus (POP) were determined by filtering 500 ml of sampled
water over a Whatman GF/C filter, rinsing with sea-water isotonic salt soluti-
on (30 g NaCl.1™!) and combusting the filter in a Carlo Erba analyser. Chlo-
rophyll-a and phaeophytin-a were determined by HPLC after filtering 1 1 (Sep-
tember 1992 and April 1993) or 500 ml (June/July 1993) of sampled water over a
Whatman GF/C filter, adding some MgCO; solution, and rinsing with sea-water
isotonic salt solution. Dissolved inorganic nutrients were determined by auto-
analyzer in the filtrate obtained after filtering over a Whatman GF/C filter.

2.3 Calculation of mass fluxes

Mass fluxes of material were calculated by multiplying the difference in
concentration between inflow and outflow by the water flux through the tunnel
at sampling time. Figure 3 illustrates this procedure. Water flux was calcu-
lated from current velocity measurements multiplied by 0.85 to correct for
shear on the bottom and at the tunnel sides. Only samples at current veloci-
ties > 2 cm/s were used for analysis, we assumed water in the tunnel to be
well mixed at these speeds (Prins et al., in prep.). A positive sign is used
for influx, and a negative sign for flux out of the sediment.

2.4 Calculation of clearance rate in the tunnel

Clearance rate of a standard cockle of 1 g DW in the tunnel can be cal-
culated from chlorophyll-a concentrations in the following way (after Cough-
lan, 1969):

Q In (Cin / Cout)
CRyeq = in m%/m?.h
A

where CRy.q is clearance rate of the cockle bed, Q is water flux (m®/h) through
the tunnel, C;, is chlorophyll-a concentration (ug/l) in the inflowing water,
Cout 1s chlorophyll-a concentration (ug/l) in the outflowing water, and A is
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the surface (m?) of the cockle bed between sampling points. Clearance rate is

then converted to rate per standard animal of 1 g DW by dividing CRy.q by the
metabolic biomass in the tunnel, B:

B, = z (n; W) in g/m?
where n; is the number of cockles of size class i, W; is DW of a cockle of

size class i, and b is the weight exponent of the allometric function CR =
aWP. A value of 0.556 was chosen for b in this study (Newell and Bayne 1980).
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Figure 3 Example of procedure for computation of mass fluxes from current velocity measurements and concen-
trations of, in this case, ammonia in inflow and outflow of the tunnel. The three graphs in the left column
are for tunnel with cockles, right three graphs are for control tunnel. The graphs in the top row give
current velocity at each water sampling time, while graphs in the middle row give ammonia concentrations for
inflow and outflow of the tunnels at each sampling time. The lower row of graphs shows the fluxes of ammonia
at each sampling time, calculated from concentration differences between inflow and outflow (middle row) and

current velocity (top row) converted to water flux through the tunnel. Example for June/July 1993 experi-
ment, second tidal cycle.



2.5 Laboratory measurements of clearance rate

A subsample of cockles was taken from the tunnel immediately after a BEST
experiment. The animals were transported to the laboratory and placed in a
raceway onto sediment taken from the tunnel, and provided with running sea
water from the Eastern Scheldt. Measurements were done within a week after the
BEST experiment. Clearance rate was measured with natural Eastern Scheldt
water. 14 Cockles were put into small cups with silicious sand (median grain
size of 210 pm) and placed in individual flow-through chambers of ca. 600 ml.
Two control chambers contained a cup of sand without a cockle. A water flow of
ca. 4 1/h was maintained trough the chambers with a Watson-Marlow 503s or 504s
peristaltic pump. Water in the chambers was mixed gently with magnetic stir-
rers. Samples of outflowing water were taken after a 16 h acclimatizing peri-
od, and analyzed with a Coulter counter. Particles with equivalent spherical
diameter > 3 um were counted. Clearance rate for each individual cockle was
calculated with the following formula, using the outflow of the control cham-
ber as the inflow value, to correct for sedimentation in chambers or tubing:

CR =Q * (Cin - Cout.) / Cin:

where CR = clearance rate in 1/h, Q is flow through the chamber in 1/h, C;, =
number of particles > 3 pum per ml in outflow of control chamber, and C., =
number of particles > 3 upm per ml in outflow of chamber with cockle. After the
experiment, cockle length, DW and AFDW were determined as described in 2.1.

