Partial fishing mortality per fishing trip: a useful indicator of effective fishing effort in mixed demersal fisheries

Adriaan D. Rijnsdorp, Niels Daan, and Willem Dekker

Abstract

 Marine Setence, 613: 556-506. mersal fisheries. It requires a medric as extimate the fishing morkality imposed by as giver In an merease in skipper skills and invespand in atuxilitry equpment. We whatement al sole and place were neqatively related in sammer and showed moredationdap in winler plaice ind sole.

Introduction

In Eurucean Imion waters, tish stocks are managed by set-
 companied by wehnical measures such as dear restrictions, mush size legulatentis, and whed areas and

 sion, 2001), and several demersal stacks have deetines to historically low levels while explatation levels remain too high (IC 'f: 5,2004).

The man problem in manging mixes lisherist by sing gle-specide The's is that the latere da not rextrict the cateh hat only the (oltieial) landings, the over-quenta cateh of at speeces pertaps being disciaded ar landed illegally fledden,
 en targe speciss maty no be ceplewd in symehrony, su listoing emotinues when the 'TAE for one species has been depleted. This has two main eflects: (i) tishing mortality
 fistics lead to inacename assessmenth and uncertainty in the
 means at resulving these problems and imporing the etlee-
 Sheplerd. 20 m3 3).

A presequisite lior effort management is that the exation hotwesn lishing effer and lishing moribility of a apecis is knewn. Assessing this relationship is not withour pouldems (Marell and Walters, 20(0), Befleisoney varies mong individal vessels awing to ditterences in the skill uf the lishers and wessel chataceristies (Hilbom, l985; sepuires and
 limates developments in the lishing indesitry (Marchal
 2tit2; (bNeill at ab, 2003). However, the ellicieney may he affected alse hy mamagement regutaions, for instance by the introbluctions of a closed atea (Marchat at ab, 2mana, ha, etored seasoms, thanges in mesh aize or culs
 elliciency of vessels incorporates three interredated aspets: ane technical, ane hindegical, and one ecemumat. (icalrefticieney may he delined as the fraction ol' the tish present in

He path of a teawl that is retained hy the gear. It may vary with physical conditions, the skill of the skipper, and fish behnviour, but is is largely independent of the amount of fist presena (adthugh it maty be indluented by cateh rates). Catchability of a species refers to the chance that an individual fish in a popuation is cilught by a gear, and therefore deglends on both gear efliciency and the distribution of fish ill relation th the distribation of the fleet. As such it is an aggregated measume that is atfected by the skills of skippers of locate the greatest densities. Finally, economic effeciency cmbines gear elliciency and caldehaility, but it constrains iadividual vessels to fish only under peolitable conditions by taking into account costs and returns.
"Iraditional stuck assessment provides estimates of the mathability (of) by age group in tuning series, based on the assumed limear rebationship botwen fishing mortatity (i) anded ethorn (E:):
$F=1 \times 1:$

Ising the ration of the cath of fleets on individual vessels atative to the internationall catch, the anmal fishing mortabily may be decomposed into the patial f imposed by these Heeds or vessels (ldevertor ankl loolt, 1957) during a specific period. expressed ans the lishing mortafity induced per unit af eflert (pattial $F_{\text {pur }}$). This partial $F_{\text {pue }}$ cats be interpreted directly ats coltelability (k; I) and integrates adl aspects ot gear elliciency, crew skill, and the propertion of a species avaitable on the lishing ground. "Therefore the partial F " appratel should alkow ewatation of the sources of variability in the relationship beween fishing mentality and eftort. Hees, we explere the varinus components of the process tsuthimal differences, apratial differences, effects of engine paver, vintage of huf and engine, time that a vessel hats heen in (operation) that leads fram the operation of a single vessel ou a lishing eround to the amoual fotal lishing morbality imposed on a sumedes by a mixed fishery, hased on ilvailable data fine the Dutch bohtom (rawl heeds targeting
 fexad. Itaving ghantified these components, we eomment
 fishing ellart in an ellort management context.

Material and methods

Ditia
Data on latadings and effort by trip are avaitable for the Duteh bondom hawl fisheries from lyen, This databuse (VIRIS') is held by the nimbinal fisheries inspectorate and comprises chaily reeneds ol ship identity code, bandings by spectis, area lished (ase rectangle), gear, and hours out of fort. As the ditily records are not always accurate, centolus were summed by trip and assigned to the reetangle having the latgest share ol the tap catch. Technical characferstices of the vessels are registered in a national vessel
database (NRVI) comprising ship identity code, engine power, vintage of hull, vintage of engine, and ownership. For the analysis, individual vessels were uniquely coded for each period that no change occurred in the bull, engine, or owhership. The time that such a unit has been in operation was calculated relative to the date of entry of the unit and expressed in decimal year. For vessels that entered the Heet before the study period, 1 January 1990 was taken as date of entry.

