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Summ ary

1. In order to predict the spatial distribution o f‘ideal’ and ‘free’ predators, one needs
to know how food intake rate of an individual predator is related to characteristics
of the population of the prey as well as the predators themselves.

2. Surprisingly, a systematic theoretical investigation of models for the basic case,
where both prey and predators are best characterized by their ‘standing stock’ density,
is lacking. In these models intake rate is supposed to decrease with increasing predator
density as a result of interference among predators, instead of immediate consumption
of the prey.

3. This paper compares the various ways applied so far of incorporating interference
in Holling’s functional response model. It is shown that the different models of
interference result in qualitatively different predictions for ‘ideal’ and ‘free’ predators
on: (i) the form of the aggregative response; (ii) the trajectory of the aggregative
response as prey is depleted; and (iii) the change in the aggregative response following
an influx of predators. This sheds doubt on the general relevance of any one of these
models, particularly if the mathematical formulation of interference is phenomeno-
logical and merely based on convention, instead of being derived from the underlying
mechanism of interactions between predators.

4. Our results underline the need for detailed knowledge about the components of the

predation process in order to arrive at predictions for a specific case.
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Introduction

One of the fundamental problems in ecology is to
understand the way in which animals distribute them -
selves over different habitats. The notion that animal
distribution might best be understood by recognizing
that each animal will behave so as to maximize its
fitness was a major breakthrough. Embroidering on
the buffer hypothesis of Kluyver & Tinbergen (1953),
Fretwell & Lucas (1970) gave concrete form to this
idea by simplifying the problem to, what was hoped,
its bare essentials. They assumed that animals are
mideal’, which means that each individual animal is
able to choose the habitat that maximizes its fitness
rewards, and ‘free’, which means that there are no

costs associated with moving between and entering

habitats. Additionally, animals were assumed to be all

* Correspondence author.

alike. This set of assumptions is not sufficient to spec-
ify how a group of animals will distribute themselves
among a set of habitats. One should know how the
rewards for each individual depend on the relevant
characteristics of the habitat and on the number of
animals present in the habitat. Strictly speaking, in
order to predict the ‘ideal free distribution’, when
defined as the frequency distribution of habitats in
terms of the number ofanimals each habitat contains,
one must also know the frequency distribution of
habitats in terms of their characteristics as well as the
total number of animals in the system.

Fretwell & Lucas (1970) described the fitness
rewards (as well as the dependence of the rewards on
competitor density, see later) only in general terms
(Oksanen, Oksanen & Fretwell 1992). In contrast,
students of the distribution of foraging animals in a
patchy environment interpreted the fitness rewards in

terms ofa short-term goal, most often the rate of food
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intake (Kacelnik, Krebs & Bernstein 1992). As the
primary aim ofthe present article is to compare vari-
ous models that have been proposed for the dis-
tribution of foraging predators, we necessarily follow
the assumption that maximizing intake rate will max-
imize fitness.

Two types of models can be distinguished, depend-
ing on whether the maximal rate of food intake is set
by the rate at which prey is put into the system or by
the standing stock of prey. In the first case, new food
is immediately consumed and standing stocks are
effectively zero. In these models patches vary in terms
of the rate at which food is offered and this input rate
has the dimension ‘something per unit time’. For this
reason these models are generally referred to as ‘con-
tinuous input’ models, but we think that ‘immediate
consumption’ would be a better label, since the alter-
native ‘standing stock’ models may also have a con-
1995). When indi-

viduals do not differ, the food intake rate for each

tinuous input of prey (Lessells

individual is assumed to be equal to the input rate
divided by the number of foragers in the patch. As a
result, ‘ideal’ and ‘free’ animals will partition their
numbers such that the number in each patch is pro-
portional to the inputrate ofthe patch. This is known
as Parker’s (1978) ‘input matching rule’. The immedi-
ate consumption models, especially those dealing with
1985;
Parker & Sutherland 1986), have inspired many exper-
imental tests (Harper 1982; Abrahams 1989; Milinski

unequal competitors (Sutherland & Parker

etal. 1995). Yet, examples ofimmediate consumption
that actually apply to the field are extremely rare.
They include the study of Parker (1970) on male dung
flies, Scatophaga stercoraria, competing to ‘consume’
(mate with) arriving females and the suggestion of
Milinski (1979) on stream-dwelling fish competing for
prey drifting by. In fact, there can be little doubt that
standing stocks are not zero in the vast majority of
distributions of foraging animals in the wild, if only
because the prey need a nonzero population size to
reproduce and survive.

