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ABSTRACT

Deleersnijder, E., 1992, Revisiting Nihoul’s model for oil slicks transport and spreading on
the sea. Ecol Modelling, 64: 71-75. :

Nihoul’s model for the transport and spreading of oil slicks on the sea is summarized. It
is shown that the evolution equation of the model admits a similarity solution that is valid in
the gravity—friction and friction-surface tension regimes. An alternative governing equation
is proposed.

INTRODUCTION

Nihoul (1984a,b) has developed a model, hereafter referred to as NM
(Nihoul’s Model), capable of representing the transport and spreading of
oil slicks on the sea. On the basis of dimensional arguments, approximate
similarity solutions for axisymmetric slicks have been derived.

The purpose of the present note is to show that there exists an exact
similarity solution, valid over the range of spreading regimes covered by
NM. In addition, an alternative form of the governing equation of the
model is proposed.
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SUMMARY OF NM

NM expresses the conservation of oil and the balance of forces acting on
the oil layer by means of equations integrated over the depth of the oil
layer. The mass conservation equation is

oh
a—t+V-(hu)=Q (1)
where £ is the thickness of the oil layer present at the sea surface; u is the
oil velocity averaged over the depth of the oil layer; Q is a production /de-
struction term taking into account the presence of sources releasing oil and
the effect of loss processes such as evaporation or sinking into the water
column; ¢ is time; and V is the horizontal gradient operator.

Neglecting inertia forces, which are important only in the first phase of
spreading (Nihoul, 1984a), the momentum equation, integrated over the oil
layer depth, represents the balance of the gravity (F,), frictional (F;) and

surface tension (F,,) forces

F,+F+FE,=0 (2)
According to NM, the gravity force may be expressed as

F=—-g'hVh (3)
with g’ =g (p“-p)/p, where g, p* and p denote gravitational acceleration,
and water and oil density, respectively. The frictional forces are due to the

combined effect of the stresses at the air—oil interface, 72, and the .
oil-water interface, ¥, which is parameterized by a linear expression

™= —k(u—u") (4)
where k is an appropriate drag coefficient and u™ is the water velocity
below the oil slick. Hence, one has

m=%hﬂ—uu-wﬂ )

In NM, the surface tension force is assumed to increase from Zero at the
center of the slick to its maximum value at the edge. Accordingly E, is
parameterized as

K, = Lvy? (6)
P

In the latter expression, y is a relevant surface tension parameter and ¢ is
a function that is equal to 0 (1) at the center (edge) of the slick (notice that
¢? is equal to function ¢ of NM).
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Combining (3), (5) and (6) with (2), one obtains

1 g'p Y
—u¥+ —7 2 —h Vh+ -V
LB X X ¥ (7)
which can be introduced into (1), leading to NM’s governing equation
oh g'p Y
— . =Q+V:-|—h*Vh—-—hV 2) ,
v (-4 (2 Th Ve ®)

In the above equation, v =u" + 7% /k may be interpreted as the oil advec-
tion velocity induced by atmospheric and oceanic forcings.

SIMILARITY SOLUTIONS

When Q is negligible and when the extent of the oil slick is small
compared with the length scale of v, one may de-couple the advection and
the spreading of the slick. It follows that the center of gravity of the slick,
X, moves according to

s ()

Assuming that the slick is axisymmetric, using polar coordinate r having its
origin at x, and introducing (9) into (8), one obtains
oh 1 9 gp oh y o’

— [r( h?

E_

k or k or

(10)

ror

Nihoul (1984b) suggested looking for a similarity solution of the form

3V 1 r ]
h=——l1-|—=

27 R? { ( R ) ] )
where V' denotes the released volume of oil and R represents the radius of

the slick. It is readily seen that (11) satisfies the overall mass conservation
equation

R
V=2 [ hrdr (12)
0
Nihoul (1984a) suggests
r
=g (13)

According to (11), (13) is equivalent to

2 22
12 p2
¢—[1 ‘(3VR h) (14)
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As shown by Deleersnijder and Loffet (1985), transforming (13) to (14)
greatly facilitates the search for a similarity solution.
Combining (10) and (14), one obtains

oh gp 2y (2mw\? 19 oh
— |2 e  + L P h?
o [k * k(3V) rarp ar) (13)

Introducing (11) into (15), one has
dR 2y 1+a4’R*
TS (16)
dt a‘k R
where
27 (29 \'?
R P
Finally, the solution of (16) is given by

(17)

R?— larct (aR?) = ilIt (18)
a . k

which provides the radius of the slick as a function of the released volume

and the elapsed time. ,

It must be stressed that (18) holds for the whole range of successive
spreading regimes covered by (10), i.e. the gravity—friction regime (F, = F)
and the friction—surface tension regime (F; = E,,). '

In the gravity—friction regime, aR? < 1 so that (18) may be approxi-
mated by

2702 g il -~ g'p /e ;
22 Tp] Fit e [137 VZT] i (19)
T

~

When aR? > 1, the slick is in the friction—surface tension regime and (18)
admits the following asymptotic expansion

y\1/2
R~2(~£) {17 - (20)

Expressions (19) and (20) exhibit the same functional dependence in ¢ as
obtained by Nihoul [1984a, equations (33) and (34)] on the basis of
dimension_al arguments.

ALTERNATIVE FORM OF NM’S GOVERNING EQUATION

There remains a difficulty in NM’s governing equation (8). Indeed, (8).
relies on definition (13), which is, in principle, only valid for an axisymmet-
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ric slick. For a real oil slick, it is indeed not easy to unambiguously define r:, e

and R. When the above similarity solution holds, by virtue of (11), (13) may }
be rewritten as

271/2

]
o= (i) e

max

(21) roughly applies in general, one may then introduce (21) into (8) to
obtain

h representing the maximum thickness of the oil layer. Assuming that

dh

a—t+V-(hv):Q+V-(th) (22)
where

= jg-—’34— “F h? (3
Tk kRt (23)

Since (22) is of a parabolic nature, one might think that the spreading
rate should be infinite (Crank, 1975). This is, however, not the case, for the
diffusion coefficient « is zero at the edge of the slick. More precisely, as
the edge is approached a — 0 while |VA| — o, eventually resulting in a
finite, non-zero spreading rate. As a consequence, numerical solution of
(22) should be conducted carefully (Deleersnijder and Loffet, 1985).
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