Rectangles were grouped into fishing areas that reflect the spatial distribution of the two flatfish species in relation to management (Figure 1). Hence, areas were distinguished that comprised the 12 -nautical mile zone (1,2), the plaice box ($6,7,8$), the offshore fishing grounds in the southern (3), southwestern (4), and southeastern North $\operatorname{Sen}(5,10)$, the Dogger Bank (13, 14), and the remaining central North Sca (16). In this classification, we took account of management regulations regarding mesh size $(80 \mathrm{~mm}$ south of $55^{\circ} \mathrm{N}$; 100 mm north of $55^{\circ} \mathrm{N}$ until 2000 , when the line was shifled $1056^{\circ} \mathrm{N}$ for waters cast of $5^{\circ} \mathrm{E}$). The seasonal and spatial distributions of the fishong trips analysed are given in Table 1.

Dutel bean trawl fleet

Anong the international flects, the Duteh flect is responsibe for $>80 \%$ of the F of sole, while for plaice a peak of ahout $60^{\circ} \%$ was reached in the 1980 s, followed by a decline 10 about 50% in the 1990 s. The Dutch bottom trawl fleet is dominated by large beam trawlers ($>300 \mathrm{hp}$), which contribute 51% of the total number of fisining days, and 89% and 92% of the landings of sole and plaice, respectively. The flee operates in the offisore waters of the North Sea beyond the $12-\mathrm{mile}$ constal zone and outside the plaice hox (Pastoors of al., 2000). The number al large beam trawlers has declined progressively but stepwise since 1990 (Figure 2 a), interspaced with periods of relative stability (1993-1995, 1998-2000), partly in response to the

Figure 1. Map of the fishing areas distinguished in this study.

Tatble t. Number of fishing trips with a trip duration hetween 2 and <5 days out of port by area and guarter during the stady period 1900-2003. Area codes are shown in ligure 1.

Nreal coule	Qumater				Sum
	1	2	3	4	
(1)	215	24. 7	175	1614	8172
()2	ר164	2998	1451	1344	7961
11.3	7.336	. 4.3 .5	4157	40115	2183.3
(1)4	670	443	436	4197	1956
0.5	6134	14880	5.518	5710	21848
(1)	1071	11.34	1144	1177	4424
107	47)	14.53	1409	831	4262
()8	27	336	184	4.30	977
10	3.497	2.343	44^{4}	$3+16$	1.3742
11	730	7.31	6,68	8415	2078
12	39	124	118	116	347
13	966	074	[601]	1287	4828
14	210	k! 1	471	314	1×31
16	86	240	$81)$	5.4	4106
Sum	23643	217.5	21 vк\%	2134138	482931

feetredoction policy of the European Union. The deeline has gencrally been through the exit of ofter vessels with relaively low engine powers hat have nod hean compensated for by replacements. New vessels mainly entered the fleed belween 1900 and 1905 . However, many more have senewed their engine (Figure 2b). 'rhis resulted in a smatl

[igure 2. Changes in the composition of the active beant traw feed
 vintage is grouped by s-year perionds.
 in 1090 to 2277 hp in 21003 . The ageing of the beam traw Weat is cellected in the increase in the propurtion of vesuls with a huil (or engine) s 10 years old from 620 (790% in 1900 to $284 \%(53 \%)$ in 2000 . The mean vintage ulto lee inctersed between 1990 and 20013 at an anmad mete of 0.04 (huli) ind 0.7 (engine). The number of years that in modal vessel has been in aperation was estmated at 21 years (hall) and 16 years (engine) bising the "proce lifetest" of SAS (5As. (20) ; ligure 3).

Partial lishing montality

Toulal F hy guarter for boulh apecies watis taken from mutio species vinual popubation amalysis (MSV1S A) of quaterly

 singe-spectes VPA. becathe in this model, plaiee and sule are nom preyed upen. Becaluse of the higher emperal resolation, the ghaterly motel was prefered to the ammal VPA routinely perlomed for management idvice. Qtarterly f, averaged over age elasses $3 \quad 8$, wats decomposed into par-
 then hy heot, individual vessel, and limally hy week (trip). Therefore, the parial 8 innoused by an indivedal vessel i per diy it week j ($F_{\text {pan }}$) was

$$
r_{\text {puik }_{n}} \quad \stackrel{i_{11}}{i} \cdot \begin{aligned}
& f \\
& u_{11}
\end{aligned}
$$

Where cotite the landings af vessel i in week i, (ithe letal quarterly landings, fithe quaterly F^{\prime} alithe total international Bees, and $d_{i j}$ is the mander of days fisthed by vessed i in week / F Fore is determined hy the geat elliciency of the ithdivadual vessel and the mumber of fish available in the atwe and is is mensure of the local catchability of a particular vessel.

This approach is a rather eruse approximation at we ace

 among vessels alld ateress wocks.

 a hull and engine operatine in the butch hearal tawl leet.

Statistics

Generalized linear models were used to analyse the contribution of temporal and spatial covariables as well as ship characteristics to the variability in $F_{\text {pue }}$ (SAS, 1999 Proc genmod). As the F estimates from VPA have not yet converged in the most recent years, they were downweighted by applying an arbitrary weight vector $1-\exp -0.68 \times(2004-$ year $)$ that increased the weight from 50% in the final year (2003) to $>93 \%$ in years up to 2000 .

Two types of models were fitted, both using a log link function and a Poisson error. Although residuals were slightly correlated to model predictions, we preferred to retain the Poisson distribution rather than a lognormal or Gamma distribution, because of the complications in handling zero observations in the latter. Our focus is on the development of new methodology, rather than on data-fitting procedures.

