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Abstract

Shallow waters along the North Sea coast provide nursery areas for juveniles of commercially exploited species and natural
habitat for resident species and seasonal visitors. The areas have gone through major changes in the last decades due to climate
change and human activities such as fishing and eutrophication and changes in abundance of apex predators. Using a long-term
dataset we present trends from 1970 to 2006 in 34 fish species in three coastal areas in the Netherlands: the Dutch Wadden Sea, the
Westerschelde and the Dutch coastal zone. The patterns varied widely among individual species as well as between the three areas.
Total fish biomass showed a dome shape pattern with an increase from 1970 to 1985 and a subsequent decline until the early 2000s.
Based on multivariate and time series analyses we explore possible correlations of fish density with a predefined set of three
categories of environmental variables: abiotic, biotic and fisheries related variables. Dynamic factor analysis (DFA) identified one
common trend for every area: for the Wadden Sea and Westerschelde increasing from the 1970s to the early 1980s followed by a
steep decrease until the mid 1990s, a temporary period (until 2002) of increase for the Wadden Sea, and a continuing increase for
the Westerschelde. The common trend in the Dutch coastal zone shows a similar increase but a time lag compared 1o the estuarine
areas, while the distinct decline was absent here. The species that showed the strongest correlation with this common trend differed
between the areas, and explains the difference between the common trend in the coastal zone with that in the estuarine areas.
Common trends were best described by models containing variables from all categories of environmental variables (only maximum
2 tested at a time).
© 2008 Elsevier B.V. All rights reserved.

Keywords. Fish; Biomass; Wadden Sea; Dutch coast; Westerschelde; Time series analyses; Dynamic factor analysis

1. Introduction 1989; van Beek et al., 1989). Nurseries are areas where

juveniles aggregate and where survival and growth are

Shallow coastal areas in the Netherlands such as the enhanced through better feeding conditions, refuge

Wadden Sea and Westerschelde have long been
regarded important nursery areas for the juveniles of
many North Sea fishes (Zijlstra, 1976; Bergman et al.,
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opportunities and high connectivity with other habitats.
After they have reached a certain size or age, they leave
the nursery area and recruit to the (sub)adult populations
(Pihl et al., 2002). Other species visit these shallow areas
only seasonally. In addition to marine juveniles and
seasonal migrants there are also several resident species
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Fig. 1. The three coastal areas in the Netherlands used in this study.

that inhabit the Wadden Sea and Westerschelde year
round. They entirely depend on the estuarine environ-
ment in all life stages. Most non-resident species leave
in autumn and migrate to the deeper waters of the North
Sea and return again in spring.

In addition to its natural dynamics, environmental
characteristics in the coastal areas have changed
considerably in the past decades. Long-term data series
have shown that water temperature has increased (van
Aken, 2003), a phenomenon that has been observed at
North Sea scale as well (Becker and Pauly, 1996).
Nutrient loads showed a peak in the seventies of the last
century and decreased subsequently (Van Raaphorst and
De Jonge, 2004). Especially in shallow areas such
strong changes in environmental factors are expected to
impact the ecosystem. Changes in primary production

and bivalve recruitment (Cadee and Hegeman, 2002;
Philippart et al., 2003; Philippart et al., 2007) and a
change in the composition of the benthic community has
been shown (Ens et al., 2004). Fish are in the middle of
the food web, they feed on zooplankton and benthos and
are eaten by predatory fish, birds and sea mammals.
Depending on whether the abundance of fish is
controlled top-down or bottom-up, they are likely to
respond to changes in either food availability or predator
abundance.

On top of changes in environmental conditions, also
human activities such as shellfish fishing have impacted
coastal waters (Piersma et al., 2001; van Gils et al,,
2006). Until 1990 the cockle Cerastoderma edule
fisheries was not limited by quota, between 1990 and
2003 it was more or less regulated and by 2005 it was
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expelled from the Wadden Sea. Mussel fisheries take
place on mussel cultivation lots in the Wadden Sea.
Shrimp fisheries has traditionally been an important
fisheries in the Wadden Sea and adjacent coastal waters.
Although brown shrimp Crangon crangon is the target
species of this fisheries, young fish are caught as well
and discarded. Due to the fact that brown shrimp is a
non-quota species, there is very little information on the
magnitude and variations in shrimp fisheries. The
impact of this type of fisheries on the ecosystem is
poorly known, but bycatch is substantial (van Marlen
et al, 1998; Polet, 2003; Doeksen, 2006; Catchpole
et al., 2008). Offshore fisheries will also directly and
indirectly impact the coastal fish assemblage through
the offshore species that utilize coastal waters as
nurseries or seasonal feeding areas (Zijlstra, 1976; van
Beek et al., 1989).

The above changes in physical (man-induced or not)
and biological factors will likely result in changes in the
abundance and species composition. Long-term trends
in the fish assemblage of the Wadden Sea, Wester-
schelde and the shallow part of the Dutch coastal zone
(Fig. 1) since 1970 are explored using data of the
Demersal Fish Survey (DFS). By comparing trends in
the Wadden Sea and Westerschelde to those in the
shallow part of the Dutch coast (Fig. 1) we attempt to
identify patterns among species and species groups
sharing similar characteristics that could give rise to the
hypotheses on the causes of observed trends. The
objective of this contribution is twofold: (a) to present
long-term trends in total fish densities together with
trends on individual fish species, (b) to explore the effect
of environmental variables, food availability and
predator populations on patterns in changes in the fish
community using time series analyses.

