Mar Biol (2007) 151:1275-1286
DOT 10.1007/500227-006-0556-1

RESEARCH ARTICLE

Population structure and historical demography of the thorny
skate (Amblyraja radiata, Rajidae) in the North Atlantic
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Abstract Population genetic structure of the thorny
skate (Amblyraja radiata) was surveyed in >300 indi-
viduals sampled from Newfoundland, Iceland, Norway,
the Kattegat and the central North Sea. A 290-bp
fragment of the mt cytochrome-b gene was first
screened by SSCP. Sequences of SSCP haplotypes re-
vealed 34 haplotypes, 14 of which were unique to
Iceland, 3 to Newfoundland, 1 to Norway and 3 to the
Kattegat. The global FSr was weak but significant.
Removal ofthe two Kattegat locations, which were the
most differentiated, resulted in no significant genetic
differentiation. Haplotype diversity was high and
evenly distributed across the entire Atlantic (h = 0.8)
with the exception of the North Sea (4 =0.48). Sta-
tistical parsimony revealed a star-like genealogy with a
central widespread haplotype. A subsequent nested
clade analysis led to the inference of contiguous
expansion with evidence for long distance dispersal
between Newfoundland and Iceland. Historical

Communicated by O. Kinne, Oldendorf/Luhe.

M. Chevolot (E1) «P. H. J. Wolfs «W. T. Stam =

J. L. Olsen

Department of Marine Benthic Ecology and Evolution,
Center for Ecological and Evolutionary Studies, Biological
Centre, University of Groningen, PO Box 14, 9750 AA
Haren, The Netherlands

e-mail: m.s.c.o.m.chevolot@rug.nl

J. Palsson
Marine Research Institute, PO Box 1390, 121 Reykjavik,
Iceland

A. D. Rijnsdorp

Wageningen Institute for Marine Research and Ecological
Studies (IMARES), Animal Sciences Group, Wageningen
UR, PO Box 68, 1970 AB IJmuiden, The Netherlands

demographic analysis showed that thorny skates have

undergone exponential population expansion that
started between 1.1 million and 690,000 years ago; and
that the Last Glacial Maximum apparently had little
effect. These results strongly differ from those of a
parallel study of the thornback ray (Raja clavata) in
which clear structure and former réfugiai areas could
be identified. Although both species have similar life
history traits and overlapping ranges, the continental
shelf edge apparently does not present a barrier to

migration in A. radiata, as it does for R. clavata.
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Introduction

The thorny skate (Admblyraja radiata; Rajiformes: Ra-
jidae) is widely distributed throughout the North
Atlantic region from Hudson Bay to South Carolina,
USA in the west, Greenland, Iceland and Spitzbergen
in the north, and from Norway to the southern North
Sea (including the western Baltic) in the east. Thorny
skates live in shallow coastal waters but extend their
habitat to a depth of 1,000 m. Their life cycle is ovip-
arous, producing 20-80 eggs per female each year.
There is no passive pelagic larval state; rather, fully
formed rays hatch after several months (ca. 8-11 cm
disc width) and mature at 5-6 years (Walker 1998).
The species seems to be reproductively active all year
round in areas where the reproductive biology has
been studied (i.e. in the Gulfof Maine Sulikowski et al.
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2005, North Sea Walker 1998). Philopatry of rays and
skates has also been reported and has indicated rela-
tively small home ranges. Tagging studies in UK wa-
ters, for example, have 85% of the
individuals remained within a 110 km area (Walker
et al. 1997; Dulvy et al. 2000; Heessen 2004). These
observations, combined with the life history traits,

shown that

suggest that population genetic differentiation may be
relatively strong in 4. radiata, as compared with fish
characterized by high fecundity, long pelagic larval
stages and large migratory ranges. Given that 4. radi-
ata is characterized by low fecundity, slow growth rate,
and late maturity; combined with its vulnerability to
over-exploitation (Brander 1981; Heist 1999), an
assessment of population genetic structure over its
range as compared with other skates/rays is of interest
to management and conservation. It is also of interest
in the broader phylogeographic and demographic
context of historical population growth.