The first, more parsimonious, one modelled the seasonal patterns in $F_{\text {pue }}$ for each fishing area by a periodic regression model, allowing for a linear time trend (model 1):
$F_{\text {гие }}=\exp \left[\ln (P)+\operatorname{area} \times \sum_{n}^{\frac{3}{5}}\left(\sin ^{n} \varphi+\cos ^{n} \varphi\right)+t\right]$,
where P is the engine power of the vessel, area the code for the fishing area, φ the $2 \pi \times$ week number $/ 52$, representing a periodic function with a period of 1 year, and t is the time in decimal year. Higher-order terms were included to fit seasonal peaks and lows of different levels at different times during the year.

Second, to check the fit of the periodic model, a more complex model was applied including each week x year and area \times week combination separately, accounting for detailed temporal variation (model 2):
$F_{\mathrm{poc}}=\exp [\ln (P)+$ year \times week + area \times week $]$.

In the third step, the contribution to the time trend in $F_{\text {pue }}$ of the recruitment of a new vessel (vintage of hull, vh), the upgrade of the engine (vintage of engine, ve), and the atutonomous trend (time that a vessel has been in operation, ful) were estimated by replacing t in Equation (1) with vh + ve + tu (model 3):

$$
\begin{align*}
F_{\mathrm{pue}}= & \exp \left[\ln (P)+\operatorname{arca} \times \sum_{n}^{3}\left(\sin ^{n} \varphi+\cos ^{n} \varphi\right)\right. \\
& +\mathrm{vh}+\mathrm{ve}+\mathrm{tu}] \tag{3}
\end{align*}
$$

The statistical fit of the models was compared by the percentage explained deviance, as well as Akaike's information criterion (AIC) (Akaike, 1973).

Results

Partial fishing mortality

Engine power, seasonal pattern, and fishing area all explained a significant part of the variance in $F_{\text {pue }}$ (Table 2). $F_{\text {pue }}$ increased with engine power. The slope of the log-log regression (sole, $\beta=0.809$, s.e. $=0.006$; plaice, $\beta=0.516$, s.e. $=0.006$) was <1, indicating that an increase in engine power did not enhance the $F_{\text {pue }}$ to the same extent. Also, the slopes of the regressions differed between species. Hence, the increase in mean engine power in the fleet observed between 1990 and 2003, from 1996 to $2277 \mathrm{hp}(+14 \%)$, resulted in an increase in $F_{\text {pue }}$ of 11% in sole and 7% in plaice.

The periodic regression model (model 1) included the statistically significant first, second, and third order terms. This model explained 39% (sole) and 43% (plaice) of the variance in $F_{\text {pue }}$, but performed poorer than model 2, including the week \times area and year \times week interaction terms (57% and 56%, respectively; Table 2); the change in AIC amounted to 53176 for sole and 24874 for plaice. Obviously, model 2 is preferred in terms of variance explained.
Figure 4 shows a rather close conespondence between the fitted seasonal patterns of the two models for plajee. In sole, however, the periodic model showed discrepancies during some periods. For instance, in 1996 and autumn 1998, the weekly estimates were consistently higher than the fitted values of the periadic model, whereas the weekly estimates in winter 1995 and 2001 were consistently lower. In some years, the autumn peak in sole also occurred earlier (1999) or later $(1995,2002)$ than predicted by the periodic

Tabie 2. Percentage of the deviance in $F_{\text {pur }}$ explained by the covariables: \ln-transformed engine power $(\ln (P), ~ h p)$, fishing area (area; cf. Figure 1), season and time trend (t : model 1 only). The seasonal pattern was included as a periodic function (model 1: $\sum^{\prime \prime}\left(\sin ^{n} \varphi+\cos ^{n} \varphi\right)$) or as class variables week and year (mode! 2). All explanatory variables explained a significant part of the variance ($p<0.001$).

Covariable	Sole		Plaice	
	\% Explained	d.f.	\% Explained	d.f.
Model 1				
$\ln (P)$	20.4	1	6.0	1
Area \times period	I4.8	53	35.8	77
Time trend	3.8	1	1.0	1
Total	39.0	55	42.8	79
Model 2				
$\ln (P)$	20.4	1	6.0	1
Area \times week	17.2	468	38.2	670
Year \times week	19.5	676	11.6	676
Total	57.1	1145	55,8	1347

 (pertiodic) model 1 (lines) and model 2 (diamonds).
model. Despite these differences, the periodic model performed sufficiently well to be used as the basis for the firther analysis. The results also revealed a significan positive trend in the $F_{\text {poe }}$ over time.
The seasonal pattern estimated by the periodic model differs among fishing areas. Sole $F_{\text {pue }}$ peaks in autumn and bottoms out in summer in all areas, execpl in the eastern central North Sea (Figure 5a). There, $F_{\text {pue }}$ peaks in late autumn and bottoms out in early spring. Throughout the year, substantial differences in $F_{\text {nue }}$ exist among areas. Botween November and April, the clifference may exeed a factor of 2, reducing to about 1.5 in June and July. Plaice Fipue shows a seasonal pattern in the southern and easem areas, with high values between November and January and low values between April and August (Figure 5b). North of $55^{\circ} \mathrm{N}$, values are relatively high throughout the yeur. As in sole, plaice $F_{\text {pue }}$ differs substantially among arcas. Between November and February, the values may differ by a factor of 1.5 , increasing to about 3 during summer. Hence, the contribution of a vessel to total F depends to a large extent on fishing area and season.
A plot of weekly estimates of sole Fpue against plaice $F_{\text {puc }}$ by area (model 1) shows that the fisheries on the two species are to a large extent uncoupled (Figute 6). During summer, indicated by red, there is an overall negative relationship between the two species, whereas during
winter (blue) a high $F_{\text {pue }}$ on phaice may eomeide with cilher a high or a low fine on sole.