2. Methods
2.1. Time series fish

The Dutch Demersal Fish Survey (DFS) is part of an
international inshore survey carried out by the Nether-
lands, England, Belgium and Germany (van Beek et al.,
1989). The Dutch survey covers the coastal waters from
the southern border of the Netherlands to Esbjerg,
including the Wadden Sea, the outer part of the Eems-
Dollard estuary, the Westerschelde and the Qosterschelde.
This survey has been carried out in September—October
since 1970. For the purpose of this paper data from three
distinct areas were analysed: the Dutch Wadden Sea
(including the outer part of the Eems-Dollard estuary), the
Dutch coastal zone and the Westerschelde (Fig. 1). Each

year ca 120, 65, and 40 hauls are taken in the three areas,
respectively. Sampling effort has been constant over the
years, although in a few years not all sampling points were
sampled due to adverse weather (e.g. 1976 Dutch coastal
area). For each haul, the position, date, time of day, depth
and surface water temperature were recorded. The
Westerschelde and Wadden Sea are sampled with a 3 m-
beam trawl, while along the Dutch coast a 6 m beam is
used. The beam trawls were rigged with one tickler chain,
a bobbin rope, and a fine-meshed cod-end (20 mm).
Fishing is restricted to the tidal channels and gullies

Table 1
List of species for which trend data are presented and their
classification in food groups and biogeographic guild

Species Scientific name Food Biogeographic
guild
River lamprey  Lampetra fluviatilis ~ Parasitic Boreal
Eel Anguilla anguilla Benthivore  Atlantic
Twaite shad Allosa fallax Planktivore Lusitanian
Herring Clupea harengus Planktivore Boreal
Sprat Sprattus spratius Planktivore Lusitanian
Smelt Osmerus eperlanus  Planktivore Boreal
Cod Gadus morhua Shrimp/fish Boreal
Poor cod Trisopterus minutus  Benthivore Lusitanian
Bib Trisopterus luscus Shrimp/fish Lusitanian
Whiting Merlangius Shrimp/fish Lusitanian
merlangus
Five-bearded  Ciliata mustela Shrimp/fish Boreal
rockling
Eelpout Zoarces viviparous Benthivore Boreal
Pipefishes Syngnathus sp. Planktivore Lusitanian
Tub gurnard Trigla lucerna Shrimp/fish Lusitanian
Grey gumard ~ Eutrigla gurnardus ~ Shrimp/fish Lusitanian
Bull rout Myoxocephalus Shrimp/fish Boreal
scorpius
Hoocknose Agonus cataphractus  Shrimp/fish Boreal
Sea snail Liparis liparis Shrimp/fish Boreal
Lumpfish Cyclopterus lumpus  Jellyfish Boreal
Sea bass Dicentrarchus labrax Shrimp/fish Lusitanian
Lesser weever  Echiichthys vipera Benthivore Lusitanian
Butterfish Pholis gunnellus Benthivore Boreal
Sandeel Ammodytes sp. Planktivore Boreal
Greater sandeel Hyperoplus Planktivore Boreal
lanceolatus
Dragonet Callionymus lyra Benthivore Lusitanian
Gobies Pomatoschistus sp. Shrimp/fish Lusitanian
Turbot Psetta maxima Benthivore Lusitanian
Brill Scophthalmus Benthivore Lusitanian
rhombus
Scaldfish Arnoglossus laterna  Benthivore  Lusitanian
Dab Limanda limanda Benthivore Boreal
Flounder Platichthys flesus Benthivore Lusitanian
Plaice Pleuronectes platessa  Benthivore Boreal
Sole Solea solea Benthivore Lusitanian
Solenette Buglossidium lhiteum Benthivore Lusitanian

The classifications are derived from www.fishbase.nl for food types
and Yang (1982) for biogeographic guild.



L Tulp et al. / Journal of Sea Research 60 (2008) 54-73 57

deeper than 2 m because of the draught of the research
vessel. The combination of low fishing speed (2—3 knots)
and fine mesh size results in selection of mainly the
smaller species and younger year classes. Sample
locations are stratified by depth. Fish are sorted and
measured to the cm below. The mean abundance per area
was calculated for 34 species in the period 1970-2006
weighed by surface area for each depth stratum. Species
were classified according to food types: planktivore,
shrimp/fish-eating, benthivore and parasitic; and biogeo-
graphical guilds: Lusitanian (preferring warm water),
boreal (preferring cold water) and Atlantic (Table 1). Only
species caught in at least one third of all years were
analysed. This means that the selection of species may
differ slightly between the three areas.

2.2. Time series abiotic variables and data on food,
predators and fisheries

We used several time series of explanatory variables
comprising abiotic variables, biotic variables and vari-
ables related to fisheries. Naturally any choice of
parameters 1s arbitrary and partly driven by the availability

of the data. That is also the reason why we sometimes used
different datasets for different areas (Table 2). In this
exploratory phase we focused on variables potentially
impacting fish densities directly, but did not consider
indicators of water quality such as pollutants. We did
include nutrients given the recent discussions on the effect
of these on the carrying capacity of the marine system,
even though we are aware that nutritional links between
nutrients and fish are still not well understood and only
partly proven (Philippart et al., 2007; Kuipers and van
Noort, 2008). So besides the direct links in the food web,
be it as predator or prey, we included the NAO winter
index, temperature, river runoff, salinity, total phosphate
and nitrate.

2.2.1. Abiotic series

The NAO winter index (December—March) was
taken from the Internet http://www.cpc.ncep.noaa.gov/
products/precip/CWlink/pna/nao_index.html. During
the DFS sea surface temperature is recorded at haul
level. For the Wadden Sea we used salinity data collected
by NIOZ on Texel, for the other areas, series were taken
from www.waterbase.nl (mean for September/October).

