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Abstract

We consider the flow in an idealized, shallow sea, steady state, coastal boundary layer. The driving force is the
along-shore slope of the sea surface. The latter is balanced by bottom stress and horizontal diffusion of momentum.
The momentum equation governing the along-shore velocity is derived. Suitable assumptions are made in order to
obtain a closed form solution. The governing equation is then discretized on the B- and C-grid, with slip (together
with an appropriate wall function) and no-slip boundary conditions. The discrete solutions are compared with the
exact one, according to different standards: the errors affecting pointwise values, as well as fluxes, are evaluated.
The errors are estimated as a function of the ratio of the boundary layer width to the grid size, which ranges from
0.01 (non resolved boundary layer) to 100 (well resolved boundary layer). In general, the errors are small. However,
for the B-grid with a no-slip boundary condition, the flux crossing the grid box adjacent to the coast is in error by a
factor of =1/2 when the width of the boundary layer is much smaller than the grid size. The C-grid, when
implemented with a slip condition, permits the highest overall accuracy.

1. Introduction terms that are thought to be small everywhere,
) . except in narrow boundary layers, may be detri-
TO illustrate that toq simple models may lead mental to the accuracy of the solution in the
to irrelevant results, Nihoul (199_4) — hereafter whole domain oE5nterest
referred to as Nihoul — examined a classical

) ‘ Nihoul’s example, though striking, may not be
boundary layer problem (Egs. 5-9 in Nihoul). relevant to the models presently used in oceanog-
The equation c0n31.dered contained a sma.ﬂ pa- raphy — and it may be somewhat surprising that
rameter, a, appearing as a .factor of the highest neither Davies (1994) nor Salomon (1994) picked
order derivative. Setting this paramgter to zero out this point. For example, it is doubtful that any
abruptly changed the f’:‘der of magnitude of the such singular perturbation problem is spoiling the
solution by a factor ™. Therefore, disregarding results of the now standard primitive equation
model POM (Princeton Ocean Model), originally

TTel: 32-1047.26.76 or 32-10-47.3297, Fax: 3210474722, ~ described by Blumberg and Mellor (1987), or
e-mail; ericd@astr.ucl.ac.be. Research Associate, National MOM (GFDL’s Modular Ocean MOdel), first de-
Fund for Scientific Research of Belgium. vised by Bryan (1969). This probably holds true
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for all of the models based on similar equations
and numerical techniques. In models resting on
important simplifying assumptions, such as
quasi-geostrophic models, the boundary condi-
tions have been carefully designed in order to
avoid singular perturbation problems.

We are thus convinced that errors of the mag-
nitude evoked by Nihoul no longer exist in cur-
rently used models. However, less important, and
perhaps more subtle, questions associated with
boundary layers may still deserve some attention.

For example, one has hardly ever examined
the accuracy of the numerical treatment of the
coastal boundary layer, as well as its influence on
the flow outside this boundary layer. This is the
reason that we have decided to devote some
attention to this problem.

In this paper, we are going to study different
ways of treating, in a numerical model, the
boundary layer adjacent to the coastline. We have
no intention of drawing conclusions that may be
valid for every type of flow. Instead, we will
concentrate on a particular shallow water case,
i.e., the general circulation in the region of the
Bering Strait. An idealized model thereof will be
considered and somewhat surprising results will
be obtained.