Time trend in catchability

 (s.e. $=0.04$) in sole and 1.6% (s.c. $=(0,04$) in plaice. To cxplose the contribution of technokgicat creep to this inarease, $F_{\text {pue }}$ was analysed in relation to the vinatage of the hull, the vintage of the engine, and the time that a vessel had been in operation (model 3). All covariables showed a significant positive compribution to $F_{\text {pue }}$ and explained 3.5% and 1.2% of the variance in sole and plaiee, respecttively (Table 3). A substantial patt al the explained variance (1.8% and 0.4%, respectively) condd not be ascribed to a single covariable. Comparing model 3 with model 1 . AR' changed by 445 for sole and 406 lor plate.

The mean vintage of the fleet increased between 1900 and 2003 at an annual rate of 0.64 (hull) and 0.76 (engine), while the mean operation time of the versels in the fleet increased by 0.58. Combining these rates with the slopes of the catehability relationships gives an estimate of the overall increase in $F_{\text {pue }}$ of 2.5% in sole and 1.4% in plaice, elose to the time trendestimated in model 1 (Table 4). The overall trend is mainly due to an inerease in efficiency when the vessel unit is in operation (42% and 48% for sole and

 Hawler.
plaice, resperively). Replacement olvessels ranks second in importane wherens upprading the engine is of equal importanee in sole hut Jess important in plaice. The parameter estimate for the efleco of oferation time (tu) on $F_{\text {pue }}$ (model 3) is

Jigure b. Seasumal patterns in the relationship between $F_{\text {pue }}$ for solu and phaice in differem arcens: Dutch Coast (DC, fishing area 2): Sowhern Bigh (S, H3); Fiamborough (F, H4); Oyster grounds (0), 115): Wukken consi (W, H(); Helgoland (H, H7); German Bight
 deesp blue December-Junuary; deep red = June-July).
smaller than the overall increase in efficiency $/$ (Table 4). This implies that a vessel becomes less efficient relative to the fleet as new vessels enter the fleet.

The parameter estimates for the effect of huli vintage and engine vintage can be related to the number of years after which 50% of the vessels or engrines have been replaced. With an estimated survival time of $2!$ (hull) and if (engine) years (Figure 3), the replacement of a vessel (hull) itncreases efficiency by $25 \%(21 \times 1.17)$ in sole and by 19% (21×0.91) in plaice. Replacement of an engine increases efficiency by $15 \%(16 \times 0.91)$ in sole and by 3% (16×0.19) in plaice.

Cumulative partial F by vessel

The partial F exerted by a vessel depends on the area and season chosen in which to operate. Restrictions on the number of fishing days, therefore, might not translate directly into a proportional reduction in F. The relationship between the number of fishing days and fishing mortality was explored for eacls vessel by plotting the cumulative predicted values of $F_{\text {pue }}$ against cumulative effort, after sorting the weeks in descending order of $F_{\text {pue }}$ or revenue (Figure 7). This assumes that fishers will restrict their effort predaminantly in those weeks and areas for which they expect a low catch rate. The more convex this relation is, the better a fisher can select an inefficient week.

The relationship was slightly convex for the (target) species for which the $F_{\text {pue }}$ was sorted (Figure 7a, d), whereas

Table 3. Percentage of the variance in $F_{\text {nue }}$ explained by model $1\left(\ln (P)+\operatorname{area} \times\left(\sum^{3} \sin \varphi+\sum^{3} \cos \varphi\right)\right.$, hull vintage (vh in yeart), engine vintage (ve in year). and time that the unit has been in operation (tu in decinal year). The percentage explained by vh, ve, and in syas calculated against the full model (type 3 analysis).

Parametes	Sole			Plaice		
	$\begin{gathered} \% \\ \text { Expiained } \end{gathered}$	d.f.	p	\% Explained	d.f.	p
$\ln (P)+\operatorname{area} \times\left(\Sigma^{3} \sin \varphi+\Sigma^{3} \cos \varphi\right)$	35.7	54	<0.001	41.8	78	<0.001
vh	0.7	1	<0.001	0.4	1	<0.001
ve	0.5	1	<0.001	0.02	1	<0.001
to	1.0	1	<0.001	0.3	1	<0.001
Multicoltinearity	1.8			0.4		
Fuil model	39.6	57		43.0	81	