Table 2

Abiotic and biotic parameters used in the time series analyses in the three different areas

Explanatory variable Wadden Sea Dutch coastal area Westerschelde
Abiotic

Temperature (°C) DFS DFS DFS

Salinity (Texel: practical salinity
scale of 1978, other areas:%o)
River runoff (m’/s)

NIOZ: Texel, 't Horntje
Total phosphate (mg/1) www.waterbase.nl: Marsdiep

Total nitrate (mg/1) www,waterbase.nl: Marsdiep

Biotic

Piscivorous fish North Sea coast SNS: gadoids>20 cm, within
(kg/ha) 30 m depth

Cormorants (n or n breeding pairs) SOVON non-breeding birds

seals (n) IMARES common and grey seals

Brown shrimp densities (kg/ha) DFS: Wadden Sea
Fishing pressure

Brown shrimp effort (see text) ICES WGCRAN: total Dutch
landings corrected for brown
shrimp densities

Cockle landings (million kg meat) Ministry LNV: Wadden Sea
Beam traw] effort North Sea (hp days) Rijnsdorp et al., 2008

www.waterbase.nl: Kornwerderzand www.waterbase.nl: IJmuiden

www.waterbase.nl:
average 2 stations**
www.waterbase.nl:
Schaar van ouden Doel
www.waterbase.nl:
average 2 stations®**
www, waterbase.nl:
average 2 stations®**

www.waterbase.nl:
average 2 stations®

www.waterbase.nl: Noordwijk

www.waterbase.nl: Noordwijk

SNS: gadoids>20 cm within SNS: gadoids>20 cm within

30 m depth 30 m depth

Breeding birds (M. Leopold pers.) SOVON non-breeding birds

IMARES common and grey seals DELTARES: common and
grey seals

DFS: Dutch coast DFS: Westerschelde

ICES WGCRAN: total Dutch
landings corrected for brown
shrimp densities

Ministry LNV: North Sea coast
Rijnsdorp et al,, 2008

ICES WGCRAN: total Dutch
landings corrected for brown
shrimp densities

Ministry LN'V: Westerschelde
Rijnsdorp et al., 2008

* North of Terschelling and off Goeree mean for September; ** Hansweert geul and Vlissingen boei SSVH; *** Vlissingen boei SSVH and

Terneuzen boei 20.
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River runoff was also taken from the same source and
was measured at all major outflows, and we used the
annual mean of the series at Kornwerderzand for the
Wadden Sea, at [Jmuiden for the North Sea coast and at
the Schaar van Ouden Doel for the Westerschelde. These
runoff series are all highly correlated. Total phosphate
and nitrate was taken from www.waterbase.nl (annual
means). Missing values were interpolated based on
correlations between local values and concentrations in
the Rhine discharge (Van Raaphorst and De Jonge,
2004).

Mean temperature during the survey period has
increased in all three areas, but stronger in the Wadden
Sea and Westerschelde than along the Dutch coast
(Fig. 2). Besides a slow increase in salinity along the
Dutch coast, no long-term trend seems apparent in
salinity in the other areas. River runoff has shown great
annual fluctuations and an increase in all three areas, but
steepest in the Wadden Sea. Total phosphate showed a
maximum in the period 1975-1985, and declined
subsequently. Nitrate showed a similar pattern in the
Westerschelde and Dutch coastal zone, while concen-
trations in the Wadden Sea concentrations were more
stable after an initial decline.

2.2.2. Biotic series

For biotic series we used data on predators and prey.
The most common (non-fish) predators are cormorant
Phalacrocorax carbo, common Phoca vitulina and
grey seals Halichoerus grypus. For cormorants in the
Wadden Sea we used number of non-breeding birds,
because these numbers are usually larger than the
breeding numbers and the period corresponds better
with the fish sampling period. For the Dutch coastal
zone only breeding numbers were available and
compiled from different sources (M. Leopold pers.
comm.). Seals are counted several times per year by
airplane and total populations are estimated (monitoring
program IMARES). Because of their larger numbers the
harbour porpoise Phocoena phocoena has probably
been a more important fish predator in recent times than
seals in the Dutch coastal zone, However, the time series
has the same signal as that for seals with a steep increase
from the early 1990s onwards (Camphuysen, 2005) and
therefore we used seal time series for all three areas. Asa
measure of predation pressure by fish we have included
gadoid densities (in kg/ha within the 30 m depth
contour, between 52°N and 55°30’N and east of 3°E
from the Sole Net Survey (SNS) survey) as explanatory
variables for the three areas. Gadoids are piscivorous
already from lengths of 4 cm onwards (Bromley et al.,
1997), but since they generally eat prey about 4 times

smaller than their own size we used a lower size limit of
20 cm (Daan, 1973). In the Wadden Sea the number of
non-fish predators has shown a steep increase since
1980 (Fig. 2). Populations of both common and grey
seals have increased, although grey seals only appeared
in 1979 for the first time in this period. Although
common seals still outnumber grey seals, by 2006 the
ratio common to grey seals has decreased to 2:1. In the
Westerschelde the numbers have shown a similar increase
although total numbers are an order of magnitude lower.
For the Dutch coast no separate line is presented as the
seals from both Wadden Sea and Westerschelde visit the
North Sea to feed and the Dutch coast does not provide
haul out sites. Cormorants increased both in the Wadden
Sea and Westerschelde, but stabilized recently. The
densities of piscivorous fish in the North Sea has
shown variable densities over the years, with an overall
decrease from the early 1990s onwards.