2. The boundary layer problem

In the domain of interest, the general circula-

tion — defined as the flow averaged over a
period of time such that tidal motions are filtered
out — is mainly driven by the surface of the

Pacific being higher than that of the Arctic
(Coachman and Aagaard, 1966; Stigebrandt,
1984). For the present discussion, this northward
flow may be considered as steady and the role of
the wind stress may be neglected (Deleersnijder,
1994). The depth-averaged models that have been
applied to this region achieved appreciable real-
ism (Overland and Roach, 1987; Spaulding et al,,
1987; Brasseur, 1991). We thus consider two-di-
mensional, time-independent governing equa-
tions, with no wind forcing. Since the sea surface
elevation is much smaller than the height of the
water column (Overland and Roach, 1987,

Spaulding et al., 1987), the sea depth is consid-
ered to be equal to its reference, unperturbed
value. Assuming a rectilinear coastline, the conti-
nuity and momentum equations read

o hu 3 hy
() #(hr) _ ”
0x ay
du du an p ?u  u
u—+v——fr=—g— +A|—+—
ax vay fr A ox? ¥ ay?
TI
R (2)
v oy an 4 3ty
u— +v—+fu=—g— —t—
ax Ve T ey ax? | 3y’
TY
R (3)

where x and y are the along- and cross-shore
coordinates (Fig. 1); u and v represent the veloc-
ity components associated with the x and y axes;
n is the sea surface elevation — positive up-
wards; h, f, g and A denote the unperturbed
depth of the sea, the Coriolis factor, the gravita-
tional acceleration and the horizontal viscosity —
assumed constant, respectively; the bottom stress
components are 7* and 77,

In the vicinity of the coast, it may be hypoth-
esized that the variations of the velocity in the

B-Grid C-Grid
1 1

u(y=3)
SEA u(y=5/2)

Ay =1 u(y=2)
u(y=3/2)

Y.y u(y=1)
uly=1/2)

X, u u(y=0)

LAND

Fig. 1. Nlustration of the B- and C-grid discretizations of the
along-shore velocity, u, in the coastal boundary layer. Here,
dimensionless variables are used.
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along-shore direction are negligible relative to
the variations in the cross-shore direction. Eq. (1)
may thus be reduced to ¥Av)/dy =0, which,
together with the impermeability condition of the
coast, implies that » must be zero everywhere.
Assuming that 7” is zero when v is zero, Egs.
(2)-(3) transform to semi-geostrophic equations
of motion

=—g—4+A— - —, 4
U=ty 5z % 4)

e =g, (%)

To account for the effect of the tides on the
long term circulation, Overland and Roach (1987)
suggest parameterizing the bottom stress as

I =Ku (6)
with

C
K=ﬂ-h2(|u|+uT), )

where C, is an approriate drag coefficient and
u (= 0) denotes a velocity scale which is a func-
tion of the tidal amplitude. Setting ur =0, we
recover the most classical parameterization (e.g.,
Nihoul, 1980). As the coast is approached, both
|u| +up and h tend to zero. It is tempting to
assume that |u| + u, and A behave in such a way
that K is constant, leading to a linear parameter-
ization of 7*/h.

The along-shore slope of the sea surface is the
driving force of the flow. For simplicity, the latter
is defined to be constant, F = —g 8n/dx. This
expression of the forcing is obviously in agree-
ment with the flow being forced by the sea sur-
face slope.

According to the discussion above, the sole
equation we have to study is

d?u
A d_yz —Ku= —F, (8)

Sufficiently far away from the coastline, lo-
cated at y =0, it may be imagined that the varia-
tions of u are sufficiently small that the bottom

stress and the driving force approximately bal-
ance each other. This would be in agreement with
model results of Deleersnijder (1994). Close to
the shore, however, this balance of forces can no
longer prevail since Ku must tend to zero. It is
there that horizontal diffusion of momentum
should become significant.

It is not clear what parameterization of the
horizontal diffusion of momentum is best suited
to the present problem. In fact, many expressions
have been suggested (see, for instance, Nihoul,
1975; Mellor and Blumberg, 1985; Deleersnijder
and Wolanski, 1990). Here, we adopted the form
leading to the simplest analytical solution.

Several crude approximations have been made.
Although physical considerations were not ab-
sent, the need to obtain closed form solutions has
been the prevailing criterion for elaborating the
present model. This is typical of the radiognostic
approach — according to Nihoul’s classification
of models.