Distributions of the North Atlantic and northern
European marine biota have been drastically affected
by the Pleistocene glacial/interglacial cycles over the
past 2.4 Myr. The last glacial maximum (LGM), which
occurred ca. 20,000 years ago, has significantly shaped
contemporary distributions of both terrestrial (Hewitt
2000) and shallow-water, marine organisms (Cunning-
ham and Collins 1998). Marine populations either be-
came extinct or were forced to retreat (usually
southward) into one or more réfugiai areas. As the ice
retreated, populations expanded and recolonized areas
previously covered by ice. Ice-sheet extension also
drastically affected sea-level and coastlines; and the
Baltic and the North Sea effectively did not exist
(Frenzel et al. 1992). Thus, for boreal species, potential
refugia are postulated to have occurred at about the
latitude of Newfoundland (47°N) in the western
Atlantic and Northern Portugal/Spain (43°N) in the
eastern Atlantic. In addition, there is some paleocli-
matic evidence for a coastal, ice-free zone in southern
Iceland (Rundgren and Ingolfsson 1999; Bingham et al.
2003) which is also supported by some genetic studies
of benthic marine invertebrates (Wares and Cunning-
ham 2001; Addison and Hart 2005; Govindarajan et al.
2005). The degree to which some demersal skates and
rays were affected represents an intermediate case
between sessile, benthic organisms and widely foraging
pelagic organisms.

Mitochondrial DNA (mtDNA) sequences are
appropriate for assessing genetic population structure,
phylogeography and
underlying historical demographic processes that have
shaped present-day structure (Avise 2000). Use of
mtDNA has the further advantage that its effective

in making inferences about
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population size ((Ve) is four times smaller than nuclear
DNA Nd&due to its haploid nature and generally uni-
parental inheritance (Birky et al. 1989). Thus, the ef-
fect of genetic drift is stronger and a higher level of
population differentiation can be observed with
mtDNA than with nuclear DNA (e.g., Hoarau et al.
2004). This can be of great importance in populations
that do not reach migration/genetic drift equilibrium,
as in such areas where recolonization history is recent.
The aim of the present study was to survey regional
population genetic and phylogeographic structure in
the thorny skate (4. radiata) in northern Atlantic. We
focused on four questions: (1) to what extent are A.
radiata’s life history traits a good predictor of popula-
tion differentiation; (2) how has recent climate history
shaped the regional distribution of 4. radiata; (3) to
what extent are historical imprints of refugia, recol-
onization and demographic expansion detectable; and
(4) how do these results compare to those for the
thornback ray, Raja clavata (Chevolot et al. 2006b)?

Materials and methods
Sampling and DNA extraction

A total of 337 rays was sampled from 13 locations
during various bottom trawl surveys conducted be-
tween 2003 and 2004 (Fig. 1; Table 1). In order to
obtain reasonable sample sizes, hauls were pooled in
some cases (See Table 1). Pooling rules were guided by
tagging studies which suggested that individuals gen-
erally remained within a 110-km area. Using a con-
servative approach, we pooled hauls that were close
together, i.e., <50 km apart. At some locations, adults
and immature individuals were caught together. In
such cases, they were separated to avoid temporal
admixture (Waples 1998). These two maturity stages
were distinguished based on reproductive criteria, i.e.
presence of fully differentiated shell glands for females
and fully developed testes and claspers for males
(Stehmann 1995). Muscle tissue was collected from
each individual and preserved in 70% ethanol. Total
genomic DNA was extracted using either a modified
CTAB (Hoarau et al. 2002) or a silica-based extraction
protocol (Elphinstone et al. 2003).