2.6 Diatom composition of cockle stomachs and near-bottom water

To obtain stomach contents, cockles were stored on ice after sampling.
Dissection took place within 2 hours after sampling, using a stereo microsco-
pe, cold light source, small scissors and a 1 ml syringe. Stomach contents
were stored in 10 ml of Lugol'’s solution. Near-bottom water was collected with
the normal sampling tubes from the tunnel, taking 1 1 and storing it with 4 ml
concentrated Lugol’s solution. To determine diatom composition, 5 ml of sample
was taken and put into a 10 ml cuvette. 200 Diatom cells were counted at 400x
magnification under an inverted microscope (Zeiss) after at least 24 h sett-
ling time. Distinction was made between pennate (mostly benthic, Hummel 1985,
p.61l), and centric (unicellular or chain-forming, mostly pelagic in origin,
Hummel 1985, p.6l) diatoms.

2.7 Statistical analysis

Statistical analysis of the data was done using Statistix 4.0 and Systat
5.0 statistical packages. Significance of a mass flux was determined over one
tidal cycle at a time, comparing pairs of inflow and outflow data by a Wil-
coxon signed ranks test. For the June/July 1993 experiments, fluxes in the
control and cockle tunnel were compared per tidal cycle using a Mann-Whitney
U-test.
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3 Results

Cockle density and biomass in the tunnel are given in table 1 for each
experiment. Density and biomass were higher in 1993 than in 1992 because more
cockles were added to the tunnel site. Other macrobenthos species were scarce-
ly observed in cores from the tunnel in all experiments, and biomass is suppo-
sed to have been negligible as compared to cockle biomass. This has been quan-
tified in June/July 1993 (Table 1). Length distributions of cockles in the
tunnel are shown in figure 4. The large cockles present in September had pre-
sumably been fished after the experiment, and in April only small animals of
around 10 mm were left over. In April we added a large amount of 30 - 40mm
cockles originating from a mudflat in the mouth of the Western Scheldt on the
site, while in June/July somewhat smaller cockles from the surrounding mudflat
area were added.

Table 1 Cockle densities and AFDW per m? in the tunnel for three BEST experi-
ments. Means * s.e., 10 cores in September 1992 and April 1993, 5 cores in
June/July 1993

experiment #/m? g AFDW/m? other benthos AFDW/m?
23/24 September 1992 232 + 69 85 + 14 not determined
14/15 April 1993 1133 £ 120 194 not determined

30 June / 1 July 1993:

Cockle tunnel 1680 = 130 200 + 16 4 + 1
Control tunnel 64 + 11 5+ 1 not found
September 1992 April 1993 June/July 1993
232 cockles per m2 1133 cockles per m2 1680 cockles per m2
20 20
i
10 10
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Figure 4 Length distribution of cockles in the tunnel for the three experiments. One class per mm length.
Mean frequency in percent of mean total per core of 1/16 mi.
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Current velocity profiles measured in and outside the tunnels are pre-
sented in figure 5. On the experimental site in September 1992 a clear rever-
sal of current direction occurred at the turn of the tide. This was not ob-
served on the site used in 1993 experiments. The effect of current velocity
reductions (carried out on purpose, see section 2.1) in 1993 experiments was
clearly visible. In the control tunnel in June/July 1993, velocity was higher
than in the tunnel with cockles (Mann-Whitney U-test, p<0.0001). This could be
caused by tunnel design differences and effects resulting from the position of
the tunnels on the mudflat. However, current velocities at water sampling
times did not differ significantly between cockle and control tunnel (Mann-
Whitney U-test, p > 0.05). Since fluxes were calculated using only the veloci-
ties at water sampling times, there is no effect on further results.

Mean mass fluxes of material for all three experiments are given in
tables 2, 3 and 4. Statistical comparison of fluxes in the cockle tunnel and
the control tunnel is also listed in table 4. On the whole, ranges of fluxes
were large and few fluxes were computed from significant differences in con-
centration of inflowing and outflowing water. In September, significant out-
fluxes of seston, POC, POP and phaeophytin-a occurred, no doubt due to the
strong SW wind of 6 to 7 Beaufort during the experiment. Under such turbulent
conditions it was impossible to measure any influence of cockles on the water
flowing through the tunnel. The results of this experiment are therefore not
discussed further.