3. Analytical and numerical solutions

It is useful to introduce the following dimen-
sionless variables

. y Ku
(y’u)_ Z:?),

where L is an appropriate length scale. As we are
interested in numerical solutions, it is convenient
to set L =Ay, where Ay is the grid spacing in
the cross-shore direction — which is supposed
constant, for simplicity, Introducing the variables
defined above into Eq. (8), dropping the primes,
the following dimensionless momentum equation
is obtained

(%)

2dzu

€ E)‘)—Z—u= “1, (10)
with

5 A

€= 1K (11)
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According to the discussion above, the bound-
ary conditions for Eq. (10) are u(y =0) =0 and
u(y — ) =1, leading to
u(y)=1-—exp(—y/¢). (12)
Thus, e may be seen as the dimensionless thick-
ness of the coastal boundary layer, which is to be
compared with the dimensionless grid size Ay = 1.
If € is much larger than unity, then the boundary
layer is well resolved by the numerical grid; oth-
erwise, the boundary layer is, at best, poorly
resolved.

To design a conservative discretization of Eag.
(10), it is worth recalling that € d?u/dy? may be
re-written as do/dy, where o is the stress associ-
ated with the horizontal diffusion of momentum.
Of course, ¢ is given by o = €? du/dy. It follows
that Eq. (10) may be discretized as

F(y+1/2)-a(y—1/2) —a(y)=-1, (13)
with
[F(y+1/2),5(y-1/2)]
=ea(y+1) -a(y).a(y) —a(y-1)],
(14)

where the overbar refers to the value of the
corresponding variable obtained from the numer-
ical scheme. The along-shore velocity verifying
Egs. (13) and (14) is of the form (Bender and
Orszag, 1978)

u(y)=1-Uexp(—-y/¢), (15)
where U is a constant to be determined from the
coastal boundary condition. The thickness of the
numerical boundary layer is € = —(Inr)~!, with
1+2e2—(1+4€2)"””
2¢?
It is easily seen that 0 <r <1, so that € > 0.
In many calculations carried out below, use is
made of the relation (1 — r)%¢? = r, which may be
derived from Eq. (16) after elementary manipula-
tions.
If the boundary layer is well resolved, i.e., if
€ — o, then & is asymptotic to €, as expected. We
indeed have

1
E~E+m,f'—’°ﬂ. (17)

(16)

r

well resolved
boundary layer

0.5 T 1.5 2
109105

non-resolved 0.5
boundary layer

-2 b T =1 -0.5

Iogms

-2

Fig. 2. Thickness of the numerical boundary layer, €, as a
function of the exact thickness, €. Dimensionless widths are
considered.

As € tends to zero, the difference € — ¢ becomes
relatively larger, as illustrated in Fig. 2. In any
case, the thickness of the numerical boundary
layer, €, is larger than its exact counterpart, e
(Fig. 2).

The asymptotic expansions presented in this
article have been derived with the help of
Mathematica™ (Wolfram, 1988), by means of the
built-in object “Series”.

Two grid point arrangements may be consid-
ered. First, it may be assumed that a velocity
node is located on the coastline, as is usually the
case when the B-grid is used (e.g., Bryan, 1969).
Hence, the wet grid points are at y=1, 2, 3,...
(Fig. 1). With the C-grid, the along-shore velocity
is generally discretized at y=1/2,3/2,5/2,...
(Fig. 1).

