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Abstract New information on the presence and relative
abundances of 41 reef-building (zooxanthellate) coral
species at 11 eastern Pacific and 3 central Pacific local-
ities is examined in a biogeographic analysis and review
of the eastern Pacific coral reefregion. The composition
and origin of the coral fauna and other reef-associated
taxa are assessed in the context of dispersal and vicar-
iance hypotheses. A minimum variance cluster analysis
using coral species presence-absence classification data
at the 14 localities revealed three eastern Pacific reef-
coral provinces: (1) equatorial - mainland Ecuador to
Costa Rica, including the Galapagos and Cocos Islands;
(2) northern - mainland México and the Revillagigedo
Islands; (3) island group - eastern Pacific Malpelo Island
and Clipperton Atoll, and central Pacific Hawaiian,
Johnston and Fanning Islands. Coral species richness is
relatively high in the equatorial (17-26 species per lo-
cality) and northern (18-24 species) provinces, and low
at two small offshore island localities (7-10 species). A
high proportion (36.6%, 15 species) of eastern Pacific
coral species occurs at only one or two localities; of
these, three disappeared following the 1982-83 ENSO
event, three occur as death assemblages at several lo-
calities, and five are endangered with known populations
of ten or fewer colonies. Principal component analysis
using ordinal relative density data for the 41 species at
the 14 localities indicated three main species groupings,
i.e., those with high, mid, and narrow spatial distri-
butions. These groupings correlated with species pop-
ulation-dynamic characteristics. These results were
compared with data for riverine discharges, ocean cir-
culation patterns, shoreline habitat characteristics, and
regional sea surface temperature data to help clarify the
analyses as these measures of environmental variability
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affect coral community composition. Local richness was
highest at localities with the highest environmental
variability. Recent information regarding the strong af-
finity between eastern and central Pacific coral faunas,
abundance of teleplanic larvae in oceanic currents, high
genetic similarity of numerous reef-associated species,
and appearances of numerous Indo-west Pacific species
in the east Pacific following ENSO activity, suggest the
bridging of the east Pacific filter bridge (formerly east
Pacific barrier).
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Ecology obviously plays a crucial role and, although its
effects cannot be detected in compilations o fentirefaunas,
must be taken into account iffurther progress is to be
made in our understanding o f the history of diversity and
the factors that affect spéciation. (G.J. Vermeij 1993)

Introduction

The extreme isolation of the shallow-water, tropica]
biotas of the eastern Pacific region has stimulated much
interest in their taxonomic composition, origin and
evolution. Eastern Pacific coral reef biotas offer an ad-
vantage in interpretive biogeographic studies due to the
often marginal environmental conditions affecting them.
These conditions have further spurred interest in the
study and documentation of local differences in biotic
composition and causes of population fluctuations.
The eastern Pacific has been separated from the
Caribbean Sea since the closure ofthe Central American
portal, ca. 3.7-3 Ma (Duque-Caro 1990; Coates and
Obando 1996), and is greatly distant, between 5000-
8000 km across a potential migratory pathway (Dana
1975; Grigg and Hey 1992), from the Indo west Pacific
biogeographic region (Fig. 1). Ekman (1953) concluded
that the eastern Pacific barrier (EPB) is the world’s most
Darwin

effective marine barrier to larval dispersal.
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Fig. 1 Indo-west Pacific and eastern Pacific coral reef biogeographic
regions. Although not shown, the entire Indian Ocean and adjacent
bodies of water are also part of the Indo-W est Pacific region. The 14
localities used in this study are shown with black circles and three-
letter acronyms, which are defined in Table 1

(1880, p. 317) regarded the EPB as “impassable”. Two
widely entertained hypotheses have been proposed to
explain the distinctness of the eastern Pacific reef-
building coral fauna: (1) long-distance dispersal, and (2)
the vicariance (i.e. geographically-mediated separation)
view.

In light of the taxonomic affinities of modern reef-
building corals and their potential for dispersal, Dana
(1975) and Glynn and Wellington (1983) proposed that
the eastern Pacific region has most likely been colonized
relatively recently by long distance dispersal of larvae,
chiefly via the north equatorial counter current (NECC).
However, McCoy and Heck (1976), and Heck and Mc-
Coy (1978) favored a vicariance explanation, namely
that the eastern Pacific coral fauna was derived from
pan-Tethyan, western Atlantic (Caribbean) species that
historically were distributed across the shallow Central
American seaway. With the closure of the Central
American corridor, the vicariance hypothesis maintains
that Tethyan species survived in the eastern Pacific as a
relict fauna that was subsequently modified by extinc-
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tions and evolution. Many of the earlier shared species
became extinct in the western Atlantic as conditions
deteriorated during late Pliocene and Pleistocene glaci-
ation events (Budd 1989; Budd et al. 1994).

This essay examines both dispersal and vicariance
hypotheses in light of a wealth of new evidence, in-
cluding: composition of coral faunas at several localities;
factors affecting the dynamics of species distributions,
such as dispersal routes; length of larval life; stepping
stones; rafting; El Nifio-southern oscillation (ENSO)
influences; and, the age and persistence of coral com-
munities in varying eastern Pacific environmental set-
tings. We develop and analyze a new data base on the
presence and relative abundances of eastern Pacific
zooxanthellate coral species to better define the spatial
distribution of coral provinces and patterns of species
diversity within the region. We believe that such infor-
mation can offer insights regarding intraregional biotic
continuity as well as potential dispersal routes across the
eastern Pacific barrier. Widely distributed and rare spe-
cies are examined and compared in terms of their pop-
ulation dynamic characteristics such as reproduction,
growth, and survivorship. Only since the severe 1982-
1983 ENSO event has it become recognized that sudden
and marked changes in circulation routes and transport
rates can greatly influence west-to-east dispersal path-
ways. The timing of arrival of some Indo-west Pacific



colonists following the 1982-1983 ENSO offers solid
evidence of such accelerated dispersal activity. Further,
it is now understood that ENSO events of this magni-
tude can also cause local and regional-scale extinctions,
thus emphasizing the dynamic nature ofthe composition
of eastern Pacific coral reef faunas. The data and ana-
lyses we present are framed broadly to include consid-
eration of various biological and physical factors that
can influence patterns of species distributions in tropical
marine environments. Since this essay reveals many gaps
in our knowledge, we conclude by outlining some critical
areas where further study is needed.

Eastern Pacific reef coral biota

Recently published contours depicting global patterns of
generic and species richness show the eastern tropical
Pacific (ETP) to be comprised of five genera and ten
species of zooxanthellate scleractinian corals (Veron
1995). Immediately west of the EPB (including the
Hawaiian and Line Islands) generic diversity doubles
and then continues to increase steadily to a maximum of
70 genera in the west-central Pacific. Species richness
increases in a similar manner with the 50 species contour
crossing the Line Islands and increasing steadily to 450
species in the Philippine and northern Indonesian ar-
chipelagos. In contrast, on the Atlantic side of Central
America, maximum taxonomic richness reaches 20
genera and 50 species in the Caribbean basin.