Fish feed on zooplankton, buried benthic and
epibenthic prey. The only food source for which
information is available (for all areas and the full time
series) is brown shrimp abundance. However the role of
brown shrimp is complicated as brown shrimp can also
predate on juvenile fish (van der Veer and Bergman,
1987; Amara and Paul, 2003). No time series on other
benthic prey or zooplankton are available for the study
period and study area. Brown shrimp densities are
overall highest in the Wadden Sea and show strong
annual variation and a long-term decline in the
Westerschelde but no clear trend in the Wadden Sea or
Dutch coastal zone (Fig. 2).

2.3. Fishing pressure

The most important fisheries within the three areas
include brown shrimp fisheries and shellfish fisheries
(Verver et al., 2005). These fisheries are likely to have
the biggest impact on small fish, because of the bycatch,
bottom disturbance and removal of possible prey.
Because no detailed information on fishing pressure
per area is available, we estimated brown shrimp trawl
effort by dividing total shrimp landings in the Nether-
lands by mean brown shrimp densities in the autumn
DFS survey. Cockle fisheries pressure was estimated as
the cockle landings per area. Fishing effort in the
offshore waters bordering our study area was estimated
from the Dutch beam trawl effort which dominates the
fishing effort in this area (Jennings and Cotter, 1999).
Brown shrimp trawl effort has been constant throughout
the 1970s and 1980s but has shown a steep increase
since the early nineties. Cockle fishing started in the
Wadden Sea in the mid 1980s and lasted until 2005,
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Fig. 4 (continued ).

whether there are any underlying common patterns in
different time series, whether there are interactions
between the response variables, and identify the effects
of explanatory variables. The aim of DFA is to set the
number of common trends as small as possible but still
have a reasonable model fit. The magnitude and sign of
the factor loadings determine how these trends are
related to the original time series.

One problem with this analysis is that we model fish
density as a function of biotic variables. This approach
assumes that the number of fish is a function of the
explanatory variables used. But for some of the explanatory
variables, i.e. number of seals, the relationship might also
be reversed, that the number of seals is a function of fish
densities. This endogeneity is of course a difficult problem
and we cannot assume that it does not occur in this set.

Only DFA models with a symmetric, non-diagonal
erTor covariance matrix could be used, fitted for 1 and 2
common trends and with no, 1 or 2 explanatory variables
(with 12 possible explanatory variables this results in 92
models to be tested for every number of common trends
and area). Analyses were performed on log-transformed

and standardized time series, Explanatory variables were
standardized if they contained large values (in order to
armive at interpretable regression estimates). Model
selection was based on Akaike’s information criterion
(AIC). Canonical correlations are presented to illustrate
correlations between common trends and original series.
Model validation was carried out by comparing the time
trends of the individual species with the original data.
Results were obtained with the software package
Brodgar (http://www.brodgar.com).

In summary, in DFA, the trends are the common
signal in the 34 time series that are not related to the
explanatory variables. The common trend can be
interpreted as a partial, common effect. The trends
calculated by Trendspotter are real trends that capture
the pattern of the data, without taking the effect of
explanatory variables into account.

Data exploration indicated strong collinearity (corre-
lation of >0.80) between the variables cormorants and
seals, cormorants and phosphate, and phosphate and
nitrate in the Dutch coastal zone, between seals and
cormorants, and cormorants and phosphate in the
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Table 4

Selection of five best models for the common trend in the three areas

Area Number Model AIC
model

Wadden Sea 1 Seals+beam trawl] effort 2874.92
2 Runoff+beam trawl effort 2892.73
3 Seals+runoff 2924.66
4 Brown shrimp +beam trawl effort 2930.25
5 Beam trawl effort +nitrate 2932.04

Dutch coastal 1 Brown shrimp +runoff 2638.79

zone 2 Seals+cockle landings 2667.40

3 Temp +seals 2678.39
4 Runoff+phosphate 2698.37
5 Shrimp effort+phosphate 2702.13

Westerschelde 1 Beam trawl effort+phosphate 2683.60
2 Cormorants +beam trawl effort  2695.61
3 Seals+salinity 2710.19
4 Cormorants +phosphate 2710.85
5 Cormorants +seals 2717.53

All models included one common trend only.

Wadden Sea and between seals and phosphate, phos-
phate and nitrate, and seals and beam trawl effort in the
Westerschelde. Because of the almost similar pattern in
the seal and cormorant population for Wadden Sea and
Dutch coastal zone and the fact that the cormorant series
had one missing value, we excluded cormorants from
the analyses for these areas. The choice to exclude any
other variables would be very arbitrary. Instead we
included all variables in the analyses to see which ones
resulted in the best model, keeping the collinearity in
mind and not selecting models that contained two
collinear variables.

3. Results
3.1. Trends total fish numbers and biomass

Mean total fish biomass per haul shows a dome-shaped
pattern in all three areas with an increase from 1970 to
1985 and a subsequent fivefold decline (Fig. 3). However
this dome shape seems most pronounced in the Wadden
Sea. The decline in the Westerschelde sets in a few years
later and the decline levels off since 2000. For the Wadden
Sea and the Westerschelde the pattern in densities reflects
the same pattemns as found in total biomass. Along the
Dutch coast there is no clear trend in densities. Overall the
Westerschelde has the lowest densities of these three areas.