Two types of numerical boundary condition
may be implemented in the coastal region. A
no-slip condition may be prescribed by setting
7#(0) = 0 with the B-grid, and @(—-1/2)+u(1/2)
=0 if the C-grid is selected. When a slip bound-
ary condition is preferred, the lateral stress o
must be prescribed at y=1/2 and y = 0 for the
B- and C-grid, respectively. To do so, the exact
expression of the lateral stress,

o(y) =eexp(—y/€), (18)
is used. The latter formula is sometimes called
“the wall function”. In other words, we impose

7(1/2) =a(1/2) =eewp[~1/(26)],  (19)
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Table 1

111

Features of the discrete along-shore velocity, according to the numerical lattice (B- or C-grid) and the coastal boundary condition

(slip or no-slip)

B-grid and no-slip

B-grid and slip

C-grid and no-slip C-grid and slip

Wet grid points: y=12,3, ... y=1273, ...
(yo=1 (ye=1

Boundary condition: w0)=0 F(1/2 =¢ e/

Value of T: 1 P12 o-1/(2€)

y=1/2,3/2,5/2, ... y=1/2,3/2,5/2, ...

(y.=1/2) (y.=1/2)
a-1/2+u(1/2)=0 g0 =¢
272 41! 1

for the B-grid, and
(0) =a(0) =¢, (20)

for the C-grid.

Having defined two types of numerical lattices,
as well as two types of boundary conditions, four
discrete solutions may be obtained, which are all
of the form (15). All important features of these
solutions are collected in Table 1.

It is now necessary to compare these solutions
with the exact one.

4. Assessment of the discrete solutions

Various ways of evaluating the “distance” of
the numerical solutions to the exact one will be
considered. Both pointwise and integral error
measures will be evaluated.

Table 2

4.1. Pointwise values

We first concentrate on a pointwise error mea-
sure. To do so, it is convenient to introduce the
variable

Au=u—u. (21)

We may first examine the value of Au at
y =Y, i.e., at the wet grid point nearest to the
coastline (Table 2). In general, it is there that
|Au] is maximum.

For the B-grid, Au(y,) does not exceed 0.05,
which means that the discrete solution is quite
close to the exact one, no matter the value of e
(Fig. 3). It is when € is of order 1 that Au(y,) is
maximum. At first, this might seem somewhat
surprising, but an explanation thereof is easily
found. For large values of e, the boundary layer
is well resolved by the numerical grid, so that it is

Pointwise error measure Au evaluated at the wet node nearest to the coastline. The integral |Au|pgs is also evaluated. For both
error measures, the exact values, together with asymptotic expansions for € << 1 (non resolved boundary layer) and e > 1 (well

resolved boundary layer) are given

B-grid and no-slip B-grid and slip

C-grid and no-slip C-grid and slip

error Au(y.):  rel/* rl/2 g 1/2e) g-1/¢
e’ cral:n A ~ (e€3)e1/2O)
€—® ~ 1/(24€%)-1/(24€*) ~1/(48€)-1/(48¢€*)

Error |Aulpss: [r2(1-r®)-2r(e/r) 4+ [ret/(1-r2) 12,12
(eS/(Ze)_rel/(Zs))-l +

(cZ/E_D—I]l/2
(62/5_1)-113/2

=il ~g22et ~ (g€ e /@)
e ~ 1/(48€%/?) ~ 1/(48€%/2)
-13/(7680€7/2) -1/(96€%/2)

2 r(1 +p)te /20 p172 g-1/Q2€)

~2e2-6et ~e-€”
~-1/(8e?) + 1/(12¢*) ~ 1/(48€%)-1/(96€*)
{4r2(1 + r)3(1-rL [P(1-r2)1.2p1 /21 /@)1 eyl 4
4r(l +r)tel/C9 el/e (e2/e1) /2
(e r)t +
el/e (82/‘-1)‘1]1/2
~2el6et ~e€’
~ Y13 /(48&%/2)- ~ 1/(48¢%/%)-13 /(7680€7/2)
233/13 /(33280¢7/2)
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B-grid: Au(y,)

0.057
— no-slip
~slip well resolved
boundary layer
-2 -5 -1 05 |gg g 0.5 1 1.5 2
non-resolved 10

boundary layer

Fig. 3. Error in the discrete along-shore velocity, Au=u—4,
on the B-grid at the wet node nearest to the coastline, which
is located at y_=1. The solutions corresponding to slip and
no-slip numerical boundary conditions are considered. The
errors are represented as a function of the exact, dimension-
less boundary layer width, €.