the relationship was slightly concave for the assumed bycatch species (Figure 7b, c), but there was consiclerable variation among vessels. This means that, for target species, a small proportion of fishing trips contributed more than proportionally to the annual partial F, while for by-catch species the average cumulative F was slightly below the proportional relationship. The relationships only marginally differed between species, showing a slightly more convex shape if plaice was the target species. Because we sorted the predicted values for the area and week fished excluding the ratudom error, fishers should be able to select their best trips on the basis of personal experience if faced with effort reductions. On average, therefore, a 40% reduction in fishing effort might lead to a reduction in F on the target species of 30% for sole and 20% for plaice, whereas a reduction in F on byeatch species would be slightly larger than the effort reduction (45% and 50%, respectively). However, because fishers make individual choices, some targeting sole and others targeting plaice, the overall effect should be less than assuming that all fishers target one species or the other. If the trips were sorted by descending observed revenue' per day at sea (Figure 7e, f), the cumulative relationships became more linear, especially when operating on sole. The shapes of these relationships suggest that if the total allowable fishing effort is reduced and fishing vessels redistribute their fishing effort to obtain the highest revenue, there would be a slightly lower than proportional decrease in total F for sole, and a substantialiy less than proportional decrease in F for plaice.

Discussion

Seasonal patterns in $F_{\text {pue }}$ and the differences between fishing areas (Figure 5) reflect changes in the availability of the two species attributable to seasonal migrations of adult fish

[^0]and to recruitment. Adult plaice migrate seasonally between the spawning grounds in the southeastern Norlh Sea in winter and the feeding areas in the central North Sea in summer (De Veen, 1978; Rijnsdorp and Pastoors, 1995; Hunter et al., 2003, 2004). Adult sole migrate in spring from offshore feeding areas to inshore spawaing grounds along the continental and English coast (ICES, 1965; De Veen, 1976; Rijnsdorp et al, 1992). As a consequence, adult sole may become less vulnerable because the beam trawl flect is not allowed to exploit the spawning grounds within the $12-\mathrm{mile}$ zone or the plaice box. In autumn, a new year class leaves the cooling inshore waters and recruits to the offshore fishing grounds (Beverton and Holt, 1957; De Veen, 1978). Other factors influencing the observed patterns in $F_{\text {pue }}$ may relate to variations in the efficiency of the gear caused by changes in fish behaviour. During the spawning season, male plaice are easier to catch, because they appear to be more active (Rijnsdorp. 1993; Solmundsson et ct., 2003), while females may be less vulnerable because they spend a latger propotion of their time in midwater (Amold and Metcalfe, 1996; Metcalfe and Arnold, 1997). Sole can even be observed near the surface during their spawning migrations (De Venn, 1967). Catchability may be affected olso by water temperature (Woodhead, 1964; Winger et al., 1999).

These factors may also have contributed to the observed differences in the predicted $F_{\text {pue }}$ of models 1 and 2 (Figure 4). Seasonal changes in distribution may relate to variations between years attributable to local variations in recruitment and/or spawaing-stock biomass. Based on the proportion of the variance explained by the week x area interaction in model 2, interannual variations in distribution appear to be larger in sole than in plaice (Table 2). Indeed, sole show larger interannual variation in year-class strength as we!! as a lower spatial consistency across years than plaice (van Beek et al., 1989; Rijnsdorp et al., 1992; Fox et al., 2000). Moreover, sole exhibit a distinct evasive response to low water temperature during cold winters (c,g. 1963 and 1996), when dense aggregations fonned in the relatively warm water of the southwestern Noith Sea

Table 4. Comparisut ol the overall trend (f of model 3 with the trend estimated by madel 1 . The contribution of vintage of hull (vh), vimate of enginte (Ve), and the time in operation (fu) to the overall time trend (t) in $F_{\text {pu }}$ as estimated by model 3 was caleulated as the prodite of the ammal incease in the covariable (columm A) and the parameter estimates tor the covariables in model 3 (column B).

(${ }^{\text {chariable }}$	Slonge oi' lime lrend (A)	Sule			Paice		
		Slope fixm model 3 (B)	Contribution lo 1	Contribution (\%)	Slope from model 3 (B)	Contribution to t	Contribution (\%)
Motel 3							
vil	0.60419	0.0117	0.0075	30	0.0091	0.0059	42
ve	0.764	0.00091	0.0070	28	0.0019	0.0015	10
[1]	0.584	0,0181	0.0105	42	0.0115	0.0067	48
Uverall lremd (1)			0.025			0.014	
Mudel 1							
(Werall frend (\%)			0.028			0.016	

Fighe 7. Relationshij) betwen the cumulative proportion of the predicted $F_{\text {pus }}$ for (left) sole and (right) plaice and the cumulative effort Fior individual vesisels in $20(0)$ when trips were sorted in descending order of $F_{\text {pue }}$ of sole (a, b), plaice (c, f) and observed revenue (c , f). The beavy black line shows the average relationship over all ships.
(Woodhead, 1964; Horwood and Millner, 1998). Such aggregations could positively influence the $F_{\text {puse }}$.

Trawling activities may also affect the catching efficiency. Disturbance on fishing grounds may make fish leas susceptible to being canght (Ona and Goda, 1990; Engăs at al., 1995; Albert et al., 2003), negatively affecting the efficiency of trawlers working closely together in large numbers. This process of interference competition (or crowding) is often assumed in flect dynamic studies (Gillis and Poterman, 1998; Gillis and Frank, 200 I: Gillis, 2003) and econometric studies (Pascoe et al, 2001). So far, there is only indirect evidence for this effect (Rijnsdorp et al., 2000a, b; Gillis, 2003). Finally, changes in the directedness of the lisliery on either sole or plaice within the spatial units used in our anallysis may explain variability in calchability.