In 1993 weather conditions were more favourable, and chlorophyll-a upta-
ke could be detected, although uptake was only significant in the second tidal
cycle of the April experiment (table 3). In June/July, chlorophyll-a uptake
was observed in both cockle and control tunnel in the first tidal cycle. In
the second tidal cycle, chlorophyll-a uptake occurred in the cockle tunnel,
while in the control tunnel an outflux of chlorophyll-a occurred, possibly due
to suspension of benthic diatoms. The difference in mean chlorophyll-a fluxes
between the tunnels was not significant (Table 4). Phaeophytin-a fluxes showed
no clear pattern. In the second tidal cycle in June/July a significant uptake
of phaeophytin-a occurred, while release occurred in the control tunnel. The
difference in fluxes between the tunnels was not significant (Table 4). No
significant differences were found between inflow concentrations of all para-
meters and between water fluxes for cockle and control tunnel in June/July
1993 (Mann-Whitney U test).

Large variations in seston flux were found in both 1993 experiments. In
April and in June/July in the first tidal cycle, seston was transported out of
the tunnel. Only during the second cycle in June/July seston uptake occurred,
twice as much in the cockle tunnel relative to the control tunnel. But the
difference between the tunnels was not significant (Table 4). We never obser-
ved significant differences in particulate C, N and P between inflow and out-
flow of the tunnel.

For dissolved inorganic nutrients, flux data do mnot show a clear pat-
tern. In April, trends for uptake of all nutrients (except for nitrate) occur-
red, but only for phosphate this uptake was significant. In June/July, release
of nutrients nearly allways occurred in the control tunnel, sometimes being
significant. In the cockle tunnel, uptake seemed to occur during the day in
the first tidal cycle, while release was found at night during the second
tidal cycle. This trend was reversed for nitrate. Significant differences be-
tween fluxes in cockle and control tunnel were found for ammonium (release in
cockle tunnel relative to control tunnel), phosphate (at day more uptake, at
night more release from cockle tunnel relative to control tunnel) and silicate
(uptake in cockle tunnel at day relative to control tunnel).



Table 2 BEST September 23 and 24, 1992 Molenplaat Western Scheldt. Mean fluxes
+ s.e., range in parentheses. Particulate fluxes in g/m?.h, chlorophyll-a and
phaeophytin-a fluxes in mg/m?.h, dissolved material fluxes in mmol/m?.h. Posi-
tive flux means uptake in the tunnel, negative flux means release from the
tunnel. Differences between inflow and outflow concentrations tested with
Wilcoxon signed ranks test, significance denoted by asterisks:

* p< .05, ¥* p< .01

cycle 1 (day, n=12) cycle 2 (night, n=12)
seston -1 + 100 (-680/870) =240 & 95%* (-990/65)
POC 2.3 1.6 (-5.9/13) -2.0 £ 0.9* (-11/0.3)
PON 0.1 £0.11 (-0.48/1.3) 0.07 £ 0.04* (-0.11/0.41)
POP 0.02 + 0.07 (-0.41/0.65) -0.14 % 0.09%* (-1.2/0.08)
chlorophyll-a 0.5 0.9 (-7.8/5.2) -2.2 £ 2.2 (-27/6.0)
phaeophytin-a 0.21 + 0,12 (-0.15/1.2) -0.51 £ 0.40% (=3.7/3.4)
ammonia 3.6 +1.8 (-4.5/15) 1.7 £ 2.6 (-11/23)
nitrite 3.4+ 2.1 (-5.6/20) 1.4 2.3 (-15/14)
nitrate 82 + 50 (-140/460) 42 + 57 (-300/350)
phosphate 3.4 £ 2.9 (-11/25) 4.2 £ 1,9% (-4.5/15)
silicate 20 + 12 (-250/110) 8.6 + 12 (-80/70)

Table 3 BEST April 14 & 15, 1993 Molenplaat Western Scheldt. Mean fluxes %
s.e., range in parentheses. Particulate fluxes in g/m?.h, chlorophyll-a and
phaeophytin-a fluxes in mg/m?.h, dissolved material fluxes in mmol/m?.h. Posi-
tive flux means uptake in the tunnel, negative flux means release from the
tunnel. Differences between inflow and outflow concentrations tested with Wil-
coxon signed ranks test, significance denoted by asterisks: * p< .05,