SSCP and sequencing

A 290-bp fragment of the cytochrome b (cytb) was
amplified by PCR using the primers ArCb-F (5'CAC-
AGATAAAATCCCATTT3"), fluorescently 5' labeled
with 6-FAM and Cb-R (5'CCGCCCAATCACT-
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Fig. 1 Sampling locations for
Amblyraja radiata (See
Table 1 for abbreviations)

CAAACC3"), fluorescently 5' labeled with HEX. PCR
reactions were performed in a 10 pi total volume
containing 1-3 pi of extracted DNA (<1 ng),
1 x reaction Buffer (Promega), 0.2 mM of each dNTP,
025U Tag DNA polymerase (Promega), 2 mM
MgCl12, 0.5 pM of ArCb-F and 0.64 pM of Cb-R. PCR
amplifications were performed with either a PTC-
100™ thermocycler (MJ Research, Inc.) or Mastercy-
cler gradient cycler (Eppendorf). PCR conditions
were: initial dénaturation for 1 min at 94°C; followed
by 32 cycles of: dénaturation for 30 s at 94°C, annealing
at 49°C for 30 s, and extension at 72°C for 1 min 30,
and followed by a final extension step at 72°C for
10 min.

Single strand conformation polymorphism (SSCP)
(Orita et al. 1.989; Sunnucks et al. 2000) was used to
screen for sequence variation in PCR fragments of
equal length. Point mutations affect conformation of
the single DN A strand, which can be revealed on non-
denaturing polyacrylamide gels. SSCP gels were run on
an ABI Prism-377 automatic sequencer (Applied Bio-
systems) as described in Coyer et al. (2002), except
that we used 0.3 x MDE concentration and added 5%
glycerol to the gel. Because mutations can affect the
mobility of one or both strands differently (Lescasse
1999), separate labeling of each strand increases the
sensitivity to detect differences.

All gels were analyzed independently and all unique
haplotypes detected by SSCP on each gel were se-
quenced. When more than five individuals showed the
same SSCP haplotype, at least two individuals were
sequenced. PCR products were cleaned with ExoSaplt
(USB Corporation) enzyme following the providers’
recommendations. Both strands were sequenced using
the Big Dye Terminator Kit (Applied Biosystems) and
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run on an ABI Prism-377 automatic sequencer (Applied
Biosystems). Sequences were edited using BioEdit
v7.0.1 (Haii 1999) and aligned with ClustalW and by eye.

Data analysis

Haplotype (k) and nucleotide (n) diversities (Nei 1987)
were estimated using DnaSP v.3.53 (Rozas and Rozas
1999). Population differentiation was assessed using
Wright’s Fsx (Wright 1969). Global and pairwise FST
were estimated using the Weir and Cockerham (1984)
6 estimator with Genetix 4.05 (Belkhir et al. 2004) and
significance was tested with 3,000 permutations.
Intraspecific relationships of mtDNA haplotypes
were inferred using a statistical parsimony with the
software tes v.1.13 (Clement et al. 2000). The resulting
network was used for a Nested Clade Analysis (NCA)
to test for geographical association between haplotypes
(or nested clades) and geographical distribution
(Templeton et al. 1995). The idea is to distinguish be-
tween past (fragmentation, expansion) and contempo-
rary processes as tip clades are expected to be more
recent than interior clades (Donnelly and Tavare
1986). The first step is to nest the statistical parsimony
network following Templeton’s nesting rules (Tem-
pleton et al. 1995; Templeton and Sing 1993): Haplo-
types (“0-step clades”) separated by a single mutation
are grouped together into a “one-step clade” pro-
ceeding from the tips to the interior of the network;
then “one-step clades”, separated by a single mutation,
are grouped together in “two-step clades”. The clus-
tering is continued until the next level of nesting would
encompass the entire tree. Ambiguities (intercon-
nected haplotypes forming a closed loop due to mul-
tiple parsimonious interconnections) were resolved
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Table 1 Sampling locations of Amblyraja radiata