natural that the error affecting the numerical
solution is small. On the other hand, when € is
small, the grid spacing is much larger than the
width of the boundary layer, so that the first wet
grid point is well outside the boundary layer. In
this case, the bottom stress is approximately bal-
anced by the forcing, so that u must be very close
to u. This is confirmed by the asymptotic expan-
sions presented in Table 2, which, together with
Fig. 3, show that the slip boundary condition
leads to much better results than the no-slip. In
other words, although the B-grid is naturally
suited to a no-slip condition, it is the slip condi-
tion that performs better.

For the C-grid, the behaviour of Au(y) as a
function of e is more complex (Fig. 4 and Table
2). As for the B-grid, the error tends to zero as €
or ¢! approaches zero. If the boundary layer is
well resolved, the slip boundary condition should
be preferred. But, in the opposite situation, for
€ — (, it is the no-slip condition that permits the
highest accuracy. In Fig. 4, for completeness, we
have also displayed Au for a simplistic, and in-
consistent, no-slip condition consisting of impos-
ing u(—1/2)=0. The discrete solution corre-
sponding to the latter boundary condition is worse
than the others, except for € <0.1. Hence, when

the boundary layer is much narrower than a grid
box, it is desirable to resort to a non-consistent,
and seemingly irrelevant, boundary condition!
However, the gain in accuracy achieved in this
case is so small and the magnitude of the error
occuring in the region €>0.1 is so large —
relative to errors affecting the other solutions —
that this option is probably not acceptable. We
will thus not further investigate its properties.

Overall, |Au(y ) is larger for the C-grid. This
does however not imply that the B-grid enables a
better treatment of the coastal boundary layer.
We must bear in mind that y_. has different
values for the two types of grid, implying that it is
not fair to compare Fig. 3 and Fig. 4. In fact,
there is probably no indisputable way of compar-
ing the B- and C-grid numerical solutions as
regards the treatment of the coastal boundary
layer. It is nevertheless tempting to use expres-
sion (15) as if every value of y were permitted,
which would allow evaluating Au at the same
point for the two grids, at y = 1 say. Doing so we
obtain Fig. 5, showing that Au(y =1) has the
same order of magnitude for the B- and C-grids.
According to this somewhat artificial standard,
the B-grid with a slip condition generally per-
forms better than the other types of discretiza-
tion.

C-grid: Au(y,)

0.1

slip.

well resolved
boundary layer

=2 =1.5 t
non-resolved
boundary layer

Iogms

no-slip
{inconsistent version)

-0.25

Fig. 4. Error in the discrete along-shore velocity, Au=u — &,
on the C-grid at the wet node nearest to the coastline, which
is located at y, =1/2. The solutions corresponding to slip and
no-slip numerical boundary conditions are considered. The
error affecting the inconsistent no-slip solution — in which
#—1/2)=0 - is also displayed. The errors are represented
as a function of the exact, dimensionless boundary layer
width, e.
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Au(y=1)
0.04 { B-grid: no-slip
| — A .
B-grid: slip, C-grid: slip
well resolved
- boundary layer
-2 -1.5 -1 -0% log £ 0.5 = -1 1.5 2
non-resolved i gw / =
boundary layer ezt #~C-grid: no-slip
rd
-0.04

Fig. 5. Error in the discrete along-shore velocity, Au = u — &,
on the B- and C-grid, evaluated at y = 1, which is a somewhat
artificial measure for the C-grid. The solutions corresponding
to slip and no-slip numerical boundary conditions are consid-
ered. The errors are represented as a function of the exact,
dimensionless boundary layer width, e.