*% p< .01

cycle 1 (night, n=6) cycle 2 (day, n=11)
seston -63 + 53 (-328/57) -27 + 23 (-146/141)
PoC -1.5+x1.1 (-4.8/2.8) 0.1 +0.8 (-5.7/4.9)
PON -0.22 + 0.13 (-0.59/0.14) 0.18 £ 0.10 (-06.08/1.2)
POP -0.02 * 0.03 (-0.15/0.06) 0.02 £ 0.02 (-0.04/0.18)
chlorophyll-a 5.0 + 4.3 (-13/20) 3.1 + 1,.8% (-6.6/17)
phaeophytin-a ~0.06 * 0.44 (-2.2/1.2) -0.19 £ 0.30 (-3.2/0.61)
ammonia 3.0 1.6 (-2.5/9.6) 1.2 £ 0.8 (-2.0/5.1)
nitrite 0.3 0.5 (-1.0/2.2) 0.7 1.0 (-5.0/7.0)
nitrate -20 *+ 25 (-140/69) 130 + 86 (-290/680)
phosphate 1.1 & 0.3* (-0.2/1.9) 3.0 £ 0.8* (0.1/7.7)
silicate 13 £ 7 (-15/34) 8 * 16 (-73/120)
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Table 4 BEST June 30 & July 1, 1993 Molenplaat Western Scheldt. Mean fluxes
s.e., range in parentheses. Particulate fluxes in g/m?.h, chlorophyll-a and
phaeophytin-a fluxes in mg/m?.h, dissolved material fluxes in mmol/m?.h. Posi-
tive flux means uptake in the tunnel, negative flux means release from the
tunnel. Differences between inflow and outflow concentrations tested with Wil-
coxon signed ranks test. Mann-Whitney U-test for comparing fluxes from cockle
and control tunnel. Significance denoted by asterisks: * p<.05, *%* p<.0l

tidal ecycle 1 (day, n=8) tunnels

cockle tunnel control tunnel compared
seston -23 & 46 (~270/240) -140 £ 120 (-910/340) n.s.
POC 1.0 + 2.6 (-7.0/19) -0.1 % 2.6 (-14/11) n.s.
PON 0.1 % 0.2 (-0.6/1.7) -1.0 £ 0.8 (~6.2/1.6) n.s.
POP 0.14 % 0.10 (~0.12/0.84) 0.03 + 0.06 (-0.21/0.41) n.s
chlorophyll-a 12 % 11 (-24/76) 16 + 14 (-17/110) n.s
phaeophytin-a 0.7 * 0.9 (-2.4/6.2) 1.8 £ 1.7 (-3.2/14) n.s
ammonia 3.9 % 3.3 (-3.8/27) -1.0 + 1.7 (-7.3/7.3) n.s
nitrite 1.0+ 1.3 (-3.4/7.4) -1.9 % 1.1% (-8.4/0.8) n.s
nitrate -7 + 15 (-72/73) -38 + 18 (-140/2.5) n.s
phosphate 0.5+ 0.4 (-1.4/2.8) -1.4 + 0, 5%%* (~4.7/0.0) ¥
silicate 7.9 £ 2.6%% (0.0/23) -2.8 + 1.2 (-8.1/2.3) e

tidal cycle 2 (night, n=12) tunnels

cockle tunnel control tunnel compared
seston 27 £ 51 (-460/340) 14 + 36 (-210/330) n.s
POC 0*3 (-22/15) 0.2 + 0.7 (~3.8/5.3) n.s
PON 0.2 £ 0.4 (-2.6/3.1) -0.0 £ 0.2 (-1.7/1.0) n.s
POP no data
chlorophyll-a 32 % 30 (-68/350) -10 % 20 (-230/57) n.s
phaeophytin-a 1.2 £ 0.7¥ (-0.4/7.8) -0.2 1.0 (-10/4.1) n.s
ammonia -3.9 & 1, 1¥% (-13/0.8) -0.4 + 1.3 (-12/3.9) ik
nitrite -0.1 % 0.2 (-2.0/1.2) -1.4 £ 1.8 (-21/4.1) n.s
nitrate 4.8 £ 2.2 (-9.5/15) -8.3 + 19 (-210/79) n.s.
phosphate -1.3 & 0,3%* (-3.4/0.0) 0.2 £ 0.3 (-1.9/2.2) e
silicate -1.1 & 0,6%% (-6.4/1.2) -3.3 & 1.9% (-22/1.6) n.s.
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Seston concentrations in inflowing water were high in all experiments
(fig. 6) (September 60 * 10 mg/l; range 20 - 304 mg/l, April 43 + 3 mg/l;
range 20 - 80 mg/l, June/July 51 +* 5 mg/l; range 7 - 150 mg/l), while chlorop-
hyll-a and POC content (in percent of total seston) decreased with increasing
seston concentration. However, C/N ratio (as POC/PON) showed no relation with
seston concentration in 1993 experiments, but a positive relation in September
1992, Still, mean G/N ratio remained low (September; 11 * 0.37, April; POC/PON
= 7.08 £ 0,16, June/July; POC/PON = 7.19 * 0.07), indicating food of high qua-
lity for filter feeders (Navarro et al. 1993). Organic material in the water
will have consisted mainly of algae with typical C/N ratios of 5 to 8 (Fenchel
and Jgrgensen 1976), while detritus, with higher C/N ratios of 10 to 35 (Rus-
sel-Hunter 1970), made up only a minor part.