This leads to the second case, where food avail-
ability can be characterized by the density ofthe stand-
ing crop in a patch, without time in the dimension
(Lessells 1995), and where one needs to know how
food intake rate is related to standing crop (prey den-
sity) and to the density of foragers. An ‘ideal’ and
‘free’ distribution so predicted only applies to a single
instant in time. If consumed prey items are not
replaced immediately, densities will decrease, and the
foragers will redistribute themselves in response to the
new prey distribution. Models dealing with this type
ofdistribution are generally referred to as interference
models, because it is often assumed that the predators
suffer from mutual interference, which in studies on
waders is defined as the more or less immediately
reversible negative effect on intake rate of high pred-
ator densities (Goss-Custard 1980). However, we pre-

fer the term ‘standing stock’models to emphasize that

the rate of food intake depends on the standing stock
of prey, not on the input rate. In these models inter-
ference may or may not occur (Lessells 1995). In the
absence of interference, food intake rate can be mod-
elled as a function of prey density only, by means of
the Holling’s disc equation (Holling 1959). In such
cases ‘ideal” and ‘free’animals will all aggregate in the
patch with the highest prey density, where the animals
obtain the highest intake rate they can achieve (Roy-
ama 1970; Comins & Hassell 1979). Such strong
aggregation is, of course, rather unlikely. In many
cases the predators will mutually interfere with each
other, so that intake rate decreases with increasing
predator densities. As a consequence some predators
will move to areas with lower prey density since this
will increase their intake rate. To model this situation,
interference must be incorporated into the disc equa-
tion. Two approaches have been taken. The first
approach applies simple behavioural models of the
predation process assuming a homogeneous environ-
ment in each patch (Beddington 1975; Ruxton, Guer-
ney & De Roos 1992); for example, the predator popu-
lation may be divided into three mutually exclusive
states: searching individuals, prey handling indi-
viduals, and individuals that are involved in encoun-
ters with conspecifics. Given the transition rules
between the states, the functional response follows
from the steady-state solution of the accompanying
differential equations (Ruxton et al. 1992). Note that
the term functional response is used in a general mean-
ing and gives the intake rate of a single predator per
unit foraging time as a function of both prey density
and predator density. The second approach uses some
empirical relationship between searching rate (Hassell
& Varley 1969) or intake rate (Zwarts & Drent 1981;
Sutherland & Koene 1982; Ens & Goss-Custard 1984;
Goss-Custard & Dureil 1987) and predator density to
model the effect ofinterference. These two approaches
mightbe called ‘mechanistic’and ‘phenomenological’,
respectively.

If the functional response equation is known, then
one can subsequently derive in what way ‘ideal’ and
‘free’ animals will distribute themselves between pat-
ches of different prey density at a single moment in
time. W ith this purpose in mind several authors have
chosen a single functional response model from one
of the two types described above and predicted the
relation between prey density and predator density.
The additional purpose of these authors varied from:
(i) developing a general ‘standing stock’model for the
aggregative response of ‘ideal’ and ‘free’ predators
(Sutherland 1983; Moody & Houston 1995), to (ii)
using it as a supposedly firm foundation to investigate
the inclusion of complexities like differences between
individuals (Parker & Sutherland 1986; Sutherland &
Parker 1985, 1992), or to (iii) derive and test pre-
dictions for a specific well-studied case (Goss-Custard
et al. 1995a,b). Yet, to our knowledge, no systematic

investigation exists of the consequences ofchoosing a
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particular functional response equation for: (i) the
predicted distribution pattern; (ii) the change in the
distribution pattern as depletion proceeds; and (iii)
the change in the distribution pattern following an
influx of predators. W ithoutsuch knowledge it is hard
tojudge the general validity ofthe proposed ‘standing
stock’ models, or their derivatives, nor can we judge
the reliability of predictions for a specific case. This
study therefore compares the various ways of incor-
porating interference in the functional response model

of Holling.

The models

In the equations that follow, uppercase letters usually
denote variables, and lowercase letters parameters.
Yet, we make an exception to this rule for those vari-
ables that refer to prey densities, predator densities
and patch areas. In those cases lowercase letters refer
to a single patch, and uppercase letters to the entire
system; for example, p, (m-2) is the predator density
in patch i, whereas P (m~2) is the overall predator
density, that is the total number of predators in the
system divided by the total area. For the sake ofcon-
venience, prey items are assumed to be of equal size,
require equal handling time, and are captured and
eaten upon discovery. Unless stated otherwise, pred-
ators are always foraging. While foraging, they are
either searching, handling, or (in some cases) ‘fight-
ing’. We distinguish searching rate 4 (m2s_1), which
is the area searched per predator per unit searching
time, encounter rate £ (s-1), which is the number of
prey items encountered per predator per unit search-
ing time, and intake rate W (s-1), which is the number
of prey items eaten per predator per unit foraging
time, including handling and fighting time.
Generally, the intake rate per unit foraging time per
predator in patch i, W; (s-1) is given by a function of

prey density n; (m -2) and predator density p; (m-2)

W, =f(«, pi. eqn 1

Usually, the intake rate W increases with increasing
prey density n and decreases with increasing predator
density. ‘Ideal’ and ‘free’ predators will distribute

themselves between patches such that none can
improve their intake rate by moving to another patch.
Providing that individuals are identical, this means
that intake rate is equal across patches. Hence for all
patches (assuming for the time being that they are all

occupied)

Wi= f(«.pi) —c eqn 2

Below we will for various functions f derive the func-
tion g that relates predator density to prey density,

the so-called aggregative response:
P; = #(«/> ¢c) eqn 3

for all patches. Given the frequency distribution of

habitats in terms of surface area d{and prey density

the spatial distribution of predators (the ‘ideal free

distribution’) is determined by this aggregative
response function. The constant ¢ is determined by

the constraint

z dP‘=Dp eqn 4

where

is the total surface area (m2) of all patches, and DP is
the total number of predators in the system. If poss-
ible, an explicit equation for ¢ will be given. All model
parameters are (unless otherwise stated) assumed to

be greater than zero.