Here we examine a new data matrix denoting the
presence and relative abundances of 41 species of zoo-
xanthellate scleractinian corals and hydrocorals in the
ETP region (Table 1). Eleven (1-11) of the 14 localities
listed, including offshore and nearshore islands and the
mainland, belong to the ETP region, and three (12-14)
are located in the central Pacific, at the eastern boundary
of the Indo-west Pacific region (Figs. 1 and 2). A
southern dispersal route via the Marquesas Islands and
Tuamotu Archipelago is not considered likely because of
the present sluggish flow of the south equatorial count-
ercurrent, which is not evident east of 160° W, and the
cool sea temperatures of the Peru-Chile current systems
(Wyrtki 1965; Fiedler 1992). We caution that these lo-
calities vary enormously in habitat space suitable for
coral populations. For example, the shelf area in the
Gulf of California (to 10 m depth) is 5200 km2, while
Malpelo Island offers only 0.1 km2 (0-20 m) of shelf
habitat in the euphotic zone. Also, the coral faunas at
some eastern Pacific localities are still largely unknown,
e.g. in Guatemala, El Salvador, Nicaragua, and north-
ern Peru. Further, still unknown is the proportion of
shelf substrate (e.g. firm rock or stable talus versus fine
grained sediments) that would support coral settlement
and growth. It should also be noted that several taxo-
nomic uncertainties exist. For example, Pocillopora
elegans and Pocillopora verrucosa may be synonymous,
and the presence of Pocillopora woodjonesi in the eastern
Pacific needs further verification (Veron 1993). And
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from major differences in the reproductive biology,
Richmond (1985, 1987) has suggested that west/central
and eastern Pacific Pocillopora damicornis populations
may represent distinct species. Additional problematic
species include the validity of Porites sverdrupi, and
three to four species in the genus Psammocora. Finally,
Pocillopora sp.A, Porites sp.A and Pavona sp.A are new
species presently being described.

Our analyses were based on number of species, rela-
tive abundances and community composition. The lo-
calities of highest species richness, i.e. with 20 or more
species, are the oceanic Revillagigedo Islands, mainland
México, Costa Rica, Panama, and Colombia (Fig. 3A).
Lowest species richness occurs at the small offshore is-
lands of M alpelo and Clipperton. Eleven species show a
high frequency of occurrence, present at nine or more
localities (>82% occupancy, i.e. present at 9 or more of
11 ETP localities) along the eastern Pacific (Table 1,
Fig. 3B). These wide-ranging species are taxonomically
diverse, represented by all three eastern Pacific subor-
ders of scleractinian corals (Archaecocoeniina, Poritiina,
Fungiina) and belong to all five eastern Pacific families
(Pocilloporidae, Poritidae, Siderastreidae, Agariciidae,
Fungiidae): Pocillopora damicornis, Pocillopora elegans,
Pocillopora eydouxi, Pocillopora (Arch-
aeocoeniina, Pocilloporidae); Porites lobata (Poritiina,
Poritidae),

verrucosa

Psammocora stellata, Psammocora super-

ficialis (Fungiina, Fungiidae), Pavona clavus, Pavona

gigantea, Pavona varians (Fungiina, Agariciidae), and
Cycloseris curvata (Fungiina, Fungiidae). The range of
colony morphologies are equally diverse: Pocillopora
spp. have large branching colonies, P. lobata, P. clavus
and P. gigantea have massive colonies, P. stellata has a
small, stubby, branching colony, P. varians is laminar
(platy) to spherical, and Cycloseris is solitary and
discoid.

A high proportion (36.6%, 15 species) of all ETP
zooxanthellate corals are found at only one or two
eastern Pacific localities (Fig. 3B). Fourteen of these
narrowly distributed or rare species occur at high
diversity (with 20 or more species) localities (México,
Revillagigedo Islands, Costa Rica, Panam4d) and three at
localities (Gulf of California, Clipperton Island, Cocos
Island) with less diverse (<19 species) coral faunas. Two
scleractinians {Acropora valida, Porites rus) and a
hydrocoral {Millepora platyphylla) disappeared follow-
ing the 1982-83 ENSO warming event (Glynn and
Weerdt 1991; Glynn 1997). Only dead colonies of three
species {Leptoseris papyracea, Cycloseris curvata, Dia-
seris distorta) have been found at several localities, and
five species {Pocillopora woodjonesi, Siderastrea glynni,
Pavona frondifera, Pavona xarifae, Millepora boschmai)
are considered endangered, i.e. with known populations
of ten or fewer colonies.

Veron’s (1995) biogeographic analysis of the eastern
Pacific zooxanthellate coral fauna recognized three
provinces: Gulf of California, Far East (mainland Cen-
tral America, from southern México to Peru) and the
Galapagos Islands. These coral provinces are very sim-
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Fig. 2 Eastern Pacific coral reef localities and respective shelf areas
(km2) potentially supporting coral growth. Locality codes and
maximum shelf depths where coral communities and/or reefs have
been observed follow: GOC Gulf of California, including all islands,
IOm; MXM Mexican mainland south of Mazatlan, 10 m; REV
Revillagigedo Islands, 20 m; CLP Clipperton Atoll, 70 m; CRC Costa
Rican mainland, I0 m; COC Cocos Island, 20 m; PAN Panamanian
mainland, 10 m; COL Colombian mainland, 10 m; M AL Malpelo
Island, 20 m; ECD Ecuadorian mainland, 10 m; GAL Galapagos
Islands, 20 m. The coral fauna is unknown at the following four
localities: GUA Guatemala, 10 m; SAL El Salvador, 10 m; NIC
Nicaragua, 10 m. Estuarine coastal stretches were excluded from the
shelf areas. Black circles indicate data available for locality and open
circles indicate no data available

ilar to the classic biogeographic model derived from the
distributional analysis of several taxa, mainly mollusks,
crustaceans and fishes (Briggs 1974; Brusca and Wall-
erstein 1979). The only difference is that Veron’s (1995)
Far East province is subdivided by most workers into a
subtropical Mexican province and a tropical Panama
province.

Our analysis of the structure of the multidimensional
coral species-locality distribution data matrix (Table 1)
was undertaken with the sole objective of simplifying the

Zooxanthellate Coral Species

Reef Locality

B Eastern Pacific Coral Species

1 2 3 4 5 6 7 8 9 1011 12 13 14

Number of Localities Occupied

Fig. 3 A Species richness ofzooxanthellate corals at 14 eastern Pacific
localities (11 Pacific). Black
histogram segments denote coral species occurring in the eastern
Pacific, and cross-hatched histogram segments denote coral species
occurring in the central Pacific. Species richness for Hawaii from
Maragos (1995), for Johnston Atoll from Maragos and Jokiel (1986),
and for Fanning Atoll from Maragos (1974). B Number of localities
occupied by each of 41 eastern Pacific coral species

eastern Pacific and 3 east-central

ecological interpretation of the phenomenon being
quantified, and separating the data into groups (i.e.,
clusters of locales) whose identities were not known in
advance. The analyses were conducted to produce an
empirically useful stratification of the data, and to po-
tentially suggest a biophysical basis for the observed
structure in the data (Johnson and Wiehern 1992).
Several clustering methods were explored, but Ward’s
minimum variance method was deemed most robust,
particularly to outliers. Central to the idea of clustering
of data points is the idea of distance. In the Ward’s
minimum variance method, the distance between two
clusters is the ANOVA sum of squares between the two
clusters added up over all the variables.