The observed increase in catching efficiency with engine power corroborates the results of earlier studies (Rijnsdorp) et al., 2000; Pascoe et al., 2001), The inerease is att ributable to a combination of the increase in towing speed (Rignsdorp et al., 2000h) and the larger number of tick ler chains that can he towed at greater engite power. fnerasing the father strongly enhances the catching efficiency for sole (Creutzberg et al., 1987) because of their tendency to dig into the sediment in response to disturbance, whereas plaice will be more affected by towing speed, because they attempt to swim away (Main and Sangstor, 1981; Winger el al., 1949).

In estimating $F_{\text {pue }}$ we had to make a number of simplified assumptions. The most important is that we had to ignore the age composition of individtal landings, hecause these are not available. Atso, $F_{\text {pue }}$ was estimated for individual weeks, whereas total F estimates were only available will quarterly resolution. It is difficult to judge what effects this may have had on the results in cerms of bias, but such simplifications will undoubtedly contribute to unexplained variance. However, we did not seo consistent changes in $F_{\text {pue }}$ around the end of each quarter. We lurther assumed that logbook data aceurately record the catch of individual vessels. This may not be true, because the fishery is managed by individual trmsterable quota as shares in the Dutch portion of the TAC. Such a management system may result in discareling of over-quota fish or the cheaper fracetion of the catch to increase the overatl value of the lanelings (Anderson, 1994; Gillis of at., 1995a, b). Although highgrading does occur from time to time, no cjuantitative information is available.

Despite these uncertainties and woaknesses, our study seems capable of estimating the effect of engine power on the catching efficiency of the gear, as well as the effects of the spatial and temporal components on the fishing mertality induced during a fishing day. Also, it is clanty shown by these analyses that the efficiency of the fleet has increased over time, irrespective of engine power.

The positive effect of operation time on $F_{\text {puc }}$ may tefleet a gradual improvement of the skills of the crew as we!l as technological advances in atxiliary equipment (DGPS, echosounders, etc.). Disentangling the contribution of
technological improvements and fishing skill requires currently unavailable information on investmems of individual vessels and acting crew members.

A second contribution to the berease in cateh efliciency could be the replacement of old vessels hy new ones. The rate of increase appeared to be somewhat higher for sole (the target species) than for phaiee. The origin of this efficieney incrense may be partly the same technongical imovations discussed above, as well as improvements in propulsion.

A 6% increase in efficiency for sele, hut nene for plaice was reported for the perind 109) $1-1998$ (Marchat of oh. 2002a), whereas no overall change in the elliciency was observed using a stochastic fronlier analysis olamand vessed acords of economic output (Pascone al. 2(0)11, The lash authors investigated the contribution of several techatican antributes whe vessel as well ats changes in the managemen regime on the annual economic output of individual vessels, bul they did not consider changes in efliciency for individual fish species, nor did they take inco aconom the imphetan ef fee of seanomal changes in availabitity of the species. This eomparison shows that technology ctep cat be estimated in different ways with different results. ()ur study has estimated the trend in catehability aller tiksing acenant of changes in engene power within the the and changes in the seasonal distribution of fishing effor, lemee, ma estimate comes elose to the inerease in cathang efliciency of a vessel.

Our stuty showed that a standard 2000 lys beam trawler would gencrate an average fisinge mortabity rate of aboul $1.0 \times 10{ }^{5}$ (sole) and 0.6×10^{5} (phaice) per day att sea, but seasemal and spatial variations were large. The variafions in Fpue induced on the Iwa specics applate to a harge degree to be uncoupled and fully dejernem son the chonce of fishing ground and fishing seatsons. It is therefore surprising that the rebationship between cumulative F ind cunatiative lishing effort, atlor somting the fishing trips of individual vessels in deseending order af revenuc, anly weakly deviated from a lincar proportional rebanomip for sule, This suggeste that for the target species of the hean taw! dishery,
 reduction in fishing moriality. In eonatiast, the more convex relationship observed for plaice indeates that a realuction in tishing effer would likely pexult in at less hall propertional decrease in F^{\prime} in by-bateh species.

We conclude that /pue might be tased ats a tom in an effort mangement regime, allowing theareful design that enald take aceome of the predictable effects of seationat changer, in alismibution on catchability, as well as af the gradual increase in the catching efficiency (techandogy ereep). Introduction al' efforl managenment maty lead to subsutantial changes in fisting patterns resulfing in changes in canchability, Our method may be uselul in monitoring changes in catehabifity, permitting fine-tuning of management regulations. The approach seems particularly usefut for mixed demersal fisheries and can be applied easily to ohtor geald if data on a trijp level are avalable to correet for stasomat changes in availability of the resurese.

Acknowledgements

This manuscript was prepared as part of DLO research programme 418. We thank Jan Willem de Wilde (LEI) for his assistance with the data on the NRVI database of individual fishing vessels, and Sarah Kraak, Paul Marchal, and an anonymous reviewer for helpful comments on an earlier draft of the paper.