THE MECHANISTIC APPROACH

Ruxton et al. (1992) made several simple behavioural
models of the predation process by using an approach
borrowed from chemical reaction kinetics. The pred-
ator population is divided into several mutually
exclusive states. Given the transition rules between
the states, the functional response follows from the
steady-state solution ofthe accompanying differential
equations; for example, if a searching and a handling
state are distinguished, each transition from handling
back to searching is supposed to mean that a prey
item is swallowed. Hence the transition rate at the
steady-state yields the functional response. It is inter-
esting to note that this simple example leads to Hol-
ling’s disc equation (Holling 1959), and the intake rate

can be written as:

ani
w,= eqn 5

1+ ahn-,

where a is the constant searching rate (m2s~'), and %
is the handling time (s). Yet, since interference does
not occur (there is no fighting state in which indi-
viduals are involved in encounters with conspecifics)
and intake rate therefore does not depend on predator
density, it is not possible to derive the aggregative
response function: all ‘ideal’ and ‘free’ animals will
aggregate in the patch with the highest prey density.
The relation between intake rate and prey density as
given in eqn 5 is also known as the type II functional
response. Contrarily, a type 1 functional response
refers to the situation where the intake rate is pro-
portional to prey density. This can be regarded as a
special case of the type II functional response when
the handling time /4 equals zero.

In the more complex models that Ruxton et al
(1992) examined, an encounter between predators
could mean that a (searching or handling) predator
stops its pursuits and enters the ‘fighting’ state. They
showed thatifa searching predator interacts with both

searching and handling individuals, the functional
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response can be approximated by Beddington’s (1975)

equation:

w, = eqn 6
1+ aim, + gp;

where ¢ is a parameter which is actually twice the
product of the ‘rate of predator discovery’ (m2s_1)
times the ‘loss of searching time per encounter’ (s). As
these two parameters always occur together, they can
be replaced by the compound parameter g (m2), which
may be called the interference area. If a searching
predator may also interact with a predator already
involved in an aggressive encounter, the same model
arises, but with a slightly different interpretation of
the parameter g.

Setting the intake rate equal for all patches /

ni'i

eqn 7
1+ ahni+ qp;
leads after some straightforward algebraic manipu-
lation to a linear relationship between predator den-
sity pj and prey density n;
1 a(lje —h)

Pi = - Fommm e nj.
q q

eqn 8

For patches with a prey density

1
"= a(\/ec —h)
predator densities are set equal to zero, as negative
predator densities are nonsense. For the same reason,
1/c (which is the average foraging time per prey item
consumed and thus includes handling time) must
always be larger than the handling time 4. This con-
straint holds for all models that follow.

Now assume that the firstj — 1 patches (the 7/ pat-
ches are ordered in increasing prey density) remain
unoccupied by predators. Then the value for the con-
stant ¢ can be derived from noticing that the total

number ofbirds in the system, which is known, equals

/
D*P* = X diPi,
i=

where
D*=Ydi
i=j

is the total surface area (m2 of all occupied patches,
and P* is the overall predator density (m-2) for all

occupied patches. Similarly,

D*N* = X d,nh

i=i

where N* is the overall prey density (m~2) for all

occupied patches. Then,

P* = ¢ -1 - a(l/cl')'*(};)n’~ ) eqn 9

tiy
which results in

aN*
eqn 10
1+ ahN* + <= 4

The value ofycan be derived from noticing that the
birds should not visit those patches for which the
intake rate without considering interference is smaller
than the intake rate (taking interference into account)
would be if only the plots that have a higher prey
density are visited. Thus, the patchy — 1 (recall that
patches are ordered in increasing prey density), for
which

anqj aN*
7-1 <

eqn 11
I+ ahN* + qP* d

1+ ahn-j i
holds, remains empty of predators. The same is true
for all patches with even lower prey densities. This
rule has some conceptual similarity to the classical
diet rule of Charnov (1976). Below we will refer to
this model, in which searching predators interact with
both searching and handling conspecifics, as the Bed-
dington model.