Broadly, the results ofthe cluster analyses show three
main types of site affinities with respect to coral species
distributions. A strong affinity among far eastern equa-
torial localities is revealed (from Ecuador through



mainland Costa Rica), but the Galapagos Islands and
Cocos Island coral faunas are also closely aligned with
the mainland (Fig. 4). Within this main cluster, the coral
communities of Ecuador and Colombia are similar to
each other as are those of Panama and Costa Rica, but
these two subclusters are different. Endemism, the cri-
terion for distinguishing a unique Galdpagos Province
[e.g., ranging from 18% endemics for shallow-living
mollusks, Kay (1991), Finet (1991), and 36% endemics
for algae, Silva (1966)] is not represented by a single
zooxanthellate coral (Durham 1966; Glynn and Wel-
lington 1983). It is cautioned that this result is based on
morphological characters and it is possible that molec-
ular genetic studies may disclose the presence of sibling
species (Knowlton 1993). The Cocos Island coral fauna,
grouping closely with the Galapagos, has a single Indo-
Pacific coral species (Pavona xarifae) found nowhere else
in the ETP region (Cortés 1996-1997). The Rev-
illagigedo Islands, Gulf of California and Mexican
mainland also show a close relationship, and can be
regarded as a northern coral province. Both the equa-
torial and northern eastern Pacific coral provinces
demonstrate relatively high species richness with 17-26
and 18-24 species per locality respectively. A third
group, including small isolated Malpelo and Clipperton
Islands, and three island localities in the central Pacific
(Hawaiian Islands, Fanning and Johnston Islands), are
also closely aligned. The two eastern Pacific islands are
impoverished with ten or fewer zooxanthellate corals.
The central Pacific islands also contain ten or fewer
eastern Pacific corals, but with the addition of several
Indo-west Pacific species exceed the species richness of
any ETP locality. Stehli and Wells’ (1971) analysis of
zooxanthellate coral genera also revealed a discrete
cluster relating the east Pacific mainland fauna with
several central Pacific island localities, e.g. Easter,
Marquesas, Johnston, Hawaii and Midway.

At the ecosystem scale, ETP coral reefs are small,
patchy and discontinuous in distribution, often confined

to shallow depths at mainland sites that support reef
frameworks dominated by one or a few species (Glynn
et al. 1972; Porter 1972; Glynn and Wellington 1983;
Colgan 1990; Guzman and Cortés 1993; Cortés 1997).
Unlike coral communities in other biogeographic re-
gions, associated invertebrate taxa, such as sponges,
alcyonarians, soft corals, anemones, zoanthids, poly-
chaete worms, bryozoans, mollusks, echinoderms and
tunicates, contribute relatively little to the epibenthos of
ETP coral reefs (Glynn 1982; Wulff 1997). Also, while
ETP reeffishes are abundant, they support relatively low
species diversity with roughly three-quarters to one-third
respectively of the species present on central (Polynesia,
Society Islands) and western Pacific (Australia, GBR)
reefs (Robertson 1998). Notwithstanding the impover-
ished coral fauna, coral skeletal growth rates and
framework accumulation rates are comparable to those
in other coral reef regions (Glynn 1977; Glynn and
Macintyre 1977; Macintyre et al. 1992; Cortés et al.
1994).

The initiation of Holocene reef growth in the eastern
Pacific seems somewhat delayed compared with the
Caribbean. Core drilling and radiocarbon dating indi-

Fig. 4 Eastern Pacific zooxanthellate coral provinces and similarity to
central Pacific localities. The coral biogeography data consist of 5 rows

(i.e.,s = 1,..., 41 species) and / columns (i.e.,t = 1,..., 14 localities;
Table 1). The element of the matrix represents the presence or
absence and relative abundance of the species (/= 1,...,s) at a
particular locale (f= 1,...,£) in the eastern Pacific region. From

these data we developed similarity coefficients for the binary presence-
absence coral species data at localities to measure the association of
the coral community between localities. The similarity coefficient we
explored was Jaccard’s coefficient of community Sy, that is a measure
of resemblance that gives equal weight to all the terms, placing twice
the weight of the other terms to double presences since one may
consider the presence of a species as more informative than its
absence. The similarity matrix formed the basis of the data matrix for
a range of clustering models we explored. We used the statistical
analysis package SAS (SAS Institute 1990) to convert similarity
measures to dissimilarities (i.e., 1-Sy) before clustering



cate that the oldest known Pacific reefs are 4000 years
old in Costa Rica (Macintyre et al. 1992; Cortés et al.
1994) and 5600 years old in Panama (Glynn and
Macintyre 1977). Reef building in the Caribbean
started about 10000 years BP, was interrupted briefly in
many areas by shelf flooding during the Holocene
transgression, and then resumed about 7000 years BP
to the present (Neumann and Macintyre 1985; Mac-
intyre 1988). Further, elevated and drowned Quater-
nary reefs are numerous and widespread throughout
the Caribbean (Lighty et al. 1982; Edwards et al. 1986/
1987; Edwards et al. 1987; Fairbanks 1989; Chen et al.
1991; Blanchon and Shaw 1995), whereas only a few
minor fossil reef formations and coral communities are
known in the eastern Pacific (Palmer 1928; Durham
1947, 1950; Squires 1959; Walker 1991; Cortés 1993).
Cortés (1993) advanced the following observations to
explain the poor preservation of coral reefs in the east
Pacific compared with the Caribbean; (1) the structural
integrity of reef frameworks is less, (2) submarine ce-
mentation is rare, (3) crustose coralline algal pavements
are poorly developed, and (4) bioerosion proceeds at
high rates.

Biogeographic hypotheses and supporting evidence

The major hypotheses advanced to explain the origin of
the ETP reef coral fauna involve dispersion or vicar-
iance processes (Veron 1995). Dana’s (1975) dispersal
hypothesis assumes that modern eastern Pacific (EP)
corals are recent immigrants that have colonized west-
ern American shores from the central Pacific via the
NECC. The Line Islands chain is regarded as the cen-
tral Pacific source area, which moved by sea floor
spreading toward the northwest, into the path of the
east-flowing NECC beginning during the Pliocene. This
hypothesis also presupposes the extinction of all EP
corals (including Indo-west Pacific as well as Caribbean
relicts) during extreme low Pleistocene sea temperature
and sea level fluctuations. Indirect evidence supporting
this hypothesis has been advanced by Glynn and Wel-
lington (1983), Glynn et al. (1983), Cortés (1986), Grigg
and Hey (1992), and Ketchum and Bonilla (1997) for
corals, by Emerson (1978, 1991, 1993, 1994), Emerson
and Chaney (1995), and Vermeij (1978) for mollusks,
and by additional workers for other coral-associated
taxa (Rosenblatt et al. 1972; Garth 1974; Lessios et al.
1996; Robertson and Allen 1996; Allen and Robertson
1997). Richmond’s (1990) extension ofthe long distance
dispersal hypothesis invokes accelerated west to east
dispersal during ENSO events.
offered evidence of increased arrivals of Indo-Pacific
mollusks (Emerson 1991; Emerson and Chaney 1995;
Finet 1991; Kay 1991), echinoids (Lessios et ai. 1996,
1998) and fishes (Groves 1984, 1989; Robertson and
Allen 1996) during the very strong 1982-83 ENSO
event. Molecular studies of allozyme differences be-
eastern Pacific and central-west Pacific conspe-

Several studies have

tween

cific populations of several taxa have demonstrated
little if any genetic divergence, suggesting reproductive
connectivity across the entire EP ocean basin. This has
been shown for crab symbionts inhabiting corals
(Huber 1985), shore fish species (Rosenblatt and
Waples 1986), the crown-of-thorns sea star Acanthaster
(Nishida and Lucas 1988), and sea urchins (Lessios
et al. 1996, 1998), the last study supporting recent gene
flow across the eastern Pacific, perhaps related to the
1982-83 ENSO event. It is not known if the high af-
finity of these taxa is a result of reciprocal gene flow
across the eastern Pacific or one-way interchange from
west to east or east to west. While allozyme differences
between conspecific zooxanthellate coral populations
have been detected in several studies (e.g., Stoddart
1984; Weil 1993; Benzie et al. 1995), the affinities of
disjunct populations have not yet been reported.