Sampling site Code Latitude Longtitude
(deg) (deg)
Newfoundland Newfoundland Nf 46.07 -47.37
Iceland Off Bj 65.74 -27.4
Bjargtangar
65.67 -27.56
65.42 -27.97
65.73 -28.38
65.73 -27.98
65.79 -27.89
65.76 -27.69
65.75 -27.50
65.84 -27.03
Isafjardarjiip Is 66.28 -23.20
Hunafloi Hu 65.57 -21.08
Skjalfandi Skj 66.14 -17.54
Eyjafjordur Ey 66.16 -18.43
Skagafjordur Ska  65.94 -16.79
Oxafjordur Ox 66.28 -16.28
O ff jaistlfjordur pj 66.91 -13.48
67.06 -13.99
Off Hofn Ho 63.91 -12.53
63.95 -12.70
64.02 -12.82
64.08 -12.60
64.22 -12.38
63.96 -12.90
Eastern Off Haugesund Ha 59.37 2.92
Atlantic 58.87 3.14
Kattegat Ka 57.50 10.35
Central North  Ns 56.13 4.81

Sea
All Locations

a Sampling size
b A Adults, I Immature
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Na Maturity Sampling Cruise0 Nh he T
stageb date
30 A(-A) October 2004 DFO Fall 10 0.834 0.0070
survey
32 1(-D) October 2003 ICBTS 9 0.802 0.0055
22 A October 2003 11 0.749 0.0060
17 A October 2003 ICBTS 5 0.750 0.0030
27 A March2004 ICBTS 8 0.738 0.0047
25 1 March 2004 ICBTS 9 0.743 0.0056
18 A 9 0.824 0.0057
19 A March 2004 ICBTS 6 0.784 0.0038
19 1 March 2004 ICBTS 10 0.784 0.0058
20 1 March 2004 ICBTS 11 0916 0.0071
24 A October 2003 ICBTS 11 0.916 0.0071
17 A October 2003 ICBTS 6 0.806 0.0036
15 1 February2003 IBTS 7 0771 0.0039
22 1 February IBTS 8 0.789 0.0060
19 A 2003 6 0719 0.0044
11 I February IBTS 3 0.473 0.0018
2003
337 34 0.796 0.0056

¢ DFO Fall survey Department of Fisheries and Oceans, Government of Canada, Fall survey, ICBTS ICelandic Bottom Trawl Survey
(Marine Institute of Reykjavik, October and March surveys), /BTS International Bottom Trawl survey (International council for the

exploitation of the sea)

d Number of haplotypes

¢ Haplotype diversity (Nei 1984)
I nucleotide diversity (Nei 1984)

following Templeton and Sing’s rules (1993). These
rules are based on three criteria: the frequency crite-
rion, in which haplotypes are expected to be connected
to frequent haplotypes rather than to rare haplotypes;
the topology criterion, in which haplotypes are ex-
pected to be connected to interior rather than tip
haplotypes; and the geographical criterion, in which
new haplotypes are expected to remain in the same
location as the ancestral haplotype. Using the nested
design and the software Geodis 2.4 (Posada et al.
2000), the relationship between haplotype or clades
and their geographical distribution was assessed. The
program calculates the average clade distances (D c¢),
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which is a measure of the geographical spread of a
clade; the nested clade distances (Dn), which is a
measure of how a clade is distributed in comparison to
other clades within the same nested clade level; and the
interior-tip distances (I-Tc and I-TN) which indicate
how widespread younger clades (tips) are compared to
their ancestors (interiors), relative to other clades
within the same nesting clade. The statistical signifi-
cance of the distance measures was calculated by
comparison with a null distribution after 1,000 per-
mutations. Finally, the biological meaning of the out-
put was interpreted using the latest Templeton
inference key (Templeton 2004).
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Estimates of past population expansion were made
using the mismatch distribution of the cytochrome b
sequences (frequencies of pairwise differences between
haplotypes), Tajima’s D and Fu’s estimators and a
generalized skyline plot (coalescence approach). Con-
gruence among the three approaches provides stronger
inference for population growth or lack thereof. The
mismatch analysis assumes that population growth or
decline will reveal a genetic signature (i.e., a unimodal
distribution) different from that observed with a con-
stant population size (Rogers and Harpending 1992).
The observed mismatch distribution was compared to
an expected distribution under an expansion growth
model and parameters of the model (x =time of
expansion, 00= population size prior to expansion,
0i = final population size) were estimated from the
mismatch distribution through the least-square proce-
dure (Schneider and Excoffier 1999). Based on the
estimated parameters x and the formula x = 2;i ¢, the
timing of expansion can be estimated if the substitution
rate is known. Substitution rates were estimated at
between 0.008 and 0.005 per Myr (Chevolot et al.
2006b). Tajima’s D and Fu’s estimators test for neu-
trality, but signature of a population expansion is also
given by a significantly negative (Tajima 1989; Fu
1997). These values were estimated using Arlequin
v3.0 and significance was tested against 10,000 permu-
tations.