Ruxton eral. (1992) also showed that ifa searching
predator only interacts with other searching pred-
ators, the functional response approximately looks
like:

ani
w,= eqn 12
1+ ahn; + art
1+ ahni
Proceeding as above,
B 1, a(lle —2h azh{\je - /7)) 2
p = __ 7 ,Ul %4" nf, eqn 13
q <
and
aN* + a2h-
eqn 14
1+ 2ahN* + a2h2 qP*

In spite ofits complexity, the occurrence ofthe term
'Ldin2 in the latter equation tells us that the intake
rate ¢ depends on the variance of the prey densities in
the suitable patches i = j,j + 1,..., /. In contrast, the
Beddington model predicted an intake rate (eqn 10)
that only depends on the overall prey density N* in
the suitable patches. Below we refer to the ‘search-
interaction-only’ model as the Ruxton model. In the
trivial case when the handling lime is zero, the two

models are equivalent.
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THE PHENOMENOLOGICAL APPROACH

Hassell & Varley (1969) observed that for predators
in a laboratory cage, the logarithmic transformed
searching rate showed a linear relationship with a
negative slope when plotted against the logarithm of
the number of predators in the cage. Then, with a
slight modification due to a generalization to predator
density instead of predator number, which enables the
use ofpatches (or cages) of different surface area, the
effect of competitors can be described in terms of
a decrease in the searching rate 4 by the empirical

relationship

A, =aipff eqn 15

where r is a reference predator density (m-2) needed
to avoid violation of dimensional rules, a is the search-
ing rate (m2s~') when the predator density is equal
to the reference density, and m is a dimensionless
interference coefficient. Taking handling time into
account yields the functional response

v, = apitz) eqn 16

1+ a(pijr)~"hnj

The assumption that predators distribute themselves
such that the intake rate is equal for each patch gives

(Sutherland 1983)
Pi= r(a(ljc - h)nf eqn 17

So the relation between predator density and prey
density is described by a power function. The constant
intake rate ¢ is given by
i
eqn 18

1( p*D*
ah + -

In 1981, Zwarts & Drent (1981) published a paper
in which they presented field data that showed that
the intake rate of 03 stercatchers, Haematopus ostra-
legus, on a mussel bank decreased with increasing
density of conspecifics. Their data were used by
Sutherland & Koene (1982) who suggested a linear
effect of bird density on intake rate when both vari-
ables are expressed in logarithms (note that this is in
contrast to a linear effect on log searching rate as in

the Hassell-Varley model). Hence

W, =f(n,) '(p,'r) eqn 19

where again r is a reference predator density (m-2)
needed to avoid violation of dimensional rules; f(«,)
is the intake rate (s~') as a function ofthe prey density
when the predator density is equal to the reference
density; m (—) is the interference parameter. By con-
vention we use the letter m, as in the Hassell-Varley
model. The relationship between intake rate and prey
density may be represented by Holling’s curve. If the

reference predator density is chosen such that the

effect of interference is negligible, we may then write

(but see below)

an,

W, = . @ !r)~m.

. eqn 20
1+ ahn, d

As a result, the aggregative response looks like
Pi=r eqn 21
and

P*D*
eqn 22

c0 1+ ahn.

where the reference intake rate c, (s_1) keeps the
equation in line with dimensional rules. Note that only
in the trivial case when the handling time is zero,
the model (and the resulting aggregative response)
is equivalent to the Hassell-Varley model with zero
handling time.

As an alternative, Ens & Goss-Custard (1984)
applied a linear model between untransformed intake
rate and log-transformed bird density, leading to

ani

i = (1 —m log (pjr)), eqn 23

1+ ahni

where again the parameter m (—) determines the
strength of the interference. Predator densities above
/*exp (1/m) are not feasible, as they will result in nega-
tive intake rates.The model results in

1—ch c 1

Pi — rexp eqn 24

m amn

No explicit equation for ¢ could be found.

Another alternative was considered by Goss-Cus-
tard & Durell (1987). They assumed a linear relation-
ship between untransformed intake rate and untrans-
formed predator density. Proceeding as above, this
results in

W anj
, = . eqn 25
1+ ahni(lr i) d

where ¢ (m2) determines the strength of the inter-
ference. Predator densities above 1ljg are not feasible.

Then,

1 —ch c 1
P, - eqn 26
f aq Hi q
and

1- gP*
[ eqn 27

aZ>*.2,/7,

In the remainder of this paper the latter three
phenomenological models, which are based on empiri-

cal relationships between intake rate and predator
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density, will be named the ‘Doublelog’, the ‘Semilog’

and the ‘Untransformed’ model, respectively.

DIFFERENCES IN THE AGGREGATIVE
RESPONSE

A comparison of the six aggregative response func-
tions, which resulted from the six alternative ways
to model interference, immediately points to some
differences. Three models (Beddington, Ruxton, and
Untransformed) have a threshold prey density nmn
greater than zero, below which predators are absent
(i.e. g{ri) > 0 only if n > nmin). The threshold density
is the same for all three models and is not related to
the interference coefficients (Table 1). The other three
models do not have a threshold density. A maximum
predator density pmax, which is approached when prey
density becomes large (i.e. pmax = lim g(n) when n —a
co), is only found for the three models that were based
on an empirical relationship between intake rate and
predator density (Table 1). In all three cases the size
°f Pmax depends on the interference coefficient; the
higher the interference coefficient, the lower the
maximum predator density.