A second dispersion hypothesis is the ‘vortex model’
proposed by Jokiel and Martinelli (1992). This hypoth-
esis postulates a predominantly east to west dispersal of
propagules, following prevailing ocean current flows,
with species accumulations in the west and faunal at-
tenuation along eastern boundary basins. Supporting
evidence for this model is the predominant movement of
currents from east to west at tropical latitudes and the
documentation of rafting coral propagules along the
same course (Jokiel 1984, 1990a, b).

The vicariance hypothesis (McCoy and Heck 1976;
Heck and McCoy 1978) maintains that eastern Pacific
reef-building corals (and seagrasses and mangroves) are
descended from a widespread Neogene Caribbean biota.
Thus, eastern Pacific corals represent a modern relict
fauna that became separated ca 3.7-3 Ma from the
Caribbean basin following closure of the marine corri-
dors across Central America (Duque-Caro 1990; Coates
and Obando 1996). Since isolation, the ETP biota has
been modified largely by tectonic events, spéciation and
extinctions. From an analysis of American Neogene
fossil distributions and morphometries, Budd (1989)
concluded that some modern eastern Pacific corals could
be descended from a southern eastern Pacific relict fauna
that experienced widespread extinctions in the Carib-
bean during Pleistocene environmental upheavel. Eight
of the ten Modern EP scleractinian coral genera were
present in the Caribbean during Pliocene and Pleisto-
cene times (Budd 1989 and in press). Psammocora
disappeared from the Caribbean during the Pliocene
and Gardineroseris, Pavona and Pocillopora during the
Pleistocene. Acropora (extinct since 1983), Leptoseris,
Porites and Siderastraea are shared between the ETP
and Caribbean in the Modern faunas. Cycloseris and
Diaseris are the only Pacific genera that have not been
found in the Caribbean fossil record. Several species of
the hydrocoral Millepora also are members of Modern
transisthmian zooxanthellate coral faunas. It is possible
that species in these genera evolved in the central/west
Pacific and invaded the eastern Pacific after closure of
the Central American seaway. Thus, these distributional
records leave open the possibility that some ETP corals



may represent descendents of vicariant species. Al-
though Veron (1995) has discredited this vicariance ex-
planation, chiefly on the basis of numerous factual
errors in the distributions of fossil and modern coral
taxa, dismissal of this hypothesis seems unwarranted at
this time.

Another hypothesis, which serves more to explain the
impoverished nature ofthe ETP coral fauna, is based on
the unstable composition of faunas in remote marginal
regions (Veron 1995). Due mainly to physical pertur-
bations, species already living near their tolerance limits
become locally extinct and are not soon replenished after
disturbances because of their relative isolation from
source populations. Besides the ETP, other impover-
ished marginal coral faunas include Henderson Island,
southeast Polynesia (Paulay and Spencer 1988), the
Hawaiian Islands (Grigg 1981, 1988; Jokiel 1987),
northern Japan (Veron 1992), and Lord Howe Island off
eastern Australia (Harriott 1992). Evidence of changing
faunal composition from both long-term (e.g. sea level
fluctuations and associated conditions) and short-term
(e.g. periods of cool water intrusions) disturbances
is reflected in fossil-to-recent species turnover and in
marked variations in species population abundances
respectively. Further discussion of variants ofthe above
and other coral biogeographic hypotheses can be found
in Rosen (1988).

Fig. 5 Three-dimensional
depiction of eastern tropical
Pacific bathymetry showing the
near-absence of shallow conti-
nental shelves. (Data from
National Ocean Service, 15 s
grided bathymetry for the
Global Ocean)

Physical environmental setting

With the Middle American Trench and Colombian
Trench closely bordering the ETP mainland, the conti-
nental shelf areas are narrow and offer relatively little
shallow habitat for coral reef development (Fig. 5). The
largest areas of potential reef habitat are the Gulf of
California (GOC), Mexican mainland (MXM), Panama
(PAN), Colombia (COL), and Ecuador (ECD) with a
combined area of 16200 km2 (Figs. 2, 6A). Aside from
two young volcanic island groups [i.e., Revillagigedo
(REV) and Galapagos (GAL) Islands], only three small
isolated islands [Clipperton (CLP), Cocos (COC) and
Malpelo (MAL)] make up the remainder of ETP oceanic
island environments, with a total shelf area of 738 km?2.
The Galapagos Islands contribute nearly 95% to this
total area. Spatially, the potentially habitable coral reef
zone is peninsular or track-like, thus constraining biotic
migrations along a predominantly southeast to north-
west course. Some coastal margins are bordered by long
stretches of freshwater lagoons, estuaries, sandy beaches
and mangrove forests (Briggs 1974; Carriquiry and
Reyes Bonilla 1997), thus fragmenting potential reef
habitats. A close correspondence between these types of
ecosystems and high freshwater discharge is noted
(Fig. 6A, B). One such area, between southern México
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Fig. 6A, B Distribution of
non-coral reef ecosystems and
freshwater runoff in the east
Pacific region. A Mangrove
shores (solid black lines), and
coastal lagoons, sandy beaches
and estuaries (dashed lines);
mangroves from Spalding et al.
(1997), other coastal ecosys-
tems from hydrographic charts.
B Freshwater discharge rates
are scaled as proportions of
maximum rate of 17650 m3 s-1
off Colombia. From R-Hydro-
net v1.O, a regional hydrome-
teorological data network for
Central and South America
sponsored by CATALAC,
ROSTLAC, US Committee on
Scientific Hydrology, Universi-
ty of New Hampshire at http://
www.r-hydronet.sr.unh.edu.
We compiled monthly time
series and climatologies, point,
hydrometeorological from the
level 1.0 data sets on Central
and South American discharge
and meteorological time series
data. The discharge data were
then summarized into 17 areas
constituting 5° by 5° tiles of the
east Pacific Ocean coastal
regime running from Baja
California and northern B
México (30° N, 110° W) to
northern Peru (4.65° S,

80.49° W)
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(Tangola Tangola Bay, Huatulco) and the Gulf of
Fonseca, Nicaragua, spanning a distance of nearly
1000 km of coastline, is known as the “Pacific Central
American faunal gap” because of the absence of rocky
shore fish records (Springer 1958). Actually, with the

reporting of reefcoral communities and associated fishes
at Los Cébanos, El Salvador (Orellana Amador 1985),
and the presence of breakwaters and other marine
structures along the coast (Roberts and Roberts 1995),
stepping stone habitats are now available that could


http://www.r-hydronet.sr.unh.edu

facilitate an interchange of coral species from southern
M¢éxico to Nicaragua.