References

Akaike, H. 1973. Information theory as an extension of the maximum likelihood principle. In Second International Symposium on Information Theory, pp. 267-281. Ed. by B. N. Pelrov, and F. Csaki. Akudemiai Kiado, Budapest.
Altert, O. T., Harbitz, A., and Høines, A. S. 2003. Greenland halibut observed by video in front of survey trawl: behaviour, esscapement, and spatial patteris. Joumal of Sea Research, 50 : 117-127.
Anderson, L. G. 1994. Highgrading in ITQ fisheries. Marine Resnurce Economics, 9: 209-226.
Amold, G. P., and Metcalfe, J. D. 1996. Seasona! migrations of plaice (Plemronectes platessa) through the Dover Strait. Marine Biology, 127: 151-160.
Beverton, R. J. -1. , and Holt, S. 3. 1957. On the dyitamics of exploited fish populations. Fisleries Investigations, London, Series 2, 19. 533 pp .
Cremzberg, F., Duineveld, G. C. A., and van Noort, G. J. 1987. The effect of different number of tickler chains on beam trawi catches. Journal du Conseil International pour l'Exploration de la Mer, 43: 159-168.
Daan, N. 1997. TAC management in North Sea flatfish fisheries. Journal of Sea Research, 37: 321-341.
De Veen, J. F. 1967. On the phenomenon of soles (Solea solea L) swimming at the surface. Journal du Conseil International pour J'Exploration de la Mer, 31: 207-236.
De Veen, J. F. 1976. On the exploitation pattem in the Dutch North Sea sole fishery, ICES Document CM 1976/F: 19. 29 pp .
De Vecr, J. F. 1978. On the selective tidal transport in the migration of North Sea plaice (Pleuronectes platessa 2.) and other fish species. Nethertands Journal of Sea Research, 12: 115-147.
Engês, A., Misund, O. A., Soldal, A. V., Horvei, B., and Solstad, A. 1995. Reactions of penned herring and cod to playback of original. frequency-filtered and time-smoothed vessel sound. Fisheries Research, 22: 243-254.
European Commission. 2001. Green Paper. The Future of the Common Fisheries Policy, vol. 1.: Office for Official Publications of the European Communities. 47 pp .
Fox, C. J., Planque, B. P., and Darby, C. D. 2000. Synchrony in the recruitment time-series of plaice (Pleuronectes platessa) around the United Kingdom and the influence of sea temperature. Jourral of Sea Research, 44: 159-168.
Gillis, D. M. 2003. Ideal free distributions in fleet dynamics: a hehavioral perspective on vessel movement in fisheries analysis, Canadian Joumal of Zoology, 81: 177-187.
Gillis, D. M., and Frank, K, T. 2001. Influence of environment and fleet dynamics on catch rates of eastem Scotian Shelf cod through the early 1980s. ICES Journal of Marine Science, 58: 61-69.
Gillis, D. M., and Peterman, R. M. 1998. Implications of interference among fishing vessels and the ideal free distribution to the interpretation of CPUE. Canadian Journal of Fisheries and Aquatic Sciences, 55: 37-46.
Gillis, D. M., Peterman, R. M., and Pikitch, E. K. 1995a. Implications of trip regulations for high-grading: a model of the behav-
ior of fishermen. Canadian Joumal of Fisheries and Aquatic Sciences, 52: 402-415.
Gillis, D. M., Pikiteh, E. K., and Peterman, R. M. 1995b. Dynamic discarding decisions; foraging theory for high-grading in a traw] fishery. Behavioral Ecology, 6: 146-154.
Hilborm, R. 1985. Fleet dynamies and individual variation: why do some people catch more fish than others? Canadian Joumal of Fisheries and Aquatic Sciences, 42: 2-13.
Hoiden, M. 1994. The Common Fisheries Policy, Origin, Evaluation and Future. The Buckland Foundation, London.
Horweod, J. W., and Milliner, R. S. 1998. Culd induced abnormal catches of sole. Journal of the Marine Bjological Association of the UK, 78: 345-347.
Hunter, E.4 Metcalfe, J. D., Arnold, G. P., and Reynolds, J. D. 2004. Impacts of migratory behaviour on population structure in North Sea plaice. Journal of Animal Ecology, 73: 377-385.
Hunter, E., Metcalfe, J. D., and Reynolds, J. D. 2003. Migration route and spawning area fidelity by North Sea plaice. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270: 2097-2103.
ICES. 1965. Report of the Working Group on Sole. ICES Cooperative Research Report, 5. 126 pp .
ICES. 2002. Report of the workshop on MSVPA in the North Sea, Clarlottenlund, Denmark, 8-12 April 2002. ICES Dncument CM 2002/D: 04.
ICES. 2004. Report of the ICES Advisory Commitiee on Fishery Management and Advisory Committee on Ecosystems, 2004. 1CES Advice, 1: 1544 pp .
Main, J., and Sangster, ©. 1. 1981. A study of the fish capture process in a bottom trawl by direct observalions from a towed underwater vehicle. Scottish Fisheries Research Report, 23: $1-23$.
Marchal, P., Nielsen, J. R., Hovgard, H., and Iassen, H. 2001. Time changes in fishing power in the Danish cod fisheries of the Baltic Sea. ICES Journal of Marine Science, 58: 298-310.
Marchal, P., Ulrich, C., Korsbrekke, K., Pastonrs, M., and Rackham, B. 2002a. A comparison of three indices of fishing power on some demersal fisheries of the North Sea. ICES Journal of Marine Science, 59: 604-623.
Marchal, P., Ulrich, C., and Pastoors, M. 2002b. Area-based mathagement and fishing efficiency. Aquatic Living Resources, 15: 73-85.
Martell, S. J. D., and Walters, C. J. 2002. Implementing harvest rate objectives by directly monitoring exploitation rates and estimating changes in calchability. Bulletin of Marine Science, 70: 695-713.
Metcalfe, J. D. and Armold, G. P. 1997. Tracking fish with electronic tags. Nature, 387: 665-666.
Ona, E., and Goda, O. R. 1990. Fish reactions to trawling noise: the significance for trawl sampling, Rapports et Pracès-Verbaux des Réunions du Conseil International pour I'Explcration de la Mer, 189: 159-166.
O'Neill, M. F., Courtney, A. J., Turabull, C. T., Good, N. M., Yeomans, K. M, Snith, J. S., and Shootingstar, C. 2003. Comparjson of relative fishing power between different sectors of the Queensland trawl fishery, Australia. Fisheries Research, 65: 309-321.
Pascoe, S., Andersen, J. L., and de Wilde, J. W. 2001. The impact of management regulation on the technical efficiency of vessels in the Dutch beam trawl fishery. Europenn Review of Agricultural Economics, 28: 187-206.
Pastoors, M. A., Rijnsdorp, A. D., and van Beek, F. A. 2000. Evaluation of the effects of a closed area in the North Sea ('Plaice Bnx') on the stock development of plaice (Pleuronectes platessa L.). ICES Journal of Marine Science, 57: 1014-1022.