A further look at the first and second derivatives
of the aggregative response functions (for p > 0 and
n > 0) allows a more detailed examination of the
characteristics of the functions and shows to what
extent these characteristics depend on the parameter
values that can be chosen; for example, if the first
derivative is always positive for all possible sets of
parameter values, then predator density always
increases with increasing prey density. If the second

derivative is positive, the rate ofincrease goes up with

increasing prey density. If the second derivative is
negative, the rate of increase goes down. We men-
tioned above (although without proof) that for all
models intake rate /V increases with increasing prey
density (df(n,p)'cn > 0) and decreases with increasing
predator density (df{n, p)jdp < 0 ) for all p > 0 and
n > 0. Then the first derivative of the aggregative
response function is positive (dg{n)/dn > 0) for all
p > 0 and n > 0, which follows from the so-called

implicit function proposition

df(n,p)/8n

eqn 28
dn éf(n,p)/ép

So, in the present context, emphasis should be put on
examination of the second derivative.

For the Ruxton model, for example, the first deriva-
tive is

dgiji) _ afije — 2h) 2a2h(\je —h)

eqn 29
dn q q d
and the second derivative is
cPg(m) _ 2a2h(\lc - h)
eqn 30
dn2 [
The first derivative is greater than zero if
a(l/c - 2h) 1 1
n > — eqn 31

2a2h {\jc-h) a(\/e —h) If

Asthe handling time Zcannot be smaller than zero, the
first derivative is indeed positive for all prey densities
1/(a(l/c —/?)).

1/c > h the second derivative is also always greater

above the threshold density Since

than zero (recall that we assumed that all parameters,

Table 1. A characterization of the interference models. The last column shows whether the second derivative of the aggregative

response function is positive, zero or negative for all prey densities greater than zero (provided that the searching rate, handling

time and interference coefficient are greater than zero). The sign (.v) function gives the sign of x, thus ifx > 0 then sign (x)

should be read as --

Threshold Maximum Second
Model Effect on prey density predator density deriv ative
Beddington Searching and handling » 0

afije —/7)
R S hi !

t earchin
uxton g alijc —h) +
Hassell-Varley Searching rate sign( 1 -1)
Doublelog Intake rate -
Semilog Intake rate -
OCH m )
1 1- ch

Untransformed Intake rate

a(l/c —h) d
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including searching rate a, handling time 4, and inter-
ference coefficient ¢, are greater than zero). Thus the
rate at which predator density increases goes up with
increasing prey density.

A similar analysis can be performed for the other
five models. Obviously, the second derivative of the
linear aggregative response function of Beddington is
always zero. The second derivatives of the three mod-
els that were based on empirical relationships between
intake rate and predator density (Doublelog, Semilog
and Untransformed) are always smaller than zero and
approach zero when prey density becomes large. To
gire one example, the second derivative for the

Untransformed model is

cCg(n)
dn2 agnr

2c 1
- eqn 32

which indeed is negative for all prey densities greater
than zero and approaches zero when prey density
becomes large. The only model where the second
derivative can be either positive, zero or negative is

the Hassell-Varley model. The second derivative is

dX(n)
dnl m

x r(a(\/c - h))\a(\/c - h)n)("m)-2. eqn 33
It follows that the second derivative is positive when
the interference coefficient 0 < m < 1, is zero when
m = 1, and is negative for m > 1. Thus, apart from
the Hassell-Varley model, the general characteristics
ofthe models are not sensitive to the exact parameter
values that are chosen (Table 1). Below, the models
w'ill be compared in a more graphical way by using a

few numerical examples.

FIRST EXAMPLE: OYSTERCATCHERS FEEDING
ON BIVALVES

In western Europe, oystercatchers. Haematopus ostra-
legus L., move in autumn from the breeding grounds
to their winter quarters along the marine shores. Hav-
ing arrived on the mudflats, the birds mainly feed on
a few bivalve species like mussel. Mytilus edulis L.,
and cockle, Cerastoderma edule (L.). Densities of these
prey species can vary considerably among the various
mudflats. In the numerical example that follows, the
birds forage on prey items of 0-25 g ash-free dry mass
(AFDM). These prey items require a handling time &
of 50s. The constant (interference free) searching rate
aequals 7cnrs“1(Hulscher 1976). The values for the
interference parameters for the various functions that
relate intake rate to prey density and predator density
(the reference predator density » the dimensionless

interference coefficients m, or the interference areas g,

Table 2. Parameter values used in the numerical example. B,
Beddington; D, Doublelog; H, Hassell-Varley; R, Ruxton;
S, Semilog; U, Untransformed

Parameter Dimension Value Models

a m2s-1 0-0007 BDHRSU

h s 50-0000 BDHRSU
m?2 1000-0000 B

g m?2 1000-0000 R

4 m?2 20-0000 U

m - 0-2700 D

m - 0-4000 H

m - 0-1300 S

7 m-2 0-0001 DHS

listed in Table 2) were chosen in such way that the
fits more or less resembled published (Ens & Goss-
Custard 1984) and unpublished data (Table 2). The
way the parameters are chosen may look rather crude,
but one must realize that our approach is not meant
to model a specific situation very precisely, but to
facilitate a comparison of the various theoretical
models. The results should therefore not be over-
interpreted.