Clearance rates measured from chlorophyll-a uptake in the tunnels, re-
calculated per g AFDW, were similar to values found in the laboratory with
cockles taken from the tunnel after a field experiment. Clearance rates for
laboratory and tunnel respectively, in 1/g DW.h, for April were 1.28 + 0.32
(n=6) and 1.68, and for June/July 2.70 * 0.46 (n=7) and 2.98. Clearance rate
measured in the laboratory was significantly lower in April than in June/July
(Mann-Whitney U-test, p = 0.0321),

Diatom counts of water samples from the tunnel show that up to 50 % of
the diatoms can be of benthic origin (fig. 7), showing that resuspension of
surface sediment was important during those experiments. No clear change in
diatom composition seems to take place in the course of a tidal cycle. Diatom
counts of cockle stomach contents showed the same distribution (fig. 8) as
found for the water in April. In June/July 1993, Phaeocystis sp. colonies were
also present in the water. No stomach samples were taken in June/July.

Diatom composition of near-bottom water Diatom compasition of near-bottom water

from the tunnel on 14/15 April 1983 from the tunnel on June 30/July 1, 1993
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Figure 7 Diatom composition of water samples from the tunnel from April and June/July 1993 experiments.
Relative abundance of diatom groups (pennate, unicellular centric and chain-forming centric diatoms, and
Phaeocystis) in percentage of 200 cells counted per sample at start of experiment, high water and end of
experiment, for day and night cycles.
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diatom composition in stomachs of eight
cockles from the tunnel, April 1993

100

50
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Figure 8 Diatom composition in stomachs of cockles sampled during the April 1993 tunnel experiment. Relative
abundance of diatom groups (penmate, unicellular centric and chain-forming centric diatoms) in percentage of
200 cells counted per stomach sample.

4 Discussion

Large variations were found in mass fluxes in tunnels with cockles in
all three experiments, and also in the control tunnel. It is difficult to draw
conclusions from these results. We will discuss results for cockle and control
tunnel in the June/July 1993 experiment, the only experiment in which a con-
trol tumnel was used. Notwithstanding the current velocity reduction measures
taken, a trend for net export of particular and dissolved material - signifi-
cant in only one case - took place in the control tunnel (table 4). When flu-
xes in the cockle tunnel are corrected for flux occurring in the control tun-
nel, a trend for net import of particulate material emerges. For dissolved
inorganic nutrients, a trend for uptake prevailed during the day, while relea-
se occurred at night. This pattern could be caused by benthic diatoms growing
in the cockle tunnel, utilizing nutrients released by the cockles at day. At
night no benthic diatom primary production takes place, and cockle release
products leave the tunnel. But then uptake of dissolved inorganic nutrients
should have taken place during the day by benthic diatoms in the control tun-
nel too, which we did not find. The chlorophyll-a concentrations of the sedi-
ment in cockle and control tunnel were 13.36 + 2.68 pg/g and 16.20 + 2.55 ug/g
respectively, indicating that benthic diatoms were present indeed. These chlo-
rophyll-a concentrations are in the range normally found on the Molenplaat in
June and July (D. de Jong, unpubl. data). Concentrations did not differ signi-
ficantly between cockle and control tunnel (Mann-Whitney U-test, p=0.43).
Suspension of these benthic diatoms could also have caused some of the wvaria-
tion in chlorophyll-a fluxes measured in the tunnels.

Cockle clearance rates measured in the laboratory did not differ from
those measured for cockles in the tunnel, and were comparable to a literature
value of Prins and Smaal (1989) (fig. 9). Ammonium and phosphate releases are
compared to literature data in table 5, since excretion was not measured in
the laboratory for individual Western Scheldt cockles in this study. Contrary
to expectation, releases we found are high in relation to values found in a
BEST experiment in the Eastern Scheldt (Prins and Pouwer 1990) and in a
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Figure 9 Cockle clearance rates compared for laboratory and field. Values measured in same month are compa-
rable. Laboratory clearance rates with s.e., tunnel clearance rates calculated (see material and methods
section).