Poos, J. J., Pastnors, M. A., and Rijnsderp, A. D. 2001. Quota regulation and efficiency in the Dutch beam trawl fleet. ICES Document CM $2001 / \mathrm{N}: 14.16 \mathrm{pp}$.

Rijnsdorp, A. D. 1993. Selection differentials in male and female North Sea plaice and changes in maturation and fecundity, m The Exploitation of Evolving Resources, pp. 19-36. Ed. by T. K. Stakes, J. M. McGlade, and R. Law. Springer, Berlin.

Rijnsdorp, A. D., Dol, W., Hoyer, M., and Pastoors, M. A. 2000n. Effects of fishing power and competitive interactions among vessels on the effort allocation on the trip level of the Dutch beam trawt fleet. ICES Journal of Marine Science, 57: 927-937.
Rijnsdorp. A. D., and Pastcors, M. A. 1995. Modeliing the spatial dynamics and fisheries of North Sea plaice (Pleuronectes platessa L.) based on tagging data. ICES Journal of Marinc Science, 52: 963-980.
Rijnsdorp, A. D., van Beek, F. A., Flalman, S., Millner, R. S., Riley, J. D., Giret, M., and de Clerck, R. 1992. Recruitment of sole stocks, Solea solea (L.) in the Northeast Athantic, Netherfands Journal of Sea Research, 29: 173-192.
Rijnsdorp, A. D., van Maurik Broekman, P. L., and Visser, E. G. 2000b. Competitive interactions among benm trawlers exploiting local patches of fatfish in the Norlh Sea. IC:ES Journal of Marine Science, 57: 894-902.
SAS. 1999. SAS/STAT ${ }^{(1)}$ User's Guide. Version 8. SAS lantitute Inc., Cary, NC.
Shepherd, J. G. 2003. Fishing effort control: could it work under the common fisheries policy? Fisheries Reseasch, 63: 149-153.

Solmundsson, J., Karlsson, H., and Palsson, .1. 20003. Sexual dillerences in spawning behavione and catchabifity ol plaice (I bemos)neeres phatessa) west of Iechand. Fisheries Rescatch. 61: 57-71.
Stuifres, D., and Kirkey, J. lux9. Skipper skill and panel data in lishing industrics. Canadian Journal of Fisharies and Aquatie Sciences, 56: 2011-2018.
Ulrich, C․, Pascoe, S., Spartu, P. I.. de Wilde, I. W., amu Marchal,「. 2002. Induence or trends in lishing power an bineconomics in the North Sea Jlatish lisbery regulated by cateles or by eflom guotas. Camdian Jommal of Pisheries and Apuatic Sciences, 59: 829-843.
van Beck, F. A.. Rijnstorp, A. D)., and de ("ierek, R. I 489 . Monsitoring juvenike stocks of fatish in the Wadden Sea and the vatsin treas of the southeastern North Sea. Heg getiander wissenschatidichen Mceresuntersuchung, 4.3: 4(1)-477.
Winger, [2. D., He, P., and Walsh, S, J. ly9y, Swimaning

 56: 252-265.
Woodhend, P. J. M. 1964. (hanges in the behaviour of the sule. Soled indgravis, dering cold winters and the relation herween be winter catchand sea temperallure, Ilelgotiander winsempehal?fohen Mecresmatersuchung, 16: $12 \mathrm{~K}-1.12$.

$$
{ }^{1} 8_{8}^{8} 0_{0}
$$

[^0]: ${ }^{1}$ Revenue was colculated es the sum of the landings \times relative price. The relative price of sole is five times higher than that of plaice and cod.