Fortwo different prey densities intake rate is plotted
against log predator density (Fig. 1). A few things are

noteworthy. According to the Untransformed model,

1 10 100 1000

1 10 100 1000
Predator density (hm )

Fig. 1. The various functional response models. Intake rate
(mgs-1) is plotted vs. log predator density (h m~2) for (a)
high prey density (300 prey items of 0-25 g each m -2) and (b)
low prey density (30 prey items of 0-25 g each m~2). First
example; b. Beddington; d, Doublelog; h, Hassell-Varley; r,
Ruxton; s, Semilog; u, Untransformed.
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intake rate changes very little at low predator densi-
ties, but it rather quickly decreases to zero at inter-
mediate predator densities. At high prey densities the
Ruxton functional response predicts a similar pattern,
although the decrease in intake rate, which also starts
at intermediate predator densities, is much slower. At
low prey density the resemblance between the
Untransformed and Ruxton predictions becomes less
striking, and the Ruxton curve tends to the Bed-
dington curve. In contrast, at high prey densities the
Ruxton model predicts much higher intake rates than
the Beddington model. Intuitively, this makes sense.
At low prey densities the birds are mainly searching,
in which state they are vulnerable to interference,
according to both models. At high prey densities the
birds are mainly handling prey. In the handling state
the birds are insensitive to interference, but only
according to the Ruxton model. In the Beddington
model searching birds may interfere with handling
birds as well. The same reasoning explains that at
low prey densities the Doublelog and Hassell-Varley
curves are very similar (birds are mainly searching),
but thatat high prey densities the effect ofinterference
is much more pronounced in the Doublelog model (in
which interference affects intake rate, and not just
searching rate). Yet, the differences between the vari-
ous functional responses are relatively small when
compared to the noisy field data that are available
1984;
Goss-Custard & Dureil 1987). The consequences, in

(Zwarts & Drent 1981; Ens & Goss-Custard

terms ofthe aggregative response, however, are much
more serious (Fig.2). Two models in particular (Has-
sell-Varley and Ruxton) predict that the birds stron-
gly aggregate in the most suitable patch. The pro-
portion of predators in the best patches is higher than
the proportion of prey in the same patches. Remember
that only these two models assume that handling indi-
viduals are not susceptible to interference. On the
contrary, the three models that were based on the

empirical relationship between intake rate and pred-

ator density (Doublelog, Semilog and Untrans-
500
400
300
U 200
'S loo
Q
100 200 300

Prey density (m~2)
Fig.2. The aggregative response functions, relating the den-
sity of predators at which each predator can obtain an intake
rate of 4-10~3s~1, one prey item per 250s, to prey density.
First example; b. Beddington; d, Doublelog; h, Hassell-Yar-
Icy; r, Ruxton; s, Semilog; u, Untransformed.

formed) predict a limited predator density in the best
patches. This has been called undermatching. Bed-

dington’s model takes an intermediate position.

SECOND EXAMPLE: PREY DEPLETION

The aggregative responses that we calculated only
apply to a single moment in time. However, due to
predation, prey will be depleted. If there is no con-
current prey renewal, as is the case for waders that
feed on benthic invertebrates in winter, this means that
the standing stocks of prey in the occupied patches
continually decline. Under the ideal free assumption,
this may lead to a redistribution of the predators. We
are not able to provide analytical solutions for this
process of redistribution under depletion, but a look
at the shape ofthe aggregative response points to some
generalizations. First, for those aggregative responses
that are characterized by athreshold density, itisclear
that this threshold prey density will shift downwards
as depletion proceeds, poorer and poorer patches will
(Hassell-

Varley, Ruxton) where predators strongly aggregate

be occupied. Second, for those models
in the best patches, these patches will be severely-
depleted and the predators will subsequently spread
out to patches of lower quality; patches will quickly
become more similar in the course of the winter. In
contrast, if there is a maximum predator density, as
in the models that were based on the empirical
relationship between intake rate and predator density,
it could be that a good patch is effectively underused
relative to a poor patch so that depletion in terms of
the fraction of prey removed will be more intense in
the poor patch. Our second example examines these
suggestions by numerical simulations. We will extend
the previous example of foraging oystercatchers fur-
ther by showing the effect of prey depletion in the
course of the winter on changes in the aggregative
response of the oystercatcher. In our approach, each
day (the winters starts at 1 September and ends at day
215, 31 March) the birds are redistributed over all
patches according to the various aggregative response
functions. In order to survive, the birds have to bal-
ance their energy budget. This requirement implies
that they have to gather a more or less fixed amount
of food each day. Extra food intake will not increase
their fitness, as they cannot direct it into growth or
reproduction. Thus, the predator-prey system is of a
relatively simple structure. Prey decreases at a rate
determined by the number of predators in the system
times the fixed rate of food intake per predator. Pred-
ators either survive or die. They die when their intake
rate falls consistently below their energy requirements.
Yet in the numerical example presented here this did
not occur. Each day prey density n; in each patch
decreases by the bird density p; times the required
intake rate c0 (s~‘) times the day length (s). Model
runs are performed for oystercatchers feeding on