Historical demography was inferred using a coales-
cent approach through the generalized skyline plot
based on the phylogeny of the haplotytpes. The model
of variable population size describes the shape of the
genealogy depending on the demographic history of
the population. This approach is particularly effective
for non-resolved, star phylogenies and low sequence
variation (Strimmer and Pybus 2001), which is quite
often the case for intraspecific phylogenies. The first
step in this analysis is to obtain phylogenetic trees from
all mtDNA sequences with branch length proportional
to time. Therefore, we first calculated the most likely
model of molecular evolution to explain the data using
ModelTest v3.06 (Posada and Crandall 1998). A hier-
archical test of likelihood was performed under 56
models and using the likelihood ratio test (LRT), the
HKY model with a gamma rate was selected
(/(A) =0.24; /(T) =027, /(C) =0.14; /(G) =0.35;
transition/transversion ratio = 18.15; gamma shape =
0.015) (P <0.0001). Thereafter, maximum likelihood
trees were estimated under the HKY model with
gamma shape and with a molecular clock assumption
using Paup v4.0bl0 (Swofford 1998). The software
Genie 3.0 (Pybus et al. 2000) was used to obtain the
generalized skyline plot from the maximum likelihood
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trees with a smoothing algorithm. The s parameter
governs the smoothing algorithm and reduces the noise
due to the stochasticity of the coalescence events. This
parameter was chosen using the maximize optimization
option.

Results
Genetic diversity analysis

Among the 337 individuals, 34 haplotypes were de-
tected; differences among haplotypes were due to 26
polymorphic sites, of which 12 were informative. All
differences were due to substitutions; no indels were
found. The overall haplotype and nucleotide diversities
were 0.796 and 0.009, respectively. The highest haplo-
type diversity was found in Ox, Iceland {& =0.916),
and the lowest in the Central North Sea (2 = 0.473). In
general, however, haplotype diversity was relatively
homogeneous across all other locations (Table 1).
Population differentiation

Because the global 0 (0.019) was significant
{P = 0.001), thorny skates were initially assumed to be
significantly differentiated across the sampling sites.
Pairwise 0 comparisons showed that most significant
pairwise comparisons were due to the two Kattegat
locations (Ka-I, Ka-A) (Table 2). Removal of Kattegat
populations resulted in a non-significant global 0
(0.008; P - 0.1). No significant genetic differentiation
was detected (global 0 = 0.0104, P = 0.12) among all of
the Icelandic populations.

Geographic distribution of haplotypes

The statistical parsimony network among the different
haplotypes (Fig. 2) revealed a star-like genealogy with
H21 (found in all sampling locations) as the most
central and the most frequent (54.5%, Table 3; Fig. 2).
The second most common haplotype was H8 (also
present in all locations) (Table 3; Fig. 2). Fourteen
haplotypes were exclusive to Iceland, three were un-
ique to Newfoundland (H20, H23, H28), one (H32) to
Norway, and three to the Kattegat (H7, H10, H16).
The nested clade analysis (Fig. 2) revealed 13 one-step
clades, 5 two-step clades and the overall network is a
three-step clade. A significant association between a
clade and its geographic distribution was found in four
cases (Table 4). The emerging picture is restricted gene
flow between Kattegat, Iceland/Newfoundland (clade
1-3, H7); and the possibility of long-distance dispersal

46 Springer
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1984).

among the sampling locations based m pairwise multi-locus 9 estimates (Weir and Cockerham
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or isolation by distance between Iceland Newfound-
land and Kattegat (clade 1-7, H19). Without samples
from Greenland and the Faroes, we cannot distinguish
between these two scenarios in the last case. Contigu-
ous range expansion is the best explanation for hap-
lotype/clade distribution at the two-step level (clade 2-
5, H21) and for the total cladogram, which indicates
that there has been high connectivity among locations
for a long time.