So far we have concentrated on a local mea-
sure of the difference between u and #, ie.,
Au(y.). A more global expression should also be
evaluated. For instance, we may calculate the
root of the sum of the squares of Au taken over
all wet nodes:

20

172
Aulnss ={ 5 [Au(y)]"-} . )

V=Y,

Because [Au| is in general maximum at y=y_,
the conclusions that can be drawn from the study
of Au(y.) are qualitatively in agreement with
those ensuing from the expression above, as is
confirmed by Fig. 6 and Table 2. In particular,
the asymptotic expansion of |Aulgpss as € = 0 is
equivalent to that of Au(y_) (Table 2), because

fire e_a{[IAL"RSS]Z - [ZA“( J’c)]z}
= [Au(yo)]

e T [dun)]?
. y=y.+1 _
=eh£[}] [Au(y.)]? 0 ()

where a is a positive constant. Further analysis of
|Aulgss is obviously not necessary.

4.2. Fluxes

The pointwise values of the velocity are also
used for evaluating advective fluxes in every —
conservative — numerical procedure. In this case,
a pointwise value is regarded as an approximation
to the average of the velocity along the relevant
grid box interface.

The present analysis is restricted to the con-
stant-depth case. Accordingly, we examine inte-
grals of the form

¥
$(y1,y2) = [ udy, (24)
Yi

which may be regarded as the along-shore water
“flux” crossing the segment [y, y,].

The flux crossing the grid box adjacent to the
coast is defined as ¢(0, 1) = 1 — € + eexp( — 1 /¢).
The numerical counterpart of ¢(0, 1) is

— u(0) + (1
¢(0,1)=——( )2 ! ), (25)
for the B-grid, and

¢(0,1) =i#(1/2), (26)
for the C-grid.

N\

/ Y~ \|~C-grid: no-slip

/ 1\ A
\

\ - .
XB-gnd: no-slip

~
~

~

0.5 1 T8 2
well resolved
boundary layer

-2 1.5 S 0.5
non-resolved / rOQwE
boundary layer . )

B-grid: slip

Fig. 6. Global measure of the error, |Aulgss, affecting the

along-shore velcity. The B- and C-grid solutions are consid-

ered, according to slip and no-slip conditions in the coastal
boundary layer. The errors are represented as a function of

the exact boundary layer width, .
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AP0, 1)
—0.5(fore—=0)

0\1¢

B-grid: sli . .
9 P B-grid: no-slip
gon-resotved 0.0
oundary layer
viarer ] log, ¢
-1.5 -1 5 = T Y 1.5 2
)\j /\ well resolved
-0.05 -

boundary layer
~ -0, {

C-grid: no-sfip—s, % /
~-0.15

C-grid: slip

Fig. 7. Error in the water flux crossing the grid box adjacent to
the coast, Ad(0, 1) = ¢(0, 1)— #(0, 1), on the B- and C-grids.
The solutions corresponding to slip and no-slip numerical
boundary conditions are considered. The errors are repre-
sented as a function of the exact, dimensionless boundary
layer width, e.

As may be seen in Fig. 7 and Table 3, the
difference A¢(0, 1) = ¢(0, 1) — $(0, 1) is smallest
for the C-grid with a slip boundary condition.
With the noticeable exception of the B-grid with
a no-slip boundary condition, |A$(0, 1)| is maxi-
mum for 0.1 <e <1 and very small if the bound-
ary layer is well resolved (e = 1) or not resolved
at all (e =< 1). This may be explained by invoking
arguments similar to those used to understand
the behaviour of the pointwise error measure
Au(y,).

When e < 1, the along-shore velocity is close
to 1 everywhere, except in a narrow boundary
layer adjacent to the coast. Hence, ¢(0, 1) is close
to 1. For the B-grid with a no-slip boundary
condition, however, $(0, 1) does not tend to 1,
because #(0) is precribed to be zero while H(1) =
1, so that ¢(0, 1)=1/2.