bivalves 0f025gAFD M . The required intake rate c0
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is based on a power of 8-8 W, which is the estimate
for a winter day with a temperature of about 5 C
(Kersten & Piersma 1987). These energy needs cor-
respond to a digestion efficiency of 0-8 (—) times
energy content 0of 22000 (Jg-1)times a daily averaged
AFDM intake rate of 0-0005 (gs-1). This implies a
daily food intake of 0-0005 (gs-1) times 86400 (s)
12h

foraging time, the required intake rate while foraging

is 43-2gday-1 or 173day-1. If a day contains

is 0-001 gs-1 or 0-004s-1, that is one prey every 250 s.
The initial prey densities, and the patch areas are given
in Table 3. These figures resemble the situation on the
Roggenplaat, a tidal flat in the Oosterschelde, SW
Netherlands, and were based on data gathered in 1989
by Meire et al. (1994). The number of birds that use
the area is set to 15000 (Lambeck, Sandee & De Wolf
1989).

The predicted spatial distribution at the start of the
winter season shows major differences between the
various models. As was shown earlier, according to
the Hassell-Varley model predators would strongly
aggregate in the most suitable patches. On the
contrary, for the Doublelog model, for example, the
highest predicted density is substantially lower. A
more interesting result is the qualitative behaviour of
the changes in the aggregative response. According to
the Hassell-Varley model patches tend to become
more similar in the course of the winter, both in terms
of prey density and predator density. The Doublelog
model predicts the opposite. Predator densities in the
most suitable patches increase, whereas predator den-
sities in the least suitable patches decrease in the
course of time (Fig. 3). The Beddington model takes
an intermediate position. The Ruxton model gives a
similar picture to the Hassell-Varley model, whereas
the Semilog and Untransformed models resemble the
Doublelog model.

At this point we would like to mention one apparent
contradiction in the example (which is, however, of
minor importance in the present context). Our ‘ideal’
and ‘free’ birds aim to maximize their intake rate. On
the other hand, we assume that they just need a fixed
amount of food per day. This implies that ifthe intake
rate that can be achieved is higher than the required
amount of food per day divided by the available for-
aging time per day, the birds have spare time. If we
assume that each bird contributes to the interference
during this extra spare time, or that all birds take

their spare time at the same moment, there are no

conceptual problems.

THIRD EXAMPLE: AN INFLUX OF PREDATORS

The last example considers the build-up of oyster-
catchernumbers in a wintering area at the start of the
winter season. Goss-Custard and coworkers (1995a,
b) considered a situation of that kind on the mussel
beds of the Exe. They constructed a model in which
they took account of various complicating phenom -
ena, such as the presence of multiple prey of various
sizes, and differences in prey opening techniques, in
interference-free intake rates and in the susceptibility
to interference among individual oystercatchers. We
just mimicked this system by translating the average
interference-free intake rate for hammering oys-
tercatchers for each mussel bed as presented by Goss-
Custard et al. (1995, Table 1)into an ‘effective’ density
of bivalves of 0-25 gAFDM by using the inverse of
Holling’s type Il functional response (with the same
parameters as in the previous examples). Stated other-
wise, for each ‘effective’ density Holling’s type II func-
tional response reveals exactly the accompanying
interference-free intake rate (Table 4). Subsequently,
we used the various models for interference to predict
the distribution over the mussel beds with increasing
predatordensity,ignoring any (minor) changes in prey
density. Our approach is highly simplified, but illus-
trates the essential differences between the various
models. Beddington’s model shows the greatest chan-
ges in relative densities with increasing predator num -
bers (Fig.4). The model of Hassell & Varley does
not show any change in relative distribution when
predator numbers increase. The Semilog model takes

an intermediate position.

Discussion

Our
habitat distribution of ‘ideal’ and

contribution emphasized that predictions on
‘free’ predators
strongly depend on the assumptions that are made on
the effects of interference on intake rate. This notion
points almost automatically to a pair of recom-
mendations that can be made.

First, itimplies that when ‘an’ideal free distribution
isinvolved, one should be explicitabout the functional
response that was assumed. That is, it should be clear
in what precise way intake rate isassumed to be related
to both prey density and predator density. This has
not always properly been done; for example, Suther-
land & Koene (1982) aimed to estimate the inter-

ference coefficient m ofthe Hassell-Varley model, but

Table 3. Area and initial prey density for each of the six patches. Second example

Patch 1 2
Area (I06nr) 151 6-05
Prey density (m-2) 144-00 200-00

3-85
280 00

0-96 1-78
536-00 712-00

2-34
868 00
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Fig. 3. Phase diagrams in which each line shows the changes in predator density (m-2) and prey density (m-2) in each patch
during the winter season. The dot indicates the end of the trajectory. Aggregative responses for various intake rates ¢ (ranging
from 6T0-3 to 1810~3s~") are also shown (cf. Fig. 2). Starting values of prey densities and patch surface areas are given in
Table 3. (a) Beddington; (b) Hassell-Varley; (c) Doublelog. Second example.