Historical demography

The star-like genealogy for the haplotype network is
consistent with a sudden exponential expansion of 4.
radiata populations. This is supported by the unimodal
mismatch distribution in Fig. 3 and the test of goodness
fit of a sudden expansion model that could not be re-
jected (P - 0.12). The estimated parameters of the
model were r = 1.414, 90 =0.21 and 0! = 1,000, from
which the time of expansion for A. radiata was esti-
mated to have started between 690,000 and
1,100,000 years ago and not during the LGM (substi-
tution rate = 0.005 and 0.008 per Myr, see Materials
and methods). Tajima’s D statistics were -1.6 and the
Fu’s Fsstatistics -27.3; both were significant (P = 0.026
and P < 0.001, respectively). The generalized skyline
plot (Fig. 4) is also consistent with past population
growth.

Discussion
Population differentiation

The near absence of genetic differentiation in 4. rad-
iata over the North Atlantic does not conform to pre-
dictions based on life history characteristics of Rajidae.
Although a lack of power related to the small sample
size and the use of only one molecular marker might
explain this (Waples 1998), the finding of strong and
highly significant structure at the ocean basic scale in a
parallel study using the same marker for another Ra-
jidae species Raja clavata (with a 9 30 times higher)
(Chevolot et al. 2006b) suggests that our results are not
an artifact. Both species have similar life history traits
but different depth ranges such that, the continental
shelf margins are effective barriers.

Tagging (mark/recapture) conducted for
Rajidae species have indicated traveling distances on
the order of hundreds of kilometers, (Templeman
1984; Walker et al. 1997; Hunter et al. 2005) as com-
pared to traveling distances on the order of thousands
of kilometers for many bony and cartilaginous fishes

studies
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Fig. 2 Statistical parsimony
network (heavy lines) and
nested clade design (light
lined boxes) for mtDNA
haplotypes of A. radiata. The
square indicates the most
probable ancestral haplotype.
Other haplotypes are
indicated by circles; and small
black dots denote
intermediate haplotypes not
present in the data set. Each
line in the networks between
haplotypes represents a single
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paths between haplotypes are
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1-step clade, 2-n for 2-step
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Iceland only

O Kattegat only
(S) Norway only

Newfoundland only

(Metcalfe and Arnold 1997, Lawson and Rose 2000;
Kohler and Turner 2001; Sedberry and Loefer 2001;
Queiroz et al. 2005) supporting the hypothesis of re-
gional population structure in 4. radiata. A closer look
within the Rajidae, however, reveals that 4. radiata
travels the farthest—between 1.4 and 3 times as far as
R. clavata (Templeman 1984; W alker et al. 1997). Until
now, little attention has been paid to this difference
because mismatches between tagging and genetic
studies (Hoarau et al. 2004; Chevolot et al. 2006a)
have been so great that the variance reported within
tagging studies was largely discounted. Tagging studies
typically encompass a period of a few years (max
4 years), less than a generation (first age at maturity for
A. radiata 5-6 years) in Rajidae, whereas genetic
studies integrate processes over many generations.
Thus, our genetic result on 4. radiata, suggests that the
migratory range is much greater than previously
acknowledged. The large scale genetic homogeneity
may lie in the fact that thorny skates are not restricted
to shallow shelf as they have been caught at depths
down to 1,000 m (Stehmann and Biirkel 1994). For
example, 4. radiata is commonly caught across the
channel separating Iceland and Greenland continental
shelves at approximately 66°N, where depth is as low
as 600 m and it is as well regularly fished on the Iceland
Faroe Ridge where depth is around 500 m (J. Palsson,

H8
HI2

H32

HS
H28 H7

2-4

H25 H20

1-5

Pers. Comm.). This suggests that its wide depth range
enables 4. radiata to migrate over large distances be-
tween continental shelves using intercontinental ridges.