Because of the importance of ocean currents as
vehicles of marine larval dispersal (e.g. Ekman 1953;
Scheltema 1968, 1988; Grigg 1981; Jokiel 1990a, b;
Briggs 1995; Clarke 1995), we describe briefly the main
hydrodynamic current systems in the ETP. The latitu-
dinally skewed position of the ETP, from about the
equator to the tropic of Cancer, is due to the concen-
tration of continents in the northern hemisphere and the
oceanic influence of the California and Peru surface
currents (Fig. 7). These major eastern boundary currents
gradually turn westward, becoming the north equatorial
(NEC) and south equatorial (SEC) currents respectively.
The eastward flowing NECC, located between 3° and
10° N, moves by the Line Islands at 160°W and gener-
ally enters the ETP near 80°W at Colombia, Panama
and Costa Rica. Occasionally it also skirts Clipperton
Atoll at 10°N, 109°W. During ENSO activity the NECC
increases in velocity, volume transport and duration

CALIFORNIA«
CURRENT
NECC
PANAMA // 9CHI, J/
CURRENT ' ( GrRCWIE
PERU 1
CURRENT [
85 W 80 W 75 W

Fig. 7 General sea surface circulation in the ETP (after W yrtki 1967
and Fiedler 1992). The NECC is best developed from June through
November; the CRCC from June to August, when it reaches to the
Gulfof California; and the Panama Current from December to April
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(Firing and Lukas 1983; Wyrtki 1985; Kessler and Taft
1987; Hansen and Herman 1989; Glynn et al. 1996a).
Accelerated NECC flow can reduce the transit time be-
tween the Line Islands and east Pacific by half or more,
to 50-80 days instead of 160 days (Richmond 1990;
Grigg and Hay 1992). A second eastward flowing cur-
rent, originating near the Line Islands, is the equatorial
undercurrent (EUC), which moves between 50-300 m
depth and surfaces on the west side of the Galapagos
Islands (Wyrtki 1967). The chief ETP currents are the
Costa Rican coastal current (CRCC), the Panam4a Bight
gyre (PBG), and the Panam4 current (PC). The CRCC is
best developed from June to August, when it penetrates
as far north as the Gulf of California. A southwest-
flowing current also develops seasonally (January-
April), the Panamé current, which advects Panami
Bight surface water toward the Galapagos Islands.

The equatorward flow of the relatively cool Califor-
nia and Peru currents, coupled with coastal upwelling,
restrict the northern and southern latitudinal limits, re-
spectively, of coral distribution in the ETP. Three well
defined, local areas of wind-induced upwelling also
occur within the ETP region, namely in the Gulfs of
Tehuantepec, Papagayo and Panama. During periods of
strong upwelling, low sea water temperature, eutrophi-
cation, algal overgrowth, and bioerosion, acting alone or
together, can reduce live coral cover and perhaps even
cause local extinctions. Evidence suggestive of a climatic
cooling event during the Little lee Age (mid 15th to 19th
Centuries) was advanced by Glynn et al. (1983) to ex-
plain the death ofa 100 km coral reeftract in the Gulfof
Papagayo, Costa Rica. In 1985, massive dinoflagellate
blooms in nonupwelling areas of Costa Rica and Pan-
ama led to a high mortality of corals that survived the
1982-83 bleaching event (Guzman et al. 1990). Areas
outside the three main upwelling centers that also ex-
perience periodic upwellings are located off the south-
east coast of Baja California Sur and at Banderas Bay
and farther south (Jalisco, central mainland México).
The mortality of Pocillopora corals reported off Baja
California Sur during the winter-spring of 1988 (Wilson
1990) was attributed to cool water stress by Reyes
Bonilla (in press), and the absence of reef development
at Banderas Bay and farther south is believed due in part
to upwelling (Carriquiry and Reyes Bonilla 1997).

Briggs (1995) points out that CLIMAP (1981) sea
surface temperature (SST) reconstructions, based on
oxygen isotope records of planktonic Foraminifera, re-
veal no temperatures low enough to cause coral extinc-
tions in the ETP during the last glacial maximum
(LGM), ca. 18-20 kyears ago. Accordingly, he suggested
that elevated nutrients that would promote phyto-
plankton and benthic algal growth could be an impor-
tant factor limiting corals rather than low temperatures
per se. Eutrophication causing increased competition
with filamentous and fleshy algae (Glynn and Stewart
1973; Birkeland 1977), and elevated bioerosion (High-
smith 1980) can limit reef building, and if prolonged,
could result in the disappearance of coral reef buildups
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(Hallock and Schlager 1986; Hailock 1988; Hailock
et al. 1988). Recent evidence from high temporal reso-
lution coral isotope thermometry and other studies in-
dicates that tropical SSTs were probably significantly
lower during the LGM than the -1 to -2 °C reported by
the CLIMAP (1981) findings. Results from west equa-
torial Atlantic (Guilderson et al. 1994) and southwest
Pacific (McCulloch et al. 1996; Beck et al. 1997) sites
show that late LGM to early Holocene SSTs were 4-6°C
lower than today. If these results are substantiated it is
likely that low temperature stress and correlated condi-
tions (noted above) have been adversely affecting ETP
coral reef growth during Pleistocene and early Holocene
times. Upwelling centers would probably be most
severely affected.

ENSO disturbances to coral reefs during 1982-83,
and more recently (1997-98), have demonstrated that
prolonged sea warming can also have devastating effects
in the ETP region. For example, the 1982-83 ENSO
caused mean coral mortality of 97% in the Galapagos
Islands (Glynn 1990a), and with the failure of reef re-
covery and continued intense bioerosion, coral reef
structures have been virtually eliminated from this area
(Glynn 1994; Reaka-Kudla et al. 1996). In light of such
catastrophic events, it is important to know how long
these kinds of perturbations have occurred in the ETP
and the localities affected. With the closure of the Cen-
tral American seaway ca. 3.7-3 Ma, the modem equa-
torial Pacific surface circulation developed with the
onset of ENSO events. Colgan (1990) noted the thermal
extremes set in motion that would affect ETP reef
growth during the Quaternary: (1) lowered sea level and
cool water conditions during glacial periods and (2) high
sea level and unpredictable sea water warming events
during interglacial periods. Between 18 to 65 ENSO
events of the 1982-83 magnitude may have disrupted
reef growth during the latest high sea level stand. A
composite plot of positive SST anomalies observed
during five recent well documented ENSO events indi-
cates that Colombia, Panam4 and Costa Rica, including
Cocos and Malpelo Islands, are located within a region
of frequent impact (Fig. 8A). Anti-El Nifio (La Nifia)
events occur frequently in the same region, but are also
shifted more toward the northwest, as far as El Salvador
and Clipperton Atoll (Fig. 8B).