3.2, Individual species trends
Absolute densities of many species differ up to one

order of magnitude between areas (Fig. 4, plaice,
flounder, gobies, dragonet). Some species are only

common in the Wadden Sea (e.g. bull rout, butter fish)
or common along the Dutch coast but rare in the
Wadden Sea and Westerschelde (dragonet, scaldfish,
solenette). Individual species show great variation in
trends (Fig. 4). Some species show different trends in
the three sub-areas (e.g. plaice, sea snail). Trends and
confidence limits calculated by Trendspotter are highly
influenced by zero catches (taken as log(0.01) values in
the analyses). Species that have colonized the Dutch
coastal waters recently include sea bass, lesser weever
and greater sandeel (Westerschelde).

Species that show significant recent declines (since
1985) in the Wadden Sea include eel, eelpout, bib,
whiting, hooknose, dab and plaice (Table 3), while
periods with significant increases occurred in five-
bearded rockling, pipefishes, tub gurnard, sea bass,
greater sandeel and brill. In general the periods with
decreases occurred later than the periods of increases.
Along the Dutch coast eight species (twaite shad,
pipefishes, tub gurnard, sea bass, sandeel, greater
sandeel, dragonet and gobies) show recent extensive
periods of significant increase and seven (eel, poor cod,
bib, hooknose, lumpfish, dab and sole) with periods of
significant decrease (Table 3). In the Westerschelde
herring, bib, eelpout, sea bass, lesser weever, greater
sandeel, turbot, brill and plaice show long continuous
periods of significant increase, while grey gumard,
hooknose, sea snail and dab show recent significant
decreases (Table 3).

3.3. Common trends

The best DFA fit for all three areas was obtained for
one common trend (smallest AIC). For every area the
five best models are presented (Table 4). The main
common trend for the Wadden Sea and Westerschelde
shows an increase from the mid 1970s to the early 1980s
followed by a steep decrease in the late 1980s, with a

6

N —Wadden Sea

....... Dutch coastal zone
‘Westerschaida

-6 T T T T . : v T
1965 1970 1975 1880 1985 1990 1995 2000 2005 2010

Fig. 5. Common trends as results of DFA analyses in the three areas.
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second much smaller peak in the Wadden Sea around
2000 and a subsequent decline (Fig. 5). The pattern for
the Dutch coastal zone is different in that the increase
started years later, followed by a moderate decline in the
mid 1990s and stabilization in the recent decade (Fig. 5).

canonical correlations cancnical corretations

canonical correlations

67

The environmental variables involved in the best five
models for the Wadden Sea included seals, beam trawl
effort, runoff, brown shrimp densities and total nitrate.
The model with the best fit included seals and beam
trawl effort (Table 4). For the Dutch coastal zone the
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Fig. 6. Canonical correlations (= correlation between trends and original series) of every species with the DFA common trend for the three areas.
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Table 5

Estimated regression parameters, standard errors (se) and z-values for
the explanatory variables for the best model in each of the three areas

L Tulp et al. / Journal of Sea Research 60 (2008) 54-73

Table 5 (continued)

Dutch coastal zone

‘Wadden Sea
Species Seals Beam trawl effort

Estimate se t-value  Estimate se t-value
River lamprey 061 012  4.85 032 012 2.54
Eel —-0.09 0.18 -048 -0.16 0.17 -0.96
Twaite shad -0.01 0.17 -0.07 -0.11 0.17 -0.64
Herring 0.26 0.14 1.78 0.43 0.14 3.7
Sprat -0.20 15 =137 0.36 0.15 2.45
Smelt 0.25 0.14 1.85 0.50 0.13 3.73
Cod -0.17 0.16 -1.05 -0.14 0.16 —0.88
Poor cod —-0.22 0.15 -1.50 0.33 0.15 2.32
Bib —0.50 0.14 -3.57 0.14 0.14  0.99
Whiting —0.66 0.12 -5.69 0.19 0.12 1.61
5-bearded 0.40 0.15 2.67 0.27 0.15 1.84

rockling

Eelpout —0.55 0.16 -3.49 -0.21 0.14 -1.47
Pipefishes 0.38 0.14 2.76 0.40 0.14 2.98
Red gumard 0.26 0.16 1.63 0.13 0.16  0.81
Grey gurnard  —0.22 0.16 -137 -0.15 0.16 -0.93
Bull rout -0.15 0.18 -0.81 -0.12 0.17 -0.69
Hooknese —0.49 013 -3.74 0.35 0.13 2.72
Sea snail -0.29 016 -1.76 -0.12 0.16 -0.78
Lumpfish -0.25 0.16 -1.56 0.16 0.15 1.04
Lesser weever  0.33 0.14 2.34 0.55 0.14 4.00
Butterfish -0.15 0.17 =091 -0.01 0.16 -0.05
Sandeel 0.56 0.13 4,23 027 0.13 2.06
Greater sandeel 0.54 0.12 4.51 0.44 0.12 3.81
Dragonet -0.09 0.16 —0.59 0.30 0.16 1.88
Turbot —-0.22 0.16 -135 -0.04 0.16 —0.23
Gobies 0.19 0.15 1.32 0.53 0.15  3.62
Brill 0.18 0.16 1.14 0.36 0.15 2.34
Dab -0.87 0.08 --10.84 0.01 0.08 0.17
Flounder 0.30 0.16 1.90 0.30 0.15 1.94
Plaice -0.34 0.15 -2.31 0.25 0.14 1.77
Sole -0.09 0.16 —054 -0.61 0.15 -4.05
Dutch coastal zone
Species Brown shrimp density Runoff