The strong differentiation observed between the two
Kattegat locations amongst the rest is probably due to
differences in salinity and temperature that occur in
the transition from the North Sea into the Baltic, as
significant restricted gene flow across the transition
zone has been shown in several other groups of marine
organisms. In the turbot {Scophthalmus maximus), no
genetic differentiation was found between the Atlantic
and the North Sea, but highly significant differentiation
was found between the Baltic locations and North Sea/
Actlantic locations (Nielsen et al. 2004). Similar results
were obtained in the European plaice {Pleuronectes
platesssa) with the mitochondrial marker (Hoarau
et al. 2004) and in the cod (Gadus morhua) (Nielsen
et al. 2001). Other groups of marine organisms that
showed strong differentiation between the North Sea
and the Baltic Sea include the seagrass Zostera marina
(Van Oppen et al. 1995; Reusch et al. 1999; Olsen
et al. 2004), the seaweeds Cladophora rupestris (Jo-
hansson et al. 2003) and Fucus serratus (Coyer et al.
2003). Salinity and temperature play a major role in
shaping population structure in the herring, Clupea
harengus (Jprgensen et ai. 2005). In all of these cases,
local adaptation to environmental conditions may be
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Table 3 Haplotype distributions per sampling sites.
Haplotype

(Accession number) Nf Bj-I Bj-A Is Hu Skj-I
HI1 (DQ 521996) 2 1

H2 (DQ 521997) 1 1 1 1
H3 (DQ 521998) 1

H4 (DQ 521999) 2 1 2

H5 (DQ 522000)

H6 (DQ 522001 2 1 1
H7 (DQ 522002)

H8 (DQ 522003) 6 6 2 5 9 5 7
H9 (DQ 522004) 3 1 1

H10 (DQ 522005)

H 1l (DQ 522006) 1 1

HI2 (DQ 522007) 1

H13 (DQ 522008) 1 1
H14 (DQ 522009) 1

H15 (DQ 522010) 1 1

H16 (DQ 522011)

H17 (DQ 522012) 1 1
H18 (DQ 522013)

HI9 (DQ 522014) 5 1 1
H20 (DQ 522015) 1

H21 (DQ 522016) 10 13 12 7 11 12 4
H22 (DQ 522017) 1 1 1
H23 (DQ 522018) 1

H24 (DQ 522019) 1

H25 (DQ 522020)

H26 (DQ 522021) 1 1

H27 (DQ 522022) 1 1

H28 (DQ 522023) 2

H29 (DQ 522024)

H30 (DQ 522025) 1 1

H31 (DQ 522026) 2

H32 (DQ 522027)

H33 (DQ 522028) 1 2 3

H34 (DQ 522029) 1

Total 30 32 22 17 27 25 18

important and may lead to stronger genetic differen-
tiation than large geographic distance or depth.

Phylogeographic patterns

For much of the North Atlantic biota, habitat loss
during the LGM resulted in local extinctions and in a
generally southward range modifications into perigla-
cial refugia. As ice sheets retreated, populations ex-
panded generally following the leading edge
hypothesis (Ibrahim et al. 1996). In this model, theory
predicts that the leading edges will be less genetically
diverse as founders move away from the genetically-
more-diverse former refugia (and under the further
assumption of large réfugiai population sizes). The
degree to which this model holds is also expected to
differ between shallow benthic and pelagic organisms,
the former suffering the most. Rays and skates might
be predicted to occupy an intermediate position as they
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1 1 8
1
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are free to move but are still dependent on bottom
substrate for feeding and egg laying.