Since reef building corals require high levels of visi-
ble light to sustain their endosymbiotic algal flora,
conditions which increase turbidity, such as plankton
blooms or suspended sediment loading, would tend to
depress calcification rates and decrease reef building
potential at greater depths. The maximum depth dis-
tributions of zooxanthellate corals in oceanic environ-
ments with high light penetration, 30-70 m respectively
in the Galapagos Islands (Glynn and Wellington 1983)
and at Clipperton Atoll (Glynn et al. 1996a), compared
with 10-15 m at relatively turbid continental sites
(Dana 1975; Glynn 1976; Guzman and Cortés 1989a),
tend to support this trend. High seasonal turbidity, due
chiefly to elevated plankton abundance, occurs at

mainland upwelling centers (Gulfs of Tehuantepec,
Papagayo, Panama) and on the west sides of Fernan-
dina and Isabela Islands, Galdpagos Islands where the
equatorial undercurrent surfaces. High turbidity due to
seasonal freshwater discharge and sporadic flooding is
notable at several localities, e.g. in the Gulf of Fonseca
(Honduras), Gulfs of Nicoya and Dulce (Costa Rica),
Gulf of Chiriqui (Panama), along the Darien (Chocd)
coast (Colombia) and in the Gulf of Guayaquil (Ec-
uador). River flows along the east coast of the Panama
Bight, where mean annual rainfall exceeds 7.5 m along
the coastal mountain range (Forsbergh 1969), are the
highest in the ETP region (Fig. 6B). On coral reefs in
Costa Rica and Panama, it is not uncommon for un-
derwater visibility to be reduced to 0.5 m or less during
heavy runoff of sediment laden waters (Dana 1975;
Cortés 1990).

Although the number of hurricanes generated in the
ETP is relatively high, these usually form offshore and
move in a west to northwest direction, thus avoiding
landfall (Scoffin 1993; Glynn and Maté 1997). However,
during ENSO events, storm tracts can be diverted to
more northerly courses, resulting in damage to coral
communities and coral reefs along the mainland coast of
México and the Gulf of California (Glynn et al. 1998).
Nonetheless, while hurricanes in some regions - e.g. the
Caribbean and western Pacific - may cause high local
coral mortality and have significant effects on reef
geomorphology, the elimination of a coral species from
any given fauna is unknown.

Ecological factors

Species distributions are also to a large extent con-
trolled by population dynamics, i.e., reproductive traits,
population growth characteristics, and survivorship.
Here we examine some biotic and environmental factors
that may influence the dispersal potential of corals and
their persistence once colonizing new areas. Traits of
widely and narrowly distributed species are contrasted
to help identify ecological factors related to these
varying patterns of abundance (Table 2). While this
discussion will focus on available knowledge of ETP
coral biology and ecology, occasional reference will be
made to central/western Pacific conspecific populations
when relevant information on EP species is lacking.
Known traits of reproduction are examined first,
followed by growth, which may affect critically such
population dynamic processes as predation, competitive
potential, population resilience and community persis-
tence.

Life history and population dynamic characteristics

Corals exhibit two basic modes of development, namely
(1) brooding, with internal fertilization and the retention

of larvae that are subsequently released, and (2)



Fig. 8A, B Spatial extent and
overlapping occurrence of five
major El Nifio and La Nifia
events inclusive over a 35 year
period (1953-1989). A El Nifio
positive SST anomalies (>1 °C)
for 1953, 1958, 1969, 1983, and
1987. B La Nifa negative SST
anomalies (<1 °C) for 1956,
1967, 1971, 1975, and 1989.
Darker shades o fgrey denote
areas of highest overlap from a
maximum of five to two events.
For identification of extreme
events, we used the multivariate
ENSO index provided by the
NOAA-CIRES Climate Diag-
nostics Center, University of
Colorado, Boulder (http:/www.
cdc.noaa.gov/~kew/MET/).
ENSO spatial coverage after
Allan et al. (1996)

HAW

170 E 180 W 170 W 160 W

spawning, involving the shedding of gametes with ex-
ternal fertilization producing free-swimming planula
larvae (Fadlallah 1983; Harrison and Wallace 1990;
Richmond and Hunter 1990). While brooded larvae

150 W 140 W

have the

130 W 120 W 110 W 100 W 90 W

potential to remain in the water column for

prolonged periods - due to their large size, high lipid
content and the presence of zooxanthellae (Richmond

1981) -

they generally tend to settle near the parent
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colony. An exception is the brooder Pocillopora dam-
icornis, which produces larvae that may remain compe-
tent for 100 days or longer (Harrigan 1972; Richmond
1989). Interestingly, central and west Pacific popula-
tions of P. damicornis are brooders whereas east Pacific
populations are spawners (Richmond and Hunter 1990;
Glynn et al. 1991). The six scleractinian species with
wide distributions are spawners, as are the three nar-
rowly distributed species with Indo-Pacific affinities
(Table 2). Until recently it was assumed that the small
size and low energy reserves in the eggs of spawning
corals dictated a brief period in the plankton. However,
some observations show that larvae developing from
spawning corals can have long settlement competency
periods. The maximum competency periods of two
Acropora species are 20 (Richmond 1989) and 91 days
(Harrison et al. 1984; two species also demonstrated
longevities of only 5 to 7 days in the laboratory), and
range from 26 to 78 days for three subtropical/tropical
coral genera (Wilson and Harrison 1998). O f the ten EP
zooxanthellate species thus far studied, only Porites
panamensis broods its larvae and settles within a few
meters of the parent colonies (Smith 1991; Glynn et al.
1994). Perhaps reflecting a limited capacity for dis-
persal, this species is absent from four of five offshore
EP island localities (Table 1). Moreover, populations
separated by about 250 km along the Pacific coast
of Panama demonstrate significant genetic divergence
(Weil 1993).

Zooxanthellae occur in the eggs of Pocillopora dam-
icornis, Porites lobata and Millepora intricata, but not in
the eggs of four other wide-ranging (ubiquitous) species,
nor in the gametes or larvae of five narrowly distributed
(restricted) species. Reproductive activity is more pro-
longed in ubiquitous than restricted species, perhaps al-
lowing the former a greater opportunity for dispersal
during periods of favorable current advection (Abbott
1966). Except for P. damicornis, the information avail-
able for ubiquitous species indicates that they require a
longer period to reach reproductive maturity than re-
stricted species. However, every ubiquitous species has
some populations with high fecundity in contrast to low-
moderate fecundity in restricted species. O f the remain-
ing reproductive traits, no clear trend in asexual frag-
mentation or recruitment success is evident. Preceding
recruitment, larvae must undergo settlement and meta-
morphosis, which may require specific substrata, chem-
ical cues or both (Morse 1990; Pawlik and Hadfield
1990). Therefore, coral larvae that have crossed the east
Pacific filter bridge may still face a critical period that
determines successful recruitment. Crustose coralline red
algae, a preferred substrate for the settlement of some
coral larvae (Morse et al. 1994), are not as abundant on
east Pacific reefs as elsewhere in the Pacific Ocean (Glynn
and Macintyre 1977; Cortés 1993). Unfortunately, no
information on this aspect of east Pacific coral larval
ecology is available. Unexpectedly, rafting has been ob-
served in the genera of all restricted species, but only in
two of the four genera of ubiquitous species.