Estimate se t-value  Estimate se t-value
Eel 0.37 0.13 2.96 -0.09 0.13 -0.70
Flounder 0.33 0.15 2.28 0.23 0.15 1.54
Butterfish 0.11 0.15 0.69 0.24 0.15 1.57
Poor cod 0.04 0.16 027 -0.06 0.17 -0.39
Solenette 0.07 0.13 054 -0.07 0.13 -0.52
Grey gumard -0.20 015 -134 014 015 0093
Brill 0.40 0.14 2.87  0.10 0.14 074
Gaobies 0.35 0.13 2.63 —0.45 0.14 -3.30
Herring 0.32 0.13 2.38 0.28 0.14 2.09
Hooknose 0.03 0.16 0.17 -0.22 0.16 —1.40
Cod -0.08 0.16 —0.48 0.18 0.16 1.13
Lesser weever  0.07 0.13 0.51 0.09 0.14 0.65
Dragonet -0.05 0.14 -035 -0.35 0.14 -2.39
Eelpout 0.46 0.14 335 —0.02 0.14 -0.18
Red gumnard 0.31 0.14 2.29 -0.13 0.14 -0.93
Dab 0.25 0.16 1.55 0.03 0.16 0.20

Species  Brown shrimp density Runoff

Estimate se t-value Estimate se  tvalue
Plaice 0.49 0.14 3.46 -022 0.14 -153
Scaldfish =0.10 0.12  -0.80 -0.20 0.13 -1.53
Sea snail 0.19 0.15 1.28 0.33 0.15 2.19
Greater sandeel 0.24 0.13 1.85 —0.20 0.14 -145
Smelt 0.39 0.15 2.69 -0.25 0.15 -1.71
Sprat 0.23 0.15 1.53 0.29 0.15 1.93
Bib —0.01 0.16 —0.07 0.10 0.16 0.60
Turbot 0.25 0.15 1.61 0.06 0.16 0.38
Sole 0.40 0.14 2.86 -—0.16 014 -1.13
5-bearded 0.22 0.14 1.63 0.36 0.14 2.63

rockling
Whiting 0.07 0.14 0.46 0.41 0.15 2.84
Sandeel 0.09 0.14 0.68 -0.49 0.14 -3.55
Bull rout 0.24 0.13 1.88 0.02 0.13 0.12
Pipefishes 0.40 0.13 3.09 033 013 2.52
Sea bass 0.12 0.15 0.79 0.15 015 097
Westerschelde
Species Beam traw] effort Total phosphate
Estimate se t-value  Estimate se t-value
Eel —0.09 017 -0355 -0.06 0.16 -036
Herring -0.03 0.15 -0.17 -047 015 -3.24
Sprat 0.22 0.16 1.40 0.33 0.16 2.11
Smelt -042 0.13 -3.26 -0.60 0.13 -—4.66
Cod -0.25 016 -1.64 0.30 0.15 1.97
Bib 0.21 0.16 130 —0.06 0.16 —0.37
Whiting 0.22 0.15 1.48 0.49 015 333
5-bearded 0.27 0.16 1.64 -0.07 0.16 -041
rockling

Eelpout -0.20 016 -127 -035 0.16 -2.25
Pipefishes -0.17 017 -1.02 005 016 028
Tub gumard —0.19 016 -1.21 0.32 0.15 2.08
Grey gumard  —0.28 014 -198 0.40 0.14  2.94
Bull rout 0.04 0.17 024 -0.09 0.16 —054
Hooknose -0.08 0.14 -057 0.53 0.14 3.76
Sea snail -0.11 012 -093 0.65 012 547
Sea bass -0.02 0.11 -0.22 -0.77 010 —7.44
Lesser weever —0.19 013 -154 -0.71 0.12 -5.95
Sandeel -0.03 017  -0.16 -0.04 016 -0.26
Greater sandeel 0.24 0.14 1.74 =043 0.14 -3.14
Dragonet 0.07 0.16 041 -022 0.16 -1.36
Gobies 0.12 0.17 0.73 -0.10 0.17 —-0.63
Brill -0.12 016 -0.76 -0.29 0.16 -1.80
Dab 0.36 0.13 2.75 0.65 0.13 5.07
Flounder —-0.08 017 -0.45 0.08 0.17 0.48
Plaice 0.09 0.16 0.54 -0.32 0.16 -2.03
Sole -0.36 0.16 -2.28 0.13 0.15 0.84

Significant parameters are in bold.
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variables in the five best models were brown shrimp
density, runoff, seals, cockle landings, temperature,
phosphate and shrimp effort with the best model
including brown shrimp density and runoff. The
common trend for the Westerschelde was best explained
by models including beam trawl effort, phosphate,
cormorants, beam trawl effort, seals and salinity. The
best model included beam trawl effort and phosphate.

In the Wadden Sea, river lamprey, sprat, smelt, bull
rout, butterfish, greater sandeel, gobies and plaice show
strong positive correlations (>0.4) with the common
trend (Fig. 6), while no species show strong negative
correlations. The remaining species are moderately or
poorly correlated to the common trend. The Dutch coastal
zone shows strong positive correlations with the common
trend for tub gurnard, bull rout, lesser weever, greater
sandeel, scaldfish and solenette and strong negative
correlations for eel and grey gumnard. All other species
show moderate or poor correlation with the common trend
(Fig. 6). In the Westerschelde, bull rout, sandeel and sole
are the only three species strongly positively correlated to
the common trend, while none show strong negative
correlations (Fig. 6). The remaining species have weaker
correlations. Overall the strongest correlations were found
for Wadden Sea and the Dutch coastal zone while in the
Westerschelde the correlations with the common trend
were less strong.