Table 5 Ammonium and phosphorus releases of the experiment in June/July 1993,
second tidal cyecle (Table 4 lower panel) compared to other experimental data
on cockles. A BEST experiment on a mussel bed is selected for comparison.

study biomass ammonia flux phosphate flux
g AFDW/m? pmol/m?. h pmol/m?.h

BEST, Cockle bed, 6.3 580 90

Eastern Scheldt?

Cockles in 136 - 170 g DW 84 2.3

aquarium®

BEST, Cockle bed, 200 3400 1100

Western Scheldt®

BEST, Mussel bed, 1448 6700 709
Eastern Scheldtd

a Prins and Pouwer (1990); July, P Lindstrém Swanberg 1991; laboratory in
March, ° this study; June/July 1993, ¢ Prins and Smaal 1990; June 29, 1988,
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laboratory study where cockles were kept in aquaria (Lindstrém Swanberg 1991).
Ammonium release on the cockle bed is half of ammonium release on a mussel bed
in the Eastern Scheldt in the same month, while phosphate release is in the
same order of magnitude in both experiments. But the validity of releases on
the cockle bed is highly questionable since they were only observed during one
out of four tidal cycles. For ammonium, the quantitatively most important nu-
trient excreted (Prins and Smaal 1990), out of four tidal cycles, significant
efflux was measured only one time, while mean influx occurred in the other
three cycles. It is difficult to find feasible explanations for the alter-
nations of influx and outflux also found for other dissolved inorganic nu-
trients in the 1993 experiments. In addition, the range in magnitude of fluxes
during one tidal cycle is large for all parameters measured, so few fluxes
were significantly different from zero flux.

An evaluation of field conditions during the experiments could help in
understanding these results. Weather conditions were bright with low wind
speeds for both 1993 experiments. Still, current velocity reduction was needed
to enhance the possibility of detecting the influence of the cockles on the
water flowing through the tunnel (£fig. 5). In April, sediment was eroded
alongside the tumnel, leaving holes under the side plates, so that water could
enter the tunnel halfway between the sampling points. Effects of water proces-
sing by cockles are possibly masked by such an influx of water into the tun-
nel. It could also explain release of seston, POC, POP and phaeophytin-a in
the second cycle of the April experiment. In the June/July experiment we pre-
vented erosion almost completely by protecting both sides of the two tunnels
with sand bags.

Mean seston concentrations of 40 - 60 mg/l we found in inflowing water
were high as compared to mean values for other systems (e.g. Western Wadden
Sea 5 - 20 mg/l (Prins et al. in press), Eastern Scheldt 20 - 30 mg/l (Smaal
et al. 1986)). Clearance rate is negatively correlated with seston concentra-
tion in the cockle (Foster-Smith 1975, Prins et al. 1991), and cockles in the
tunnel will have pumped with reduced clearance rates at the high seston con-
centrations prevailing. This also reduced their impact on water flowing
through the tunnel, and thus detection of that impact will be even more diffi-
cult. Another possible problem lies in cockle biomass attained in the tunnel,
which was low when compared to experiments with mussels Mytilus edulis where
biomasses of > 1000 g AFDW/m? can be attained. It will be difficult to get a
higher cockle biomass in the tunnel, since cockles are infaunal bivalves and
cannot be piled on top of each other like (epifaunal) mussels. Densities
reached in the tunnel in our experiments are near the maximum possible. Summa-
rizing we can say that the BEST method, that yielded good results with mussels
(Dame and Dankers 1988, Prins and Smaal 1990, Prins and Smaal in press) and
oysters Crassostrea virginica (Dame et al. 1984, 1992) in low seston, low cur-
rent velocity environments, meets serious problems when applied on cockle beds
in the Western Scheldt. Zurburg (1993) met similar problems when operating the
tunnel with oysters Crassostrea gigas in the Bay of Marennes-0Oléron (France).
It may be possible that improvements on the tunnel equipment solve these pro-
blems, but other field methods need also be considered.