Table 3

This drawback of the B-grid may be circum-
vented by implementing a slip boundary condi-
tion, as clearly shown in Table 3 and Fig. 7. This
is readily achieved in an idealized case — such as
that treated herein — where the relevant asymp-
totic expressions are easily derived. In a more
realistic case, however, the no-slip boundary con-
dition is appealing, because it does not require a
prior asymptotic study of the coastal boundary
layer dynamics — which is likely to be quite
intricate and plagued by large uncertainties.
When € <1, an alternative, simplified slip
boundary condition for the B-grid might be im-
plemented, i.e., #(0) = @z(1). In the present ideal-
ized case, this would lead to @(y) =1, Au(l) ~
—exp(—1/¢€) and A¢(0, 1) ~ —e for € — 0. This
behaviour is much more desirable than that ob-
tained with the no-slip condition. A detailed study
of this modified boundary condition should be
conducted, including numerical experiments with
a realistic model.

A more global error measure is also of inter-
est, for instance A¢(0, ®) = (0, ©)—$(0, ).
The flux ¢(0, =) is computed as

_ u(0 =

30.=) =2 s L 7(). (27)

Fo o= T Bl (28)
y=1/2

for the B- and C-grid, respectively. Not surpris-
ingly, the behaviour of A¢(0, «) is quite similar
to that of A¢(0, 1) (Fig. 8 and Table 3).

Error in the along-shore flux crossing the grid box adjacent to the coast, A¢(0, 1). The integral of the flux error over the
computational domain, A¢(0, <), is also evaluated. For both error measures, the exact values, together with asymptotic expansions
for € < 1 (non resolved boundary layer) and e > 1 (well resolved boundary layer) are given

B-grid and no-slip B-grid and slip

C-grid and no-slip C-grid and slip

Error A¢(0, 1):

1/2+r/24eeVe %1+ et@)21eeV e 2r(1+r) ! +eel/®e

r'/2+eel/ce

e-0 ~1/2-€ ~ g +e1/2) /(2¢) ~ €+ 2e? ~-€3+26°

e ® ~1/(126D)-1/(48€%)  ~1/(12¢%)-1/(24€?) ~-1/(6€%) +5/(48¢%) ~-1/(24€?) + 1/(24€*)
Error Ap(0, =) (1 +r)(1r) /2 P21 4r)(1r)tel/29) s2¢ 2 r(1-r¥)te 0

e—0 ~1/2-€ ~ ¢ +e1/2) /(2e) ~ €+ 262 0

e — o ~1/(8e)1/(128e3)  ~1/(Be)-1/(48€7) ~-1/(8¢)-3/(128¢%) 0
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AP(0,9)

non-resolved
boundary layer

- -1,5 -1 -0 Jog € 05\ + = 1.5 2
100 e well resolved
=0.85 boundary |
’ ary layer

g C-grid: slip
’
~ .15

N
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Fig. 8. Error in the water flux crossing the whole computa-
tional domain, A¢(0, =)= ¢(0, =)— $(0, »), on the B- and
C-grids. The solutions corresponding to slip and no-slip nu-
merical boundary conditions are considered. The errors are
represented as a function of the exact, dimensionless bound-
ary layer width, e.

It must be stressed that A¢(0, =) is zero for
every value of ¢ when the C-grid with a slip
condition is considered. This favourable property
ensues from the conservative nature of the algo-
rithm. Combining Eqgs. (10) and (24), we have

$(0,%) = [ dy-a(0), (29)
0

while Eqgs. (13), (14} and (28) lead to

$(0,0)= 3 1-5(0). (30)
y=1/2

By virtue of Eq. (20), 0(0) =&(0), so that $(0,
w) = ¢(0, »). Hence, Ap(0, ») is identically zero.

4.3. Overall error measure

In the preceding section, a detailed analysis of
four types of error measure has been performed.