Coral growth and frame-building potential

Growth traits possibly related to species distributional
ranges are colony growth form, growth rate and frame-
building potential. Many ramose corals, particularly
species of Pocillopora, Millepora and Acropora, repro-
duce asexually by fragmentation, a process that could
enhance the spread and persistence of populations lo-
cally (Tunnicliffe 1981; Bothwell 1982; Highsmith 1982;
Wallace 1985). Also, the colony surface of Porites lo-
bata, a massive species, bears protuberances that are
incidentally bitten off"by balistids but often survive, thus
expanding local populations. The breakage and dis-
persal of coral fragments by fishes has long been rec-
ognized as an important means of asexual propagation
in the east Pacific (Glynn et al. 1972; Highsmith 1982;
Guzman 1988; Guzman and Robertson 1989). High
skeletal growth rates are also associated with ramose
colonies, but these traits are not consistently related to
east Pacific species abundances. Since east Pacific reefs
are constructed of one or a few species, and are hun-
dreds to a few thousands of years old (Glynn and Wel-
lington 1983; Cortés 1993), it is reasonable to assume
that species forming reef frameworks would persist for
long periods. Such a relationship is not evident.

Interspecific interactions

Survivorship capacity of widely and narrowly distrib-
uted species was examined with reference to relative
abundance, susceptibility to predation, competitive abi-
lity (both intra- and interphyletic), resilience and per-
sistence. Nearly all ubiquitous species were abundant
with local populations consisting of approximately 104
colonies. All restricted species populations were small,
consisting of usually ten or fewer colonies. Two species
{Millepora platyphylla, Acropora valida) are now pre-
sumably extinct in the east Pacific, and two others
{Millepora boschmai, Millepora intricata) have precari-
ously small populations (Fig. 9). Four of the six
restricted species with small populations declined
markedly during the 1982-83 ENSO disturbance, and all
of the declines in Millepora spp. could be attributed to
prolonged sea warming (Glynn and Weerdt 1991; Glynn
1997). Differences in the ability to avoid predation or
compete for space with other epibenthos may be influ-
enced by colony growth form and the spatial arrange-
ment of colonies growing in juxtaposition. High coral
densities in the east Pacific often result in: (1) the sta-
bilization of colonies, (2) the protection of centrally lo-
cated colonies from predatory sea stars (Acanthaster),
and (3) rapid vertical growth, all attributes that promote
survival and persistence (Porter 1974; Glynn 1985;
Richmond 1985). However, differences in the ability to
avoid predation or compete for space with other epi-
benthic taxa do not seem critical in comparing the two
groups. Resilience, the capacity to recover from distur-
bances, and persistence, the long-term presence of spe-



Fig. 9A, B Massive mortality of Millepora intricata at Uva Island,
Panama (Gulf of Chiriquii) during the 1997-98 ENSO event (7 m
depth). A Live, normally pigmental colonies before initiation of sea
warming (29 January 1997). B Dead, algal covered and partially
eroded colonies following sea warming (18 March 1998)

cies at particular localities, were more commonly

observed in ubiquitous than restricted species.

Multivariate biogeographic analysis

Principal component analysis (PCA), following Pre-
isendorfer (1988), was used to determine the spatial re-
lationships of biological-physical fields relating to the
population dynamics of 41 coral species at 14 localities
in the east and central Pacific Ocean. The matrix ofcoral
species s relative abundance x in the localities /(Table 1)
was converted to a numerical
abundant was

abundance xs; where
10000, common was 1000, uncommon
was 100, rare was 10, locally extinct was 1, and unre-
corded was 0. Individual species abundance observa-
tions x were then transformed to natural-logarithm
scale, i.e., In(xs/ + 1), to approximate a normal distri-
bution for subsequent ordinal analyses. A coral popu-
lation was considered to be a member of the east Pacific
fauna if it has been cited recently or in the recent past at
a particular locality. The ‘new’ matrix of relative abun-
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dance in numerical terms was then analyzed using PCA
multivariate statistical methods to assess the biogeo-
graphic ‘connectiveness’ between subpopulations of
adult corals separated by hundreds to thousands of ki-
lometers in space distributed over the east Pacific. By
centering the reference frame ofthe data on mean locale
abundance and rotating 0 radians counterclockwise
about the joint column means, PCA enhances the ability
to distinguish differences in spatial distribution between
species while preserving the total variance of the data
that is invariant under rotation of coordinates to the
principal frame.

The PCA analyses uncovered three main spatial
groupings of coral species spatial distributions, i.e., wide
(W), medium (M) and narrow (N), throughout the east
Pacific biogeographic region, and each main group was
comprised of two subgroups A and B (Fig. 10). The
widely distributed species are characterized by occupy-
ing many localities (>10 locales) and are relatively
abundant at occupied localities. Species with medium
distributions are characterized by occupying about half
of the localities (i.e., 5-9 of 14 locales) and are margin-
ally abundant at occupied localities. Narrowly distrib-
uted species are characterized by occupying few
localities and are relatively rare where they are found.

These analyses are reviewed in light of the limited
population-dynamic data available on east Pacific coral
species (Table 2). For the wide distribution component,
we found that these corals parsed into two main sub-
groups, here referred to as WA and WB. The WA group
consisted of five species that occupied from 10 to 13
locales at relatively high levels of abundance. Popula-
tion-dynamic data were available for Porites lobata,
Psammocora stellata and Pavona varians of the WA
group. In general, the population dynamics of members
of the W A group was characterized by species with low
to medium frame-building potential, low to medium
growth rates, medium competitive ability, and year-
round spawning. In contrast, the WB group also con-
sisted of five species whose population dynamics were
characterized by species with low to medium to high
frame-building potential, high to medium growth rates,
high to medium competitive ability, and wet-season
spawning. For the narrow distribution component, we
found that these corals also parsed into two subgroups,
here referred to as NA and NB. The NA group was
characterized by high to medium resilience, while
members of the NB group were characterized by low
population resilience. The mid groups, i.e., MA and MB,
had population dynamic characteristics falling between
the wide and narrow clusters.

Discussion and research directions

Several lines of evidence suggest that the “impassable”
east Pacific barrier has been frequently breached by
diverse taxa and is therefore best regarded as a filter
bridge, following GG Simpson’s schema (McKenna
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Fig. 10 Results from the prin-
cipal components analysis of
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1973). Numerous Indo-Pacific reef-associated species,
e.g. corals, mollusks, crustaceans, echinoderms and
fishes, inhabit the east Pacific, and the majority of these
species (those studied) have teleplanic larvae capable of
long distance dispersal. Developmental stages of cnid-
arians, polychaete worms, sipunculans, gastropods,
decapod crustaceans, echinoderms, and fishes have been
collected alive in epipelagic waters between the Line
Islands and east Pacific. The cnidarians included pocil-
loporid larvae, which settled and grew for a few weeks
until they were killed in a laboratory accident (R.H.
Richmond, pers. comm.). These dispersing larvae have
been found at various distances across the east Pacific
filter bridge, in the east-flowing NECC and in west-
flowing NEC and SEC waters. Several new records of
Indo-Pacific mollusks, echinoderms and fishes have
been reported in the east Pacific following ENSO
events. Demonstrated massive, high velocity west to east
advection during ENSO periods provides a physical
explanation for the increased appearance of Indo-west
Pacific immigrants in the east Pacific at such times.
Molecular studies based on allo2zyme differences have
demonstrated little or no genetic divergence among
disjunct populations of crabs, a sea star {Acanthaster),
sea urchins and fishes, suggesting significant genetic
interchange. It is likely that some Indo-west Pacific
species have been transported into the east Pacific
during the 1997-98 ENSO event. Every effort should be
made to document the arrival of immigrants, noting the
timing, geographic position, developmental stages and
condition, and to monitor their populations to better
define the critical factors surrounding metamorphosis,

Ist Principal Component

settlement, and interactions with resident east Pacific
species.