The estimated regression parameters for the expla-
natory variables in the best models are given in Table 5
for every area. Significant z-values indicate strong
relationships with the explanatory variables. For the
Wadden Sea, river lamprey, bib, whiting, five-bearded
rockling, eelpout, pipefishes, hooknose, lesser weever,
greater sandeel, sandeel, dab and plaice had relatively
large r-values for the first explanatory variable (seals),
of which river lamprey, five-bearded rockling, pipe-
fishes, lesser weever, sandeel and greater sandeel
increased with the number of seals and the other species
decreased. River lamprey, herring, sprat, smelt, poor
cod, pipefishes, hooknose, lesser weever, sandeel,
greater sandeel, gobies, brill and sole had relatively
large t-values for the second explanatory variable (beam
trawl effort). Of these the coefficients were all positive
except for sole. Regression parameters for fish in the
Dutch coastal zone were significant and positive for the
first explanatory variable (brown shrimp density) for
eel, flounder, brill, gobies, herring, eelpout, red gurnard,
plaice, smelt, sole and pipefishes indicating an increase
in densities with brown shrimp density. Herring, sea
snail, five-bearded rockling, whiting and pipefishes
showed significant, positive estimates for the regression
coefficients of the second explanatory variable (runoff).

For gobies, dragonet and sandeel these regression
coefficients were negative. The regression parameters
for fish in the Westerschelde showed significant correla-
tions with the first explanatory variable (beam trawl
effort) for smelt, dab and sole. These were negative for
smelt and sole, pointing at decreasing densities with
increasing beam trawl effort. Significant negative coeffi-
cients for the second variable (total phosphate) were
found for herring, smelt, eelpout, sea bass, lesser weever,
greater sandeel and plaice. Sprat, whiting, tub gurnard,
grey gurnard, hooknose, sea snail and dab showed
increases with total phosphate.

4. Discussion
4.1. Observed patterns

Although the trend analyses for individual species
showed large variation, there are several large scale
patterns that emerge from these 37 year time series.
Firstly total fish densities expressed both in numbers
and biomass have decreased strongly from the mid-
1980s after an initial increase between 1970 and 1980.
This dome-shaped pattern was apparent in all three areas
(Fig. 3). The DFA allowed to investigate the common
signal in the series of 34 species densities, after
correction for the two most dominant explanatory
variables. Densities showed similar common trends for
the two estuarine areas. The common trend for the
Dutch coastal zone showed a time lag compared to the
Wadden Sea and Westerschelde. The canonical correla-
tions (Fig. 6) indicate which species contribute most to
the common trend and although the common trend was
similar for Westerschelde and Wadden Sea, the species
contributing most to this trend differed. For the Dutch
coastal zone mainly the recently increasing species as
solenette, scaldfish and lesser weever contributed to the
common trend (Fig. 6). This explains why the common
trend differs from that in the estuarine areas, where all
these species are less predominant.

Apart from differences in absolute densities the same
species sometimes showed different trends in the three
areas (e.g. bib, pipefishes, sandeel, plaice). Of these
plaice is the only species that shows significant opposite
trends (decrease in Wadden Sea and increase in
Westerschelde, stable in Dutch coastal zone). The trends
in the Wadden Sea and the coastal zone are consistent
with the offshore movement of juvenile plaice (van
Keeken et al., 2007). Species that showed a decreasing
trend in all three areas were hooknose and dab, although
the rate of decrease differed. Lesser weever and greater
sandeel increased in all areas. The number of species
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showing recent declines was highest in the Wadden Sea
and in the Dutch coastal zone (Table 3). The Dutch
coastal zone is characterized by a number of species
with recent strong increases, part of which can be
attributed to relatively new species colonizing the area
such as lesser weever and sea bass. Solenette and
scaldfish show sudden increases since the late 1980s,
but inhabited the coastal waters from the start of the
series in low densities. They are completely absent from
the estuarine areas because they avoid low-salinity
waters (Amara et al., 2004). The recent increases has
been assumed to be related to the increase in seawater
temperature, however Amara et al. (2004) showed that
small scale solenette distribution was not influenced by
temperature. Species that are practically absent from the
Westerschelde but are relatively common in the other
two areas include poor cod, butterfish and turbot.

4.2. Possible causes of observed patterns

The interpretation of the variables that explained a
significant part of the variation in the time trends of the
individual species in the DFA is complicated by the
collinearity between the variables. In the interpretation,
a significant effect of a variable may reflect the role of
another collinear variable. For example, for the Wadden
Sea there was strong collinearity between seals and
cormorants, and between cormorants and phosphate.
Therefore we must keep in mind that any effect found
might be explained by one of these variables, or even
some other variable not incorporated but related to all of
these. Other problems with variables used is that short
term variation can be large and is not captured in overall
means. Also variables that may be relevant such as
turbidity (Bolle et al., 2001) and other food groups such
as zooplankton and benthos were not available and
could not be included. Furthermore the analyses do not
give an explanation for patterns observed, they merely
indicate correlative relations.

Temperature was significant in explaining part of the
variations in the time trends among individual species in
the Dutch coastal zone but not in the Wadden Sea or
Westerschelde, while the NAO winter index was not
significant in any of the five best DFA models. Recently
a large volume of publications has attributed changes in
fish densities and distributions to climate change and
rise of sea water temperature (Roessig et al., 2004; Rose,
2005; Harley et al., 2006; Portner and Knust, 2007). Let
us first look if we find indications that species with a
warm water preference (Lusitanian) show different
trends from species with a cold water preference
(boreal) (Table 1). Recent (since 1985) increases (in

any of the three areas) were observed more often in
Lusitanian (11; 65%) than in boreal species (7; 47%).
Recent declines occurred in 5 Lusitanian (29%) and 8
boreal (53%) species (based on the fact that the series
consist of 16 boreal and 18 Lusitanian species). This
suggests that Lusitanian species show a stronger
response than boreal species. The decline in eelpout in
the Wadden Sea observed since 1985 corroborates the
decline in the coastal waters in Germany that was caused
by the increase in temperature above the thermal
maximum of the species (Portner and Knust, 2007).