Table 4

1.0
B-grid: no-slip
0.8
08}
o
Lt
§ oal
0.2
\\—C-grid: no-slip
N
0.0 L
20 / -10 0.0 1.0 2.0
B-grid: slip I°ng

Fig. 9. Overall error measure e(e) — as defined in Eq. (31).
The B- and C-grids, with slip and no-slip boundary conditions,
are considered. The large error associated with the no-slip
B-grid solution is mainly due to the water flux crossing the
grid box adjacent to the coast being ill represented.

It may also be found desirable to derive a more
global — and simple — estimate of the accuracy
of the numerical methods examined herein. For
example, a weighted sum of |Au(y)l, [Aulgss,
[A@(0, 1) and |Ad(0, =)| may be computed. As-
suming that these quantities are equally impor-
tant, it is suggested evaluating

e(e) =lAu(y. ) +1Aulrss +1A¢(0,1)!
+1A¢(0,). (31)

As depicted in Fig. 9, e is maximum in the region

0.1 <e <1, except for the B-grid with a no-slip

boundary condition. All this is well in agreement
with the results presented above.

The overall error measure E(e,, €,) over the segments 0.01 <€ < 1 (non resolved boundary layer), 0.1 < e < 10 (poorly resolved
boundary layer), 1 <e < 100 (well tesolved boandary layer) and 0.01 < € < 100 (global estimate). The errors are given for the B-
and C-grids, with slip and no-slip boundary conditions. The superiority of the solutions obtained with a slip boundary condition is

clearly illustrated

B-grid no-slip B-grid slip C-grid no-slip C-grid slip
E(0.01, 1): 0.75 0.12 0.21 0.12
E(0.1, 10): 032 0.11 0.22 0.086
E(1, 100): 0.038 0.033 0.054 0.0062
E(0.01, 100): 0.39 0.076 0.13 0.062
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To asses a discrete solution over the range
€, <€ <,, it seems quite reasonable to compute
an average of e(e), such as (Table 4)

[“e(e)d(logyye)

E(€€,) = — . 32
(€1,€3) 108 19€, — 108 g€ (32)

It is readily seen that (log,ge, — log,oe,) E(ey, €,)
is the area comprised between the horizontal axis
and the relevant curve displayed in Fig. 9. Thus,
in a certain sense, definition (32) provides a syn-
thetic view of Fig. 9. Table 4 clearly points to the
shortcomings of the B-grid, no-slip solution and
puts forward the superiority of the discrete solu-
tions obtained with a slip boundary condition.

5. Conclusions

The coastal boundary layer problem treated
here is inspired, in a radiognostic way, from the
physical oceanography of the Northern Bering
Sea. No stark conclusion, such as Nihoul’s, can be
drawn. However, the comparison of the discrete
along-shore velocity with the exact value is inter-
esting, and sometimes surprising.

First, the thickness of the numerical boundary
layer is larger than its exact counterpart.

Second, in most cases, the error affecting the
discrete solution is small, whether or not the
boundary layer is well resolved by the numerical
grid. This is mainly due to the driving force acting
over the whole domain, and not just through its
boundary — as in Nihoul’s example.

Third, the B-grid and C-grid solutions gener-
ally exhibit errors of the same order of magni-
tude, which are maximum when the grid size and
the width of the boundary layer are comparable.
If the thickness of the boundary layer is much
larger, or much smaller, than the space incre-
ment, the error is smaller.

Fourth, the slip boundary condition is, in gen-
eral, the best choice, with a slight advantage to
the C-grid.

When the boundary layer is much smaller than
the grid size, most of the above conclusions do
not apply to the B-grid with a slip boundary

condition. In this case, the water flux crossing the
grid box adjacent to the coast is in error by a
factor of = 1/2. A fix to this problem has been
suggested, but should be tested in a realistic
B-grid model — to assess its impact on the flow
in the whole computational domain.

Finally, it should be recalled that the problem
treated here is an idealized one. Therefore, it is
not certain that the results we obtained actually
apply to a realistic model. It is however believed
that useful guidelines have been provided for
further analysis.
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