Notwithstanding these significant advances, numer-
ous important questions relating to various details of
dispersal and colonization still remain. For example, the
efficacy ofrafting needs to be studied in more detail. The
ability of coral larvae to settle and survive on floating
objects can add substantially to dispersal capabilities
(Jokiel 1990a). Corals settling on pumice can move over
great distances (thousands of kilometers) for at least a
few years if food resources and environmental condi-
tions are adequate (Jokiel 1990b). Live colonies of Po-
cillopora damicornis (ca. 10 cm diameter) have been
observed on sunken tree trunks in Panam4 (Glynn, pers.
obs.), and a small colony of Pocillopora sp. was found
attached to clumps of floating Sargassum at Gorgona
Island, Colombia (Prahl 1988). Pumice recovered in the
Hawaiian Islands with two attached colonies of Po-
cillopora sp., the larger colony 2-3 years of age, likely
originated from the Revillagigedo Islands (west México)
and drifted to Hawaii in the NEC (Jokiel 1984). While
diverse larval stages have been captured near the east
and west boundaries of the Pacific filter bridge, where
transoceanic currents first encounter shallow shelf hab-
itats, the actual arrival of dispersing stages known to
have crossed the open ocean has not been reported.
Thus, it has not been possible to establish the nature of
the dispersing organisms, i.e. whether by drifting larvae
or the rafting of settled stages, or the identity of the
transporting currents. Here, as in most studies, the
NEC, SEC and NECC are assumed to be the most likely
currents facilitating dispersal. However, it is possible



that the EUC, originating west of the Line Islands and
surfacing immediately west of the Galapagos Islands,
and the SECC, moving in an easterly direction through
French Polynesia, may also play a role in dispersal.
Perhaps related to these southerly routes are four fossil
zooxanthellate coral genera (Stylophora, Pocillopora,
Leptoseris, Porites) that have been collected from seca-
mounts of the Sala y Gomez and Nazca ridges, centered
at 25-30°S. The dredge collection (HD-73) containing
these corals is from the “Shoal Guyot”,205-227 m depth
at 85°25'W, 25°44'S (Allison et al. 1967). These ridges
belong to the Nazcaplatensis Province, which extends
from Easter Island in an east to northeast direction
across 30° latitude. The E-most end of the ridge lies
about 730 km from the Peruvian coast and 1600 km
south ofthe ETP reefcoral region. As noted earlier, the
cool Peru-Chile Currents may have impeded coloniza-
tion ofthe northwest South American cost. Remarkably,
some of the seamounts of the Nazca and Salay Gomez
ridges are drowned atolls of Miocene age, ranging from
250 to 1200 m in thickness (Parin et al. 1997). This sug-
gests an important early biogeographic link between the
south Pacific and southeast Pacific regions.

Further, since the recruitment of Indo-west Pacific
species has not been observed directly, various risks
associated with recruitment, such as the availability of
suitable substrata during settlement, and likely high
rates of predation and competition, have not been in-
vestigated. Even assuming successful recruitment, a
number of conditions must be met to ensure coloniza-
including the establishment and persistence of
populations sufficiently large to ensure future repro-

tion,

ductive success. The marked fluctuations in population
size and local extinctions of east Pacific corals docu-
mented in recent years underline the importance of di-
verse environmental demands upon adult species
populations (Glynn 1997). To better understand the
dynamic nature of EP coral reef species, long-term
monitoring, in particular the assessment of population
size and stability, and reproductive and recruitment
success in relation to physical and biotic perturbations,
is urgently needed. The relatively strong correlation
between population-dynamic characteristics and species
distribution and abundance for the few species where
detailed information is available suggests the need for
expanded demographic knowledge for the bulk of ETP
species, and the Central and Indo-Pacific species as well
if comprehensive comparative biogeographic analyses
are to ever be conducted.

Detailed morphometric and genetic comparisons of
central (Line Islands, Marquesas Islands) and east Pa-
cific coral species populations are virtually nonexistant.
Comparisons of allozyme differences within and between
east and central Pacific coral populations would provide
information that could be used to guage their degree of
genetic connectivity. Also, newer molecular techniques
based on PCR (polymerase chain reaction) have been
utilized in some coral studies and may hold promise for
more intensive biogeographic investigations. Mitochon-
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drial and nuclear marker genes can offer higher resolu-
tion than protein electrophoresis, and provide a
quantitative measure of patterns of evolution (Romano
and Palumbi 1996). Nuclear ribosomal DNA (rDNA)
analysis has proved useful for interspecific comparisons
and molecular phylogeny in the difficult genera Porites
(Hunter et al. 1997) and Montastraea (Lopez and
Knowlton 1997; Medina et al. 1999). The preliminary
study of Hunter et al. (1997) in Hawaii is the only one to
date that has examined geographic differences between
coral populations. And evidence of hybridization in
species of Acropora has become available from rDNA
studies by Odorico and Miller (1997).

Since all coral genera save two (Cycloseris and Dia-
seris) are present in Caribbean and east Pacific fossil
assemblages, it is possible that some east Pacific coral
species could be descended from Tethys relicts as sug-
gested by Budd (1989). Two candidate species are the
extant endemic Siderastrea glynni and Millepora bosch-
mai, which would offer interesting comparisons with
Caribbean and Indo-Pacific congeners.

The high proportion of east Pacific coral endemics,
24.4% (10 out of 41 species), may be somewhat inflated
because six of them have only recently been recognized
or named. Future collecting efforts may reveal their
presence outside of the east Pacific. Three of these spe-
cies belong to the equatorial east Pacific province
{Siderastrea glynni, Pavona sp. A, Millepora boschmai),
two are known only from Clipperton, the Revillagigedo
Islands and north México (Pocillopora sp. A, Porites sp.
A), and one occurs from the Galapagos Islands to
mainland México {Pocillopora inflata). 1f this high level
of endemism is substantiated by further study, it would
lend support to a model of allopatric spéciation in an
isolated peripheral area (see Rosen 1988; Jokiel and
Martinelli 1992; Veron 1995). Perhaps a suite of ETP
corals, originating from central Pacific species by long
distance dispersal, has speciated in response to the novel
physical and biotic conditions characteristic of the east
Pacific region? In conclusion, our analysis suggests that
the Modern east Pacific coral fauna may consist of a
mixture of elements derived from both dispersal and
vicariance events: (1) mostly of Indo-Pacific migrants
that reached the east Pacific by long distance dispersal
after closure ofthe Central American seaway, (2) several
endemics that evolved relatively recently in the isolated
and marginal east Pacific environment, and (3) a few
relict species with closest affinity to west Atlantic
ancestral stocks.
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