The results of diatom composition in cockle stomachs and near-bottom
water (fig. 7, 8) indicate that cockles ingest all kinds of diatoms present in
the water. These results are supported by work of Kamermans (1992), who stu-
died algal composition of water and stomach contents of the bivalve filter
feeders Cerastoderma edule, Mya arenaria and Mytilus edulis in the Western
Wadden Sea. For all species, algal composition of stomach contents and overly-
ing water showed high correlations. She also found suspended benthic diatoms
in near-bottom water, to a percentage of around 30% of all algae present.
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To evaluate the influence of cockles on material fluxes in the Western
Scheldt estuary, simple budget calculations were done using clearance rate
values and literature data (see Appendix for details on calculations). Cockle
biomass of the May 1992 census was used, including the estimation of September
1992 biomass (Kesteloo - Hendrikse and wvan Stralen 1992). Benthic diatom data
for 1989 - 1992 were taken from Frandzel (1993), while for other factors ave-
raged monthly values over 1980 - 1985 were used from MOSES, a model of the
Scheldt Estuary (Soetaert et al. 1992). Benthic diatom primary production can
occur year-round (Cadée and Hegeman 1974), and for calculations we used the
same average yearly level for July and September. In the Wadden Sea, Cadée and
Hegeman (1974) found production to be in the same order of magnitude in July
and September. Results are presented in diagram form for ’'July 1992' and ’'Sep-
tember 1992’ in figure 10. The term 'available algae’ is used to describe the
mixture of pelagic and suspended benthic algae that is available to cockles in
near-bottom water on the mudflats. Since data for the Western Scheldt are
still poor, no benthic/pelagic ratio of some sort was used in the budget cal-
culations. In July (fig. 9, left) phytoplankton primary production is high,
and cockles could filter less than 10% of daily production. Filtration capaci-
ty would be nearly 50% of benthic diatom daily production, and could be limi-
ting benthic diatom stock, if substantial suspension occurs. In September
(fig. 9, right), phytoplankton primary production is much lower than in July,
and now the cockles, which have grown in summer, and thus have higher clearan-
ce rates, could ingest the entire daily production. Absolute ingestion is
lower than in July, because algal concentration in the water is lower and
clearance rate remained the same in the calculations (although it varies sea-
sonally, Newell and Bayne 1980). Effect on benthic diatoms could be more im-
portant than in July, because autumn storms can intensify wind-driven suspen-
sion. Ammonium excretion by cockles is insignificant to the N pool in both
July and September, as is the need of N for primary production. From these
calculations, it is not probable that cockle excretion is important to phyto-
plankton in the Western Scheldt. Also, it seems that cockles could not act as

for production for production
5.1 mg N/day 0.17 mg N/day
phytoplankton N pool phytoplankion N pool
520 mg C < 200 mg C
2800 mg N 9 2200 mg N
P = 50 mg C/day P = 1.7 mg C/day mo
N excretion N excretion
7?7¢gC and release 7?779C and release
5 pg N/day 10 pg N/day
available algae available algae
suspension filtration suspension tiltration
7?77gC 5 mg C/day ?7? g C/day 3.7 mg C/day
benthic diatoms cockles benthic diatoms cockles
110 mg C 110mg C
130 mg AFDW 9
P = 9 mg C/day 9 P = 9 mg C/day 260 mg AFDW
Waestern Scheldt, July Western Scheldt, September

Figure 10 Budget calculations for the marine part of the Western Scheldt for July (left) and September
(right). All values are in mg per m’, except for N excretion, pg/m’. Average biomass for cockles was 3.9 g
AFDW/m?* in July and 7.7 g AFDW/m’> in September. For benthic diatoms, yearly averaged biomass was 4.36 g C/m?,
production was 0.37 g C/m’. See Appendix for calculations.
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a eutrophication control, able to control algal blooms, as suggested in calcu-
lations for other systems (Officer et al. 1982, Loo and Rosenberg 1989, Herman
and Scholten 1990, Smaal and Prins 1993). But In autumn and winter, periods
with low and even negative net phytoplankton primary production (Soetaert et
al. 1992), cockles could have an important effect on phytoplankton, as long as
temperatures are high enough for filtration activity to take place (Newell and
Bayne 1980). Ingestion of benthic diatoms by cockles could be important in all
seasons, depending on the amount of suspension taking place. Investigations on
the diatom composition of near-bottom water will have to be done to elucidate
the importance of this process.