Table 4. Surface area (McGrorty & Goss-Custard 1991), interference-free intake rate and ‘effective’ prey density for each of

the five groups of mussel beds. Third example

Mussel beds 1, 13, 14,22 27, 31 3.20 4,26 25, 30
Area (104m?2) 130 90 13-8 126 15-5
Interference-free intake rate (mg 5 min-1) 346 0 620 0 6550 6960 7940
Prey density (m~2) 90 20-0 22-0 25-0 320
they did not use data on searching rate but data on are best described in terms of a ‘standing stock’

intake rate. Using intake rate would in the first place
refer to the Doublelog model. In a later paper Suther-
land & Parker (1985) stated
between both models (Hassell-Varley and Doublelog)

that the discrepancy
is usually likely to be small. Yet, the present study
showed that the consequences, in terms of differences
in the aggregative response, are rather dramatic.
Another example concerns the prerequisites of the
‘habitat matching’ rule. In the ‘immediate con-
sumption’ situation the intake rate per predator per
unit foraging time is given by = Qjpj~"', where Q,
is the total food input in patch i per unit time and p;
is the number of predators in the patch. This leads to
the ‘input matching’rule p; = 0,/c. As pointed out by
Tregenza (1994), who aimed to clarify some mis-
conceptions in applying the ideal free distribution,
authors confused the ‘immediate

several con-

sumption’situation with the situation when resources

density. They mistakenly assumed that in the latter
case the ideal free theory predicts a ‘habitat matching’
rule, pj cc nj(Kennedy & Gray 1993). Tregenza (1994)
stated that the ‘habitat matching’rule is not generally
valid, since the interference coefficient m of the model
Y = Xp~n'isnot necessarily equal to one in the ‘stand-
ing stock’ situation. He defined Y as the individual’s
payoff, X as the total input, and p as the number of
predators in the patch. Tregenza did not mention,
however, that in a ‘standing stock’situation the ‘habi-
tatmatching’rule also requires the additional assump-
tion that the individual’spayoff ¥ should be measured
in terms ofencounter rate (instead ofthe more ob\ious
intake rate) and that the total input actuallj means
the interference-free encounter rate, an, in our ter-
minology.

Second, the choice of a functional response model,

which appeared to be of vital importance when pre-
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Fig. 4. Changes in predator distribution over five groups of mussel beds when the number of birds grow (at the start of the
season) from zero to 2000. Prey densities and bed surface areas arc given in Table4. The beds are arranged (from abo\e to

below) in order of decreasing prey density, (a) Beddington; (b) Hassell-Varley; (c) Semilog. Third example.

dictions about the spatial distribution ofideal and free
predators are needed, should be based on detailed
know ledge ofall components ofthe predation process
and on theoretical appeal; for example, our results
suggest that it might be of importance whether or not
the model lakes into account that handling individuals
may suffer from interference (recall that the models
which assumed that only searching individuals inter-
act, the Ruxton and the Hassell-Varley model, were
the only models that predicted that proportionally
more predators aggregate in high-density patches).
Our impression is that until now the choice has often
been based on convention; for example, Kacelnik et
al. (1992), in their review ofthe ideal free distribution,
simply state that realistic assumptions about the inter-
ference between competitors lead to the Hassell-Var-
ley functional response. They lightheartedly avoid
defining the meaning o f‘realistic’. Yet, ample empiri-
cal evidence exists that for many species log searching
rate decreases in a nonlinear way with log predator
density (Free, Beddington & Lawton 1977). Besides
this lack of empirical support, the model has severe
theoretical shortcomings. In fact, it assumes that for
predator densities close to zero, searching rate 4 goes
to infinity, which does not seem to be realistic (Free
etal. 1977). The Doublelog and Semilog models suffer
from the same limitation.

Since the choice ofa functional response (including

the effects of interference) so strongly influences the

predicted aggregative response, conclusions based on
a particular choice are unlikely to be generally true.
The widely used Hassell-Varley model is both theor-
etically deficient and lacks empirical support. The
status of the other phenomenological models is equ-
ally wanting. Although the theoretical appeal of the
mechanistic models of interference is higher, they are
not fully consistent in the context ofideal free theory,
where it is assumed that predators maximize their
fitness rewards. In the mechanistic models, the animals
behave like aimless billiard balls, and the question
why animals should interfere where the result is
only a loss offeeding time, is not answered. Develop-
ment of a model of interference that is consistent
with the assumption of rate maximization in the
choice ofa feeding site stands out as a clear theoretical
challenge.

So far, empirical studies of interference in waders
and other birds have primarily relied on statistical
techniques to control for the many confounding vari-
ables in the field (Zwarts & Drent 1981; Ens & Goss-
Custard 1984; Goss-Custard, Clarke & Durell 1984).
W hile we are happy to accept the qualitative evidence
for interference, we think this approach is inadequate
to uncover the underlying processes and the quan-
titative details. In our view, experimental manipu-
lations of prey density, predator density and tide
length in a seminatural environment as pioneered by

Swennen, Leopold & De Bruijn (1989) are called for.
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