Low haplotype diversity in the North Sea is consis-
tent with the leading edge model since is has only ex-
isted for the past 8,000 years (Zagwijn 1992; Dinter
2001). However, the broad distribution of haplotypes
across the entire Atlantic, combined with the star-like
haplotype network and the contiguous range expansion
does not conform to the usual refugium model but to a
high gene flow species with long-term connectivity
between the eastern and western Atlantic (Avise et al.
1987; Avise 2000), as it has been found in some teleosts
species (e.g. Bremer et al. 2005; Ely et al. 2005). Thus,
an East-West Atlantic connection has existed for a
long time.

The large number of haplotypes found in Iceland is
most likely due to the admixture between western and
eastern Atlantic populations as a consequence of its
central location rather than as a potential glacial
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Table 4 Phylogeography inference from the Nested clade analysis following Templeton’s key (2004)

Clade Dominant haplotype/geographical distribution Inference
Clade 1-3 H4/Iceland, Newfoundland and Kattegat Restricted gene flow
Clade 1-7 H19/Iceland, Newfoundland and Kattegat Too few samples to distinguish between
Long distance dispersal and isolation by distance
Clade 2-5 H21/all sites Contiguous range expansion

Total Cladogram H21/ all sites

Contiguous range expansion

Only clade with significant association between haplotype/clades and geographical distribution are shown. See Fig. 2 for the nested

design

0,35
0,30 -

0,25 -

0,10 -
0,05 -
0,00
0 2 4 6 8 10

Number of pairwise differences

Fig. 3 Mismatch distribution for 4. radiata. The line represents
the expected distribution under a sudden expansion model

¢=0.0009
2 0,01
0,002 0,004 0,006 0,008 0,010
500,000 yrs 1000,000 yrs

Time (substitution per site)

Fig. 4 Generalized skyline plot of A. radiata. The x-axis
represents the time since the expansion in substitutions per site
and in thousands of years; the y-axis the estimated effective
population size scaled to the substitution rate. The e-parameter
governing the smoothing algorithm was selected from the
Akaike Information criterion (AIC). The last glacial maximum
period is represented by the dashed area

refugium. This is supported by the presence of haplo-
types found in Newfoundland and Iceland (H2, H19,
H33), and a second set of haplotypes found only in
Iceland and Europe (H7, H9, HU, H14, H17, H30).
Although our sampling effort was proportionally larger
than in the rest of the North Atlantic, most of the
Icelandic locations have haplotype diversities within
the range of those found in Canada, Norway and the
Kattegat.

Historical demography

Like R. clavata, A. radiata population expansion defi-
nitely predated the end of the LGM and was estimated
at 0.6-1.1 Myrs, which corresponds to the Bavelian and
Cromerian complexes, both being successions of cold
and warm periods (Zagwijn 1992). In the North
Atlantic, marine species (so far investigated) seem to
follow a pre-LGM expansion model, e.g., the common
goby (Gysels et al. 2004), the Atlantic swordfish
(Bremer et al. 2005), the Atlantic bluefin tuna (Bremer
et al. 2005), Atlantic bigeye tuna (Martinez et al.
2006), the red alga Palmeria palmata (Provan et al.
2005), the brown alga Fucus serratus (Hoarau et al.
submitted), the bivalve Macoma balthica (Luttikhuizen
et al. 2003) and the estuarine fish, Ethmalosa fimbriata
(Durand et al. 2005); where the date of expansion was
estimated at between 536,000 (for the common goby)
and 128,000 years (for the red alga, Palmeria palmata).
Thus, it is likely that highly mobile species and/or those
able to shift in the subtidal fared better in the many
glacial-interglacial periods. For A. radiata, a general
southerly displacement of the distribution probably
occurred; population sizes were probably little af-
fected.

To conclude, although A. radiata and R. clavata
share similar life-history traits, different phylogeo-
graphic and population genetic structure patterns were
found: no significant population differentiation for 4.
radiata in the North Atlantic; and strong population
differentiation for R. clavata in European waters
(Chevolot et al. 2006b). Clearly, life-history traits in
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the Rajidae are poor predictors of the population dif-
ferentiation.
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