Another option is to explore if patterns can be detected
in species with different food preferences. As before, we
scored the number of species of each food group that
showed recent in- or decreases in any of the areas
(combination of Tables 1 and 3): 0% of planktivores
showed a recent decrease, while 57% increased, equal
numbers (45%}) of shrimp/fisheaters in- and decreased and
43% of benthivores decreased while 57% increased
(based on 7 planktivores, 11 shrimp/fisheaters and 14
benthivores). In conclusion the recent significant in- and
decreases seem to have occurred in all food groups, but
relatively more planktivores and benthivores showed
increases than the other groups. It should be noted
however that the majority of Lusitanian species is also
benthivore,

Naturally food and temperature preferences are only
two of the possible variables that might explain
differences in trends between areas and species. Alter-
native possibilities can be sought in functional guilds
(whether species inhabit the area permanently or only part
of the year (Elliott and Dewailly, 1995)), age-groups,
thermal tolerance (range of their distribution), longevity
of species, whether or not the species is commercially
exploited and whether or not it concerns species with
strong preferences for bottom structures such as mussel
beds. Separate DFA analyses on any of these species
subgroups may come up with different common trends
and allow better interpretations of observed patterns.

The fact that a similar dome-shaped pattern occurred
i the two intertidal areas would suggest similar
mechanisms. Alse on individual species level, there
are more species declining in the Wadden Sea and
Westerschelde than in the Dutch coastal zone. Explana-
tions can be sought in factors related to bottom-up
processes (food), top-down processes (predation, fish-
ing) or changes in habitat suitability. In all three areas,
DFA showed a significant contribution of variables
related to bottom-up (phosphate, run off) and top-down
processes (fishing effort, seals).

The significant effect of river run off, phosphate and
nitrate in the DFA may reflect the effect of eutrophication
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of the coastal waters. In the 1960s and 1970s,
eutrophication has likely resulted in an increase in
primary and secondary production (Beukema and
Cadee, 1988; Colijn et al, 2002) and may explain the
observed increase in fish biomass (Fig. 3). Also the
growth rate of plaice is positively related to eutrophica-
tion (Rijnsdorp and van Leeuwen, 1996; Teal et al.,
2008). It is still debated whether the recent decrease in
nutrients resulted in a decrease in the productivity of the
coastal waters (Cadee and Hegeman, 2002; Philippart
et al., 2007). However, Kuipers and van Noort (2008)
recently showed that shortly after 2000 the persistently
high primary production under low P-discharge of the
Rhine seem to have come to an end, with a time lag of
more than 10 years.

Because fish are ectoterms, food intake (and also
growth) is temperature sensitive (Fonds and Saksena,
1978). This complicates the discussion whether
observed changes relates to decreased carrying capacity
or increased temperature. To understand the interplay
between these, we need temperature sensitivity of
growth for each species and information on food
conditions to evaluate whether they are able to fill in
this growth potential (e.g. Teal et al., 2008). Not only
may the fish themselves be temperature sensitive, but
also potential predators and prey. Crustaceans (brown
shrimp and crab) have higher temperature sensitivity
and tolerance range than their predators and their
bivalve prey (Freitas et al.,, 2007). Since mortality of
0-group plaice over the season is mainly attributed to
predation by brown shrimp (van der Veer and Bergman,
1987; Amara and Paul, 2003), an increase in tempera-
ture could potentially lead to overall higher predation
pressure by crustaceans with negative impacts on
flatfish and bivalve recruitment (Freitas et al., 2007).

The significant effect of fishing effort (beam trawl,
shrimping) may reflect the impact of fishing on the size
structure and species composition of the North Sea fish
assemblage (Daan et al. 2005). Due to the fisheries
removal of larger predatory fish, both the abundance of
small fish and small sized fish species has increased
over the last 30 years. As several species inhabiting the
coastal waters spent part of their life in offshore areas
where they are directly or indirectly exposed to fisheries,
the changes in the fish assemblage in offshore waters
may affect the coastal fish assemblage as well. It is
striking that shrimping effort did not show any
significant relation to the time series analysis. Shellfish
fisheries did not significantly affect the time series
analysis in the Wadden Sea or Westerschelde, although
it did in the Dutch coastal zone. These fisheries will
possibly influence the fish assemblage by removal of

benthic prey for fish and by the influence on benthic
habitats (Piersma et al., 2001; Hiddink, 2003; Kraan
et al., 2007).

The increase in fish predators over time (notably
seals and cormorants) coincides with the recent decrease
in total fish densities, but whether this correlation
reflects a causal relationship is not clear at all.
Cormorants are known to feed on juvenile flatfish in
the Wadden Sea (Leopold et al., 1998) and seals feed on
a variety of fish species (Brasseur et al., 2004). More
quantitative information on predation mortality and
selectivity of fish predators is needed to get more insight
in the nature of the correlation.

The current analyses provides a first attempt to
describe the major changes in the fish community in
intertidal and coastal areas in the Netherlands and identify
possible causal processes. At this stage the causes for
these changes only remain speculative. Our study showed
that no single or simple set of environmental variables can
be found to explain the observed patterns. It is likely that
more detailed analyses are needed that are focused on
specific hypotheses and the interaction of the main
environmental drivers (increase in temperature, decrease
in nutrients and the effects of fishing).
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