5 Conclusions

In two cases, significant uptake of chlorophyll-a and release of ammonium and
phosphate have been observed in tunnel experiments, but in general fluxes were
not significant and varied between influx and outflux. Filtration rates though
are comparable under field and laboratory conditions. However, improvements
are required on the tunnel equipment to achieve more accurate flux measure-
ments. Preliminary budget calculations show that cockles may have a limited
impact on phytoplankton in the Western Scheldt in July, but that in September
this impact may be large due to lower primary production and increased cockle
biomass through growth. Depending on the amount of resuspended benthic diatoms
available for filtration, cockles may ingest a substantial portion of benthic
diatom daily production. The availability of benthic versus pelagic algae to
cockles in different seasons is subject of further research.
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Appendix 1 - Calculation of budgets for the Western Scheldt

Basic data for MOSES compartments nrs 7 - 13 (Soetaert et al. 1992), where
cockles occur according to Kesteloo-Hendrikse and van Stralen (1992).

total water volume at mid-tide
= 1/2*%(mean HW volume + mean LW volume)
= 2.545%10° m?

total surface of tidal flats
= 8.433%107 m? (Kesteloo-Hendrikse and van Stralen 1992)

mean water depth = volume at mid-tide / surface at HW (MOSES)

10 m

Cockle biomass in Western Scheldt in 1992 (Kesteloo-Hendrikse and wvan Straalen
1992):

May 1992 September 1992 (estimate)

7834 ton fresh + shell 15437 fresh + shell

410 ton DW (5.2% of fresh) 800 ton DW

330 ton AFDW (4.2% of fresh) 650 ton AFDW

4.9 g DW or 3.9 g AFDW per m? 9.5 g DW or 7.7 g AFDW per m?
0.16 g DW or 0.13 g AFDW per m® 0.31 g DW or 0.26 g AFDW per m®

Phytoplankton monthly average for 1980 - 85 period (MOSES)

July September

phytoplankton biomass

0.519 g Phytoplankton-C/m? 0.201 g Phytoplankton-C/m?
5.2 g phyto-C/m? 2.0 g phyto-C/m?

netto primary production (corrected for phytoplankton respiration)
0.0489 g C/m®.day 0.00169 g C/m?.day

Nitrogen pool in monthly averages for 1980 - 85 period (MOSES)

July September
N as NH, 0.264 g N/m? 0.165 g N/m®
N as NO; or NO, 2.547 g N/m? 2.012 g N/m?
total N 2.8 g N/m® 2.2 g N/m?

Nitrogen demand for phytoplankton primary production (N/C = 0.104, MOSES)

July

0.0489 g C/m®.day * 0.104 = 0.0051 g N/m®.day
September

0.00169 g C/m®.day * 0.104 = 0.00017 g N/m?.day
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Benthic diatoms (Frandzel 1993), average 1989 - 1993 over all tidal flats

Biomass (yearly average)

109 mg chlorophyll-a/m? and C/chlorophyll-a ratio of 40

4.36 g C/m?

Area with benthic diatoms is 6.33 * 107 m? (Frandzel 1993), 280 ton C for to-
tal Western Scheldt, 110 mg C/m3

Gross production (de Jong et al. in press, after Cadée and Hegeman 1977)
Production = 1.22 * Biomass + 1.77 in g C/m?.year
= 1.22 * 109 mg chlorophyll-a/m? + 1.77
135 g C/m?.year
= 0.37 g C/m?.day
23 ton C/day for total Western Scheldt, 9 mg C/m’.day

Cockles filter at 0.003 m®/g DW.h in both months (assumption)

July

0.003 m3®/g DW.h * 4.9 g DW/m? * 20 hours/day * 0.519 g phyto-C/m®
= 0.15 g phyto-C/m?.day (0.29 m®/m?.day)

or per m®: 0.003 * 0.16 * 20 * 0.519 = 0.0050 g C/m3.day

this is 10 % of phytoplankton daily production in July

September

0.003 m®/g DW.h * 9.5 g DW/m? * 20 hours/day * 0.201 g phyto-C/m’
= 0.11 g phyto-C/m?.day (0.57 m®/m?.day)

or per m%: 0.003 * 0.31 * 20 * 0.201 = 0.0037 g C/m3.day

this is 220 % of daily phytoplankton production in September

Excretion of ammonia by cockles
1.6 pg NH,/g AFDW.h (Prins and Smaal, 1989) used in both months.

July
1.6 pg NH,/g AFDW.h * 24 h * 3.9 g AFDW/m? = 150 pg NH,/m?.day
or per m®: 1.6 * 24 * 0.13 g AFDW/m® = 5.0 pg NH,/m®.day

September
1.6 ug NH,/g AFDW.h * 24 h
or per m®: 1.6 * 24 % 0.26

7.7 g AFDW/m? = 300 pg NH,/m?.day
10 pg NH,/m®.day

%
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